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1. Introduction

In this paper, we isolate and study name principles. They express that for names σ such that a certain 
property is forced for σ, there exists a filter g in the ground model V such that σg already has this property 
in V . In general, we fix a class Σ of names, for example nice names for sets of ordinals. Given a forcing P
and a formula ϕ(x), one can then study the principle:

“If σ ∈ Σ and P � ϕ(σ) holds, then there exists a filter g ∈ V on P such that ϕ(σg) holds in V .”

Such principles are closely related to Bagaria’s work on generic absoluteness and forcing axioms [4]. Recall 
that the forcing axiom FAP ,κ associated to a forcing P and an uncountable cardinal κ states:

“For any sequence �D = 〈Dα : α < κ〉 of predense subsets of P , there is a filter g ∈ V on P such that 
g ∩Dα �= ∅ for all α < κ.”

Often, proofs from forcing axioms can be formulated by first proving a name principle and then obtaining 
the desired result as an application.

Example 1.1. FAP ,ω1 implies that for any stationary subset S of ω1, P does not force that S is nonstationary. 
We sketch an argument via a name principle. We shall show in Section 4 that FAP ,ω1 implies the name 
principle for any nice name τ for a subset of ω1 and any Σ0-formula ϕ. So towards a contradiction, suppose 
there is a name τ for a club with �P τ ∩S = ∅. Apply the name principle for the formula “τ is a club in ω1

and τ ∩ Š = ∅”. Hence there is a filter g ∈ V such that τg is a club and τg ∩ S = ∅. However, the existence 
of τg contradicts the assumption that S is stationary.

Name principles for stationary sets have appeared implicitly in combination with forcing axioms.

Example 1.2. The forcing axiom PFA+ states:

For any proper forcing P , any sequence �D = 〈Dα : α < ω1〉 of predense subsets of P and any nice name 
σ for a stationary subset of ω1, there is a filter g on P such that
• g ∩Dα �= ∅ for all α < ω1 and
• σg is stationary.
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Thus PFA+ is a combination of the forcing axiom PFA with a name principle for stationary sets. Note that 
the formula “σ is stationary” is not Σ0.

We aim for an analysis of name principles for their own sake. The main result of this paper is that 
name principles are more general than forcing axioms. In other words, all known forcing axioms can be 
reformulated as name principles. For instance, we have:

Theorem 1.3. (see Theorem 4.11) Suppose that P is a forcing and κ is a cardinal. Then the following 
statements are equivalent:

(1) FAP ,κ

(2) The name principle NP ,κ for nice names σ and the formula σ = κ̌.
(3) The simultaneous name principle Σ(sim)

0 -NP ,κ for nice names σ and all first-order formulas over the 
structure (κ, ∈, σ).

The main Theorems 4.1 and 4.2 are more general and cover: (i) arbitrary names instead of nice names 
and (ii) bounded forcing axioms.

Bagaria proved an equivalence between bounded forcing axioms and generic absoluteness principles [3,4]. 
The following corollary of 4.2 has Bagaria’s result as a special case. Here BFAP ,κ denotes the usual bounded 
forcing axiom, i.e. for κ many predense sets of size at most κ, and the principle in (2) denotes the name 
principle for names of the form {(α̌, pα) : α ∈ κ} and for all Σ0-formulas simultaneously.

Theorem 1.4. (see Theorems 4.17 and 4.22) Suppose that κ is an uncountable cardinal, P is a complete 
Boolean algebra and Ġ is a P -name for the generic filter. The following conditions are equivalent:

(1) BFAP ,κ

(2) Σ(sim)
0 -BN1

P ,κ

(3) �P V ≺Σ1
1(κ) V [Ġ]

If cof(κ) > ω or there is no inner model with a Woodin cardinal, then the next condition is equivalent to
(1), (2) and (3):

(4) �P HV
κ+ ≺Σ1 H

V [Ġ]
κ+

If cof(κ) = ω and 2<κ = κ, then the next condition is equivalent to (1), (2) and (3):

(5) 1P forces that no new bounded subset of κ are added.

The second topic of this paper is the study of name principles for specific formulas ϕ(x). In particular, 
we will consider these principles when ϕ(x) denotes a notion of largeness for subsets of κ such as being 
unbounded, stationary, or in the club filter. For each of these notions, we also study the corresponding 
forcing axiom. For instance, the unbounded forcing axiom ub-FAP ,κ states:

“For any sequence �D = 〈Dα : α < κ〉 of predense subsets of P , there is a filter g on P such that g∩Dα �= ∅
for unboundedly many α < κ.”

1 This follows from Theorem 4.1 (2) for X = κ and α = 1.
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All these principles are defined formally in Section 2. The next diagram displays some results about them. 
Solid arrows denote non-reversible implications, dotted arrows stand for implications whose converse remains 
open, and dashed lines indicate that no implication is provable. The numbers indicate where to find the 
proofs.

Nκ

3.6

3.1

club-Nκ

3.6

5.7, 5.18

5.3 stat-Nκ

3.7

ub-Nκ

3.8 3.10

FAκ

3.3

3.4 club-FAκ

3.3
stat-FAκ

3.3
ub-FAκ

Fig. 1. Forcing axioms and name principles for regular κ.

We also investigate whether similar implications hold for λ-bounded name principles and forcing axioms, 
where λ is any cardinal. The results about the cases κ ≤ λ, ω ≤ λ < κ and 1 ≤ λ < κ are displayed in the 
next diagrams. Here a CBA is a complete Boolean algebra.

BNλ
κ

↔ for CBAs
club-BNλ

κ

↔ for CBAs

stat-BNλ
κ ub-BNλ

κ

BFAλ
κ club-BFAλ

κ stat-BFAλ
κ ub-BFAλ

κ

Fig. 2. λ-bounded forcing axioms and name principles for regular κ and λ ≥ κ.

It is open whether club-BNλ
P ,κ implies stat-BNλ

P ,κ. Conversely, there are forcings P where stat-BNλ
P ,κ holds 

for all λ, but club-BNλ
P ,κ fails for all λ ≥ ω (see Section 5.1.3, Lemma 5.7 and Remark 5.18).

BNλ
κ club-BNλ

κ

5.30

stat-BNλ
κ ub-BNλ

κ

BFAλ
κ club-BFAλ

κ stat-BFAλ
κ ub-BFAλ

κ

Fig. 3. λ-bounded forcing axioms and name principles for regular κ and ω ≤ λ < κ.

Again, it is open whether club-BNλ
P ,κ implies stat-BNλ

P ,κ, but the converse implication does not hold by 
the previous remarks.

BNn
κ club-BNn

κ stat-BNn
κ

5.27

ub-BNn
κ

5.27

BFAn
κ club-BFAn

κ stat-BFAn
κ ub-BFAn

κ

Fig. 4. n-bounded forcing axioms and name principles for regular κ and 1 ≤ n < ω.

The principles in the bottom row and BNn
κ are all provable.
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The implications and separations in the previous diagrams are proved using specific forcings such as 
Cohen forcing, random forcing and Suslin trees. For instance, we have the following results:

Proposition 1.5. (see Lemma 5.20) Let P denote random forcing. The following are equivalent:

(1) FAP ,ω1

(2) ub-FAP ,ω1

(3) 2ω is not the union of ω1 many null sets

Proposition 1.6. (see Corollary 5.27) Suppose that a Suslin tree exists. Then there exists a Suslin tree T
such that stat-BN1

T,ω1
fails.

For some forcings, most of Fig. 1 collapses. In particular, if ub-FAP ,κ implies FAP ,κ, then all entries other 
than stat-NP ,κ are equivalent. We investigate when this implication holds. For instance:

Proposition 1.7. (see Lemma 5.1) For any <κ-distributive forcing P , we have ub-FAP ,κ =⇒ FAP ,κ.

In a broader range of cases, ub-FAP ,κ implies most of the entries in Fig. 2:

Proposition 1.8. (see Lemma 4.25) If κ an uncountable cardinal and P is a complete Boolean algebra that 
does not add bounded subsets of κ, then

(∀q ∈ P ub-FAPq,κ) =⇒ BFAκ
P ,κ.

The previous result is a corollary to the proof of Theorem 1.4.
We collect some definitions in Section 2. In Section 3, we prove the positive implications in Fig. 1. In 

Section 4, we prove a general correspondence between forcing axioms and name principles. Theorem 1.3 is a 
special case. We further derive results about generic absoluteness and other consequences of the correspon-
dence. In Section 5, we study the principles in Figs. 1-4 for specific classes of forcings such as σ-distributive 
and c.c.c. and for specific forcings such as Cohen and random forcing. We use these results to separate some 
of the principles in the figures.
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2. Some definitions

In this section, we introduce the axioms we will be finding equivalences between. We will also define a 
few concepts that we will want to use repeatedly.
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Definition 2.1. Let X be a set and α an ordinal. We recursively define Pα(X) and P<α(X):

P0(X) = X

P<α(X) =
⋃

β<α Pβ(X)
Pα(X) = P(P<α(X)) for α > 0.

The axioms we are working with come under two headings: forcing axioms and name principles. Within 
these headings there are a variety of different axioms we will be working with.

A forcing is a partial order with a largest element 1. Throughout this section, assume that P is a forcing 
and C is a class of forcings. G will be a generic filter (on P ); g will be a filter on P which is contained in 
the ground model V (and therefore certainly not generic, if P is atomless).

2.1. Forcing axioms

Notation 2.2. In the following, �D = 〈Dγ : γ < κ〉 always denotes a sequence of dense (or predense) subsets 
of a forcing P . If g is a subset of P , then its trace with respect to �D is defined as the set

Trg, �D = {α < κ : g ∩Dα �= ∅}.

Definition 2.3. Let κ be a cardinal. The forcing axiom FAP ,κ says:

“For any �D, there exists a filter g ∈ V with Trg, �D = κ.”

The forcing axiom FAC,κ asserts that FAP ,κ holds for all P ∈ C.

Of course, we could just as well have written “predense” instead of “dense” in the above definition.
We will suppress the P or C in the above notation when it is clear which forcing we are referring to. If 

κ = ω1 we will suppress it too, just writing FAP (or just FA if P is clear as well).
We can weaken this axiom: instead of insisting that g must meet every Dγ , we could insist only that it 

meets “many” of them in some sense. The following forcing axioms do exactly that, for various senses of 
“many”.

Definition 2.4. Suppose that κ is a cardinal and ϕ(x) is a formula. The axiom ϕ-FAP ,κ states:

“For any �D, there is a filter g on P such that ϕ(Trg, �D) holds.”

In particular, we will consider the following formulas:

(1) club(x) states that x contains a club in κ. club-FAP ,κ is called the club forcing axiom.
(2) stat(x) states that x is stationary in κ. stat-FAP ,κ is called the stationary forcing axiom.
(3) ub(x) states that x contains an unbounded subset of κ. ub-FAP ,κ is called the unbounded forcing axiom.
(4) ω-ub(x) states that x contains ω as a subset and is also unbounded in κ. ω-ub-FAP ,κ is called the 

ω-unbounded forcing axiom.

We define club-FAC,κ, stat-FAC,κ, ub-FAC,κ and ω-ub-FAC,κ in the same way as we defined FAC,κ in Defini-
tion 2.3.
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ω-ub-FA can also be expressed as a combined version of two forcing axioms: that given a κ long sequence 
�D and a separate ω long sequence �E of (pre)dense sets, we can find a filter g such that Trg, �D is unbounded 
and Trg, �E = ω.

Again, we will suppress P or C where they are obvious, and will suppress κ when κ = ω1.
We can also weaken the axiom by insisting that every dense set Dγ be bounded in cardinality, by some 

small cardinal.

Definition 2.5. Let κ and λ be cardinals. The bounded forcing axiom BFAλ
P ,κ says

“Whenever 〈Dγ : γ < κ〉 is a sequence of predense subsets of P , and for all γ we have |Dγ | ≤ λ, then 
there is a filter g ∈ V such that for all γ < κ, g ∩Dγ �= ∅.”

We define BFAλ
C,κ, club-BFAλ

P ,κ and so forth in the natural way, using definitions analogous to those in 
2.3 and 2.4.

Again, we will suppress notation as described above. We will suppress the λ if λ = κ.
Note that we are definitely looking at predense sets here, since actual dense sets are likely to be rather 

large and the axiom would be likely to be trivial if we had to use dense sets. These bounded forcing axioms 
are only really of interest when P is a Boolean algebra, since they always contain (nontrivial) predense sets 
with as few as two elements so the axiom will not be vacuous.

There is one more forcing axiom we want to introduce, but it requires some additional notation so we 
will postpone it until later in this section.

2.2. Name principles

We ought to define name principles at this point, but we need to cover some other terminology first in 
order to express the definitions.

As one might expect, name principles are about different P names, and it will be useful to have some 
measure of how complex a name is. The following three definitions are all different ways of doing this; we 
will be using all of them.

Definition 2.6. Let X be a set (in V ). We recursively define a name’s rank as follows.
σ is an α rank X name (or a rank α name for short) if either:

• α = 0 and σ = x̌ for some x ∈ X; or
• σ is not rank 0 and α = sup{rank(τ) + 1 : ∃p ∈ P (τ, p) ∈ σ}

We also call a 1 (or 0) rank X name a good name. Of course, we will also talk about rank ≤ α names, 
meaning names which are either rank <α or rank α.

This definition is a name analogue to saying that σ ∈ Pα(X), where X is transitive. Most of the time, 
we will be interested in the case where X is some cardinal, most often either 0 or ω1. Note that every P
name is an α rank X name for some α.

Definition 2.7. Let σ be a P name and κ be a cardinal. We say σ is locally κ small if there are at most κ
many names τ such that for some p ∈ P , we have (τ, p) ∈ σ. A name σ is κ small if it is locally κ small, 
and every name τ in the above definition is κ small.

If being rank α is analogous to being in Pα (or Pα(X)) then the analogue of being κ small would be being 
in Hκ+ . We could also easily define a version of this for Hκ+(X) if we wanted. However, we don’t actually 
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need to: in all the cases we’re going to be interested in, X̄ will have cardinality ≤ κ and the definition would 
be equivalent to the above one.

The following proposition says that we only really need to worry about κ smallness when we go above 
rank 1 names.

Proposition 2.8. Let X be transitive, and of size at most κ. Let σ be a 0 rank or 1 rank X name. Then σ is 
κ small.

On the other hand if X has size greater than κ then no interesting rank 1 name will be κ small.
The next definition does not have an easy analogue, but is a kind of complement to the previous one and 

is critical when we work with bounded forcing axioms.

Definition 2.9. Let σ be a P name and λ be a cardinal. We say σ is locally λ bounded if it can be written as

σ = {(τ, p) : τ ∈ T, p ∈ Sτ}

where T is some set of names, and for τ ∈ T the set Sτ is a subset of P of size at most λ. A name σ is λ
bounded if it is locally λ bounded, and every name τ ∈ T in the above definition is λ bounded.

A good name which is 1 bounded is known as a very good name. A check name x̌ has the form {(y̌, 1) :
y ∈ x} and is therefore guaranteed to be λ bounded for any λ > 0.

We will be talking about interpreting names with respect to a filter. Unfortunately, the literature uses 
two different meanings of the word “interpretation”, which only coincide if the filter is generic. For clarity:

Definition 2.10. Let σ be a name, and g a filter. (Here, g may be inside V or in some larger model.) When 
we refer to the interpretation σg of σ, we mean the recursive interpretation:

σg := {τg : ∃p ∈ g (τ, p) ∈ σ}

When we refer to the quasi-interpretation σ(g), we mean the following set:

σ(g) := {x ∈ V : ∃p ∈ g p � x̌ ∈ σ}

Proposition 2.11. σg = σ(g) if σ is a 1 rank X name (for some X) and either

(1) g is generic; or
(2) σ is 1 bounded.

Proposition 2.12. Suppose P is a complete Boolean algebra, and σ is a 1 rank X name. Then we can find a 
name τ such that for every filter g, τg = τ (g) = σ(g).

Proof. For x ∈ X let px = sup{p ∈ P : (x̌, p) ∈ σ} (so px ∈ P ∪ {0}). Let τ = {(x̌, px) : x ∈ X, px �= 0}. �
We can now define our name principles. Here, we take P to be a forcing, C a class of forcings, and X an 

arbitrary set.

Definition 2.13. Let α be an ordinal, κ a cardinal and X a transitive set of size at most κ. The name principle 
NP ,X,κ(α) says the following:
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“Whenever σ is a κ small ≤α rank X name, and A ∈ Hκ+ ∩ Pα(X) is a set such that P � σ = Ǎ, there 
is a filter g ∈ V such that σg = A.”

NC,X,κ(α) is the statement that NQ,X,κ(α) holds for all Q ∈ C. NP ,κ(∞) (resp. NC,κ(∞)) is the statement 
that NP ,X,κ(α) (resp. NC,X,κ(α)) holds for all α ∈ Ord and all X ∈ Hκ+ . (Equivalently, we could just require 
that it holds for α ≤ κ+ and all X ∈ Hκ+ .)

