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Abstract

The interest in Deep Learning (DL) has seen an exponential growth
in the last ten years, producing a significant increase in both theoret-
ical and applicative studies. On the one hand, the versatility and the
ability to tackle complex tasks have led to the rapid and widespread dif-
fusion of DL technologies. On the other hand, the dizzying increase in the
availability of biomedical data has made classical analyses, carried out by
human experts, progressively more unlikely. Contextually, the need for
efficient and reliable automatic tools to support clinicians, at least in the
most demanding tasks, has become increasingly pressing. In this survey,
we will introduce a broad overview of DL models and their applications
to biomedical data processing, specifically to medical image analysis, se-
quence processing (RNA and proteins) and graph modeling of molecular
data interactions. First, the fundamental key concepts of DL architectures
will be introduced, with particular reference to neural networks for struc-
tured data, convolutional neural networks, generative adversarial models,
and siamese architectures. Subsequently, their applicability for the anal-
ysis of different types of biomedical data will be shown, in areas ranging
from diagnostics to the understanding of the characteristics underlying
the process of transcription and translation of our genetic code, up to the
discovery of new drugs. Finally, the prospects and future expectations of
DL applications to biomedical data will be discussed.

1 Introduction

In recent years, deep learning (DL) techniques have achieved state–of–the–art
performance in several different tasks, from image semantic segmentation [1, 2]
to object detection [3, 4], from modelling traffic flows [5] to bioinformatics appli-
cations [6, 7, 8, 9]. Even though we understand the world through the interac-
tion with the environment we observe, this empirical realism called experience is
somewhat limiting. Despite being subject to the limitations of our senses, such
a flat view of the world has been the driving force in many fields and was able
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to lay the foundations of the former artificial intelligence systems. However,
recent real–world challenges are changing this perspective, showing that the
world around us, and the answers we are looking for, admit a non–Euclidean
structure. More specifically, we could say that a critical research question is
how the data are described. We could therefore define two main ways of rep-
resenting data: through a symbolic or through a structural approach [10]. In
the first case, the data are expressed through feature vectors, while, in the sec-
ond, we use structured data, like sequences, trees or graphs, taking into account
complex relationships existing between the basic information entities in a real
scenario. Nevertheless, moving to structured representations means increasing
the complexity of processing data and sometimes even not having a direct way
to extend operations commonly performed in vector spaces. To give an exam-
ple, while the concept of similarity between two vectors is well defined, and
corresponds to calculate a distance within a metric space, this does not hold for
graphs [10].

Indeed, with the accumulation of the so called non–Euclidean data [11],
graphs have become extremely common and widely used. Graph structures can
in fact represent biological networks at the molecular, protein, or species level;
they can describe drug molecules, so as 3D protein structures or metabolic net-
works. On the other hand, digital images can be represented as pixel lattices,
i.e. in the form of regular graphs. Even simpler data, though structured, are
also very common in biological applications, such as sequences — for DNA and
RNA data — and trees, for reconstructing molecular phylogenies. For what
concerns DL techniques, these are becoming ubiquitous in chemistry, biology
and medicine [12], including not only genome annotation and transcriptome
analysis, but also predictions of protein binding sites, identification of major
cancer transcription factors, predictions of metabolic functions in complex mi-
crobial communities, drug discovery and re–purposing, and precision medicine
applications.

Among deep networks commonly used to process biomedical data, Recur-
rent Neural Networks (RNNs) were specifically tailored to process sequential
data. In addition to feedforward connections, they are equipped with delayed
connections, which make them able to process a sequence one element at a time
— in the context of a protein sequence, for instance, one residue after another
—, considering therefore their natural flow. In this way, memory arises and
the neural network acquires the ability to store and integrate information from
past inputs. Long–Short Term Memory (LSTM) networks are a special type of
RNNs composed by memory cells, where context–dependent input, output, and
forget gates are able to control what is the information processed and passed
through at each stage [13]. Thus, LSTMs are capable of learning long–term
dependencies, easily storing and exclusively transmitting selected inputs.

Graph Neural Networks (GNNs) [14], instead, are able to process input data
encoded as general labeled graphs, and they can directly be applied, for instance,
for molecule processing in the context of biomedical data processing. The state
at each node is iteratively evaluated based on local information solely, realizing a
sort of data diffusion across the whole graph. Moreover, GNNs are provided with
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a supervised learning algorithm that, besides the standard input–output data
fitting cost, incorporates a criterion aimed at enforcing a contractive dynamics,
to ensure the convergence of the state computation. Both node–focused and
graph–focused problems can be addressed by GNNs, meaning that an output is
produced for each node or for a unique node of the graph. GNNs can also be
applied to network–medicine, a brand new research field, which have brought to
the definition of a highly interconnected and tight network of diseases that are
interdependent and needs to be studied in a network perspective [15]. Finally,
they can be used as an engine for graph generation, allowing to design new drug
molecules, starting from a dataset of known compounds [16].

Besides, segmented images can be represented through region adjacency
graphs, with nodes — labeled with vectors which describe visual features, such
as texture, perimeter and area in pixels, etc. — describing homogeneous regions
and arcs representing the adjacency relationship among regions. Therefore, they
can be processed by GNNs, for example to perform object localization or detec-
tion (node–focused and graph–focused tasks, respectively). However, the most
commonly used DL architectures for image processing are Convolutional Neural
Networks (CNNs) [17, 18], due to their ability to integrate the feature selection
process within the network training. Moreover, since hierarchical patch–based
convolution operations are employed in CNNs, computational costs are reduced
and images are abstracted on different feature levels. CNNs are also particu-
larly effective in processing medical images, which however are often not enough
to train a deep network. In such a case, data augmentation, namely synthetic
image generation, is the only viable solution, which can be implemented using
Generative Adversarial Networks (GANs) [19]. GANs use two neural networks
competing one against the other, a generative model G and a discriminative
model D, where G generates synthetic realistic data while D evaluates the au-
thenticity of the data (if they belong to the training dataset or not). However,
the use of GANs is not limited to synthetic image generation, and actually these
models have been used, for instance, for creating human genomes [20].

