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Abstract
We compute the homogeneous ideals of varieties, in a projective space of tensors,
associated to different choices of the Boolean operators that describe the decision
process in small neural networks. We prove that, starting with networks with three
nodes, the varieties associated to different Boolean operators are all distinct.
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1 Introduction

The note is devoted to determine the behaviour of some algebraic (projective) varieties
which are naturally associated to the study of neural tensor networks (we refer to [1]
and [14] for an introduction to the algebraic geometry aspects of the theory of neural
networks).

In the tensor networks that we consider a digital signal passes through the nodes,
and every node decides its status (and its output) by combining the inputs following
some rules. Our task is to detect the rules acting on the nodes (that we suppose uniform
in the network) by observing the total tensor that describes the status of the network.
More precisely, we are interested in detecting how nodes react after receiving different
signals from their input connections.

If a node C receives just one signal then its status is determined. When two signals
arrive together in C , then C adopts a rule that establishes its activation as a function
� of the two inputs it receives. Since there are only four possible combinations of two
digital inputs, and the output is 0 or 1, there are 16 possibilities for the function that
determines the final status. These functions�, that we call logical operators, are listed
below (Table 1). They correspond to non-linear activating functions in the language
of signal theory.
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Fig. 1 Neural tensor network
with three nodes A, B and C

In our networks, we suppose that each signal is perturbed with a probability that
depends on a 2 × 2 perturbation matrix M . We assume M to be a Jukes–Cantor
matrix, constant along the edges of the network. The total status of the network thus
determines a subset (i.e. amodel) in a tensor space of type 2×2×· · ·×2 (see [13] and
[3]) where each factor corresponds to a node. The subset is described by parametric
equations in the parameters of the perturbationmatrix and in the parameters describing
the distribution of the source signal. The model will depend on the topology of the
network, as well as the choice of the logical operator �.

In the paper, we consider very simple networks in which every node has at most
two inputs. The simplest network, formed by two nodes connected by two edges, turns
out to be too simple for our purposes (see Example 4.10). Thus we will start with a
network with three nodes A, B,C , in which A, the source, sends the signal both to B
andC , and B also sends a signal toC (Fig. 1). All signal are perturbed by a perturbation
matrix acting on the edges.

The final goal is to determine the logical operator � adopted by C from a series
of experiments consisting in sending a signal through the network and computing the
relative status of the nodes. In practice, we will determine, for each �, the parametric
equations of the associated model M�. Indeed, we will characterise the model in the
complex extension of the space of tensors. The main result we found is that whenever
�1 �= �2, then also M�1 �= M�2 (see Theorem 4.7).

The result follows from tools of Algebraic geometry. Each model is represented
by parametric equations which turn out to be homogeneous polynomials of the same
degree. Thus, we can consider each M� as a variety in the projective tensor space
P = P(C2 ⊗ C

2 ⊗ C
2) over the complex field. Working in projective spaces will

simplify the analysis, since we will need not to restrict the attention to stochastic
vectors, matrices, or tensors (see [3]).

We will determine the parametric equations of each M�, then, following [7], by
means of the SINGULAR computer algebra package [9] we will find the radical,
saturated, homogeneous ideal of each M� in P, which turn to be all of dimension
4 (see also [2]). By comparing the ideals, again with the aid of computer algebra
algorithms, we will prove our main result.

We stress that the comparison among ideals of the models M� can only yield that
they are different in their extensions over the complex field, because it implicitly uses
the Nullstellensatz. However, we feel that the observation contained in our main result
can be useful to understand the behaviour of concrete networks. We also note, in
Example 4.9, that the procedure applies also to larger networks, provided that they
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can be reduced (by taking subnetworks, or by grouping nodes) to the simple network
in Fig. 3.

2 Related works

The study of neural networks associatedwith graphs by exploitingmatrices and tensors
finds its initial motivation in quantum physics and, more specifically, in the theory of
quantum many-body systems [18]. In quantum mechanics, a vector in Hilbert space
describes the state of an isolated system,while a tensor product can be used to represent
the state space of a compound system when it is the product of state spaces [17]. The
phenomenon that occurs when the tensor is not of rank 1 is called entanglement [6].