Some comments on this definition: It is easy to see that if σ is a κ small X name, and g ∈ V , then 
σg ∈ Hκ+ . If σ is rank ≤α, then it is also easy to see that σg ∈ Pα(X). So if we didn’t require that 
A ∈ Hκ+ ∩ Pα(X), then the principle would fail trivially for most forcings. The only forcings on which it 
could hold would be those which don’t force any names to be equal to such large A anyway.

This argument also shows that the name principle fails trivially if, for some λ < κ, there is a λ small σ
which is forced to be equal to some A /∈ Hλ+ . So we might think we should exclude such names from the 
principle as well. But in fact, we shall see in Section 4 that it makes little difference: the proof of Theorem 4.1
shows that if a name principle fails because of such a name, then it also fails for non-trivial reasons.

We can easily see that if σ is a κ-small 1 rank X name, and is forced to be equal to A, then A ⊆ X and 
|A| ≤ κ. Hence, when we’re dealing with N(1), we don’t need to worry about checking if the names we’re 
working with are in Hκ+ ∩ P(X), as this is automatically true. On the other hand, once we go above rank 
1, these names can exist, even for small values of α and κ. For example, [13, Lemma 7.1] has an ω bounded 
rank 2 name which is forced to be equal to (2ω)V .

One might ask why we allowed X-names for all X ∈ Hκ+ in the definition of NP ,κ(∞). This is because 
any such name can be understood as an ∅-name of some high rank, so these principles already follow from 
the conjunction of NP ,∅,κ(α) for all α ∈ Ord.

As with the forcing axioms, we will sometimes omit part of this notation. We will drop P and C when 
they are clear from context. We will omit α when α = 1. While X is formally just some arbitrary set, most 
of the time it can be thought of as a cardinal; we will omit it in the case that X = κ, and will then omit κ
as well if κ = ω1.

Most often, these omissions will come up when we’re assuming α = 1 and taking X to be some cardinal. 
In that situation, κ smallness is essentially trivial: if κ < X then our class of names is too restrictive to do 
anything interesting, and if κ ≥ X then every 1 rank X name will be κ small, automatically. So when α = 1
and X is a cardinal we can find out everything we need to know just by looking at the case X = κ.

We can also define variations analogous to club-FA, stat-FA, etc. However, this only really makes sense 
when we know σ a subset of some cardinal. For this reason, we only define these variations for the case 
where α = 1 (also dropping the requirement of κ-smallness) and where X is a cardinal.

Definition 2.14. Let κ be a cardinal and ϕ(x) a formula. The axiom ϕ-NP ,κ states:

“For any 1 rank κ name σ, if P � ϕ(σ) then there is a filter g on P such that ϕ(σg) holds in V .”

In particular, we shall consider the axioms for the formulas club(x), stat(x), ub(x) and ω-ub(x) given in 
Definition 2.4:

(1) The club name principle club-NP ,κ.
(2) The stationary name principle stat-NP ,κ.
(3) The unbounded name principle ub-NP ,κ.
(4) The ω-unbounded name principle ω-ub-NP ,κ.
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As usual, we also define similar axioms with C in place of P . Note that we could also express ω-ub-N as 
an axiom about two names, one of which is forced to be an unbounded subset of κ while the other is forced 
to be equal to ω.

Remark 2.15. The axioms club-FAP ,κ, stat-FAP ,κ, ub-FAP ,κ and ω-ub-FAP ,κ in Definition 2.4 can be under-
stood as a more general form of name principles for two formulas ϕ(x) and ψ(x):

“For any 1 rank κ name σ, if P � ϕ(σ) then there is a filter g on P such that ψ(σg) holds in V ,”

For instance, stat-FAP ,κ is equivalent to the statement:

“If σ is a rank 1 name for ω1, then there is a filter g ∈ V such that σg is stationary.”

We can also generalise the ideas here: rather than simply working with a single statement like “σ is 
unbounded” or “σ is some particular set in V ”, we could ask to be able to find a filter to correctly interpret 
every reasonable statement.

In the following definition, we allow bounded quantifiers in our Σ0 formulas.

Definition 2.16. Let α be an ordinal and κ a cardinal. The simultaneous name principle Σ(sim)
0 -NP ,X,κ(α)

says the following:

“Whenever σ0, . . . , σn are κ small ≤α rank X names, we can find a filter g in V such that ϕ(σg
0 , . . . , σ

g
n)

holds for every Σ0 formula ϕ such that P � ϕ(σ0, . . . , σn).”

Moreover:

• The simultaneous name principle Σ(sim)
0 -NP ,κ(∞) is the same statement, except that the names are X

names for some X ∈ Hκ+ and there is no restriction on their rank.
• Σ(sim)

0 -NC,X,κ(α) is the statement that Σ(sim)
0 -NQ,X,κ(α) holds for all Q ∈ C.

• Σ(sim)
0 -NC,κ(∞) is defined similarly.

• The bounded name principles Σ(sim)
0 -BNλ

P ,X,κ(α) are defined similarly.

The Σ0 requirement on ϕ is necessary, because otherwise the axiom would say that any sentence which 
is forced to be true by P is already true in V . This would make the axiom trivially false for almost all 
interesting forcings. Again we will suppress X, κ and α as described earlier.

All of these name principles also have bounded variants:

Definition 2.17. Let α be an ordinal and κ, λ cardinals. The bounded name principle BNλ
P ,X,κ(α) says the 

following:

“Whenever σ is a κ small λ bounded ≤ α rank X name, and A is a set such that P � σ = A, we can 
find a filter g ∈ V such that σg = A.”

We define similar bounded forms of all the other name principles we have introduced so far. Again, we 
will suppress λ when λ = κ and will suppress other notation as described above.
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2.3. Hybrid axioms

There is one more group of axioms which are worth mentioning, because of their frequent use in the 
literature. They are a hybrid of forcing axiom and name principle. The axioms MA+ and PFA+ were 
introduced by Baumgartner in [5, Section 8].

Definition 2.18. The forcing axiom FA+
P ,κ says:

“Suppose �D = 〈Dγ : γ < κ〉 is a sequence of dense subsets of P and let σ be a 1 rank κ name such that 
P � “σ is stationary”. Then there is a filter g such that
(1) For all γ, Dγ ∩ g �= ∅; and
(2) σg is stationary.”

The forcing axiom FA++
P ,κ says:

“Let 〈Dγ : γ < κ〉 be dense subsets of P and let 〈σγ : γ < κ〉 be 1 rank κ names such that P � “σγ is 
stationary” for every γ. Then we can find a filter g such that
(1) For all γ, Dγ ∩ g �= ∅; and
(2) For all γ, σg

γ is stationary.”

As usual, we will also use versions of the above with C in place of P , and bounded versions.
We have actually gone against convention slightly here: the literature generally uses the quasi-

interpretation σ(g) when defining FA+ and FA++ style axioms. However, our version is in fact equivalent, 
as the following theorem shows:

Theorem 2.19. Let FA(+) and FA(++) be defined in the same way as FA+ and FA++ above, but with σ(g) and 
σ

(g)
γ in place of σg and σg

γ respectively. Then FA+
P ,κ ⇐⇒ FA(+)

P ,κ and FA++
P ,κ ⇐⇒ FA(++)

P ,κ .

Proof. We will prove the FA+ case; the FA++ version is similar. The ⇐ direction is trivial.
⇒: Let 〈Dγ : γ < κ〉 be a collection of κ many dense subsets of P . Let σ be a rank 1 name with 

P � “σ is stationary”.
For γ ∈ κ, let

Eγ := {p ∈ P : p � γ̌ /∈ σ or ∃q ≥ p (γ̌, q) ∈ σ}

We can see that Eγ is dense: given p ∈ P , either we can find some q ‖ p with 〈γ̌, q〉 ∈ σ and we’re done, or 
p � γ̌ /∈ σ since all the elements of σ are check names.

Claim 2.20. If g is any filter which meets all the Eγ, then σg = σ(g)

Proof. ⊆: Let γ ∈ σg. Then there is a q ∈ g with (γ̌, q) ∈ σ. Clearly q � γ̌ ∈ σ, so γ ∈ σ(g).
⊇: Let γ ∈ σ(g). Then we can find r ∈ g with r � γ̌ ∈ σ. Certainly, then, there is no p ∈ g with p � γ̌ /∈ σ. 

Since nonetheless g meets Eγ , there must be some q ∈ g with (γ̌, q) ∈ σ. Hence γ ∈ σg. �
Now we simply use our forcing axiom to take a filter g which meets all the Dγ , all the Eγ , and which is 

such that σ(g) is stationary. �
In defining the Eγ in the above proof, we used a technique which we will be invoking many times. It will 

save us a lot of time if we give it a name now.
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Definition 2.21. Let τ and σ be names, and p ∈ P . We say p strongly forces τ ∈ σ, and write p �+ τ ∈ σ, if 
there exists q ≥ p with (τ, q) ∈ σ.

The value of this definition is shown in the following two propositions.

Proposition 2.22. Let σ and τ be names, and p ∈ P .

(1) If p � τ ∈ σ, then there exist densely many r ≤ p such that for some name τ̃ , r � τ̃ = τ and r �+ τ̃ ∈ σ.
(2) If p �+ τ ∈ σ then p � τ ∈ σ.

Proof. (1): Assume p � τ ∈ σ. Let q ≤ p, and let G be a generic filter containing q. Then we know that 
τG ∈ σG. Hence there is some pair (τ̃ , s) ∈ σ such that s ∈ G and τ̃G = τG. Since τ̃G = τG, there exists 
some condition t ∈ G such that t � τ̃ = τ . Now choose r ≤ q, s, t, which exists by compatibility of elements 
of G. It is immediate that r � τ̃ = τ and that r �+ τ̃ ∈ σ.

(2): Trivial. �
Proposition 2.23. Let σ and τ be names, let p ∈ P and let g be any filter containing p.

(1) If p �+ τ ∈ σ then τg ∈ σg.
(2) If for all τ̃ with (τ̃ , q) ∈ σ (for some q ∈ P) we either know τg �= τ̃g or have p � τ̃ /∈ σ then τg /∈ σg.

3. Results for rank 1

We will start by looking at the positive results we can prove in general about forcing axioms and rank 1 
name principles. We again take P to be an arbitrary forcing. We also take κ to be an uncountable cardinal, 
although we’re mostly interested in the case where κ = ω1. Since P is arbitrary, we could just as easily 
replace it with a class C of forcings in all our results.

3.1. Basic implications

All the positive results expressed in Fig. 1 are proved in this section. The negative results will be proved 
later, when we look at the specific forcings that provide counterexamples. We will not need that κ is regular. 
In the case of cof(κ) = ω, a club is

Lemma 3.1. FAP ,κ ⇐⇒ NP ,κ

Proof. ⇒: Assume FAκ. (That is, FAP ,κ, recall that we said we’d suppress the P whenever it was clear.) 
Let σ be a rank 1 name for a subset of κ, and suppose that 1 � σ = A for some A ⊆ κ. For γ ∈ A, let

Dγ = {p ∈ P : p �+ γ̌ ∈ σ}

It is clear that Dγ is dense by Proposition 2.22. For γ ∈ κ \A, let Dγ = P .
Using FAκ, take a filter g that meets every Dγ . We claim that σg = A. For γ ∈ A, we know that some 

p ∈ g strongly forces γ̌ ∈ σ. By 2.23 then, γ ∈ σg. Conversely, if γ /∈ A then 1 � γ̌ /∈ σ and by the same 
proposition γ /∈ σ.

⇐: Assume Nκ. Let 〈Dγ : γ < κ〉 be a collection of dense subsets of P . Let

σ = {(γ̌, p) : γ < κ, p ∈ Dγ}

It is easy to see that 1 � σ = κ̌. Take a filter g such that σg = κ, and then for all γ < κ Dγ ∩ g �= ∅. �
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Lemma 3.2. FAP ,κ holds if and only if for every rank 1 name σ for a subset of κ, there is some g with 
σ(g) = σg.

Proof. First suppose that FAP ,κ holds and σ is a rank 1 P -name for a subset of κ. Note that σg ⊆ σ(g)

holds for all filters g on P . For each α < ω1,

Dα = {p ∈ P : p � α̌ /∈ σ ∨ p �+ α̌ ∈ σ}

is dense. By FAP ,κ, there is a filter g with g ∩Dα for all α < ω1. To see that σ(g) ⊆ σg holds, suppose that 
α ∈ σ(g). Thus there is some p ∈ g which forces α̌ ∈ σ. Take any q ∈ g∩Dα. Since p ‖ q, we have p �+ α̌ ∈ σ

by the definition of Dα and thus α ∈ σg.
On the other hand, NP ,κ and thus FAP ,κ (by Lemma 3.1) follows trivially from this principle, since for 

any rank 1 name σ with � σ = Ǎ, we have σ(g) = A for any filter g. �
Lemma 3.3.

(1) FAP ,κ =⇒ club-FAP ,κ =⇒ ub-FAP ,κ

(2) FAP ,κ =⇒ stat-FAP ,κ =⇒ ub-FAP ,κ

(3) FAP ,κ =⇒ ω-ub-FAP ,κ =⇒ ub-FAP ,κ

(4) If cof(κ) > ω, then club-FAP ,κ =⇒ stat-FAP ,κ

Proof. Follows immediately from the definitions of the axioms. �
Lemma 3.4. club-FAP ,κ ⇐⇒ FAP ,cof(κ).

Proof. For cof(κ) = ω, the statements are both provably true. So assume cof(κ) > ω.
⇐=: Let π : cof(κ) → κ be a continuous cofinal function. Let �D = 〈Dα : α < κ〉 be a sequence of dense 

open subsets of P . Let �E = 〈Eβ : β < λ〉, where Eα = Dπ(α) for α < cof(κ). By FAP ,cof(κ), there is a filter g
with g ∩Eα for α < cof(κ). Thus for all β = π(α) ∈ ran(π), g ∩Dα = g ∩Eβ �= ∅. This suffices since ran(π)
is club in κ.

=⇒: We first claim that club-FAP ,κ implies club-FAP ,cof(κ). To see this, let π : cof(κ) → κ be a continuous 
cofinal function. Let �D = 〈Dα : α < cof(κ)〉 be a sequence of dense open subsets of P . Let Eπ(α) = Dα and 
Eγ = P for all γ /∈ ran(π). Since C ∩ ran(π) is club in κ and π is continuous, π−1(C) is club in cof(κ) and 
g ∩Dα = g ∩ Eπ(α) �= ∅ for all α ∈ π−1(C) as required.

It now suffices to prove club-FAP ,λ =⇒ FAP ,λ for regular λ. Given a sequence �D = 〈Dα : α < λ〉 of dense 
open subsets, partition λ into disjoint stationary sets Sα for α < κ. Let �E = 〈Eβ : β < λ〉, where Eβ = Dα

for β ∈ Sα. By club-FAλ, there is a filter g and a club C in λ with g ∩ Eβ for β ∈ C. Since C is club, 
Sα ∩ C �= ∅ for all α < λ. Thus g ∩Dα = g ∩ Eβ �= ∅. �
Lemma 3.5.

(1) FAκ =⇒ club-Nκ

(2) club-Nκ =⇒ club-FAκ

Proof. (1): Let σ be a rank 1 name such that 1 � “σ contains a club in κ”. Then we can find a rank 1 name 
τ such that 1 � τ ⊆ σ and 1 � “τ is a club in κ”. For γ < κ, let Dγ denote the set of p ∈ P such that either

(a) p �+ γ̌ ∈ τ , or
(b) for all sufficiently large α < γ, p � α̌ /∈ τ .
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We claim Dγ is dense. Let p ∈ P . If p � γ̌ ∈ τ then by Proposition 2.22 we can find q ≤ p strongly forcing 
this, and then q ∈ Dγ . Otherwise, take q ≤ p with q � γ̌ /∈ τ . Then q � “τ ∩ γ is bounded in γ”. Take r ≤ q

deciding that bound, and then r satisfies condition b above.
For any filter g with g ∩Dγ �= ∅, τg is closed at γ by Proposition 2.23.
Let Eγ denote the set of p ∈ P such that for some δ ≥ γ, p �+ δ̌ ∈ τ . Again, this is dense since τ is 

forced to be unbounded. For any filter g with g ∩ Eγ �= ∅ for all γ < κ, τg is unbounded.
Let Fγ denote the dense set of p ∈ P such that p �+ γ̌ ∈ σ or p � γ̌ /∈ τ . Once again, Fγ is dense: given 

p ∈ P take q ≤ p deciding whether γ ∈ τ . If it decides γ /∈ τ then we’re done; otherwise q � γ̌ ∈ σ and we 
can find r ≤ q with r �+ γ̌ ∈ σ

For any filter g with g ∩ Fγ �= ∅, γ ∈ τg ⇒ γ ∈ σg.
Putting things together, if we find a filter g which meets every Dγ , Eγ and Fγ then τg will be both a 

club and a subset of σg.
(2): This works much like the proof that N ⇒ FA above. Let 〈Dγ : γ < κ〉 be a collection of dense sets. 