Finally, all the above–described architectures can constitute the basis for the
construction of a Siamese network. Siamese networks are composed by two or
more identical sub–networks, where identical entails the fact that they have the
same configuration with the same parameters and weights. Parameter updating
is mirrored across sub–networks. They have been employed to implement a sort
of similarity learning, since they are able to compare feature vectors describing
two or more patterns, obtained with ad hoc networks (i.e., RNNs for sequences,
GNNs for graphs, or CNNs for images). Siamese networks are particularly
useful, for example, to search in medical image databases [21].

The rest of this survey is organized as follows. In Section 2, we present the
commonly used types of structured data. In Section 3, we introduce the DL
architectures used to address the various biomedical problems described in the
following Section 4. Finally, Section 5 draws some conclusions and introduces
open challenges for future work.

With the awareness that an exhaustive survey on the proposed topic would
require the writing of numerous books, the arguments addressed in this paper are
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particularly focused on the research activity of the Bio–SAILab of the University
of Siena, of which both authors are members.

2 Structured Data

Structured data have a hybrid nature, both symbolic and sub–symbolic, and
cannot be represented independently from the links between some basic consti-
tutive entities. Symbolic information (collected in feature vectors) is used to
label each base entity (a node). Instead, the sub–symbolic information is car-
ried by edges between nodes, which represent relationships, symmetrical or not,
such as inclusion, adjacency, presence of a chemical bond, etc. Edges can also
be labeled, in order to characterize the relationship they describe. Both entities
and their relationships can be homogeneous throughout the structure or not.

In a way that may seem counter–intuitive, we begin describing the most
complex structured data, that is by giving the definition of a graph. In fact,
the other types of structured data, which we will examine, all represent par-
ticular cases of graphs, just as the networks that are normally used to process
them (recurrent and recursive networks) can be considered special cases of the
GNN model. Images, as a type of complex aggregated data, will be described
separately at the end of this section.

2.1 Graphs, trees, and sequences

A graph is defined as a pair G = (V,E), being V the set of nodes and E ⊂ V ×V
the set of edges. Given two nodes u, v ∈ V , the edge connecting them is identified
by (u, v). Graphs can be of two types: directed or undirected. In the first
case, the edges are oriented — and they are commonly called arcs. An arc
normally define a causal non–symmetric relationship between two nodes, such
as inclusion. Instead, in the case of undirected graphs, the presence of an edge
between two nodes stands for a contextual flow of information between them,
typical in symmetric relationships. Graphically speaking, directed edges are
usually depicted as arrows, while undirected ones are represented by segments.
Moreover, attributes, in the form of feature vectors, can be added to both
nodes and edges. For instance, in a protein–protein interaction network, nodes
represent proteins while edges describe the presence of an interaction between
two specific proteins. Protein features can be added to each node (type, location,
etc.) as well as weights defining the strength of a connection can be attached
to the edges. Attributes which are attached to each node or edge/arc are called
labels. In general, we assume that a consistent labeling space is used for all
of the nodes and edges constituting the graph. Therefore, a labeled graph
can be defined as a quadruple GL = (V,E,Lv,Le), with Lv : V → Lv ∈
IRq and Le : E → Le ∈ IRp, being Lv and Le the node and edge labeling
functions, respectively. Moreover we will define the neighborhood of a node
v as the set of the nodes directly connected to it or, more formally, ne[v] =
{u ∈ V |(u, v) ∈ E ∨ (v, u) ∈ E}. Graphs may also be heterogeneous, meaning
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that different entities can be collected within a single graph, where relationships
of different nature coexist [22].

Trees can be considered as a special type of directed graph, where each node
has a unique parent, while there is no limit to the number of its descendants
— we therefore call an m–ary tree the one that has m children at most at
each node. Furthermore, trees are (commonly) rooted, i.e. there is a node
from which all the other nodes can be reached, giving rise to a structure that
easily represents a hierarchical arrangement of the basic entities that it collects.
Finally, sequences are 1–ary trees, as the (labeled) entities follow one after the
other.

2.2 Digital images

A digital image is a matrix of pixel values or, in other words, a regular grid
of pixels. The size of the pixel is equal to the spatial resolution of the image
and depends upon the instrument providing the data. Similarly, the number
of elements in the vector describing each pixel is determined by the ability of
the equipment to distinguish variations (in colors, texture, etc.). An image can
therefore be considered as a regular graph (a lattice), where each pixel represents
a node and each edge stands for a vicinity relation. DL techniques for image
processing, however, do not take into account this structured interpretation of
images, but instead work on pixel matrices, implementing specific layer to realize
classical algebraic operations like upsampling or downsampling.

3 Deep Learning Architectures

In this section, we briefly introduce the neural network models used for the
biological and biomedical applications described in Section 4. A particular at-
tention will be devoted to Graph Neural Networks (GNNs), for which also the
layered [23] and composite [24] versions will be sketched.

3.1 Recurrent neural networks

Network architectures able to process plain data, collected within arrays, are
said to be static; they just define a mapping between the sets of input and
output values. In fact, once the network has been trained, it computes a function
between inputs and outputs, calculated according to the learning set, where the
output at time t depends only on the input at the same time. This can be
summarized just asserting that the network does not have short–term memory.