Other applications of tensor networks include numerical solutions of partial differ-
ential equations, chemistry and numerous additional areas. In phylogenetics, among
other fields, the analysis of networks has become increasingly popular because of their
ability to describe a wider variety of evolutionary events than their tree-like counter-
parts. In fact, studies of Markovian models of phylogenetic networks are crucial for
reconstructing events such as hybridization and horizontal gene transport [1, 4, 10].

In general, tensor networks are associated to simple graphs, that is, undirected
graphs without loops or multi-arcs, with one vertex for each electron of the system
[11]. In addition, we can consider a set of positive integer weights on the edges, called
bond dimensions, and a set of natural numbers associated with the nodes, referred
to as the local dimensions of the graph [2]. For each node of the graph, in fact, a
vector space of dimension determined by the local dimension assigned to the node
is constructed. Then, the tensor network is a triplet that consists of the simple graph,
the set of bond dimensions, and the collection of local dimensions. In [5], the tensor
network analysis is extended to the case of hypergraphs and, in [8], the separations of
tensor network decompositions are studied, showing that many of them vanish in the
approximate case. Finally, [12] reports a more detailed description of tensor networks
from a geometric point of view.

Following a different, simplified approach, tensor networks are associated to prob-
abilistic graphical models (see [16]). The example in Fig. 2 reports a probabilistic
graphical model, namely a graph in which the nodes represent random variables and
the arcs determine conditional independence assumptions. In the particular case, the
nodes are binary random variables. Each node can be associated with a matrix that
describes its final state based on the state assumed by its parent nodes. Thus, the joint
probability of all nodes in the Bayesian network can be defined with the chain rule as
follows:

P(A, B,C) = P(A) × P(B | A) × P(C | A, B).

In our approach, we will take a point of view very close to this second description of
tensor networks. Indeed, we presents a novel analysis of the network, although strictly
dependent on the underlying graph, with the goal of determining the final tensor of
states obtained from the Boolean activation functions.

In the tensor network analysis we propose, the decision matrix associated with
each node corresponds to a logical connective with a matrix of only zeros and ones
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Fig. 2 Probabilistic graphical model with three nodes A, B and C

equal for all nodes. In addition, we introduce a nondeterministic factor represented by
a perturbation matrix that we associate with each arc. The unknowns of the system
are, then, the perturbation matrices on the arcs and the Boolean logical operators that
determine the output of each node.

Our model allows us to construct the total tensor that describes the final status of the
network in Fig. 1 and our analysis shows that the varieties associated with the tensors
constructed with different logical connectives are distinct. Hence, given the topology
of the graph with three nodes, it is possible to distinguish the logical decision operator
of the nodes.

3 Notation

We work with matrices and tensors defined over the complex field.

Definition 3.1 A 2 × 2 Jukes–Cantor matrix is a matrix of type:

M =
(

α β

β α

)
,

with α, β ∈ C.

Remark 3.2 Jukes–Cantor (JC for short) matrices are closed under the product. Invert-
ible JC matrices form a subgroup of GLC(2).

JC matrices are often associated with a perturbation of a binary signal. From this
point of view, sometimes it is required that the JC matrix satisfies α +β = 1, and that
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Table 1 The sixteen logical operators

Matrix Symbol Nickname Notes

(1)

(
0 0
0 0

)
⊥ Null Always returns 0

(2)

(
0 0
0 1

)
∧, ∀ and, forall Returns 1 when both entries are 1

(3)

(
0 0
1 0

)
> More Returns 1 when A > B

(4)

(
0 0
1 1

)
A A Returns the value of A

(5)

(
0 1
0 0

)
< Less Returns 1 when A < B

(6)

(
0 1
0 1

)
B B Returns the value of B

(7)

(
0 1
1 0

)
�= Not equal Returns 1 when A, B are different

(8)

(
0 1
1 1

)
∨, ∃ or, exists Returns 1 when at least one entry is 1

(9)

(
1 0
0 0

)
� nor Returns 1 when both A, B are 0

(10)

(
1 0
0 1

)
= Equal Returns 1 when A, B are equal

(11)