Let

σ = {(γ̌, p) : γ < κ, p ∈ Dγ}

Clearly 1 � σ = κ̌, and hence that σ contains a club. Take a filter g where σg contains a club. Then 
σg = {γ < κ : Dγ ∩ g �= ∅} so g meets a club of Dγ . �

Putting together the previous results, we complete the top left corner of Fig. 1.

Corollary 3.6. The following are all equivalent for all uncountable regular cardinals κ: FAκ, Nκ, club-FAκ, 
club-Nκ.

The second half of the previous lemma also applies for the other special name principles.

Lemma 3.7. stat-Nκ =⇒ stat-FAκ

Proof. As for the club case, except that we just insist on σg being stationary. �
Lemma 3.8. ub-Nκ =⇒ ub-FAκ

Proof. As for the club case, except that we insist on σg being unbounded. �
Lemma 3.9. ω-ub-Nκ =⇒ ω-ub-FAκ

Proof. Define σ as in the club case. Define

τ = {(ň, p) : n < ω, p ∈ En}

where we want to meet all of the dense sets 〈En : n < ω〉 as well as unboundedly many of the dense sets 
Dγ . Take g such that τg = ω and σg is unbounded. �

We can also get converses for these in the case of ub and ω-ub.

Lemma 3.10.

(1) ub-FAκ =⇒ ub-Nκ

(2) ω-ub-FAκ =⇒ ω-ub-Nκ
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Proof. (1): Assume ub-FAκ. Let σ be a rank 1 name for an unbounded subset of κ. For γ < κ let Dγ be 
the set of all p ∈ P such that for some δ > γ, p �+ δ̌ ∈ σ. Let g be a filter meeting unboundedly many Dγ ; 
then σg is unbounded.

(2): Let σ be a rank 1 name for an unbounded subset of κ and τ be a good name for ω. Define Dγ as 
above, and for n < ω let En be the set of all p ∈ P which strongly force n ∈ τ . Find g meeting unboundedly 
many Dγ and every En; then σg is unbounded and τg = ω. �

This proves every implication in the left two columns of Fig. 1.

3.2. Extremely bounded name principles

Now, we address the right most column of Fig. 4. These axioms are more interesting if P is a complete 
Boolean algebra, since they can be trivial otherwise.

Lemma 3.11. BN1
κ is provable in ZFC.

Proof. Let σ be a 1-bounded rank 1 name such that 1 � σ = Ǎ for some set A. Then for γ ∈ κ \A, there is 
no p ∈ P such that (γ̌, p) ∈ σ. For γ ∈ A there is a unique p ∈ P such that (γ̌, p) ∈ σ; and p is contained in 
every generic filter. Assuming P is atomless, it follows that p = 1 and hence that, if we let g be any filter at 
all, σg = A. It is also possible to adjust this proof to work for forcings with atoms; this is left as an exercise 
for the reader. �

All of these results also hold if we work with bounded name principles and forcing axioms, provided that 
the bound is at least κ.

For bounds below κ, we can almost get an equivalence between the different bounds for the stationary 
and unbounded name principles. A forcing is called well-met if any two compatible conditions p, q have a 
greatest lower bound p ∧ q.

The next result and proof is due to Hamkins for trees (see Corollary 3.13). We noticed that his proof 
shows a more general fact.

Lemma 3.12 (with Hamkins). Suppose λ < κ and P is well-met.

(1) If stat-BNλ
P ,κ fails, then there are densely many conditions p ∈ P such that stat-BN1

Pp,κ fails, where 
Pp := {q ∈ P : q ≤ p}.

(2) The same result holds with ub in place of stat.

Proof. We prove the stat case; the ub case is identical. The key fact the proof uses is that if we partition a 
stationary/unbounded subset of κ into λ < κ many parts, then one of those parts must be stationary/un-
bounded.

Let σ be a λ-bounded (rank 1) name for a stationary set, such that there is no g ∈ V with σg stationary. 
Then, without loss of generality, we can enumerate the elements of σ:

σ = {(γ̌, pγ,δ) : γ < κ, δ < λ}

For δ < λ, we define:

σδ = {(γ̌, pγ,δ) : γ < κ}

Clearly, σδ is 1-bounded.
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For any generic filter G, 
⋃
σG
δ = σG is stationary in V [G]. Hence, P forces “There is some δ < λ such 

that σδ is stationary.” Now, let p ∈ P be one of the densely many conditions which decides which δ this is. 
Then

σδ,p = {(γ̌, pγ,δ ∧ p) : γ < κ}

is a 1-bounded Pp-name and Pp � σδ,p is stationary. If stat-BN1
Pp,κ would hold, there would exist a filter g

such that σg
δ,p is stationary. Then g generates a filter h in P such that σh

δ,p ⊇ σg
δ,p is stationary. �

Corollary 3.13 (Hamkins). Suppose that T is a tree, PT is T with reversed order and λ < κ.

(1) If stat-BNλ
PT ,κ fails, then there are densely many conditions p ∈ P such that stat-BN1

(PT )p,κ fails, where 
(PT )p := {q ∈ PT : q ≤ p}.

(2) The same result holds with ub in place of stat.

Corollary 3.14. Suppose λ < κ and P is a well-met forcing such that for every p ∈ P , Pp embeds densely 
into P . Then

stat-BNλ
P ,κ ⇐⇒ stat-BN1

P ,κ

ub-BNλ
P ,κ ⇐⇒ ub-BN1

P ,κ

Proof. We show that a failure of stat-BNλ
P ,κ implies the failure of stat-BN1

P ,κ. The converse direction is clear 
and the proof for the unbounded name principles is analogous.

By Lemma 3.12, there is some p ∈ P such that stat-BN1
Pp,κ fails. Let i : Pp → P be a dense embedding 

and Q := i(Pp). Since stat-BN1
Q,κ fails, let σ be a 1-bounded Q-name witnessing this failure. We claim that 

there is no filter g on P such that σg is stationary. Assume otherwise. Using that Q is well-met, let h denote 
the set of all q ≥ p0 ∧Q · · · ∧Q pn for some p0, . . . , pn ∈ g ∩Q. It is easy to check that h is a well-defined 
filter on Q and contains g ∩Q. Then σh ⊇ σg is stationary. But this contradicts the choice of σ. �
3.3. Extremely bounded forcing axioms

We next study forcing axioms for very small predense sets. The next lemmas show that BFAω
P ,ω1

has 
some of the same consequences as BFA.

Lemma 3.15. If P is a complete Boolean algebra such that BFAω
P ,ω1

holds, then 1P does not force that ω1 is 
collapsed.

Proof. Suppose � ḟ : ω1 → ω is injective. Let Aα = {�ḟ(α) = n� �= 0 : n ∈ ω}. Since each Aα is a maximal 
antichain, there is a filter g with g ∩ Aα �= ∅ for all α < ω1. Define f ′ : ω1 → ω by letting f ′(α) = n if 
�ḟ(α) = n� ∈ g for all α < ω1. Since g is a filter, f ′ : ω1 → ω is well-defined and injective. �
Lemma 3.16. If P is a complete Boolean algebra such that BFAω

P ,ω1
holds and P adds a real, then CH fails.

Proof. Suppose CH holds and let 〈xα : α < ω1〉 be an enumeration of all reals. Let σ be a name for the real 
added by P . For α < ω1, let

Dα = {�t�〈n〉 ⊆ σ� : t ∈ 2<ω, n ∈ 2, t ⊆ xα, t
�〈n〉 � xα}

For n < ω, let
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En = {�σ(n) = m� : m ∈ 2}

Then the Dα and En are all predense and countable. Take a filter g which meets every Dα and En. The En

ensure that g defines a real x (by x(n) = m where �σ(n) = m� ∈ g). But if x = xα then g ∩Dα = ∅. �
There exist forcings P such that the implication BFAω

P ,ω1
⇒ BFAω1

P ,ω1
fails. To see this, suppose that Q

is a forcing such that BFAω1
Q,ω1

fails. Let P be a lottery sum of ω1 many copies of Q. Since BFAω1
Q,ω1

fails, 
BFAω1

P ,ω1
fails as well. On the other hand, BFAω

P ,ω1
holds trivially since any countable predense subset of P

contains 0P .

Question 3.17. Does the implication BFAω
P ,ω1

⇒ BFAω1
P ,ω1

hold for all complete Boolean algebras P?

By the previous lemmas, any forcing which is a counterexample cannot force that ω1 is collapsed, and if 
it adds reals then CH holds.

3.4. Basic results on ub-FA

In this section, we collect some observations about weak forcing axioms. We aim to prove some conse-
quences of these axioms. We first consider ub-FA and stat-FA. How strong is ub-FA? The next lemmas show 
that is has some of the same consequences as FA.

Lemma 3.18. If ub-FAP ,ω1 holds, then P does not force that ω1 is collapsed.

Proof. Towards a contradiction, suppose P forces that ω1 is collapsed. Let ḟ be a P -name for an injective 
function ω1 → ω. For α < ω1, let Dα = {p ∈ P : ∃n ∈ ω p � ḟ(α) = n}. By ub-FAP ,ω1 , there is a filter g
and an unbounded subset A of ω1 such that g ∩Dα �= ∅ for all α ∈ A. Define f : A → ω by letting f(α) = n

if there is some p ∈ g ∩Dα with p � ḟ(α) = n. Since g is a filter, f is injective. �
Lemma 3.19. If ub-FAP ,ω1 holds and P does not add reals, then for each stationary subset S of ω1, P does 
not force that S is nonstationary.

Proof. Suppose that Ċ is a name for a club such that �P S ∩ Ċ = ∅. Let ḟ be a name for the characteristic 
function of Ċ. For each α < ω1,

Dα = {p ∈ P : ∃t ∈ 2α t ⊆ ḟ}

is dense in P , since P does not add reals. By ub-FAP ,ω1 , there is a filter g and an unbounded subset A of 
ω1 such that g ∩Dα �= ∅ for all α ∈ A. Since g is a filter, C := {α < ω1 : ∃p ∈ g p � α ∈ Ċ} is a club in ω1
with S ∩ C �= ∅. �

The previous lemma also follows from Theorem 4.17 and Lemma 4.25 below via an absoluteness argument, 
assuming P is a homogeneous complete Boolean algebra. It is open whether the lemma holds for forcings 
P which add reals.

What is the relationship between ub-FAP ,ω1 and other forcing axioms? We find two opposite situations. 
For any σ-centred forcing, ub-FAP ,ω1 and stat-FAP ,ω1 are provable in ZFC by Lemma 5.7 below. For many 
other forcings though, ub-FAP ,ω1 implies nontrivial axioms such as FAP ,ω1 or BFAω1

P ,ω1
. For instance, the 

implication ub-FAP ,ω1 ⇒ FAP ,ω1 holds for all σ-distributive forcing by Lemma 5.1 below. We will further see 
in Lemma 4.25 below that for any complete Boolean algebra P which does not add reals, (∀q ∈ P ub-FAPq,ω1)
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implies BFAω1
P ,ω1

. Moreover, the implication ub-FAP ,ω1 ⇒ FAP ,ω1 also holds for some forcings that add reals, 
for instance for random forcing by Lemma 5.20.

We do not have any examples of forcings where ub-FAP ,ω1 and stat-FAP ,ω1 sit between these two extremes: 
strictly weaker than FAP ,ω1 , but not provable in ZFC.

In particular, we have not been able to separate the two axioms:

Question 3.20. Can forcings P exist such that ub-FAP ,κ holds, but stat-FAP ,κ fails?

For instance, we would like to know if these axioms hold for the following forcings:

Question 3.21. Do Baumgartner’s forcing to add a club in ω1 with finite conditions [5, Section 3] and 
Abraham’s and Shelah’s forcing for destroying stationary sets with finite conditions [1, Section 2] satisfy 
ub-FAP ,ω1 and stat-FAP ,ω1?

3.5. Characterisations of FA+ and FA++

The proof of the equivalence of FA and N still goes through fine if we change the axioms slightly, demanding 
some extra property to be true of the filter g we’re looking for. This gives us a nice way to express FA+ and 
FA++.

Lemma 3.22. FA+
C,κ is equivalent to the following statement:

For all P ∈ C, for all rank 1 names σ and τ for subsets of κ such that P forces “σ = Ǎ” for some A and 
“τ is stationary”, there is some filter g with σg = A and τg stationary.

Similarly, FA++
C,κ is equivalent to being able to correctly interpret κ many stationary rank 1 names and a 

single rank 1 name for a specific set A.

Proof. Analogous to the proof of 3.1 in the previous section. �
In the case of FA++ this result can be sharpened further, getting rid of the name for A:

Lemma 3.23. FA++
C,κ is equivalent to the statement:

For all P ∈ C and all collections of κ many rank 1 names 〈σγ : γ < κ〉 with P � “σγ is stationary for all
γ”, there is a filter g ∈ V such that for all γ, σg

γ is stationary.

Proof. ⇒: By the previous lemma.
⇐: Let σ be a rank 1 name, such that P � σ = Ǎ for some A ⊆ κ. We claim there is a collection 

〈τγ : γ < κ〉 of rank 1 names, which are forced to be stationary in κ, such that any filter g which interprets 
every τγ as stationary will interpret σ as A. Once we have proved this claim, the lemma follows immediately 
from the second part of Lemma 3.22. For γ ∈ A, let τγ = {(α̌, p) : α ∈ κ, p �+ γ̌ ∈ σ}. For γ /∈ A, let τγ = κ̌. 
We will see that P � “τγ = κ” for γ ∈ A. Note that P � σ = Ǎ by assumption. So for γ ∈ A, every generic 
filter will contain some p with p �+ γ̌ ∈ σ. Hence P � τγ = κ̌. There is a filter g such that τgγ is stationary 
for all γ < κ by assumption. If γ ∈ A, then in particular τgγ �= ∅. Hence γ ∈ σg. If a filter interprets all 
the τγ as stationary sets, then σg ⊇ A. If γ ∈ σg \ A, then there is some p ∈ P with 〈γ̌, p〉 ∈ σ, which is 
impossible as P � γ̌ /∈ σ. �
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4. A correspondence for arbitrary ranks

We now move on to discuss higher ranked name principles, including those of the ranked or unranked 
simultaneous variety. It turns out that even at high ranks, a surprising variety of these are equivalent to 
one another and to a suitable forcing axiom. These are summarised in the following theorems.

4.1. The correspondence

Theorem 4.1. Let P be a forcing and let κ be a cardinal. The following implications hold, given the assump-
tions noted at the arrows:

(1)

FAκ

NP ,κ(∞) Σ(sim)
0 -NP ,κ(∞)

(2) For any ordinal α > 0, and any transitive set X of size at most κ2:

FAκ

NP ,X,κ(α)

|P<α(X)|≥κ

Σ(sim)
0 -NP ,X,κ(α)

As usual, we can generally think of X as being a cardinal.
There is also a bounded version of this theorem.

Theorem 4.2. Let P be a complete Boolean algebra, and let κ, λ be cardinals. The following implications 
hold, given the assumptions noted at the arrows:
(1)

BFAλ
κ

κ≤λ

BNλ
P ,κ(∞) Σ(sim)

0 -BNλ
P ,κ(∞)

(2) For any ordinal α > 0, and transitive set X of size at most κ:

BFAλ
κ

κ≤λ

BNλ
P ,X,κ(α)

|P<α(X)|≥κ

Σ(sim)
0 -BNλ

P ,X,κ(α)

2 Recall that NP,X,κ(α) is only defined if X has size at most κ.
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Remark 4.3. For the ∞ case it suffices to look only at ∅ names, as we discussed after Definition 2.13. 
Moreover, for the implication NP ,κ(∞) ⇒ FAP ,κ (and the corresponding ones in the other diagrams), we 
need only rank 1 κ-names for κ. These can be understood as rank κ ∅-names for κ. For NP ,X,κ(α) ⇒ FAP ,κ, 
rank 1 Y -names for a fixed set Y of size κ suffice. These can be understood as rank ≤α X-names. These 
remarks are also true for the bounded versions. Note that for NP ,κ(1) ⇒ FAP ,κ, rank 1 κ-names for κ suffice 
by Lemma 3.1.

We give some simple instances of Theorem 4.1 (2) and postpone the proofs to Section 4.2. The variant 
for bounded forcing axioms has similar consequences. The next result follows by letting κ = X and α = 1.

Corollary 4.4. For any forcing P , FAP ,κ ⇐⇒ Σ(sim)
0 -NP ,κ ⇐⇒ NP ,κ.

To illustrate this, we note how some concrete forcing axioms can be characterized by name principles. 
For example, we can characterize PFA as follows:

PFA ⇐⇒ Σ(sim)
0 -Nproper,ω1 ⇐⇒ Nproper,ω1 .

In other words, rank 1 names for ω1 can be interpreted correctly.
For higher ranks, it is useful to choose α, κ and X such that |P<α(X)| ≥ κ holds to get an equivalence 

in Theorem 4.1 (2). This condition holds for κ ≥ 2ω, X = ω and α = 2.

Corollary 4.5. For any cardinal κ ≤ 2ω and any forcing P , we have FAP ,κ ⇐⇒ Σ(sim)
0 -NP ,ω,κ(2) ⇐⇒

NP ,ω,κ(2).