The simplest dynamic data type is a sequence, which represents one of the
most natural ways to model temporal/sequential domains. In speech recogni-
tion, for instance, the words naturally flow to constitute a temporal sequence
of acoustic features while, in molecular biology, proteins are organized in amino
acid strings. The simplest dynamic architectures are recurrent networks, able
to model temporal/sequential phenomena. Indeed, recurrent networks are able
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to capture the temporal structure of the input and to produce a timeline out-
put, thanks to neuron activations that can change even in presence of the same
input pattern. Architectures composed by units having feedback connections,
both between neurons belonging to the same layer or to different layers, show
such a dynamic behaviour. More formally, a network is said to be recurrent if it
contains some neurons whose activations depend directly or indirectly from their
outputs. In other words, following the signal transmission through the network,
cyclic paths exist that connect one or more neurons with itself/themselves.

A Recurrent Neural Network (RNN) processes a temporal sequence by
using an internal state representation

x(t) = f(lt,x(t− 1)|θf ) (1)

(a particular instance of the state update equation for GNNs, see Eq. (2)), that
appropriately encodes all the past information injected into its inputs together
with the input at time t, lt. Using a multilayer perceptron (MLP), with weights
collected into θf , as the basic block for the state updating, multiple types of
recurrent networks may be defined, depending on which neurons are involved
in the feedback. Recurrent networks can be trained to solve node–focused or
sequence–focused problems, based on the presence of target values on all the
nodes (at each time step), on some nodes (at some selected instants) or only
at the end of the sequence. Anyway, the behaviour of a recurrent network
(during a time sequence) can be reproduced by unfolding it in time, and ob-
taining the corresponding feedforward network, that contains as many copies
of the original RNN as the length of the sequence, and can be trained based
on a BackPropagation–like algorithm, called BackPropagation Through Time
(BPTT). Indeed, BPTT forces the different copies of the weights in the un-
folding network to remain the same over time (for congruence with the original
RNN). Therefore, we can think the RNN as a feedforward architecture with
shared weights and then train the unfolded network with weight constraints.

When training a deep neural network — as the unfolded network — with a
gradient–based learning method like BackPropagation (BP), the partial deriva-
tives are calculated by traversing the network from the final layer to the initial
layer; using the chain rule, the deeper layers in the network go through con-
tinuous matrix multiplications to calculate their derivatives. If the derivatives
are large, then the gradient will increase exponentially during BP, eventually
exploding. Conversely, if the derivatives are small, then the gradient will de-
crease exponentially, possibly vanishing. In the case of exploding gradients, the
accumulation of large derivatives results in the model being very unstable and
incapable of effective learning, while the accumulation of small gradients results
in a model that is incapable of extracting meaningful information from data,
since the weights and biases of the initial layers, which tends to learn the core
features from the inputs, will not be updated effectively. Anyway, long–term
dependencies are difficult to be learned due to the very deep architecture they
correspond to.
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3.1.1 Long–short term memories

Long–Short Term Memories, LSTMs for brevity [13], are a variant of RNNs
that introduce a number of special, internal gates, which help with the problem
of learning relationships within both long and short sequences. Instead of the
classical state transition function, calculated by an MLP, LSTMs consist of cells
— where each cell is responsible for keeping track of the dependencies between
the elements in the input sequence — that collect different gates, each dedicated
to a specific function. In particular:

• the input gate controls the extent to which a new value flows into the cell;

• the forget gate controls the extent to which a value remains in the cell;

• the output gate controls the extent to which the value in the cell is used
to compute the output of the specific LSTM unit.

In this way, LSTMs learn when it is necessary to retain a state or to forget
it. They have many more internal parameters, which must be learned and
constantly updated as new data arrives, which is their strength and weakness, as
they are much more flexible than ordinary RNNs, but also much more expensive
to be trained.

3.2 Graph neural networks

In this section, we will briefly describe the original GNN model, presented in
[14]. Graph Neural Networks perform a local computation, which produces
a state vector xv ∈ IRs, ∀ v ∈ V , that stores a hidden representation depending
on v and its context in the graph. In fact, the state is computed for each node
through a diffusion process based on the graph topology, which guarantees to
encode the information related both to the graph structure and to the node
labels. The encoding is performed by a learnable function that can be tuned
to extract the relevant features suitable for the desired processing. The state
variables xv become additional labels attached to the graph nodes, and represent
the current state of the computation. Thus, the GNN model can be thought
of as a set of identical computational units that calculate a local state for each
node, depending on the states of its neighbours and on the node label and
connectivity. Formally, the state update equations can be expressed as

xv = f(lv,xne[v], lne[v]|θf ) (2)

being lv the label of node v, and xne[v] and lne[v] the states and the labels of
the node neighbours, respectively. The state transition function f can be im-
plemented using a Multi–Layer Perceptron (MLP). The network will have an
appropriate architecture to deal with a variable number of arguments (i.e. in-
puts), since the degree of each node v could ideally be different. Apart from this
requirement, the number of outputs will be equal to the state space dimension
s and the network architecture will be defined by the choice of the type and
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number of neurons, the number of layers, etc., as for the classical feedforward
networks. The parameter vector θf will collect all the neural network connec-
tion weights. It should be noted that the same function (i.e. the same weights)
is exploited for each node in the input graph.

Given the state transition function and an input graph G, the result of the
state computation is a vector assigned to each node v in G, so that the global
computation performed on the input graph can be described by the following
vectorial equation

x = F(x, l|θf ) (3)

where F is the global transition function, whose entries are obtained by stacking
the transition functions f for each node v, with an appropriate projection of
the two vectors x and l to yield the variables related to the neighbourhood of
v. The vector of the learnable parameters is still θf , since all the local instances
of the transition function share the same weights.

Eq. (3) is a system of non–linear equations in the variables x. In general, this
equation can have multiple solutions, but we are interested only in those cases
when the solution is unique. This requirement can be satisfied if the function
F is a contraction map — i.e. it is Lipshitzian with Lipshitz constant L < 1 —
with respect to the state variables x. In this case, by the Banach–Cacioppoli
Fixed Point Theorem, Eq. (3) has a unique solution. The contractivity condition
must be enforced during the learning process. The same theorem also provides
the procedure for calculating the fixed point of Eq. (3). In fact, the solution can
be achieved through an iterative state update process over time.