(
1 0
1 0

)
¬B Not B Returns 1 when B = 0

(12)

(
1 0
1 1

)
⇐ Is implied Returns 1 when A ≥ B

(13)

(
1 1
0 0

)
¬A Not A Returns 1 when A = 0

(14)

(
1 1
0 1

)
⇒ Implies Returns 1 when A ≤ B

(15)

(
1 1
1 0

)
| nand Returns 1 unless both A, B are 0

(16)

(
1 1
1 1

)
� Yes Always returns 1

α, β are both real and positive. We obtain stochastic JC matrices, in which α is the
probability that the signal is correctly transmitted between the nodes, while β is the
probability that the signal is changed during the transmission.

Wewill not use the previous restrictions for JCmatrices, since they are not influential
in our geometrical analysis.

Definition 3.3 A binary logical operator, or connective, is a function � : Z
2
2 → Z2.

There are 24 = 16 total binary logical operators, corresponding to the number of
possible arrangements with repetition of the set of two elements {0, 1}. According to
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Fig. 3 Neural network with
three nodes A, B and C with the
associated Jukes–Cantor
perturbation matrices

[15], each logical operator is usually represented by a 2 × 2 logical matrix:

� =
(

�(0, 0) �(0, 1)
�(1, 0) �(1, 1)

)
=

(
q0,0 q0,1
q1,0 q1,1

)
,

with qi, j = 0, 1, ∀i, j = 0, 1.
Table 1 reports the sixteen logical operators. Every logical operator � has a dual

�∨ defined by �∨(i, j) �= �(i, j). For instance, ‘more’ is the dual of ‘implies’. In
Table 1, the dual of the operator (n) is the operator (17-n), e.g. the dual of (11) is (6).

4 A simple neural network

We will consider a tensor-theoretical description of the neural network presented in
Fig. 3. The neural network consists of three nodes A, B and C, referred to as neurons,
which are connected as in the figure. Specifically, node A transmits a binary signal, 0
or 1, to nodes B and C. In turn, node B sends the signal it has received from node A
to node C. Signals transmitted between nodes are exposed to interference described
by perturbation matrices, that we consider all equal to a fixed Jukes–Cantor matrix as
follows:

M =
(

α β

β α

)
.

In the network, node C receives two signals, sent by both nodes A, B. Then, C
determines its final state by applying one logical operator � to the signals it receives.

The analysis of the neural network is carried out using the Algebraic geometry
approach introduced in [3]: the states of the nodes in the network are reported in a
tensor of type 2×2×· · ·×2 (n times, where n is the number of nodes in the network,
in our case equal to 3). The tensor is thus seen as a distribution over the variables of
the network.

The tensor T obtained is a function of:

• the initial distribution on node A, which is a vector D = (a, b) that we can freely
choose in C

2;
• the entries of the fixed perturbation JC matrix M ;
• the logical operator �.
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Fig. 4 Trees in which the neural network can be splitted in order to study the output on node C. In A, node
A sends the signal to node B and node C. In B, node A sends the signal to node B which, in turn, transmits
it to node C

We will denote with T D
� (α, β) the resulting tensors.

For each choice of logical operator� (and for each choice of the initial distribution
D) a model MD

� (i.e. a subset of the tensor space) is thus obtained:

MD
� = {T D

� (α, β) : α, β ∈ C}.

The resulting models are parametric models, in which the parameters correspond
to the coefficients of the Jukes–Cantor matrices. In order to determine the tensors
associated to a fixed operator �, we will divide the network in Fig. 3 in two simpler
networks (Fig. 4).

The first subnetwork, that we call γ , is described in Fig. 4A: node Cγ and node B
interpret a signal received directly from node A, and B,Cγ are independent of each
other. In other words, γ is aMarkov treewith root A and leaves B,Cγ . The distribution
on Markov trees is well known. Depending on the initial distribution D = (a, b) on A
and the matrix M , we obtain 2 × 2 × 2 tensors of type Tγ as in the System of Eqs. 1.
Tensors of type Tγ are represented in Fig. 5.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tγ (0, 0, 0) = aα2

Tγ (0, 0, 1) = aαβ

Tγ (0, 1, 0) = aαβ

Tγ (0, 1, 1) = aβ2

Tγ (1, 0, 0) = bβ2

Tγ (1, 0, 1) = bαβ

Tγ (1, 1, 0) = bαβ

Tγ (1, 1, 1) = bα2.