For example, we can characterize PFA as follows:

PFA ⇐⇒ Σ(sim)
0 -Nproper,ω,ω1(2) ⇐⇒ Nproper,ω,ω1(2).

In other words, rank 2 names for sets of reals can be interpreted correctly. We leave open how to characterise 
higher rank (e.g. rank 2) principles for names for reals.

4.2. The proofs

Proof of Theorem 4.1. We prove both parts of the theorem simultaneously, by fixing X and α and proving 
all the implications in the following diagram:

Σ(sim)
0 -NP ,κ(∞) NP ,κ(∞)

FAP ,κ FAP ,κ

Σ(sim)
0 -NP ,X,κ(α) NP ,X,κ(α) |P<α(X)|≥κ

Of these, the first FAP ,κ ⇒ Σ(sim)
0 -NP ,κ(∞) is the hardest to prove, and the main work on the theorem. 

We’ll leave it to the end, and prove the other implications first. Note that FAP ,κ ⇒ Σ(sim)
0 -NP ,X,κ(α) follows 

from the rest of the diagram.

Proof of Σ(sim)
0 -NP ,κ(∞) ⇒ Σ(sim)

0 -NP ,κ,X(α). The latter is a special case of the former. �
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Proof of NP ,κ(∞) ⇒ NP ,X,κ(α). Again, this is a special case. �
Proof of Σ(sim)

0 -NP ,X,κ(α) ⇒ NP ,X,κ(α). Given a κ-small name σ of rank α or less, and a set A as called for 
by NP ,κ(α), we know A ∈ Pα(X) ∩Hκ+ . Hence Ǎ is a κ small α rank X name, so “σ = Ǎ” is one of the 
formulas discussed by the simultaneous name principle. �
Proof of Σ(sim)

0 -NP ,κ(∞) ⇒ NP ,κ(∞). Similar to the previous proof: if σ is any κ-small name, and A ∈ Hκ+

is such that P � σ = Ǎ, then since Ǎ is κ-small we know from Σ(sim)
0 -N(∞) that we can find a filter g such 

that σg = Ǎg = A. �
Proof of NP ,X,κ(α) ⇒ FAP ,κ. We assume |P<α(X)| ≥ κ. The idea is similar to the proof of NP ,κ ⇒ FAP ,κ

from Lemma 3.1, but first we must prove a technical claim.

Claim 4.6. P<α(X) contains at least κ many elements whose check names are κ-small <α-rank X-names.

Proof (Claim). Let α′ ≤ α be minimal such that |P<α′(X)| ≥ κ.
Let A ∈ P<α′(X). Then A ∈ Pε(X) for some ε < α′. We show by induction on ε that Ǎ is in fact a 

κ-small ε-rank X-name. From this and the assumption on the size of κ, it of course follows that there are 
at least κ many elements of P<α′(X) ⊆ P<α(X) whose check names are κ-small < α-rank X-names.

The case ε = 0 is trivial. Suppose ε > 0. By inductive hypothesis, we know that all the names which are 
contained in Ǎ are κ-small < ε-rank X-names. It remains to check that there are at most κ many of them; 
that is, that |A| ≤ κ. But this is obvious, since A ⊆ P<ε(X) and |P<ε(X)| < κ by our choice of α′. �

Given the claim, we can now take a set of κ many distinct sets A := {Aγ : γ < κ} ⊆ P<α(X), such that 
for all γ, the name Ǎγ is a κ small <α rank X-name.

Let 〈Dγ〉γ<κ be a sequence of dense sets in P . We define a name σ:

σ = {〈Ǎγ , p〉 : γ < κ, p ∈ Dγ}

Then σ is a κ-small ≤α-rank X-name, and P � σ = Ǎ. Hence, if we assume NP ,X,κ(α) we can choose a 
filter g such that σg = A. It is easy to see that g must meet every Dγ . �
Proof of NP ,κ(∞) ⇒ FAP ,κ. Essentially the same as the previous proof, but since we’re no longer required 
to make sure σ has rank α we can omit the technical claim and just take Aγ := γ for all γ < κ. �
Proof of FAP ,κ ⇒ Σ(sim)

0 -NP ,κ(∞). This is the main work of the theorem. By a delicate series of inductions, 
we will prove the following lemma:

Lemma 4.7. Let ϕ(�σ) be a Σ0 formula where �σ is a tuple of κ-small names. Then there is a collection Dϕ(�σ)
of at most κ many dense sets, which has the following property: if g is any filter meeting every set in Dϕ(�σ)
and g contains some p such that p � ϕ(�σ), then in fact ϕ(�σg) holds in V .

The result we’re trying to show follows easily from this lemma: Fix a tuple �σ = 〈σ0, . . . , σn〉 of κ small 
names, and let D :=

⋃
{Dϕ(�σ) : ϕ(v0, . . . , vn) is Σ0}. D is a collection of at most κ many dense sets. Using 

FAP ,κ, take a filter g meeting every dense set in D. If ϕ(v0, . . . , vn) is a Σ0 formula and 1 � ϕ(�σ) then since 
1 ∈ g we know that ϕ(�σg) holds.

We will work our way up to proving the lemma, by first proving it in simpler cases. We opt for a direct 
proof of the name principle NP ,κ(∞) in the next Claim 4.8. This and Claim 4.11 could be replaced by 

shorter arguments for κ-small ∅-names, since it suffices to deal with Σ(sim)
0 -NP ,∅,κ(∞) as discussed after 

Definition 2.13.
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Claim 4.8. The lemma holds when ϕ is of the form σ = Ǎ for some set A ∈ Hκ+ and (κ-small) name σ.

Note that since A ∈ Hκ+ , we know that Ǎ is a κ small name. So the statement in the claim does make 
sense.

Proof. We use induction on the rank of σ. If σ is rank 0 then it is a check name, and so the lemma is trivial: 
we can just take Dσ=Ǎ = ∅. So say σ is rank α > 0 and the lemma is proved for all names of rank <α. Since 
σ is κ-small, we can write σ = {(σγ , p) : γ < κ, p ∈ Sγ} for some κ-small names σγ and sets Sγ ⊆ P .

First, let B ∈ A. We shall define a set DB , whose “job” is to ensure B ends up in σg.

DB =
{
p ∈ P :

(
p � σ �= Ǎ

)
∨
(
∃γ < κ (p � σγ = B̌) ∧ (p �+ σγ ∈ σ)

)}

DB is dense: if we take p ∈ P then either we can find r ≤ p with r � σ �= Ǎ, or else p � σ = Ǎ. In the first 
case, we’re done. In the second, given any (truly) generic filter G containing p, there will be some γ < κ

and q ∈ G such that3 σG
γ = B and (σγ , q) ∈ σ, so q �+ σγ ∈ σ. Take r ∈ G such that r � σγ = B̌, and take 

s below p, q and r by compatibility; then s ∈ DB .
Now let γ < κ. In a similar way, we define a set Eγ , which is designed to ensure that σγ ends up in A if 

it’s going to be in σ.

Eγ =
{
p ∈ P : (p � σ �= Ǎ) ∨ (p � σγ /∈ σ) ∨

(
∃B ∈ A, p � σγ = B̌

)}

Again, Eγ is dense: Let p ∈ P . We can assume that p � σ = Ǎ and p � σγ ∈ σ; otherwise we’re done 
immediately. But now we can strengthen p to some r ≤ p which forces σγ ∈ B̌ for some B ∈ A and again 
we’re done.

We define

Dσ=Ǎ := {DB : B ∈ A} ∪ {Eγ : γ < κ} ∪
⋃
γ<κ

⋃
B∈A

Dσγ=B̌

Every σγ is a κ-small name of rank less than α, and every B ∈ Hκ+ , so this is well defined by inductive 
hypothesis. By assumption, |A| ≤ κ. Hence Dσ=Ǎ contains at most κ many dense sets. Fix a filter g which 
meets every element of Dσ=Ǎ, and which contains some p forcing σ = Ǎ. We must verify that σg = A.

First, let B ∈ A. Find q ∈ g ∩DB , and without loss of generality say q ≤ p. Then clearly q � σ = Ǎ, so 
(by definition of DB) we can find γ such that q � σγ = B̌ and q �+ σγ ∈ σ. The latter means that σg

γ ∈ σg. 
Since g also meets every element of Dσγ=B̌ , the fact that q ∈ g forces σγ = B̌ implies that σg

γ = B̌g = B. 
Hence B ∈ σg.

Now let B ∈ σg. Then we can find γ < κ such that B = σg
γ and such that for some q ∈ g we have 

q �+ σγ ∈ σ. Without loss of generality, say q ≤ p. Then q � σ = Ǎ. Let r ∈ g ∩Eγ , and again without loss 
of generality say r ≤ q. Then for some B′ ∈ A, r � σγ = B̌′. Since g meets every element of Dσγ=B̌′ , this 
tells us that σg

γ = B′. But then B = σg
γ = B′ ∈ A.

Hence σg = A as required. �
Next, we go up one step in complexity, by allowing both sides of the equality to be nontrivial.

Claim 4.9. The lemma holds when ϕ has the form σ = τ for two (κ-small) names σ and τ .

3 Note the somewhat delicate nature of this statement: we cannot first take an arbitrary γ such that σG
γ = B then try to find q

such that q �+ σγ ∈ σ.
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Proof. We use induction on the ranks of σ and τ . Without loss of generality, let us assume the rank of σ is α, 
and the rank of τ is ≤ α. If rank(τ) = 0 then τ is a check name. Since τ is κ-small, it can only be a check name 
for some A ∈ Hκ+ , so we are already done by the previous claim. So suppose rank(σ) = α ≥ rank(τ) > 0, 
and the result is proven for all τ ′, σ′ where rank(σ′) < rank(σ) and rank(τ ′) < rank(τ).

Let us write σ = {(σγ , p) : γ < κ, p ∈ Sγ} and τ = {(τδ, q) : δ < κ, q ∈ Tδ}.
For γ ∈ κ, we define a set Dγ , whose job is to ensure that if σγ ends up being put in σ by g, then it will 

also be equal to some element of τ .

Dγ =
{
p ∈ P :(p � σ �= τ) ∨ (p � σγ /∈ σ)

∨ ∃δ < κ
(
(p � σγ = τδ) ∧ (p �+ τδ ∈ τ)

)}

We claim Dγ is dense: Let p ∈ P . If p �� σγ ∈ σ or p �� σ = τ then take some q ≤ p forcing the converse of 
one of these statements, and we are done. If p � σγ ∈ σ ∧ σ = τ then take a generic filter G containing p. 
We know σG

γ ∈ τG, so σG
γ = τGδ for some τδ which is strongly forced to be in τ by some q ∈ G. Then take 

r ∈ G below p and q, and we know r � σγ = τδ and r �+ τδ ∈ τ . Hence r ∈ Dγ .
Symmetrically, for δ < κ let

Eδ =
{
p ∈ P :(p � σ �= τ) ∨ (p � τδ /∈ τ)

∨ ∃γ < κ
(
(p � σγ = τδ) ∧ (p �+ σγ ∈ σ)

)}

Again, Eδ is dense.
We now let

Dσ=τ := {Dγ : γ < κ} ∪ {Eδ : δ < κ} ∪
⋃

γ,δ<κ

Dσγ=τδ

Note that for all σ, δ < κ, we know rank(σγ) < rank(σ) and rank(τδ) < rank(τ), so Dσγ=τδ is already 
defined. Clearly, Dσ=τ contains at most κ many dense sets. Let g be a filter meeting every element of it, 
and let p ∈ g force σ = τ .

Suppose B ∈ σg. Then for some q ∈ g and γ < κ, B = σg
γ and q �+ σγ ∈ σ (and hence q � σγ ∈ σ). We 

can also find some r ∈ g ∩Dγ . Without loss of generality, say r is below both p and q. Certainly r cannot 
force σ �= τ , nor that σγ /∈ σ. Hence, for some δ < κ, we know r � σγ = τδ and r �+ τδ ∈ τ . But then 
τgδ ∈ τg, and since g meets every element of Dσγ=τδ , we also know that B = σg

γ = τgδ . Hence B ∈ τ .
Hence σg ⊆ τg, and by a symmetrical argument τg ⊆ σg. �

Claim 4.10. The lemma holds when ϕ has the form τ ∈ σ.

Proof. Write σ = {(σγ , p) : γ < κ, p ∈ Sγ} as usual. Let

D =
{
p ∈ P : (p � τ /∈ σ) ∨ ∃γ < κ

(
(p � τ = σγ) ∧ (p �+ σγ ∈ σ)

)}

As usual, D is dense. Let

Dτ∈σ := {D} ∪
⋃
γ<κ

Dτ=σγ

Let g meet every element of Dτ∈σ and contain some p forcing τ ∈ σ. Let q ∈ g ∩ D, and assume q ≤ p. 
Then for some γ, q � τ = σγ and q �+ σγ ∈ σ, so σg

γ ∈ σg. Since g meets every element of Dτ=σγ
we know 

τg = σg
γ ∈ σg. �
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We next need to prove similar claims about the negations of all these formulas.

Claim 4.11. The lemma holds when ϕ is of the form σ �= Ǎ for A ∈ Hκ.

Proof. As before, this is trivial is σ is rank 0. Otherwise, let us write σ = {(σγ , p) : γ < κ, p ∈ Sγ} and let

D =
{
p ∈ P :(p � σ = Ǎ) ∨

(
∃γ < κ(p �+ σγ ∈ σ) ∧ (p � σγ /∈ Ǎ)

)

∨ (∃B ∈ A : p � B̌ /∈ σ)
}

As usual, D is dense.
We then let

Dσ �=Ǎ := {D} ∪
⋃
γ<κ

⋃
B∈A

Dσγ �=B̌

By induction, this is well defined, and since A is in Hκ+ it has cardinality at most κ. Let g be a filter 
meeting all of Dσ �=Ǎ with p ∈ g forcing σ �= Ǎ. Take q ∈ g ∩D below p. There are two cases to consider.

(1) For some γ, q �+ σγ ∈ σ and q � σγ /∈ Ǎ. Then certainly σg
γ ∈ σg. Let B ∈ A. Then q � σγ �= B̌. Since 

g meets all of Dσγ �=B , we know σg
γ �= B. Hence σg

γ ∈ σg \A so σg �= A.
(2) For some B ∈ A, q � B̌ /∈ σ. Let B′ ∈ σg. Then for some γ < κ and r ≤ q in g, σg

γ = B′ and 
r �+ σγ ∈ σ. Hence r � σγ ∈ σ. But also r � B̌ /∈ σ since r ≤ q. Therefore r � σγ �= B̌, and so 
B′ = σg

γ �= B since g meets Dσγ �=B̌ . Hence B ∈ A \ σg, so again σg �= A. �
Claim 4.12. The lemma holds when ϕ is of the form σ �= τ .

Proof. The dense sets we need to use are very similar to the ones in the previous lemma. We assume 
rank(σ) ≥ rank(τ) and note that if rank(τ) = 0 we’re looking at the previous case. So let us assume 
rank(σ) ≥ rank(τ) > 0 and that we have proved the statement for all σ′ and τ ′ with lower ranks than σ
and τ respectively. As usual, write σ = {(σγ , p) : γ < κ, p ∈ Sγ} and τ = {(τδ, q) : δ < κ, q ∈ Tγ}.

Let

D =
{
p ∈ P :(p � σ = τ) ∨

(
∃γ < κ(p �+ σγ ∈ σ) ∧ (p � σγ /∈ τ)

)

∨
(
∃δ < κ(p �+ τδ ∈ τ) ∧ (p � τδ /∈ σ)

)}

Once again D is dense. We define

Dσ �=τ := {D} ∪
⋃

γ,δ<κ

Dσγ �=τδ

Letting g be our usual filter meeting all of Dσ �=τ and containing some p forcing σ �= τ , we can find q ∈ g∩D

below p. Without loss of generality, there exists γ < κ such that q �+ σγ ∈ σ and q � σγ /∈ τ . As always, 
the first statement implies σg

γ ∈ σg. If σg
γ ∈ τg then for some δ < κ and r ∈ g (which we can take to be 

below q), σg
γ = τgδ and r �+ τδ ∈ τ . But then we know r � σγ �= τδ. Since g meets all of Dσγ �=τδ this implies 

σg
γ �= τgγ . Contradiction. Hence σg

γ ∈ σg \ τg, so σg �= τg. �
Claim 4.13. The lemma holds when ϕ has the form τ /∈ σ.
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Proof. Write σ = {(σγ , p) : γ < κ, p ∈ Sγ} as usual. Let

Dτ /∈σ :=
⋃
γ<κ

Dτ �=σγ

Suppose g meets all of Dτ /∈σ and contains some p forcing τ /∈ σ. Let B ∈ σg. For some γ < κ and some 
q ∈ g below p, B = σg

γ and q �+ σγ ∈ σ. Then q � τ �= σγ , so τg �= σg
γ = B. Hence τg /∈ σg. �

We can now finally prove the full lemma.

Claim 4.14. The lemma holds in all cases.