For each node v, an output vector ov ∈ IRo can also be computed given the
state at convergence and the label of the node. The local output function g
can be realized by a different MLP, parameterized by a set of learnable weights
θg. Generally, this function yields an output vector for each node. Therefore,
to implement a graph–focused function, the output can be considered only for
a predefined node in the graph with specific properties, or alternatively can be
averaged over all of the nodes, depending on the problem at end.

Since the state calculation proceeds for T steps, until convergence, we can
proceed to unfold the GNN — that resembles the topology of the graph to be
learnt — in time, obtaining an unfolding network, each layer of which corre-
sponds to a time instant and contains a copy of all the units of the GNN; con-
nections between layers depends on the GNN connectivity. With the unfolded
network, the error backprogation follows a scheme that is obtained by combin-
ing Backpropagation Through Structure and Backpropagation Through Time
[25, 26]. As well as recursive models (in terms of their particular scope), GNNs
are (almost) universal approximators, i.e., they can approximate in probability,
and up to any degree of precision, all the “practically useful” functions on the
graph space. GNNs can be applied on different problems involving graphs, some
of which are shown in Figure 1.

Composite Graph Neural Networks (CGNNs) are a particular type of
GNNs that can process heterogeneous graphs [24]. Heterogeneous graphs are
often used to represent information about different types of entities interacting
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Figure 1: Different problems on graphs solvable by GNNs.

in multiple modes. Typical examples of this case are knowledge graphs, in
which entities of different types, and often containing different features, need
to be encoded into a single relational graph. Molecular graphs can also be
seen as heterogeneous graphs, considering atom species as different node types.
CGNNs label edges representing different types of relationships with the one–
hot encoding of the relationship type. If edge features are present, these are
concatenated to the edge labels. Node types instead are treated as subsets of
the node set V , and each type has a dedicated state network. As a consequence,
given the number of node types nv in the dataset, the model employs nv different
state networks to build its encoding network. Each state network learns its own
version fi of the state updating function in Eq. (2). The output dimension
of each state network is the same and corresponds to the state dimension s.
To allow nodes to communicate through messages, which are coherent between
different types, the node label is not part of the message, as it can assume
different dimensions and meaning for different node types. Moreover, the output
network g is unique and depends only on the state of the neuron at convergence.

The learning process described before still holds. The only difference, in
the heterogeneous setting, consists in the fact that the GNN network, and con-
sequently the unfolding network, are composed of nv state networks and one
output network as building blocks. As a consequence, the learnable parameters
are distributed in nv+1 MLPs, in contrast to the two MLPs of the homogeneous
setting.

Computational issues have been reported in training dynamical networks
to perform tasks in which spatio–temporal contingencies present in the input
structures span long intervals. Indeed, as we have observed in the case of RNNs,
gradient based learning algorithms face an increasingly difficult problem as the
duration of the dependencies to be captured increases. In other words, there
is a trade–off between efficient learning by gradient descent and latching of
information for long “periods”. In GNNs, the long–term dependency problem
is observed when the output on a node depends on far nodes (i.e. neurons
connected by long paths).

To solve this computational issue, both standard and composite GNNs can
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be cascaded, obtaining a Layered GNN (LGNN) architecture [23, 24] such
that, in each layer, the (i − 1)–th GNN takes a graph in input with the same
connectivity of the original input graph with node labels “enriched” by the
information produced at the previous layer, for instance with the output of the i–
th GNN, or the state of the i–th GNN, or both. Intuitively, each GNN solves the
original problem, but it can make use of the expertise acquired in the previous
layers. Therefore, LGNNs can incrementally incorporate the dependencies into
the labels, since the output of a given node can collect information extracted
from its neighborhood while, at each layer, the label contains information about
a larger neighborhood. In order to not reintroduce long–term dependencies in
the LGNN training, the training phase is carried out layer by layer, using always
the same (original) target.

Finally, independently of the type of GNN — standard, composite or layered
— both inductive and transductive learning can naturally be exploited [27]. In
the inductive learning framework, a parametric model Iw is learnt by adjusting
its weights, w = (θf , θg), based on a training set. Then, the model can be
applied to novel test patterns without further accessing the training set. With
transductive learning instead, the training set patterns and their targets are
used in conjunction with the test patterns. The decision on the test set is taken
using a diffusion mechanism, e.g., exploiting the intuition that patterns with
similar features are expected to be similar and belong to the same class.

3.3 Convolutional neural networks

Convolutional Neural Networks (CNNs) are basically feedforward neural
networks in which neurons are locally connected to the neurons of the previous
layer (in contrast with classical MLPs that are, instead, fully–connected). Fur-
thermore, the weights of the connections between neurons are shared in groups,
with different neurons of the same layer performing the same type of processing
in different portions of the input, implying a strong reduction for what concerns
the number of weights within the network.

CNNs are mainly used in computer vision for various types of image analysis
tasks, like image segmentation, object detection and recognition, etc. They are
made up of a hierarchy of levels, as depicted in Figure 2:

• an input layer, which acts as a buffer for the image pixels (or for any input
information);

• some intermediate layers, which have local connections and shared weights,
and are mainly a combination of convolutional and pooling layers;

• one or two terminal, fully–connected layers.