(1)

The subnetwork δ in Fig. 4B is equivalent to a Markov chain in which the signal
is transmitted from node A to the final node Cδ passing through node B. Also the
distribution on Markov chains is well known. Depending on the initial distribution
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Fig. 5 Tensor of type Tγ , given
the initial distribution
D = (a, b) on A and the
perturbation matrix M

Fig. 6 Tensor of type Tδ , given
the initial distribution
D = (a, b) on A and the
perturbation matrix M

D = (a, b) on A and the matrix M , we obtain 2 × 2 × 2 tensors of type Tδ as in the
System of Eq.2. Tensors of type Tδ are represented in Fig. 6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Tδ(0, 0, 0) = aα2

Tδ(0, 0, 1) = aαβ

Tδ(0, 1, 0) = aβ2

Tδ(0, 1, 1) = aαβ

Tδ(1, 0, 0) = bαβ

Tδ(1, 0, 1) = bβ2

Tδ(1, 1, 0) = bαβ

Tδ(1, 1, 1) = bα2.

(2)

Remark 4.1 The two tensors Tγ , Tδ , together, determine the tensor of distribution T ′
on the network defined by A, B,Cγ ,Cδ , in which T ′(i, j, k, l) corresponds to the
cases in which, in the original network, A emits i , B emits j , C receives k from A and
l from B.

Once the two distributions have been established, in order to find the distribution
of the original network, we must combine them using the choice of a logical operator
�, which determines the final state of C .

Example 4.2 Assume for instance that C uses the logical operator ‘and’, and let us
determine the final tensor T of the network.

Consider T (0, 1, 0) and T (0, 1, 1). They concern the case in which A sends 0 and
B sends 1. From the two tensors Tγ and Tδ we see that C receives from A directly
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Table 2 Distribution of the
signals received by node C in
the case of the logical operator
‘and’: T (0, 1, 0) and T (0, 1, 1)

γ \δ 0 1

0 a2αβ3 a2α2β2

1 a2β4 a2αβ3

(subnetwork γ ) aαβ times 0 and aβ2 times 1, whileC receives from B (subnetwork δ)
aβ2 times 0 andaαβ times 1. Sincewe are assuming that the twopaths are independent,
once A, B are fixed, then the distribution of what C receives is described in Table 2.

Thus the reaction of C , using the operator ‘and’, is to assume a2αβ3 + a2α2β2 +
a2α2β2 times the state 0 and a2β4 times the state 1.

T (0, 1, 0) = a2αβ3 + a2α2β2 + a2β4;
T (0, 1, 1) = a2αβ3.

Remark 4.3 The calculation introduced in Example 4.2 can be generalised. If � is a
logical operator, the associated tensor T = T D

� (α, β) can be computed as follows.
First, we construct the table Ei j (s, t) that determines the distribution of the two inputs
of C when A = i and B = j . The table is obtained by the following formula:

Ei j (s, t) = Tγ (i, j, s)Tδ(i, j, t).

Then, the tensor T of the distribution is given by:

T (i, j, 0) =
∑

s,t=0,1

Ei j (s, t)(1 − �(s, t));

T (i, j, 1) =
∑

s,t=0,1

Ei j (s, t)�(s, t).

Note that T (i, j, 0) is the sum of the values of Ei, j corresponding to the positions
where � has 0, while T (i, j, 1) is the sum of the values of Ei, j corresponding to the
positions where � has 1.

Example 4.4 Continuing Example 4.2, we can complete the description of the tensors
that can arise from the choice of the logical operator ‘and’.