Proof. We use induction on the length of the formula ϕ. By rearranging ϕ, we can assume that all the ¬’s 
in ϕ are in front of atomic formulas. Throughout this proof, we will suppress the irrelevant variables �σ of 
formulas ψ(�σ), and will write ψg to denote ψ(�σg).

The base case, where ϕ is either atomic or the negation of an atomic formula, was covered in the previous 
lemmas.

ϕ = ψ ∧ χ: We let Dϕ := Dψ ∪ Dχ. If p ∈ g forces ϕ then it also forces ψ and χ, so if also g meets all of 
Dϕ then ψg and χg hold.

ϕ = ψ ∨ χ: We let D = {p ∈ P : (p � ¬ϕ) ∨ (p � ψ) ∨ (p � χ)}, and let Dϕ := {D} ∪ Dψ ∪ Dχ. If g
meets all of Dϕ and contains some p which forces ϕ then take q ≤ p in g ∩D. Then q � ψ or q � χ, and by 
definition of Dψ and Dχ this implies ψg or χg respectively.

ϕ = ∀x ∈ σ ψ(x): Write σ = {(σγ , p) : γ < κ, p ∈ Sγ}, and let Dϕ :=
⋃

γ<κ Dψ(σγ). Suppose, as usual, 
that g meets all of Dϕ and contains some p forcing ϕ. Let B ∈ σg. Then we have some γ < κ and q ∈ g

such that σg
γ = B and q �+ σγ ∈ σ. Taking (without loss of generality) q ≤ p, we then have that q � ψ(σγ). 

Hence ψg(σg
γ) holds. But we know σg

γ = B. Hence ψg(B) holds for all B ∈ σg, so ϕg holds.
ϕ = ∃x ∈ σ ψ(x): Again we write σ = {(σγ , p) : γ < κ, p ∈ Sγ}. Let D be the dense set {p ∈ P : (p �

¬ϕ) ∨ ∃γ < κ (p �+ σγ ∈ σ ∧ p � ψ(σγ))}, and let Dϕ := {D} ∪
⋃

γ<κ Dψ(σγ). If g meets all of Dϕ and 
contains p forcing ϕ then we can take some element q of g ∩ D below p. Then for some γ < κ, we know 
q � ψ(σγ) and q �+ σγ ∈ σ. Then ψg(σg

γ) holds, and σg
γ ∈ σg. �

This completes the proof of Lemma 4.7. Hence FAP ,κ implies Σ(sim)
0 -NP ,κ(∞), as discussed earlier. �

This completes the proof of Theorem 4.1. �
In fact, this proof works even if we allow formulas to have conjunctions and disjunctions of κ many 

formulas (and accordingly let formulas have κ many variables).
The proof of Theorem 4.2 is essentially the same:

Proof of Theorem 4.2. We prove all the implications in the following diagram.

Σ(sim)
0 -BNλ

P ,κ(∞) BNλ
P ,κ(∞)

BFAλ
P ,κ

κ≤λ

κ≤λ

BFAλ
P ,κ

Σ(sim)
0 -BNλ

P ,X,κ(α) BNλ
P ,X,κ(α) |P<α(X)|≥κ

Note that BFAλ
P ,κ ⇒ Σ(sim)

0 -BNλ
P ,X,κ(α) for κ ≤ λ follows from the rest of the diagram.
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Proof of Σ(sim)
0 -BNλ

P ,κ(∞) ⇒ Σ(sim)
0 -BNλ

P ,κ(α) and BNλ
P ,κ(∞) ⇒ BNλ

P ,κ(α).
The latter are special cases of the former. �

Proof of Σ(sim)
0 -BNλ

P ,X,κ(α) ⇒ BNλ
P ,X,κ(α) and Σ(sim)

0 -BNλ
P ,κ(∞) ⇒ BNλ

P ,κ(∞).
As before, similar to the proofs in Theorem 4.1. �

Proof of BNλ
P ,X,κ(α) ⇒ BFAλ

P ,κ and BNλ
P ,κ(∞) ⇒ BFAλ

P ,κ. Letting 〈Dγ : γ < κ〉 be a sequence of predense 
sets of cardinality at most λ, we define a name σ exactly as in the corresponding proof from Theorem 4.1. 
Since the Dγ have cardinality at most λ, and all the names that appear in σ are 1 bounded check names, 
σ is λ-bounded.

As in the earlier proof, a filter g such that σg = A will meet all of the Dγ . �
Proof of BFAλ

P ,κ ⇒ Σ(sim)
0 -BNλ

P ,κ. Assume λ ≥ κ. We prove the following lemma (very similar to 
Lemma 4.7).

Lemma 4.15. Let ϕ(�σ) be a Σ0 formula where �σ is a tuple of κ-small λ-bounded names. Then there is a 
collection Dϕ(�σ) of at most κ many predense sets each of cardinality at most λ, which has the following 
property: if g is any filter meeting every set in Dϕ(�σ) and g contains some p such that p � ϕ(�σ), then in 
fact ϕ( �σg) holds in V .

We use the same proof as in Theorem 4.1, adjusting the dense sets we work with. Whenever a dense set 
appears, we will replace it with a predense set of size at most λ which fulfils all the same functions. To 
obtain these sets, we use a few techniques.

First, whenever the original proof calls for an arbitrary condition which forces some desirable property, 
we replace it with the supremum of all such conditions (exploiting the fact that we are in a complete Boolean 
algebra).

For example, in place of

Eγ =
{
p ∈ P : (p � σ �= Ǎ) ∨ (p � σγ /∈ A) ∨

(
∃B ∈ A, p � σγ = B̌

)}

in Claim 4.8, we would take the set

E∗
γ := {q0, q1} ∪ {qB : B ∈ A}

where

q0 = sup{p ∈ P : p � σ �= Ǎ}
q1 = sup{p ∈ P : p � σγ /∈ Ǎ}

and for B ∈ A,

qB = sup{p ∈ P : p � σγ = B̌}.

E∗
γ has cardinality at most λ, since |A| ≤ κ ≤ λ.
When the original set calls for a condition which strongly forces τ ∈ σ for some τ and σ, simply taking 

suprema won’t work. Instead, we ask for a condition q such that (τ, q) ∈ σ. Since all the names σ we deal 
with in the proof are λ-bounded, there will be at most λ many such conditions.

For example, in the same claim,

DB :=
{
p ∈ P : (p � σ �= Ǎ) ∨

(
∃γ < κ (p � σγ = B̌) ∧ (p �+ σγ ∈ σ)

)}
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will be replaced by

D∗
B := {r} ∪ {rγ,q : γ < κ, q ∈ P , (σγ , q) ∈ σ, rγ,q �= 0}

where

r = sup{p ∈ P : p � σ �= Ǎ}

and for γ < κ, q ∈ P ,

rγ,q = sup{p ≤ q : p � σγ = B̌}.

Checking that we can indeed apply these techniques to turn all the dense sets in the proof into predense 
sets of cardinality at most λ is left as an exercise for the particularly thorough reader. �

This completes the proof of Theorem 4.2. �
4.3. Generic absoluteness

In this section, we derive generic absoluteness principles from the above correspondence.
Fix a cardinal κ. We start by defining the class of Σ1

1(κ)-formulas. To this end, work with a two-sorted logic 
with two types of variables, interpreted as ranging over ordinals below κ and over subsets of κ, respectively. 
The language contains a binary relation symbol ∈ and a binary function symbol p for a pairing function 
κ ×κ → κ. Thus, atomic formulas are of the form α = β, x = y, α ∈ x and p(α, β) = γ, where α, β, γ denote 
ordinals and x, y denote subsets of κ.

Definition 4.16. A Σ1
1(κ) formula is of the form

∃x0, . . . , xm ϕ(x0, . . . , xm, y0, . . . , yn),

where the xi are variables for subsets of κ, the yi are either type of variables, and ϕ is a formula which only 
quantifies over variables for ordinals.

As a corollary to the results in Section 4.1, we obtain Bagaria’s characterisation of bounded forcing 
axioms [4, Theorem 5] as the equivalence (1) ⇔ (4) of the next theorem. It also shows that the principles 
Σ(sim)

0 -BNλ
P ,κ for λ < κ are all equivalent to BFAκ

P ,κ.

Theorem 4.17. Suppose that κ is a cardinal with cof(κ) > ω, P is a complete Boolean algebra and Ġ is a 
P -name for the generic filter. Then the following conditions are equivalent4:

(1) BFAκ
P ,κ

(2) Σ(sim)
0 -BN1

P ,κ(1)5
(3) �P V ≺Σ1

1(κ) V [Ġ]
(4) �P HV

κ+ ≺Σ1 H
V [Ġ]
κ+

4 The equivalence (1) ⇔ (4) is equivalent to Bagaria’s version, since his definition of BFA refers to Boolean completions.
5 The version Σ0 − BN1

P,κ(1) for single Σ0-formulas is also equivalent by the proof below.
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Proof. The implication (1) ⇒ (2) holds since BFAκ
P ,κ ⇔ Σ(sim)

0 -BNκ
P ,κ(1) by Theorem 4.2 and Σ(sim)

0 -BNκ
P ,κ(1)

implies Σ(sim)
0 -BN1

P ,κ(1).
(2) ⇒ (3): To simplify the notation, we will only work with Σ1

1(κ)-formulas of the form ∃x ϕ(x, y), where 
x and y range over subsets of κ. Suppose that y is a subset of κ and p � ∃x ϕ(x, y̌). Let σ be a P -name 
with p �P ϕ(σ, y̌). Since the variables of ϕ are interpreted as subsets of κ, this means that p � σ ⊆ κ̌. Let 
τ be defined by

τ := {(α̌, �α̌ ∈ σ�) : α < κ, �α̌ ∈ σ� �= 0}.

Then τ is a 1-bounded 1 rank κ name with p �P σ = τ . Note that y̌ is a 1-bounded rank 1 name, too. By 
Σ(sim)

0 -BNκ
P ,κ(1), there exists a filter g ∈ V on P such that V |= ϕ(σg, y). Hence V |= ∃x ϕ(x, y).

The implication (3) ⇒ (1) works just like in the proof of [4, Theorem 5]. In short, the existence of the 
required filter is equivalent to a Σ1

1(κ)-statement.
For (3) ⇒ (4), suppose that ψ = ∃x ϕ(x, y) is a Σ1-formula with a parameter y ∈ Hκ+ . Then

Hκ+ |= ψ ⇐⇒ Hκ+ |= “∃M transitive s.t. y ∈ M ∧M |= ψ”.

We express the latter by a Σ1
1(κ)-formula θ with a parameter A ⊆ κ which codes y in the sense that f(0) = y

for the transitive collapse f of (κ, p−1[A]).
θ states the existence of a subset B of κ such that ∈M := p−1[B] has the following properties:

• ∈M is wellfounded and extensional
• For all α < β < κ, 2 · α ∈M 2 · β and for all α, β < κ, 2 · α + 1 /∈M 2 · β.
• There is some κ̂ < κ with {α < κ : α ∈M κ̂} = {2 · α : α < κ}
• There exists some Â < κ such that for all β < κ, β ∈M Â ⇔ ∃α ∈ A 2 · α = β

• There exists some ŷ < κ such that in (κ, ∈M ), Â codes ŷ
• ϕ(ŷ) holds in (κ, ∈M )

The transitive collapse f of (κ, ∈M ) to a transitive set M will satisfy f(2 · α) = α for all α < κ, f(κ̂) = κ, 
f(Â) = A, f(ŷ) = y and M |= ψ(y).

All the above conditions apart from wellfoundedness of ∈M are first order over (κ, ∈, p, A, ∈M ). It remains 
to express wellfoundedness of ∈M in a Σ1

1(κ) way.6 To see that we can do this, suppose that R is a binary 
relation on κ. Since cof(κ) > ω, R is wellfounded if and only if for all γ < κ, R�γ is wellfounded. Since 
γ < κ, R�γ is wellfounded if and only if there exists a map f : γ → κ such that for all α, β < γ, (α, β) ∈
R ⇒ f(α) < f(β). The existence of such a map f is a Σ1

1(κ) statement.
Finally, (4) ⇒ (3) holds since every Σ1

1(κ)-formula is equivalent to a Σ1-formula over Hκ+ with parameter 
κ. �
Remark 4.18. Note that for rank 1, Σ(sim)

0 -BNλ
P ,κ(1) implies the simultaneous λ-bounded rank 1 name 

principle for all Σ1
1(κ)-formulas (see Definition 2.16) by picking 1-bounded names for witnesses.

Remark 4.19. The previous results cannot be extended to higher complexity. To see this, recall that a Π1
1(κ)-

formula is the negation of a Σ1
1(κ)-formula. We claim that there exists a Π1

1(ω1)-formula ϕ(x) such that the 
1-bounded rank 1 Π1

1(ω1)-name principle for the class of c.c.c. forcings fails. Otherwise MAω1 would hold 
by (2) ⇒ (1) of Theorem 4.17. So in particular, there are no Suslin trees. Since adding a Cohen real adds a 

6 cof(κ) > ω is in fact necessary to ensure that the set of codes on κ for elements of Hκ+ is Σ1
1(κ)-definable with parameters in 

P(κ). If cof(κ) = ω and κ is a strong limit, then this set is Π1
1(κ)-complete and hence not Σ1

1(κ) by a result of Dimonte and Motto 
Ros [8].



C. Henney-Turner, P. Schlicht / Annals of Pure and Applied Logic 174 (2023) 103260 29
Suslin tree, let σ be a 1-bounded rank 1 P -name for it, where P denotes the Boolean completion of Cohen 
forcing, and apply the name principle to the statement “σ is a Suslin tree”. But then we would have a Suslin 
tree in V .

Remark 4.20. Fuchs and Minden show in [11, Theorem 4.21] assuming CH that the bounded subcomplete 
forcing axiom BSCFA can be characterised by the preservation of (ω1, ≤ω1)-Aronszajn trees. The latter can 
be understood as the 1-bounded name principle for statements of the form “σ is an ω1-branch in T”, where 
T is an (ω1, ≤ω1)-Aronszajn tree. (See [11,15] for more about subcomplete forcing.)

We now consider forcing axioms at cardinals κ of countable cofinality. To our knowledge, these have not 
been studied before. BFAκ

c.c.c.,κ = MAκ is an example of a consistent forcing axiom of this form. We fix some 
notation. If κ is uncountable cardinals with cof(κ) = μ, we fix a continuous strictly increasing sequence 
〈κi : i ∈ μ〉 of ordinals with κ0 = 0 and supi∈μ κi = κ. We assume that each κi is closed under the pairing 
function p.7 For each x ∈ 2κ, we define a function fx : μ → 2<κ by letting fx(i) = x�κi.

Lemma 4.21. Suppose that κ is an uncountable cardinal with cof(κ) = μ. Suppose that ϕ(x, y) is a formula 
with quantifiers ranging over κ and y ∈ 2κ is fixed. Then there is a subtree T ∈ V of ((2<κ)<μ)2 such that 
in all generic extensions V [G] of V 8 which do not add new bounded subsets of κ,

ϕ(x, y) ⇐⇒ ∃g ∈ (2<κ)μ (fx, g) ∈ [T ]

holds for all x ∈ (2κ)V [G]. Moreover, for any branch (�s, �t) ∈ [T ] in V [G] with �s = 〈si : i ∈ μ〉, 
⋃

i∈μ si = fx
for some x ∈ (2κ)V [G].

Proof. We construct the i-th levels Levi(T ) by induction on i ∈ μ. Let Lev0(T ) = {(∅, ∅)}. If j ∈ μ is a 
limit, let (�s, �t) ∈ Levj(T ) if (�s�i, �t�i) ∈ Levi(T ) for all i < j.

For the successor step, suppose that Levj(T ) has been constructed. Write �s = 〈si : i ≤ j〉 and �t = 〈ti :
i ≤ j〉. Let (�s, �t) ∈ Levj+1(T ) if the following conditions hold:

(1) (�s�j, �t�j) ∈ Levj(T ).
(2) sj ∈ 2κj and ∀i < j sj�κi = si.
(3) tj ∈ 2κj codes the following two objects.

(i) A truth table pj which assigns to each formula ψ(ξ0, . . . , ξk) and parameters α0, . . . , αk < κj a 
truth value 0 or 1.

(ii) A function qj which assigns a value in ω to each existential formula ∃η ψ(ξ0, . . . , ξk, η) and associated 
parameters α0, . . . , αk < κj .

They satisfy pi ⊆ pj , qi ⊆ qj = qi for all i < j and the following conditions:
(a) pj(ϕ) = 1.
(b) pj satisfies the equality axioms:

pj((ψ(�ξ)), �α) = 1 ∧ �α = �β ⇐⇒ pj((ψ(�ξ)), �β) = 1

(c) pj is correct about atomic formulas ψ(�ξ) which do not mention ẋ and ẏ:

pj((ψ(�ξ)), �α) = 1 ⇐⇒ ψ(�α)

7 If κi is multiplicatively closed, i.e. ∀α < κα · α < κi, then this holds for Gödel’s pairing function.
8 This includes the case V [G] = V .
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(d) The truth in pj of all atomic formulas of the form ξ ∈ ẋ, ξ ∈ ẏ is fixed according to sj and y, 
respectively:

pj((ξ ∈ ẋ), α) = 1 ⇐⇒ α ∈ sj

pj((ξ ∈ ẏ), α) = 1 ⇐⇒ α ∈ y

(e) pj respects propositional connectives:

pj(ψ ∧ θ, �α) = 1 ⇐⇒ pj(ψ, �α) = 1 ∧ pj(θ, �α) = 1

pj(¬ψ, �α) = 1 ⇐⇒ pj(ψ, �α) = 0

(f) pj respects witnesses of existential formulas ∃η ψ(�ξ, η), �α) which it has identified:

∃β < κj pj(ψ(�ξ, η), �α, β) = 1 =⇒ pj(∃η ψ(�ξ, η), �α) = 1.