More in details: the input layer consists of a set of neurons responsible for
passing the data representing the pixels of the input image. In the case of a
colored image of n × n pixels, for instance, the input vector has a length of
n×n×3. Indeed, in this case, three values will be associated to the three colors
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Figure 2: Example of a simple CNN architecture made of a series of convolu-
tional and max–pooling layers, leading to the last dense layer.

in the RGB space. Obviously, the matrix depth will change based on the chosen
color space. All neurons with the same depth in the 3D matrix form a feature
map. As for the convolutional layers, they have the goal of identifying patterns
within the image, such as edges, curves, circles and particular shapes. In general,
several convolutional layers compose a CNN or, in other words, many filters are
applied to images since the greater their number, the greater the complexity of
the features that can be identified. In fact, in a convolutional layer, a digital
filter is scrolled along the image and, for each position, an output value is
computed evaluating the scalar product between the filter and the portion of
the input image. Elementary filters are employed in the first layers, capable of
identifying low–level features like borders, while gradually more sophisticated
filters are used in the top layers, able to extract and classify very abstract
characteristics within the image (for instance, able to recognize entire objects).
Pooling layers are used to reduce the size of the feature maps. Therefore, the
pooling operation also reduces the number of parameters to be learned and the
amount of computation performed by the network. More specifically, we could
say that they summarize the features present in a region of the feature map
previously generated by a convolutional layer. Subsequently, further operations
are performed on summarized features instead of precisely placed features. This
makes the model more and more robust to variations in the position of objects
in the input image. In the end, fully–connected layers are in fact those that
eventually lead to the resolution of the image processing problem (segmentation,
object/image classification, etc.) using data that comes as the result of the
processing of all previous layers.

Local and shared connections imply that neurons process in the same way
different portions of the image, producing a biological–like behavior, since dif-
ferent regions of the field of view contain the same type of information (edges,
borders, portions of objects, etc.).
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3.3.1 Generative adversarial networks

Generative Adversarial Networks (GANs) are a DL–based generative model
[19, 28]. GAN architectures consists of two submodels:

• the generator, which is devoted to the generation of new plausible synthetic
examples, based on the input data;

• the discriminator, which aims at detecting whether the examples received
actually belong to the input domain (real data) or come from the output
of the generator (fake data).

In other words, GANs are based on a game theory scenario in which the gener-
ator must compete against an opponent. The generator directly produces sam-
ples. Its opponent, the discriminator, tries to distinguish between samples taken
from the training data and synthetically generated. In practice, both the gener-
ator and the discriminator are convolutional neural networks where the output
of the former is directly connected to the input of the second. More specifi-
cally, the generator generates synthetic samples given a random noise (sampled
from a latent space) while the discriminator is simply a binary classifier that
discriminates between whether the input sample is real or fake. Through error
backpropagation, the classification carried out by the discriminator provides the
generator with the information necessary to update its weights. Once the gen-
erator training process is completed, the discriminator is discarded, since the
GAN has learnt its task, i.e. has acquired the capability to generate realistic,
synthetic data.

As a consequence of the fact that the GAN training actually corresponds to
the training of two distinct models, it proceeds alternately: the generator is kept
frozen during the training of the discriminator, so that the latter can understand
what the defects of the generator are; conversely, during the generator training,
it is the discriminator that is kept constant, otherwise it would practically try
to hit a moving target and therefore would never converge. It is this back
and forth procedure that, allowing the GAN to separate the training of its
two components, guarantees to get a model capable of effectively addressing
generative problems, otherwise intractable. However, as the generator improves
performance, the performance of the discriminator deteriorates, since it is no
longer able to correctly distinguish fake data from real ones and, in the case of a
perfect generator, the discriminator would have a 50% accuracy (assuming that
half of the examples come from the generator). This progression poses a problem
for the convergence of the GAN training: the discriminator feedback becomes
less significant over time, given that beyond a certain threshold it will decide
intrinsically more and more random. In this case, if the generator training is
not interrupted, it will receive junk feedback and the quality of the samples
generated will get worse.
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3.4 Siamese networks

Siamese neural networks allow to compare two (or more) input patterns,
eventually assessing if they belong to the same category. Therefore, a Siamese
network contains two (or more) identical sub–networks, where identical means
that they have the exact same configuration with the same parameters and
weights.

Even if Siamese networks can be used for any type of inputs [29], they are
most commonly applied to image processing tasks, and they were shown to
be particularly useful for image retrieval, verification, and few–shot learning
[30, 31, 32, 33]. More precisely, let us consider a Siamese network able to
compare pairs of input images. In this framework, the architecture of a Siamese
network is constituted by a two–branch convolutional neural network, which
is used on both the input images in order to extract their features, and by
a distance function, which measures their similarity. In order to evaluate the
similarity between two images I1, I2, a metric has to be defined in the embedding
feature space, namely a parametric function Sw, realized by the CNNs contained
in the Siamese. A common choice is the Euclidean distance, denoted as EW in
the following (to evidence its dependence from the network weights). However,
the adoption of a contrastive loss function [34] was shown to be more effective
to learn similarities.

The contrastive loss presumes the availability of a supervised similarity label
Y for each pair of images I1, I2, whose value is 0, for similar images, and 1
otherwise. Formally, by re–writing EW (I1, I2) as EW for brevity, the contrastive
loss function LC is:

LC(W,Y, I1, I2) = (1− Y )E2
W + Y · max(0,m− EW )2

where m > 0 is a margin defined so that a pair contributes to the loss only if
its distance EW belongs to (0,m). Intuitively, this loss makes the embeddings
SW (I1), SW (I2) closer for similar inputs, and distant if they are different. Pairs
of patterns that are close in terms of the embedding distance EW produce a very
low loss if the patterns are similar, whereas the loss is large if they are not similar.
A Siamese network can be trained end–to–end using a common optimization
method. Indeed, the learning procedure is similar to that of a standard CNN,
with few peculiarities. The training set consists of pairs of images (query–
reference), which have to be constructed according to some predefined criterion.
The contrastive loss allows to compute, for each pair of the dataset, the gradient
with respect to the Siamese network parameters, namely the parameters of the
embedded CNNs. Finally, any common gradient–based optimization method
can be applied.