In otherwords, themodel is represented by the variety described in space of 2×2×2
tensors T (Fig. 7) by the following parametric equations:
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Fig. 7 Variety described in space of 2 × 2 × 2 tensors T

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T (0, 0, 0) = a2α4 + 2a2α3β

T (0, 0, 1) = a2α2β2

T (0, 1, 0) = a2αβ3 + a2α2β2 + a2β4

T (0, 1, 1) = a2αβ3

T (1, 0, 0) = b2αβ3 + b2β4 + b2α2β2

T (1, 0, 1) = b2αβ3

T (1, 1, 0) = b2α2β2 + 2b2α3β

T (1, 1, 1) = b2α4.

(3)

With a similar procedure, we can write parametric equations for the models asso-
ciated to the choice of any of the 16 logical operators �. The parametric equations are
listed in the Table 3.

Remark 4.5 Wenotice that, for any logical operator�, the parametric equations ofM�

are algebraic, homogeneous, of the same degree. It follows from the Chow’s Theorem
(see [3] Theorem 10.6.3) that all the models M� represent projective varieties in the
projective space P = P(C2 ⊗ C

2 ⊗ C
2) of tensors 2 × 2 × 2.

4.1 Comparingmodels

We can now proceed to compare the projective varieties corresponding to the models
MD

� that we obtain from different choices of the operator �.

(*) In the computations of this section we always use D = (1, 1).

Then, in this section, we will often drop the superscript D in the symbols.
We explain the procedure by analysing in detail one example: the operators �2=

‘and’, �8 = ‘or’. The parametric expressions that define the two models M�2 and
M�8 can be found in Table 1, but they are not immediately suitable for the comparison.
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Instead, we will use the computer algebra package Singular [9] to transform
the parametric equations of M�2 (resp. M�8 ) into equations in the coordinates
x(1), x(2), x(3), x(4), x(5), x(6), x(7) and x(8) of the space of tensors P = P(C2 ⊗
C
2 ⊗ C

2) = P
7.

The transformation is obtained by the function eliminate of the package, via
the general command:

ideal I (n) = elim(L(n), 9, 10),

where n = 1, . . . , 16 relate to the operator�n , L(n) provides the parametric equations
for the model M�n and 9, 10 indicate the parameters α, β to be eliminated. In our
case, the commands used are therefore:

ideal I (2) = elim(L(2), 9, 10);
ideal I (8) = elim(L(8), 9, 10).

The output provides the saturated homogeneous ideal I (2) (resp. I (8)), in the
coordinate ring R[x(1), ..., x(8)], of M�2 (resp. M�8 ). The package also determines
the dimensions of the two models.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I (2)[1] = x(4) − x(6)

I (2)[2] = x(3) − x(5)

I (2)[3] = x(1) + x(2) − x(7) − x(8)

I (2)[4] = x(7)2 − 3 ∗ x(2) ∗ x(8) − x(5) ∗ x(8) − 3 ∗ x(6) ∗ x(8)

I (2)[5] = x(2) ∗ x(7) + x(2) ∗ x(8) − x(5) ∗ x(8) − x(6) ∗ x(8)

I (2)[6] =x(6)2 + x(2) ∗ x(7) − (5) ∗ x(7) + 3 ∗ x(6) ∗ x(7) + 4 ∗ x(2) ∗ x(8) − 4 ∗ x(5) ∗ x(8) + 4∗
∗ x(6) ∗ x(8)

I (2)[7] = x(2) ∗ x(6) + 2 ∗ x(2) ∗ x(7) − x(6) ∗ x(7) − 4 ∗ x(6) ∗ x(8)

I (2)[8] = x(2) ∗ x(5) + 16001 ∗ x(2) ∗ x(6) − x(6)2 + 16001 ∗ x(6) ∗ x(7)

I (2)[9] = x(2)2 − x(2) ∗ x(5) + x(2) ∗ x(6) + x(6)2

dim(I (2)) = 4,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I (8)[1] = x(4) − x(6)

I (8)[2] = x(3) − x(5)

I (8)[3] = x(1) + x(2) − x(7) − x(8)

I (8)[4] =x(5) ∗ x(7) − 16001 ∗ x(7)2 − 16001 ∗ x(5) ∗ x(8) + 16001 ∗ x(6) ∗ x(8)−
− 16001 ∗ x(7) ∗ x(8)