(g) qj promises the existence of existential witnesses: for any existential formula ∃η ψ(�ξ, η) and any 
tuple �α of parameters, if pj(∃η ψ(�ξ, η), �α) = 1 and qj(∃η ψ(�ξ, η), �α) ≤ n, then there exists some 
β < κj such that pj(ψ(�ξ, η), �α, β) = 1.

Let V [G] be a generic extension of V with no new bounded subsets of κ. Work in V [G].
⇒: Suppose that ϕ(x, y) holds. We define sj = x�κj for each j ∈ μ and pj(ψ(�ξ), �α) = 1 if (κ, ∈, p, x, y) |=

ψ(�α). We further define qj(∃η ψ(�ξ, η), �α) = 0 if pj(∃η ψ(�ξ, η), �α) = 0. Otherwise, qj(∃η ψ(�ξ, η), �α) is defined 
as the least l ∈ μ such that for some β < κl, (κ, ∈, p, x, y) |= ψ(�α, β). Let tj code pj and qj (via the 
pairing function p). Note that sj, pj and qj are in V , since V [G] has no new bounded subsets of κ. Hence 
〈(sj , tj) : j ∈ μ〉 is a branch through T .

⇐: Suppose that 〈(sj , tj) : j ∈ μ〉 is a branch through T . Let x =
⋃

j∈μ sj . By induction on complexity 
of formulas, pj and qj are correct about x and y. Therefore (κ, ∈, p, x, y) |= ϕ(x, y). �
Theorem 4.22. Suppose that κ is an uncountable cardinal with cof(κ) = ω, P is a complete Boolean algebra 
and Ġ is a P -name for the generic filter. Then the following conditions are equivalent:

(1) BFAκ
P ,κ

(2) Σ(sim)
0 -BN1

P ,κ

(3) �P V ≺Σ1
1(κ) V [Ġ]

If moreover 2<κ = κ holds,9 then the next condition is equivalent to (1), (2) and (3):

(4) 1P forces that no new bounded subset of κ are added.

If there exists no inner model with a Woodin cardinal,10 then the next condition is equivalent to (1), (2) and
(3):

(5) �P HV
κ+ ≺Σ1 H

V [Ġ]
κ+

Proof. The proofs of (1) ⇔ (2) ⇔ (3) ⇐ (5) in Theorem 4.17 work for all uncountable cardinals κ.

9 The assumption 2<κ = κ is not needed for (4) ⇒ (3).
10 The assumption that there is no inner model with a Woodin cardinal is not used for (5) ⇒ (3).
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(3) ⇒ (4): We assume 2<κ = κ. Towards a contradiction, suppose that V [G] is a generic extension that 
adds a new subset of γ < κ. Note that 2γ ≤ κ. Let �y = 〈yi : i < 2γ〉 list all subsets of γ. We define 
x ⊆ γ · 2γ ⊆ κ by letting γ · i + j ∈ x ⇔ j ∈ yi. The next formula expresses “there is a new subset of γ < κ” 
as a Σ1

1(κ)-statement in parameters coding the + and · operations:

∃z [z ⊆ γ ∧ ¬∃i ∀j < γ (j ∈ z ⇔ γ · i + j ∈ x)].

This contradicts Σ1
1(κ)-absoluteness.

(4) ⇒ (3): Suppose that ∃x ψ(x, y) is a Σ1
1(κ)-formula and y ∈ (2κ)V . Let T be a subtree of ((2<κ)<ω)2

as in Lemma 4.21. Let G be P -generic over V with V [G] � ∃x ψ(x, y). V [G] does not have new bounded 
subsets of κ by assumption. Then [T ] has a branch in V [G] by the property of T in Lemma 4.21. Since 
wellfoundedness is absolute, T has a branch 〈sn, tn : n ∈ ω〉 in V . Then 

⋃
n∈ω sn = fx for some x ∈ 2κ by 

the properties of T . We have V |= ψ(x, y), since

ψ(x, y) ⇐⇒ ∃g (fx, g) ∈ [T ].

(3) ⇒ (5): Note that the implication holds vacuously if κ is collapsed in some P -generic extension of V . 
In this case, both (3) and (5) fail, since the statement “κ is not a cardinal” is Σ1

1(κ).
We next show: if q ∈ P forces that κ+ is preserved, then q � HV

κ+ ≺Σ1 H
V [Ġ]
κ+ holds. To see this, let G be 

P -generic over V with q ∈ G. Suppose ψ = ∃x ϕ(x, y) is a Σ1-formula with a parameter y ∈ Hκ+ . We follow 
the proof of (3) ⇒ (4) in Corollary 4.17 to construct a Σ1

1(κ)-formula θ that is equivalent to ψ. However, 
we replace the first condition by:

• ∈M is extensional and wellfounded of rank γ

for a fixed γ < (κ+)V = (κ+)V [G]. If ψ is true, then for sufficiently large γ, θ will be true. Now we only need 
to modify the last step of the above proof. Let C be a subset of κ such that (κ, p−1[C]) ∼= (γ, <). Suppose R
is a binary relation on κ. The condition “R is wellfounded of rank ≤γ” is Σ1

1(κ) in C, since it is equivalent 
to the existence of a function f : κ → γ such that for all α, β < κ, (α, β) ∈ R ⇒ f(α) < f(β).

Towards a contradiction, suppose that there is no inner model with a Woodin cardinal and in some 
P -generic extension V [G] of V , HV

κ+ ≺Σ1 H
V [G]
κ+ fails. By the previous remarks, κ is preserved and κ+ is 

collapsed in V [G]. Since there is no inner model with a Woodin cardinal, the Jensen-Steel core model K
from [16] is generically absolute and satisfies (λ+)K = λ+ for all singular cardinals λ by [16, Theorem 1.1]. 
Therefore any generic extension V [G] of V which does not collapse λ satisfies (λ+)V = (λ+)V [G]. For λ = κ, 
this contradicts our assumption. �

Can one remove the assumption that there is no inner model with a Woodin cardinal? A forcing P that 
witnesses the failure of (3) ⇒ (5) must preserve κ and collapse κ+ by the above proof. The existence of a 
forcing P with these two properties is consistent relative to the existence of a λ+-supercompact cardinal λ
by a result of Adolf, Apter and Koepke [2, Theorem 7]. Their forcing does not add new bounded subsets of 
κ as in (4) and thus also satisfies (1)-(3). However, we do not know if it satisfies (5).

Question 4.23. Is it consistent that there exist an uncountable cardinal κ with cof(κ) = ω and a forcing P
with the properties:

(a) P does not add new bounded subsets of κ and
(b) �P HV

κ+ ≺Σ1 H
V [Ġ]
κ+ fails?

(Thus P necessarily collapses κ+.)
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4.4. Boolean ultrapowers

In this section, we translate the above correspondence to Boolean ultrapowers and use this to characterise 
forcing axioms via elementary embeddings.

The Boolean ultrapower construction generalises ultrapowers with respect to ultrafilters on the power 
set of a set to ultrafilters on arbitrary Boolean algebras. We recall the basic definitions from Hamkins’ 
and Seabold’s work on Boolean ultrapowers [12, Section 3]. Suppose that P is a forcing and B its Boolean 
completion. Fix an ultrafilter U on B, which may or may not be in the ground model. We define two relations 
=U and ∈U on V B:

σ =U τ :⇔ �σ = τ� ∈ U

σ ∈U τ :⇔ �σ ∈ τ� ∈ U

Let [σ]U denote the equivalence class of σ ∈ V B with respect to =U . Let V B/U = {[σ]U : σ ∈ V B} denote 
the quotient with respect to =U . ∈U is well-defined on equivalence classes and (V B/U, ∈U ) is a model of 
ZFC [12, Theorem 3]. It is easy to see from these definitions that for any P -generic filter G over V , V B/G

is isomorphic to the generic extension V [G]. Moreover, we can determine the truth of sentences in V B/U

via Łos’ theorem [12, Theorem 10]: V B/U |= ϕ([σ0]U , . . . [σn]U ) ⇐⇒ �ϕ(σ0, . . . , σn)� ∈ U . In other words, 
the forcing theorem holds.

The Boolean ultrapower is the subclass

V̌U = {[σ]U : �σ ∈ V̌ � ∈ U}

of V B/U . It is isomorphic to V if and only if U is generic over V . The Boolean ultrapower embedding is the 
elementary embedding

jU : V → V̌U , jU (x) = [x̌]U .

We are interested in the case that U is an ultrafilter in the ground model. In particular, U is not P -generic 
over V . jU has the following properties:

• If U is generic, then jU is an isomorphism.
• If U is not generic, then V̌U is ill-founded and crit(jU ) equals the least size of a maximal antichain in B

not met by U [12, Theorem 17]. For example, if P is c.c.c. then crit(jU ) = ω.

For any x ∈ V B/U , let x∈U = {y ∈ V B/U : y ∈U x} denote the set of all ∈U -elements of x. If κ is a 
cardinal and σ is a name for a subset of κ, then [σ]∈U

U ∩ j[κ] = j[σ(U)], since

V B/U |= jU (α) = [α̌]U ∈ [σ]U ⇔ �α̌ ∈ σ� ∈ U ⇔ α ∈ σ(U)

for all α < κ.

Theorem 4.24. The following statements are equivalent:

(1) FAP ,κ

(2) For any transitive set M ∈ Hκ+ and for every κ-small M -name σ, there is an ultrafilter U ∈ V on P
such that

jU �M : M → jU (M)∈U
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is an elementary embedding from (M, ∈, σU ) to (jU (M)∈U , ∈U , [σ]U ).
(3) For any transitive set M ∈ Hκ+ and for any κ-small M -name σ, there is an ultrafilter U on P such 

that

(M,∈, σU ) ≡ (jU (M)∈U ,∈U , [σ]U ),

i.e. these structures are elementarily equivalent.

Proof. (1) ⇒ (2): Recall from Lemma 4.7 that for any finite sequence �σ = σ0, . . . , σk of κ-small names and 
every Σ0-formula ϕ(x0, . . . , xk), there is a collection Dϕ(�σ) of ≤κ many dense subsets of P with the following 
property: if g is any filter meeting every set in Dϕ(�σ) and g contains some p such that p � ϕ(�σ), then in fact 
ϕ( �σg) holds in V . Let D be the union of all collections Dϕ(�σ), where k ∈ ω, ϕ(x0, . . . , xk) is a Σ0-formula 
and each σi is σ, M̌ or x̌ for some x ∈ M . By FAP ,κ, there is a filter g which meets all sets in D. We extend 
g to an ultrafilter U .

Suppose that ψ(x0, . . . , xk) is a formula such that (jU (M)∈U , ∈U , [σ]U ) |= ψ(jU (y0), . . . , jU (yk)). We 
obtain ϕ(x0, . . . , xk+2) by replacing the unbounded quantifiers in ψ by quantifiers bounded by xk+1, and 
any occurrence of [σ]U by xk+2. Then

(V B/U,∈U ) |= ϕ(jU (y0), . . . , jU (yk), jU (M), [σ]U ).

Recall that jU (y) = [y̌]U for all u ∈ M . Therefore by Łos’ theorem, we have �ϕ(y̌0, . . . , y̌k, M̌, σ)� ∈ U . So 
there is some p ∈ U with p � ϕ(y̌0, . . . , y̌k, M̌, σ). Since U meets all dense sets in Dϕ(y̌0,...,y̌k,M̌,σ),

(V,∈) |= ϕ(y0, . . . , yk,M, σU ).

Hence (M, ∈, σU ) |= ψ(y0, . . . , yk).
(2) ⇒ (3): This is clear.
(3) ⇒ (1): Let M = κ and suppose that σ is a rank 1 M -name such that P � σ = κ̌. Then σ(g) = κ

for any filter g on P . It suffices to find a filter g with σg = κ by Lemma 3.2. Let U be an ultrafilter as in
(3). Since M = κ and jU (M) = jU (κ) = [κ̌]U = [σ]U , we have (jU (M)∈U , ∈U , [σ]U ) |= ∀x x ∈U [σ]U . Thus 
(κ, ∈, σU ) |= ∀x x ∈U σU by elementary equivalence. Thus σU = κ. �

A version of Theorem 4.24 for BFAλ
P ,κ and λ-bounded names also holds for any cardinal λ ≥ κ. The proof 

is essentially the same.

4.5. An application to ub-FA

Lemma 4.25. If P is a complete Boolean algebra that does not add reals, then

(∀q ∈ P ub-FAPq,ω1) =⇒ BFAω1
P ,ω1

.

More generally, if κ an uncountable cardinal and P is a complete Boolean algebra that does not add bounded 
subsets of κ, then

(∀q ∈ P ub-FAPq,κ) =⇒ BFAκ
P ,κ.

Proof. If cof(κ) = ω, then adding no new bounded subsets of κ already implies BFAκ
P ,κ by the proof of (4)

⇒ (3) in Theorem 4.22. Now suppose that cof(κ) > ω. Towards a contradiction, suppose that BFAκ
P ,κ fails. 

Then Σ1
1(κ)-absoluteness fails for some Σ1

1(κ)-formula ∃x ψ(x, y) and some y ∈ (2κ)V by Theorem 4.17. 
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Take a subtree T of (2<κ × κ<κ)<cof(κ) for ψ as in Lemma 4.21. Then [T ] �= ∅ in V [G] in some P -generic 
extension V [G], but [T ] = ∅ in V . Let σ denote a rank 1 T -name and let q ∈ P such that q �P σ ∈ [T ]. Let

τ = {(α, p) : p ≤ q ∧ ∃s ∈ Levα(T ) p �+
P š ∈ σ}

Then �Pq
τ = κ. For any filter g ∈ V on Pq we have τg = dom(σg). But dom(σg) ∈ κ, since [T ] = ∅. 

Therefore ub-NPq,κ fails and hence ub-FAPq,κ fails by Lemma 3.10. �
We will see in Lemma 5.1 that for any <κ-distributive forcing P , ub-FAP ,κ implies FAP ,κ. In combination 

with the previous lemma, this begs the question:

Question 4.26. If λ > κ is a cardinal and P is a complete Boolean algebra that does not add new elements 
of <κλ, then does the implication

(∀q ∈ P ub-FAPq,ω1) =⇒ BFAλ
P ,ω1

hold?

5. Specific classes of forcings

5.1. Classes of forcings

We now move on to look, over the next few sections, at what further results we can prove if we assume 
P is some specific kinds of forcing. We shall mostly return to the rank 1 cases for this and discuss the club, 
stat, ub and ω-ub axioms in Fig. 1.

5.1.1. σ-distributive forcings
We begin with a relatively simple case, where P is <κ-distributive. In this case, several of our axioms 

turn out to be equivalent to one another. The implications for the class of <κ-distributive forcings are 
summarised in the next diagram.

Nκ club-Nκ

5.3
stat-Nκ ub-Nκ

FAκ club-FAκ stat-FAκ ub-FAκ

5.2

Fig. 5. Forcing axioms and name principles for any <κ-distributive forcing for regular κ. Lemma 5.3 shows that stat-NP,ω1 is strictly 
stronger than the remaining principles for some σ-closed forcing P .

Lemma 5.1. For any <κ-distributive forcing P , ub-FAP ,κ =⇒ FAP ,κ.

Proof. Given a sequence �D = 〈Di : i < κ〉 of open dense subsets of P , let Ej =
⋂

i≤j Di for j < κ. If for a 
filter g, g ∩ Ej �= ∅ for unboundedly many j < κ, then g ∩Di �= ∅ for all i < κ. �
Lemma 5.2. Let P be <κ-distributive. stat-NP ,κ =⇒ FA+
P ,κ
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Proof. Suppose that �D = 〈Di : i < κ〉 is a sequence of open dense subsets of P and σ = {(α̌, p) : p ∈ Sα} is 
a name with 1 �P “σ is stationary”. For each j < κ, let Ej =

⋂
i≤j Di. For j < κ and p ∈ P , let Ej,p denote 

a subset of {q ∈ Ej : q ≤ p} that is dense below p. Let

τ = {(α̌, q) : α < κ, ∃p ∈ Sα q ∈ Ej,p}.

1 �P “τ is stationary”, since 1 �P σ = τ . By stat-NP ,κ, there is a filter g such that τg is stationary. By the 
definition of τ , τg ⊆ σg. Thus σg is stationary. We further have g ∩ Ej for unboundedly many j < κ and 
hence g ∩Di �= ∅ for all i < κ. �

An equivalent argument can be made with names for unbounded sets, or for sets containing a club.