4 DL Techniques in Biomedical Applications

In this section, we will present an overview of DL techniques used in various
contexts of biomedical data analysis. In detail, in Section 4.1, we will show some
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applications of recurrent neural networks and, particularly, LSTMs to sequence
analysis. In Section 4.2, we will introduce GNN applications to biological data,
with special reference to molecule analysis and drug discovery. Finally, in Sec-
tion 4.3, we will draw some examples and briefly sketch applications of CNNs
to image processing and biomedical data analysis for diagnostic purposes. A
graphical summary of this section is proposed in Figure 3.

Figure 3: Structured data processing with deep neural networks.

4.1 Sequence processing via recurrent neural networks

The application of recurrent architectures has been proved to be particularly
successful in many different biomedical fields, from heart–related ECG analysis
[35] to brain signals, as for instance fMRI signals [36, 37].

In this section, we will provide several examples concerning the application
of DL techniques for the analysis of sequences of various types: from ECG to
protein and genomic data. Indeed, RNNs have been profitably employed for
the analysis of cardiac pathologies, for instance, for the detection of cardiac
arrhythmia [35], as well as for heart failure prediction in primary care patients
[38]. Another example of the application of RNNs to the ECG time series
analysis is reported in [39], where the Echo State Network (ESN) is employed for
the automatic identification of patterns related to the Brugada Syndrome, which
is a rare cardiac disease, whose diagnosis — through the analysis of the ECG
— is particularly difficult. The ESN recurrent architecture can actually offer an
efficient clinical tool for the early detection of such pathology and represents a
valid support for cardiologists.

If, in the context of heart–related diseases, applications of RNNs have proved
to be successful, the same can be said in a different biomedical context, i.e. for
protein sequence analysis. In fact, several works are present in the literature
on this topic [40, 41]. For example, in [42], a new deep learning framework
is provided, denominated DeepPPISP, in which contextual and local features
are combined for protein–protein interaction site predictions. Moreover, in [43],
a comprehensive comparison of different machine learning models, including
LSTMs, is realized for the prediction of biological signals characterizing the for-
mation of α–helices. The analysis was carried out on a large experimentally
collected dataset, and the results obtained showed the usefulness of the appli-
cation of deep attention based mechanisms for the analysis of sequence data
[44]. In fact, based on attention, it was proved that all different models focus
on the same subsequences, which can be seen as codes driving the secondary
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structure formation. Moreover, the analysis showed which amino acids are most
important in determining the network output, demonstrating that the network
can learn biological properties of the subsequences in order to calculate its pre-
dictions. Also, the heatmap of attention over the different sequence positions
relative to the α–helix and the amino acid type is consistent with the expecta-
tions of the biomedical literature on the formation of such secondary structures
[43].

Other interesting applications of RNNs to biological sequences come from
their use for the analysis of protein sequences. For instance, in [45], a new
computational environment is provided for modelling proteins and functions of
non–coding DNA sequences. Similarly in [46], a siamese network, composed
of a pair of identical (weight–sharing) LSTMs, was proposed to realize a new
similarity score between protein sequences, able to resemble the BLAST score.
In particular, this work focuses on the comparison between circulating common
cold coronaviruses and SARS–CoV–2, and was able to prove how a preexisting
immune memory due to exposure to common cold HCoVs has a significant
impact on the COVID–19 disease severity, thus suggesting the fundamental role
of the protein sequence similarities with different circulating coronaviruses to
understand SARS–CoV–2 cross–reactivity [46]. In particular, it was found that
the spike protein bring the largest cross–reactivity potential, as well as other
proteins which figure on the surface proteins, proportionally to their importance
in the immune response and memory. Also structural proteins bear a potential
of cross–reactivity, yet this is limited and has therefore limited predictive power,
as highlighted using an attention mechanism inside the LSTM. Moreover, the
SARS–CoV–2 proteome had been also investigated from the point of view of
protein–protein interactions in [47]. The focus of this latter work was finding
a mechanism for disrupting the spike trimerization, therefore hampering the
formation of the virus’ most powerful weapon for penetrating human cells.

4.2 Graph processing via graph neural networks

Graphs emerge naturally in several biological contexts, from protein interaction
networks to biomedical images, from metabolic networks to disease interac-
tions. In other words, different important applications can be performed based
on a graph–representation of data, where the topological information can be ex-
ploited under different analysis perspectives, namely for node, edge, or graph–
focused classification or regression problems, for link prediction, in a generative
framework, etc. (see Fig. 1). Therefore, the capabilities of GNNs in the biomed-
ical field are huge and lead to a vast amount of applications in very different
domains [48].

As a generative framework, GNNs can be used for drug discovery and re-
purposing. The design of new drugs is, in fact, a time consuming process, made
up of several steps, from drug target determination to lead compound discovery
and optimization and to pre–clinical assessment [11]. The process turns out to
be extremely expensive and therefore the use of automatic methodologies for
performing drug development becomes a crucial step. In particular, in recent
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years, the use of machine learning models has become fundamental to speed up
the process and help both in the design and the analysis of new proposed drugs.
While several machine learning models have been devised for drug development
and repurposing [49, 50, 51, 52], many research directions remain unexplored
from the point of view of applying DL architectures to solve the relevant prob-
lems, which is particularly true for graph neural networks. This phenomenon is
mainly due to the lack of sufficiently large datasets, as well as to the complexity
of drug interaction data, which must be considered in this context.