I (8)[5] = x(2) ∗ x(7) + 3 ∗ x(7)2 − 2 ∗ x(5) ∗ x(8)

I (8)[6] = x(2) ∗ x(6) − x(2) ∗ x(7) − 2 ∗ x(5) ∗ x(7) − x(6) ∗ x(7) − x(7)2

I (8)[7] = x(5)2 + x(5) ∗ x(7) − x(6) ∗ x(7) + x(7)2

I (8)[8] = x(2) ∗ x(5) − x(2) ∗ x(6) + x(2) ∗ x(7) + x(5) ∗ x(7) + x(6) ∗ x(7) − x(7)2

I (8)[9] = x(2)2 + 2 ∗ x(2) ∗ x(7) − 3 ∗ x(7)2 − 4 ∗ x(7) ∗ x(8)

I (8)[10] =x(6) ∗ x(7)2 + 8000 ∗ x(7)3 − 16001 ∗ x(5)2 ∗ x(8) + 16001 ∗ x(5) ∗ x(6) ∗ x(8) − 8000∗
∗ x(5) ∗ x(7) ∗ x(8) − 8001 ∗ x(6) ∗ x(7) ∗ x(8) + 8001 ∗ x(7)2 ∗ x(8)

dim(I (8)) = 4.
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In order to compare the projective varieties M�2 and M�8 , i.e. in order to compare
the homogeneous ideals, we use the operation quotient, which provides an answer.
In fact, given two ideals I , J , we get that:

I ⊂ J ⇔ J : I = R = [1].

In the specific case of M�2 and M�8 , Singular computes the following:
R28 = quotient(I (2), I (8)) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R28[1] = x(4) − x(6)

R28[2] = x(3) − x(5)

R28[3] = x(1) + x(2) − x(7) − x(8)

R28[4] = x(7)2 − 3 ∗ x(2) ∗ x(8) − x(5) ∗ x(8) − 3 ∗ x(6) ∗ x(8)

R28[5] = x(2) ∗ x(7) − x(7)2 + 4 ∗ x(2) ∗ x(8) + 2 ∗ x(6) ∗ x(8)

R28[6] = x(6)2 − x(5) ∗ x(7) + 3 ∗ x(6) ∗ x(7) + 3 ∗ x(2) ∗ x(8) − 3 ∗ x(5) ∗ x(8) + 5 ∗ x(6) ∗ x(8)

R28[7] = x(2) ∗ x(6) − x(6) ∗ x(7) − 2 ∗ x(2) ∗ x(8) + 2 ∗ x(5) ∗ x(8) − 2 ∗ x(6) ∗ x(8)
R28[8] =x(2) ∗ x(5) − x(5) ∗ x(7) + 2 ∗ x(6) ∗ x(7) + 2 ∗ x(2) ∗ x(8) − 2 ∗ x(5) ∗ x(8) + +4 ∗ x(6)∗

∗ x(8)

R28[9] = x(2)2 − x(7)2 + 4 ∗ x(2) ∗ x(8) + 4 ∗ x(6) ∗ x(8)

R82 = quotient(I (8), I (2)) :
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R82[1] = x(4) − x(6)

R82[2] = x(3) − x(5)

R82[3] = x(1) + x(2) − x(7) − x(8)
R82[4] =x(5) ∗ x(7) − 16001 ∗ x(7)2 − 16001 ∗ x(5) ∗ x(8) + 16001 ∗ x(6) ∗ x(8) − 16001 ∗ x(7)∗

∗ x(8)

R82[5] = x(2) ∗ x(7) + 3 ∗ x(7)2 − 2 ∗ x(5) ∗ x(8)
R82[6] =x(2) ∗ x(6) + 8000 ∗ x(2) ∗ x(7) − x(6) ∗ x(7) − 8000 ∗ x(7)2 − 16001 ∗ x(5) ∗ x(8) − x(6)∗

∗ x(8) + x(7) ∗ x(8)
R82[7] =x(5)2 − x(6) ∗ x(7) − 16001 ∗ x(7)2 + 16001 ∗ x(5) ∗ x(8) − 16001 ∗ x(6) ∗ x(8) + 16001∗