5.1.2. σ-closed forcings
Note that FAP ,ω1 fails for some σ-distributive forcings, for instance for Suslin trees. But FAσ−closed,ω1 is 

provable: if 〈Dα : α < ω1〉 is a sequence of dense subsets of a σ-closed P , let 〈pα : α < ω1〉 be a decreasing 
sequence of conditions in P with pα ∈ Dα and let g = {q ∈ P : ∃α < ω1 pα ≤ q}. Therefore, the other 
principles in Fig. 5 are provable, with the exception of stat-NP ,ω1 by the next lemma. The lemma follows 
from known results.

Lemma 5.3. It is consistent that there is a σ-closed forcing P such that stat-NP fails.

Proof. It suffices to argue that stat-NP has large cardinal strength for some σ-closed forcing P . Note that 
stat-NP implies FA+

P for any σ-closed forcing P by Lemma 5.2. There is a cardinal μ ≥ ω2 such that 
FA+

Col(ω1,μ) implies the failure of �(κ) for all regular κ ≥ ω2 by [9, Page 20 & Proposition 14] and [20, 
Theorem 2.1].11 The proofs show that a single collapse suffices for the conclusion. The failure of �(κ+) and 
thus Jensen’s �κ at a singular strong limit cardinal κ implies the existence of an inner model with a proper 
class of Woodin cardinals (and more) by [21, Theorem 0.1] and [23, Theorem 15.1]. �

Presaturation of the nonstationary ideal on ω1 is another interesting consequence of stat-Nσ-closed,ω1

(equivalently, of FA+
σ-closed,ω1

) [9, Theorem 25]. Even for very simple σ-closed forcings P , stat-NP ,ω1 is an 
interesting axiom. For instance, Sakai showed in [19, Section 3] that FA+

Add(ω1),ω1
and thus stat-NAdd(ω1),ω1

is not provable in ZFC. We do not know much about the weakest stationary name principle for σ-closed 
forcing:

Question 5.4. Is stat-BN1
σ-closed provable in ZFC?

5.1.3. c.c.c. forcings
The class of c.c.c. forcings is rather more interesting. It has also historically been a class where forcing 

axioms have been frequently used; for example FAc.c.c.,ω1 is the well-known Martin’s Axiom MAω1 . Note 
that FAP ,κ is equivalent to BFAω

P ,κ.

11 A more direct argument using [9, Page 20] and [26, Theorem 3.8] should be possible, but the required results are not explicitly 
mentioned there.
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Nω1 club-Nω1

5.9
stat-Nω1 ub-Nω1

FAω1 club-FAω1 stat-FAω1 ub-FAω1

5.6

Fig. 6. Forcing axioms and name principles at ω1 for the class of all c.c.c. forcings.

All principles in Fig. 1 for κ = ω1 turn out to be equivalent to FAω1 . The implications are valid for 
the class of all c.c.c. forcings, but not for all single c.c.c. forcings. For instance, for the class of σ-centred 
forcings, the right side of Fig. 1 is provable in ZFC by Lemma 5.7, but the left side is not.

We first derive the implication ub-FAc.c.c.,ω1 =⇒ FAc.c.c.,ω1 from well-known results. Note that this impli-
cation does not hold for individual c.c.c. forcings, for instance it fails for Cohen forcing by Lemma 5.7 and 
Remark 5.18. We need the following definition:

Definition 5.5. Suppose that P is a forcing.

(1) A subset A of P is centred if every finite subset of A has a lower bound in P . A is σ-centred if it is a 
union of countably many centred sets.

(2) P is precaliber κ if, whenever A ∈ [P ]κ, there is some B ∈ [A]κ that is centred.

The hard implications in the next lemma are due to Todorčević and Veličković [25].

Lemma 5.6. The following conditions are equivalent:

(1) ub-FAc.c.c.,ω1 holds.
(2) Every c.c.c. forcing is precaliber ω1.
(3) Every c.c.c. forcing of size ω1 is σ-centred.
(4) FAc.c.c.,ω1 holds.

Proof. (1)⇒(2): This follows immediately from the proof of [14, Theorem 16.21]. The proof only requires 
meeting unboundedly many dense sets.

(2)⇒(3): See [25, Corollary 2.7].
(3)⇒(4): See [25, Theorem 3.3].
(4)⇒(1): This is immediate. �
Given Lemma 5.6, one wonders whether the equivalence of (1) and (4) also holds for σ-centred forcings 

instead of c.c.c. forcings. The next lemma together with the fact that FAσ-centred is equivalent to p > ω1

(see [25, Theorem 3.1]) shows that this is not the case.

Lemma 5.7. For any cardinal κ with cof(κ) > ω, stat-Nσ-centred,κ holds.

Proof. Suppose that σ is name for a stationary subset of ω1. Let f : P → ω witness that P is σ-centred. 
Let S be the stationary set of α such that p � α ∈ σ for some p ∈ P . For each α ∈ S, let pα be such that 
(α, pα) ∈ σ. There is a stationary subset R of S and n ∈ ω with f(pα) = n for all α ∈ R. Let g be a filter 
containing pα for all α ∈ S. Then R ⊆ σg, as required. �
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This suggests to ask whether FAσ-centred implies FA+
σ-centred as well. A further, long-standing open question 

is whether one can replace precaliber ω1 by Knaster in the implication (2)⇒(4) of Lemma 5.6. Recall that 
a subset of P is linked if it consists of pairwise compatible conditions. P is called Knaster if, whenever 
A ∈ [P ]ω1 , there is some B ∈ [A]ω1 that is linked.

Question 5.8. [24, Problem 11.1] Does the statement that every c.c.c. forcing is Knaster imply FAc.c.c.,ω1?

We now turn to the implication FAc.c.c.,ω1 =⇒ stat-Nc.c.c.,ω1 . To this end, we reconstruct Baumgartner’s 
unpublished result FAc.c.c.,κ =⇒ FA+n

c.c.c.,κ that is mentioned without proof in [5, Section 8] and [6, Page 14]. 
Here FA+n

κ denotes the version of FA+ with n many names for stationary subsets of κ.

Lemma 5.9 (Baumgartner). For any uncountable cardinal κ and for any n ∈ ω, FAc.c.c.,κ implies FA+n
c.c.c.,κ.

Proof. Suppose that for each i < n, σi is a rank 1 P -name for a stationary subset of ω1. For each �α = 〈αi :
i < n〉 ∈ κn, let A�α be a maximal antichain of conditions which strongly decide α ∈ σi for each i < k. Let 
A =

⋃
�α∈κn A�α. Since P satisfies the c.c.c. and |A| ≤ ω1, there exists a subforcing Q ⊆ P with A ⊆ Q and 

|Q| ≤ ω1 such that compatibility is absolute between P and Q. In particular, Q is c.c.c.
Since every c.c.c. forcing of size ω1 is σ-centred by MAω1 (see [27, Theorem 4.5]), there is a sequence 

�g = 〈gk : k ∈ ω〉 of filters gk on P with Q ⊆
⋃

k∈ω gk. Moreover, it follows from the proof of [27, Theorem 
4.5] (by a density argument) that we can choose the filters gk such that gk ∩Bα �= ∅ for all (k, α) ∈ ω × κ, 
where �B = 〈Bα : α < κ〉 is any sequence of dense subsets of P . (The conditions in the c.c.c. forcing consists 
of finite approximations to finitely many filters.)

It remains to find some k ∈ ω such that for all i < n, the set σgk
i is stationary. Let G be P -generic over 

V . We claim that
∏
i<n

σG
i ⊆

⋃
k∈ω

∏
i<n

σgk
i .

To see this, suppose that �α = 〈αi : i < n〉 ∈
∏

i<n σ
G
i and let p ∈ A�α ∩G. Then p �+ ∧

i<n αi ∈ σi. Since 
p ∈ Q, we have p ∈ gk for some k ∈ ω. Hence �α ∈

∏
i<n σ

gk
i . Since σG

i is stationary for all i < n, the above 
inclusion easily yields that there is some k ∈ ω such that 

∏
i<n σ

gk
i is stationary. �

Our proof of the previous lemma does not work for MA+ω. In fact, Baumgartner asked in [5, Section 8]:

Question 5.10 (Baumgartner 1984). Does MAω1 imply MA+ω1
ω1

?

We finally turn to bounded name principles for c.c.c. forcings.

Lemma 5.11.

(1) club-BN1
c.c.c. holds.

(2) For any c.c.c. forcing P , ub-BN1
P implies ub-FAP .

Proof. (1) If σ is a P -name for a set that contains a club, then by the c.c.c. there is a club C with 1 � C ⊆ σ. 
Since σ is 1-bounded, (α, 1) ∈ σ for all α ∈ C. Thus for every filter g, we have C ⊆ σg.

(2) Suppose that P satisfies the c.c.c. and �D = 〈Dα : α < ω1〉 is a sequence of dense subsets of P . Let Aα

be a maximal antichain in Dα and let �aα = 〈anα : n ∈ ω〉 enumerate Aα. (For ease of notation, we assume 
for that each Aα is infinite.) Let σ = {(ω · α + n, anα) : α < ω1, n ∈ ω}. By ub-BN1

P , there is a filter g such 
that σg is unbounded. Hence Dα ∩ g �= ∅ for unboundedly many α < ω1. �
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For any c.c.c. forcing P , the principles ub-BN1
P , ub-NP and ub-FAP are equivalent by Lemma 5.11 (2) and 

the implications in Fig. 6. We do not know what is their relationship with stat-BN1
c.c.c.. However, we will 

show in Lemma 5.24 below that stat-BN1
random,ω1

is not provable in ZFC.
Regarding Lemma 5.11 (1), it is also easy to see that club-BN1

σ-closed is provable. This suggests to ask:

Question 5.12. Is club-BN1
P is provable for any proper forcing P?

5.2. Specific forcings

5.2.1. Cohen forcing
We will now drop down from classes of forcings, to forcing axioms on specific forcings. This is also where 

we prove most of the negative results in the diagram from earlier. We start with the simplest, Cohen forcing 
and let κ = ω1. For Cohen forcing, all principles in the right part of the next diagram (Fig. 7) are provable in 
ZFC by Lemma 5.7 (on σ-centred forcing) and the basic implications in Fig. 1. The left part is not provable 
by Remark 5.18 below.

Nω1 club-Nω1

5.7
stat-Nω1 ub-Nω1

FAω1 club-FAω1 stat-FAω1 ub-FAω1

Fig. 7. Forcing axioms and name principles at ω1 for Cohen forcing.

Our first result is an improvement to Lemma 5.7. It shows that a simultaneous version of the stationary 
forcing axiom for countably many sequences of dense sets holds.

Lemma 5.13. Let P be Cohen forcing and κ a cardinal with cof(κ) > ω. For each n ∈ ω, let �Dn = 〈Dn
α :

α < κ〉 be a sequence of dense sets. Then there exists a filter g ∈ V such that for all n, the trace Trg, �Dn
is 

stationary in κ.12

Proof. Suppose that there is no filter g as described. For x ∈ 2ω, let us write gx to denote the filter 
{x�n : n ∈ ω}. Then for each x ∈ 2ω, the filter gx does not have the required property. So there is a natural 
number nx and a club Cx ⊆ κ with gx ∩Dnx

α = ∅ for all α ∈ Cx. Then the sets An := {x ∈ 2ω : nx = n}
partition 2ω. By the Baire Category Theorem, not all An are nowhere dense. So there is some n ∈ ω and 
basic some open subset Nt = {x ∈ 2ω : t ⊆ x} for some t ∈ 2<ω such that An ∩ Nt is dense in Nt. Fix a 
countable set D ⊆ An∩U which is dense in U . Let α be an element of the club 

⋂
x∈D Cx. Let further u ∈ Dn

α

with u ≤ t. Since D is dense in Nt, there is some x ∈ D ∩Nu. Then u ∈ gx ∩Dn
α and hence gx ∩Dn

α �= ∅. 
On the other hand, we have x ∈ An and hence nx = n. Since also α ∈ Cx, we have gx ∩Dn

α = ∅. �
Using a variant of the previous proof, we can also improve stat-NP to work for finitely many names.

Lemma 5.14. Let P be Cohen forcing and κ a cardinal with cof(κ) > ω. Suppose that �σ = 〈σi : i ≤ n〉 is a 
sequence of rank 1 P -names such that for each i ≤ n, P � σi is stationary in κ. Then there is a filter g on 
P such that for all i ≤ n, σg

i is stationary in κ. In particular, stat-NP ,κ holds.

12 See Definition 2.2.
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Proof. As in the previous proof, let gx = {x�n : n ∈ ω} for x ∈ 2ω. The result will follow from the next 
claim.

Claim 5.15. If D is any dense subset of 2ω, then there is some x ∈ D such that σgx
i is stationary in κ for 

all i ≤ n.

Proof. We can assume that D is countable. If the claim fails, then for each x ∈ D, there is some i ≤ n and 
a club Cx such that σgx

i ∩ Cx = ∅. Then C :=
⋂

x∈D Cx is a club. Moreover, for each x ∈ D, there is some 
i ≤ n such that σgx

i ∩ C = ∅. There is some p ∈ P such that for each i ≤ n, there is some αi ∈ C such that 
p � α̌i ∈ σi. By Lemma 2.22, we can assume that p �+ α̌i ∈ σi for all i ≤ n. Now, since D is dense, we can 
find some x ∈ D with p ⊆ x. Then p ∈ gx, so by 2.23 we conclude αi ∈ σgx

i for all i ≤ n. This contradicts 
the above property of C. �

This completes the proof of Lemma 5.14. �
Given the previous result about stat-FA, we might expect to be able to correctly interpret ω many names. 

But the above proof does not work: it breaks down where we introduce p. For each i, we can find pi strongly 
forcing αi ∈ σi; but then we would want to take some p that was below every pi and that is only possible 
in σ-closed forcings.

We can, however, apply the same technique in the presence of FA to prove FA+.

Lemma 5.16. Let P be Cohen forcing and κ a cardinal with cof(κ) > ω. Then FAP ,κ implies FA+
P ,κ.

Proof. We will in fact prove a stronger version for finitely many names. Suppose that �σ = 〈σi : i ≤ n〉
is a sequence of rank 1 P -names such that for each i ≤ n, P � σi is stationary in κ. Suppose that 
�D = 〈Dα : α < κ〉 is a sequence of dense open sets. Then

D := {x ∈ 2ω : ∀α < κ ∃p ∈ Dα p ⊆ x}

consists of all reals x such that gx ∩Dα �= ∅ for all α < ω1.
The next claim suffices. By Claim 5.15, it implies that for some x ∈ D, σgx

i is stationary for all i ≤ n.

Claim 5.17. D is dense in 2ω.

Proof. Fix q ∈ P ; we will find some x ∈ D with q ⊆ x. Since the forcing Pq := {p ∈ P : p ≤ q} is isomorphic 
to Cohen forcing via the map r �→ q�r, FAPq

holds. Hence, we can find a filter g on Pq which meets Dα∩Pq

for every α < ω1. ∪g is an element of 2≤ω with q ⊆ ∪g by compatibility of elements of a filter. Then any 
real x with ∪g ⊆ x satisfies x ∈ D and q ⊆ x. �

Lemma 5.16 follows. �
Remark 5.18. Note that FACohen,ω1 also has a well known characterisation via sets of reals: it is equivalent 
to the statement that the union of ω1 many meagre sets does not cover 2ω. In particular, FACohen,ω1 is not 
provable in ZFC.

5.2.2. Random forcing
The product topology on 2ω is induced by the basic open sets Nt = {x ∈ 2ω : t ⊆ x} for t ∈ 2<ω. Lebesgue 

measure is by definition the unique measure μ on the Borel subsets of 2ω with μ(Nt) = 2
n .
2
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Definition 5.19. Random forcing P is the set of Borel subsets of 2ω with positive Lebesgue measure. P is 
quasi-ordered by inclusion, i.e. p ≤ q :⇔ p ⊆ q for p, q ∈ P .

Strictly speaking, random forcing is the partial order obtained by taking the quotient of the preorder, 
where two conditions are equivalent if their symmetric difference has measure 0. To simplify notation, we 
will talk about Borel sets of positive measure as if they were conditions in random forcing.

Nω1 club-Nω1

5.22
stat-Nω1 ub-Nω1

FAω1 club-FAω1 stat-FAω1 ub-FAω1

5.20

Fig. 8. Forcing axioms and name principles at ω1 for random forcing.

We have seen in Lemma 5.7 and the following remark that ub-FAP implies FAP for σ-centred forcings. 
However, random forcing is not σ-centred by [7, Lemma 3.7]. The implication still holds:

Lemma 5.20. Let P denote random forcing. The following are equivalent:

(1) FAP ,ω1

(2) ub-FAP ,ω1

(3) 2ω is not the union of ω1 many null sets

The equivalence of (1) and (3) is a well-known fact, but we really interested in the equivalence of (1)
and (2). The proof of (2)⇒(3) also works for certain forcings of the form PI . PI consists of all Borel subsets 
B /∈ I of 2ω, where I is a σ-ideal on the Borel subsets of the Cantor space, ordered by inclusion up to 
sets in I. For (2)⇒(3), it suffices that the set of closed p ∈ P is dense in P and Nt /∈ I for all t ∈ 2<ω. If 
additionally (3)⇒(1) holds, then ub-FAPI ,ω1 implies FAPI ,ω1 .