Apart from the limitations due to the scarcity of appropriately labeled data,
GNNs can provide a valid tool for the generation of molecules as well as to
predict drug side effects. In this context, several studies can be found in the
literature, such as [53], for de novo drug design, or [54], for molecular prop-
erty explanation. In [16], a sequential graph generator for molecular structures
is proposed, named MG2N2 (Molecular Generative Graph Neural Networks).
Each node in the molecular graph corresponds to an atom, and each edge to a
chemical bond. The MG2N2 algorithm is based on an iterative process in which,
at each iteration, a node is added to the molecular structure. In order to do
so, the model is composed of three GNN modules: the first generates new atom
nodes, the second connects each new node to the atom it was generated as a
nieghbour of, and the third module generates the (optional) edges connecting
the new node to the rest of the graph. The training procedure of each module is
independent from the others, a characteristic which guarantees a faster training,
and an easier retraining in case one of the modules should be upgraded, also
enhancing the model’s interpretability, as suggested for this kind of model [55].
As hinted in the description of the second module, the molecular graphs are
generated through an expansion process, in which the GNNs focus on one atom
after the other, generating all the neighbors of that atom before moving to the
following one. Atoms are expanded following a first–in–first–out queue, in which
the first generated atoms are expanded first. This guarantees that the gener-
ated graph will not have disconnected components. Since the three modules
are basically thought as classifiers, to avoid mode collapse and give a stochas-
tic behaviour suitable for the generative purpose to the GNNs, each module
is equipped with a Gumbel softmax output layer [56], instead than a regular
softmax layer. The main advantage of MG2N2 with respect to other sequential
generators based on RNNs, reinforcement learning, or GAN–like mechanisms, is
represented by the smaller information loss thanks to the capability of GNNs of
natively processing graphs, while the other methods need to simplify the data
representation using SMILES and other types of vectorial or sequential repre-
sentations of the graph. Moreover, generating the graph step by step allows to
retain a more interpretable, error–aware, and easier to train mechanism with
respect to SMILES–based VAE generators and even graph–based VAE genera-
tors, that generate all the molecules in one shot by sampling from their latent
space [16].

Even drug side effects have a high impact on health system costs and drug
discovery processes. Predicting their probability before their occurrence is fun-
damental to reduce this impact. Indeed, candidate molecules could be screened
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before undergoing clinical trials, reducing the costs in terms of time, money, and
health of the participants. Drug side effects are triggered by complex biological
processes involving many different entities, from drug structures to protein–
protein interactions. In [22], GNNs are applied for this task. Specifically, het-
erogeneous data sources were used and integrated in a unique graph, conveying
information on drug structures and chemical features, drug–gene and gene–gene
interactions, and drug–drug similarities. In this way, the relational context es-
tablished among drugs and genes, on which they produce effects, together with
the interactions existing among genes, are taken into account and exploited
to predict drug side effects. The network makes use of this sort of knowledge
graph to mine the information relevant for each prediction, creating a model
of great usability that can predict drug side effects of newly submitted drugs
without retraining and with a small amount of new information. The two mod-
els proposed in [16] and [22] could even be combined, with MG2N2 generating
molecular graphs of possible drug candidates in large quantities, which can be
subsequently screened to filter out all the compounds with high probabilities
of occurrence of dangerous side effects or that simply produce too many side
effects.

Similarly, further works in this scope were developed with the aim of study-
ing drug–target interactions [57], as well as performing drug–drug interaction
prediction [58].

Several other applications of GNNs in the context of biomedical data con-
cern the analysis of metabolic and genomic networks [59, 60, 61] and the predic-
tion of disease–disease and protein–protein interactions. For example, in [62],
GNNs are employed for the prediction of Protein–Protein Interfaces (PPI). In
particular, the study was focused on the binding site identification, allowing
to determine the functionality and the quaternary structure of protein–protein
complexes. Interacting peptides were represented as graphs, in which each sec-
ondary structure corresponds to a node and edges model the physico–chemical
bonds between secondary structures. A correspondence graph can be built,
describing their interaction, in which secondary structures that show correspon-
dence are linked together. As it was proved in [63], finding the maximum clique
in the correspondence graph allows to identify the secondary structure elements
belonging to the interface site. Although the maximum clique problem is NP–
complete, GNNs represent a soft–computing tool able to solve the problem in
an affordable time. The GNN can be trained on a relatively small number of
examples labeled with the Bron–Kerbosch algorithm [64], learning to replicate
the algorithm solution in a fraction of the time employed by the traditional
implementation. It can then be exploited to predict new interfaces in a short
time and with high accuracy.

Also, the power of GNNs in community analysis was exploited to build the
proof of concept of a mechanism to create a community of caregivers of rare
disease patients. The implementation of a smartphone app to connect caregivers
with each other would be beneficial to them as being a caregiver is often a
challenge from many point of views, and sharing experiences and sensations
could improve their capability of facing such challenges [65].
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4.3 Medical image processing via convolutional networks

Recently, DL models have had a huge impact in computer vision applications:
from image semantic segmentation to object detection, most of the computer
vision tasks reached state–of–the–art performance with the use of Deep Learn-
ing. In this section, we will describe some applications of the models presented
in Section 3, showing examples of standard CNNs, GANs and Siamese architec-
tures applied to medical image processing.

A way to support clinicians in the decision–making process is to provide
a system for retrieving cases that are similar to the examined one. In this
way, doctors can compare cases and directly assess the similarity with past
exams. The exploitation of this comparison is particularly useful to calibrate
diagnoses and treatments, moving toward a precision medicine approach. Such
a framework can be implemented by a Content–Based Image Retrieval system
(CBIR), capable of retrieving the most similar images to a query one. In [66],
a novel supervised Siamese–based architecture was proposed, which is able to
treat multi–modal and multi–view MR images, and retrieve similar lesions in
the case of prostate images. Similarly, in [67], a Siamese network was devised
for prostate cancer classification.

CNNs were also exploited for eye–tracking during trail making tests aimed
at diagnosing particular pathological conditions, like extrapyramidal syndromes
and chronic pain [68].

A different task in which DL models have proved to reach state–of–the–art
performance is image generation and, in particular, medical image processing
has highly benefited from the use of DL architectures, as for tomographic image
analysis [69] or PET image reconstruction [70]. The need for medical image
generation directly comes from the commonly small dimension of image datasets,
which contain not enough data to be used for training a deep network. Among
the most notable CNN–based architectures for image generation we can find
autoencoders 1 and GANs.