Proof. (1)⇒(2): Immediate.
(2)⇒(3): We prove the contrapositive. Suppose 2ω =

⋃
α<ω1

Sα, where Sα ⊆ 2ω has measure 0. Without 
loss of generality, we may assume that 〈Sα : α < ω1〉 is an increasing sequence; i.e. α < β < ω1 ⇒ Sα ⊆ Sβ . 
Then

Dα = {B ∈ P : B ⊆ 2ω \ Sα and B is closed}

is dense.
Let g ∈ V be a filter. Without loss of generality, assume g is an ultrafilter. Then for any n ∈ ω, there is 

some t ∈ 2n with Nt ∈ g. It follows that there is a unique x ∈ 2ω such that Nt ∈ g for all t ⊆ x. It is easy 
to check that x is in the closure of any element of g.

Towards a contradiction, suppose that for unboundedly many α we can find Bα ∈ Dα ∩ g. Then Bα is 
closed, so x ∈ Bα ⊆ 2ω \ Sα so x /∈ Sα. This contradicts the assumptions that 2ω =

⋃
Sα and the Sα are 

increasing.
(3)⇒(1): Again we prove the contrapositive. Let 〈Dα : α < ω1〉 be a sequence of predense sets such that 

there is no filter in V meeting all of them. P has the c.c.c., so without loss of generality we may assume 
every Dα is countable.
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Fix the following notation. Recall that x ∈ 2ω is a density point of B if μ(B∩N(x|k))
μ(N(x|k)) tends to 1 as k tends 

to infinity. For B ∈ P , let D(B) be the set of density points of B. For α < ω1, let

Tα =
⋃

B∈Dα

D(B) and Sα = 2ω \ Tα.

We first show that Sα is a null set. To see this, suppose that Sα has positive measure. Then we can 
find a closed subset C ⊆ Sα with positive measure. Since Dα is predense, we can find some B ∈ Dα with 
μ(B ∩ C) > 0. Since B�D(B) is null by Lebesgue’s Density Theorem, we have μ(D(B) ∩ C) > 0. This 
contradicts D(B) ∩ C ⊆ Tα ∩ C = ∅.

We now show 
⋃

α<ω1
Sα = 2ω. To see this, take any x ∈ 2ω and let

gx = {B ∈ P : x ∈ D(B)}

denote the filter generated by x. Take α < ω1 such that gx ∩Dα = ∅. We show that x ∈ Sα, as required. 
Otherwise x ∈ Tα, so we can find B ∈ Dα with x ∈ D(B). But then B ∈ gx ∩ Dα. This contradicts 
gx ∩Dα = ∅. �

Combining the proofs of (2)⇒(3) and (3)⇒(1), we can obtain the following refinement:

Lemma 5.21. Let P be random forcing. Let 〈Dα : α < ω1〉 be a collection of predense sets. There exists 
another collection 〈D′

α : α < ω1〉 of dense sets, such that if a filter g meets unboundedly many D′
α, then it 

can be extended to a filter g′ which meets every Dα.

Proof. Define Sα as in the proof of (3)⇒(1). Then for any x ∈ 2ω, we have gx∩Dα �= ∅ or x ∈ Sα. Consider 
the null sets S′

α =
⋃

β<α Sβ . Then define D′
α from S′

α in the same way we defined Dα from Sα in the proof 
of (2)⇒(3). As in the proof of (2)⇒(3), we obtain the following for any x ∈ 2ω and α < ω1: if gx ∩D′

α �= ∅, 
then x /∈ S′

α. Let g be a filter which meets unboundedly many D′
α. Then g ⊆ gx for some x ∈ 2ω. We have 

seen that x /∈ S′
α for unboundedly many α. Therefore x misses all S′

α and all Sα. By the choice of the Sα, 
we have gx ∩Dα �= ∅ for all α < ω1. �

This then allows us to prove that stat-N alone gives us the full FA+.

Lemma 5.22. Let P be random forcing. Then stat-NP =⇒ FA+
P .

Proof. Suppose that 〈Dα : α < ω1〉 is a sequence of dense subsets of P . Suppose further that σ is a rank 1
name which is forced to be stationary. Let 〈D′

α : α < ω1〉 be a sequence as in Lemma 5.21 and

τ = {(α̌, p) : p ∈ D′
α ∧ p �+ α̌ ∈ σ}.

Note that P � σ = τ . By stat-NP , we obtain a filter g such that τg is stationary. Since τh ⊆ σh for all filters 
h, σg is stationary as well. Moreover, g∩D′

α �= ∅, for stationarily many α. By the choice of 〈D′
α : α < ω1〉, we 

can extend g to a filter g′ such that g′ ∩Dα �= ∅ for all α < ω1. Moreover, σg ⊆ σg′ , so σg′ is stationary. �
The missing link in Fig. 8 is:

Question 5.23. If P denotes random forcing, does FAP ,ω1 imply stat-NP ,ω1?

We finally show that the 1-bounded stationary name principle for random forcing is non-trivial, as we 
discussed at the end of Section 5.1.3.
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Lemma 5.24. Let κ = 2ℵ0 and assume that every set of size <κ is null.13 Then stat-BN1
P ,κ fails for random 

forcing P . In particular, CH implies that stat-BN1
P ,ω1

fails.

Proof. It suffices to show that stat-BNω
P ,κ fails. To see this, apply Corollary 3.14 and use the fact that 

random forcing is well-met and for any q ∈ P , the forcing Pq is isomorphic to P by [17, Theorem 17.41]. 
Let �x = 〈xα : α < κ〉 enumerate all reals. Then Cβ := {xα : α < β} is null for all β < κ. For each α < κ, 
let Aα be a countable set of approximations to the complement of Cα in the following sense:

(a) Each element of Aα is a closed set disjoint from Cα, and
(b) For all ε > 0, Aα contains a set C with μ(C) ≥ 1 − ε.

Let σ = {(α̌, p) : p ∈ Aα}. Then �P σ is stationary, since each Aα is predense by (b). We claim that there 
is no filter g in V such that σg is unbounded. If g were such a filter, then we could assume that for every 
n ∈ ω, g contains Ntn for some (unique) tn ∈ 2n by extending g. (Clearly σg will remain unbounded.) Let 
x =

⋃
n∈ω tn and suppose that x = xα. Since σg is unbounded, there is some γ > α in σg. Find some p ∈ Aγ

with p ∈ g. By the definition of Aγ , p is a closed set with xα /∈ p. Hence p ∩Ntn = ∅ for some n ∈ ω. But 
this contradicts the fact that both p and Ntn are in g. �
5.2.3. Hechler forcing

For σ-centred forcings P , the principles on the right side of Fig. 1 are provable in ZFC (see Lemma 5.7). 
A subtle difference appears when we add the requirement that the filter has to meet countably many fixed 
dense sets. We write ω-ub-FA for this axiom (see Definition 2.4). For some forcings, this axiom is stronger 
that ub-FA. To see this, we will make use of the fact that for Hechler forcing, a filter that meets certain 
countably many dense sets corresponds to a real. Recall that a subset A ⊆ ωω is unbounded if no y ∈ ωω

eventually strictly dominates all x ∈ A, i.e. ∃m ∀n ≥ m x(n) < y(n). The next result shows that ω-ub-FAω1

for Hechler forcing implies the negation of the continuum hypothesis.

Lemma 5.25. Let P denote Hechler forcing. If ω-ub-FAP holds, then the size of any unbounded family is at 
least ω2.

Proof. Towards a contradiction, suppose ω-ub-FAP holds and A is an unbounded family of size ω1. Let us 
enumerate its elements as �x = 〈xα : α < ω1〉. We define the following dense sets: For α < ω1, we define a 
real yα by taking a sort of “diagonal maximum” of �x. Let π : α → ω be a bijection and let

yα(n) = max{xγ(n) : π(γ) ≤ n}.

It is easy to check that yα is well defined, and that it eventually dominates xγ for all γ < α. We now define

Dα = {(s, x) ∈ P : x eventually strictly dominates yγ}

For n < ω, let

En = {(s, x) ∈ P : length(s) ≥ n}

Now let g ∈ V be a filter meeting unboundedly many Dα and all En. Since g meets all En, the first 
components of its conditions are arbitrarily long. Since all its elements are compatible, this means that the 

13 This assumption is equivalent to non(null) = 2ℵ0 . It follows from MA, but not from FArandom by known facts about Cichon’s 
diagram.
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union ∪{s : (s, x) ∈ g} is a real y. And y must eventually strictly dominate x for every (s, x) ∈ g. But 
there are unboundedly many α such that g meets Dα. For any such Dα, then, we have (s, x) ∈ g where 
x eventually strictly dominates yα. Hence, y must eventually strictly dominate unboundedly many yα and 
hence every x ∈ A. But A was assumed to be unbounded. �
5.2.4. Suslin trees

A Suslin tree is a tree of height ω1, with no uncountable branches or antichains. The existence of Suslin 
trees is not provable from ZFC, but follows from ♦ω1 . We can of course think of a Suslin tree T as a forcing; 
it will add a cofinal branch through the tree. We use Suslin trees as test cases for the weakest principles 
defined above. As expected, we can show that stat-BN1

T,ω1
fails in most cases.

Lemma 5.26. Suppose T is a Suslin tree. Then stat-BNω
T,ω1

fails.

Proof. Let σ = {〈α, p〉 : α < ω1, p ∈ T, height(p) = α}. It is easy to see that σ is ω bounded, and is forced 
to be equal to ω1. But any filter g ∈ V is a subset of a branch in V , and therefore countable. So σg is not 
stationary, or even unbounded. �
Corollary 5.27. Suppose that a Suslin tree exists. Then there exists a Suslin tree T such that stat-BN1

T,ω1

fails.

Proof. Let T be any Suslin tree. By the previous lemma we know that stat-BNω
T,ω1

fails. But then by 
Corollary 3.13, T contains a subtree S such that stat-BN1

S,ω1
fails. �

This also tells us that stat-BN1
P ,ω1

is not equivalent to stat-BFA1
P ,ω1

, since the latter is trivially provable 
for any forcing in ZFC.

In fact, if we assume ♦ω1 (which is somewhat stronger than the existence of a Suslin tree, see [18, Section 
3]) then we can do better than this: we can show that stat-BN1

ω1
fails for every Suslin tree.

Lemma 5.28. Suppose ♦ω1 holds. If T is a Suslin tree, then stat-BN1
T,ω1

fails.

Proof. Let (Aγ) be the sequence given by ♦ω1 . That is, let it be such that Aγ ⊆ γ and for any S ⊆ ω1, the 
set {γ < ω1 : S ∩ γ = Aγ} is stationary. We build up a rank 1 name σ = {(α̌, p) : α < γ, p ∈ Bα} recursively 
as follows.

Suppose we have defined Bγ for all γ < α. Consider 
⋃

γ∈Aα
Bγ . If this union is predense, then we let 

Bα = ∅. Otherwise, choose a condition p ∈ T , sitting beyond level α of the Suslin tree, such that p is 
incompatible with every element of that union. Let Bα = {p}.

If G is a generic filter, then every club C ′ ⊆ ω1 in V [G] contains a club C ∈ V . Hence, to show that 
T � “σ is stationary” we only need to show that for every club C ∈ V , the set 

⋃
α∈C Bα is predense. Suppose 

for some club C that is not the case. For stationarily many α, we have that C ∩α = Sα and hence the union 
we are looking at in defining Bα is 

⋃
γ∈Aα

Bγ =
⋃

γ∈C∩α Bγ . Hence, the union is not predense, and Bα

contains an element that is incompatible with every element of 
⋃

γ∈C∩α Bγ . But this is true for unboundedly 
many such α, so this gives us an ω1 long sequence of pairwise incompatible conditions, i.e. an uncountable 
antichain. Since a Suslin tree is by definition c.c.c., this is a contradiction. Hence T � “σ is stationary”.

But now let g ∈ V be a filter. By extending it if necessary, without loss of generality we can assume g is a 
maximal branch of the tree. Since g ∈ V , we know that g is countable, so let the supremum of the heights of 
its elements be γ. Let α > γ, and let q ∈ g. Since Bα is at most a singleton {p} with ht(p) ≥ α > γ > ht(q), 
and since T is atomless, we know there is some r ≤ q with r � α /∈ σ. Hence q �� α ∈ σ. Since this is true 
for all q ∈ g, it follows that α /∈ σ(g). Hence far from being stationary, σ(g) is not even unbounded! �
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So (assuming the existence of Suslin trees) there are certainly some Suslin trees in which stat-BN1 fails. 
And with strong enough assumptions, we can show that stat-BN1 fails for every tree. So it’s natural to ask:

Question 5.29. Can we show in ZFC that stat-BN1
T,ω1

fails for every Suslin tree T?

Note that we can show the failure of ub-BN1
T,ω1

for any Suslin tree. Enumerate its level α elements as 
{pα,n : n ∈ ω}. Now let

σ = {(β̌, pα,n) : α < ω1, n ∈ ω, β = ω · α + n}

Then σ is forced to be unbounded but if g ∈ V is such that σg is unbounded, then g defines an uncountable 
branch through T .

5.2.5. Club shooting
The next lemma is a counterexample to the implication club-BFAλ

κ ⇒ club-BNλ
κ in Fig. 3. It is open 

whether there is such a counterexample for complete Boolean algebras.
Suppose that S is a stationary and co-stationary subset of ω1. Let PS denote the forcing that shoots a 

club through S. Its conditions are closed bounded subsets of S, ordered by end extension.

Lemma 5.30.

(1) BFAω
PS ,ω1

holds.
(2) club-BN1

PS ,ω1
fails.

In particular, for no 1 ≤ λ ≤ ω does BFAλ
PS ,ω1

imply club-BNλ
PS ,ω1

.

Proof. (1): We claim that every maximal antichain A �= {1PS
} is uncountable. (This shows that BFAω

PS ,ω1

holds vacuously.) To see this, suppose that A is countable. Let α = sup{min(p) : p ∈ A} and find some 
β > α in S. Then q = {β} is incompatible with all p ∈ A, so A cannot be maximal.

(2): σ = Š is 1-bounded and PS � “σ contains a club”. But for every filter g, σg = S does not contain a 
club, since S is co-stationary. �
6. Conclusion

The above results show that often, name principles are equivalent to forcing axioms. This provides an 
understanding of basic name principles NP ,κ and of simultaneous name principles for Σ0-formulas. For 
bounded names, the results provide new characterisations of the bounded forcing axioms BFAλ for λ ≥
κ. Name principles are closely related with generic absoluteness and can be used to reprove Bagaria’s 
equivalence between bounded forcing axioms of the form BFAκ and generic absoluteness principles. Bagaria’s 
result has been recently extended by Fuchs [10]. He introduced a notion of Σ1

1(κ, λ)-absoluteness for cardinals 
λ ≥ κ and proved that it is equivalent to BFAλ

κ. It remains to see if this can be derived from our results.
Several problems about the unbounded name principle ub-FAκ remain unclear. The results in Lemmas 4.25

and 5.1 about obtaining (bounded) forcing axioms from ub-FAκ for forcings that do not add reals or <κ-
sequences, respectively, hint at possible generalisations (see Question 4.26). For forcings which add reals, 
we have that ub-FAω1 is trivial for all σ-linked forcings and implies FAω1 for random forcing. In all these 
cases, ub-FAω1 and stat-FAω1 are either both trivial or both equivalent to FAω1 . Can we separate ub-FAω1

from stat-FAω1 (see Question 3.20)? Can ub-FAω1 be nontrivial but not imply FAω1? It remains to study 
other forcings adding reals and Baumgartner’s forcing [5, Section 3] (see Question 3.21).



C. Henney-Turner, P. Schlicht / Annals of Pure and Applied Logic 174 (2023) 103260 45
The stationary name principle stat-Nω1 follows from the forcing axiom FAω1 for some classes of forcings. 
For example, for the class of c.c.c. forcings both stat-Nω1 and FA+

ω1
are equivalent to FAω1 by results 

of Baumgartner (see Lemma 5.9), Todorčević and Veličković [25] (see Lemma 5.6). In general, FA+ goes 
beyond FA, since being stationary is not first-order over (κ, ∈). For example, for the class of proper forcings, 
PFA+ is strictly stronger that PFA by results of Beaudoin [6, Corollary 3.2] and Magidor (see [22]). So FA+

and BFA+ do not fall in the scope of generic absoluteness principles, unless one artificially adds a predicate 
for the nonstationary ideal. Can one formulate PFA+ as a generic absoluteness or name principle for a logic 
beyond first order? Some questions remain about the weak variant stat-BN1

P ,ω1
of stat-Nω1 . It is nontrivial 

for random forcing (see Lemma 5.24) and for Suslin trees (see Corollary 5.27). What is its relation with 
other principles? Does stat-BN1

c.c.c.,ω1
imply MAω1?
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