In [71], an autoencoder network was proposed for 3D brain MRI reconstruc-
tion. Here, the autoencoder is able to reproduce high–quality 3D images, as
well as to retain meaningful information in the most hidden latent embedding
dimension. In the context of brain MRI analysis, in fact, one of the main chal-
lenges is represented by the need of treating high–dimensional images. A way
to address this significant computational burden is to consider slices of the 3D
images to treat brain MRI scans. An example of this approach can be found
in [72], where 2D slices of brain NMR scans were used to predict the patients’
biological age.

GANs also proved to be suitable for medical image generation. Urinary tract
infections (UTIs) are considered to be the most common bacterial infection
and, actually, it is estimated that about 150 million UTIs occur yearly on a

1A variational autoencoder (VAE) is a type of deep network that learns to reproduce its
input — actually, it represents a self–supervised model —, and also map data to a latent
(hidden) space, in which the information is compressed based on a maximum–conservation
principle.
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world wide basis. To automatically analyze Petri plates coming from urine
culture, in [73], a two stage computational workflow for image segmentation
was presented. Indeed, the original dataset was augmented using a GAN, to be
later segmented with the use of a CNN–based architecture. Finally, a standard
MLP can be used to classify the type of infection and its severity [74]. Similarly,
in [75], GANs were used to produce high–quality retinal images, together with
the corresponding semantic label maps, to estimate the retinal vessel tortuosity.
The two–step approach is based on a first phase in which a progressive growing
GAN (PGGAN [76]) is trained to produce the semantic label maps. These maps,
in fact, describe the blood vessel structures, and are needed to detect possible
retinal or circulatory diseases. Subsequently, an image–to–image translation
approach was used to obtain retinal images generated by the means of first
sketching the vessel network. In this way, the generation process is simplified
and requires less computational effort. Finally, in [77], GANs are employed in a
multi–stage fashion, requiring a smaller amount of data, for multi–organ chest
X–ray image generation. Analogously to the approach in [73], the generation
process is followed by the organ segmentation step and then by the chest X–ray
image reconstruction.

Even in the case of image segmentation, CNN–based architectures have
proved to be particularly performing for medical applications such as, for exam-
ple, in histopathologic image analysis (of kidneys, liver, lung, breast and other
biological tissues [78, 79, 80]). In particular, in [81, 82], a DeepLab based ar-
chitecture [83] for the construction of an automatic tool for kidney glomeruli
segmentation was proposed. Such tool can provide an important support for
clinicians to count the number of glomeruli present in a renal section and un-
derstand how many are sclerotised or not.

Different types of images — natural and coming from various instruments
— can be subject to segmentation in medical image processing. For example, in
[84], a CNN–based approach is used to segment aorta CT scans, in order to early
discover alterations in its morphology which may portend an aortic dissection,
i.e. the rupture of the innermost layer of the aorta which allows blood to flow
between the layers of the aortic wall, forcing the layers to separate. On the
other hand, in [85] a weakly supervised approach was implemented to realize
skin lesion segmentation and identify possible harmful melanomas from benign
nevi. This research topic was also further exploited, investigating a multi–
modal approach, i.e. fusing anamnestic patient information with skin lesion
images. Indeed, in [86], a DL tool for the early diagnosis of skin lesions was
developed. The input data consisted in images and in demographic features
of the patients (including age and gender), together with the position of the
lesion. The DL classifier can efficiently discern between benign and malignant
lesions, allowing clinicians to be supported in their diagnosis, possibly avoinding
surgery. Finally, in [87], CNNs were used for segmenting oocyte images in order
to support medical specialists in improving medical assisted procreation.

However, CNNs are also used for applications not strictly related to images,
possibly adjusting the architecture to suit the particular type of data. As an ex-
ample of a convolutional network application to RNA sequences, in [88], a 1–D
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CNN was used for the analysis of ribosome profiling data (Ribo–seq). In partic-
ular high–reproducible Ribo–seq profiles were analysed, to produce a prediction
on the translation speed associated with the sequence. This is possible because
the Ribo–seq profile is a measurement of the quantity of fragments found inside
ribosomes for each part of a sequence. Fragments which are frequently found
inside ribosomes have been demonstrated to have slower translation (the ribo-
some spends more time on it) while fragments with low frequency have high
translation speed. E.Coli Ribo–seq profiles were collected from various sources,
though the consensus among these sources is high only on 40 of the various
thousand genes of E.Coli. These 40 sequences were used as reference to train
and test a neural network predictor of the translation speed of subsequences.
Another example of cross–field application of CNNs is using them for analysing
molecular graphs from the QM9 dataset: as it was recently proved in [89], in
some particular cases, graphs of very small size can be translated to images
and successfully processed with image–oriented CNNs. Indeed, GNNs are still
recommended for the vast majority of graph–based tasks, as suggested by the
fact that they are universal approximators on graphs [90].

5 Conclusions

Deep learning is one of the fastest growing fields of research and has had a
significant impact on different types of bioinformatics applications. The analysis
of biomedical data in fact poses a wide variety of problems that can be effectively
addressed by building decision support systems, capable of providing substantial
help to human experts, especially in the most routine tasks. We are conscious
that, in this paper, we have offered only a partial view of the research field,
mainly proposing a survey of the works carried out within the Bio–SAILab of
the University of Siena, of which the two authors are members, but trying to
show how our research is well supported by the general and widespread interest
that both DL techniques and biomedical applications receive in the research
community. Challenges and future perspective for this field are several. The
availability of new data will support the development of new deep learning
techniques and the improvement of existing ones. Furthermore, future methods
cannot be separated from being trustworthy and explainable [91], a need that is
very much felt in all DL applications, but which is particularly sensitive in the
case of biomedical applications where a wrong choice, or simply not very reliable
or understandable, can have a significant impact on the health of individuals.
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