∗ x(7) ∗ x(8)

R82[8] = x(2) ∗ x(5) − 16001 ∗ x(2) ∗ x(7) − x(5) ∗ x(7) + 16001 ∗ x(7)2 − x(5) ∗ x(8)

R82[9] = x(2)2 + 2 ∗ x(2) ∗ x(7) − 3 ∗ x(7)2 − 4 ∗ x(7) ∗ x(8)
R82[10] =x(6) ∗ x(7)2 + 8000 ∗ x(7)3 + 16001 ∗ x(5) ∗ x(6) ∗ x(8) + 8001 ∗ x(6) ∗ x(7) ∗ x(8) + 4000∗

∗ x(7)2 ∗ x(8) + 12001 ∗ x(5) ∗ x(8)2 − 12001 ∗ x(6) ∗ x(8)2 + 12001 ∗ x(7) ∗ x(8)2

Thus, we can conclude:

Proposition 4.6 The two models M�2 and M�8 are projective varieties of dimension
4 in P, and none of the two is contained in the other one.
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We applied the procedure outlined above to compare the models associated to all
the operators �i ’s, i = 1, . . . , 16. The dimensions of the models are listed in the
following table:

Operator � Dimension of M�

(1) null 4
(2) and, forall 4
(3) more 4
(4) A 4
(5) less 4
(6) B 4
(7) not equal 4
(8) or, exists 4
(9) nor 4
(10) equal 4
(11) not B 4
(12) is implied 4
(13) not A 4
(14) implies 4
(15) nand 4
(16) yes 4

Comparing the saturated ideals of the models, we get that for i �= j no inclusions
�i ⊂ � j occur.

By continuity on the choice of the initial distribution, we obtain the following result.

Theorem 4.7 For a general choice of the initial distribution D, and for all choices of
i, j = 1, . . . , 16, i �= j , the models MD

�i
, MD

� j
corresponding to the logical operators

�i ,� j , are different, and no inclusions �i ⊂ � j occur.

Strictly speaking Theorem 4.7 works for the network of Fig. 3, assuming that the
perturbation JC matrices of all the edges of the network are the same.

We discuss below what happens if one relaxes the assumptions.

Remark 4.8 If we drop the assumption that the JC matrices of the perturbations in
the three edges of the network are the same, then the parametric description of the
network changes and the number of parameters can increase. On the other hand, if the
JC matrices are continuous functions of two parameters α, β, the previous analysis
proves that for a generic choice of the matrices the models associated to the new
networks are different when one changes the logical operator used by node C .

Finally, by semi-continuity, the calculation we have performed also proves that
given a generic initial distribution, and not necessarily D = (1, 1), all models turn out
to be different.

Example 4.9 Consider a wider network, associated with an oriented connected graph
in which A is the unique source, B has only one entry and C has exactly two entries.
Assume that the perturbation matrices of the edges of the graph all depend on the same
two parameters. Then we can extrapolate a subnetwork by considering only the nodes
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Fig. 8 Network in which A is
the unique source, B has only
one entry and C has exactly two
entries

Fig. 9 Network with only two
nodes, A and C. A sends a signal
to C through two different routes

A, B,C . Theorem 4.7 and Remark 4.8 suggest that, in general, the models associated
to different choices of the logical operator used by C to decide its state are different,
and no one is contained in any other.

In a concrete example, consider a network as in Fig. 8 and assume that the pertur-
bation matrix of each edge is M . If we consider only the vertices A, B,C , then the
subnetwork corresponds to the network discussed in Remark 4.8, in which the pertur-
bation matrices are powers of M , hence their entries are functions of the parameters
α, β. The conclusion of Theorem 4.7 implies that, for general networks of this type,
the associate models corresponding to different choices of the operator � used by C
are different.

Example 4.10 The difference between models corresponding to the choice of different
logical operators does not hold any more if we simplify the network to the extreme
case where there are only two nodes A,C , and A sends a signal to C through two
different routes, Fig. 9.

In this case the tensor associated to the total network is a 2 × 2 matrix, that can be
computed with a procedure similar (but simpler) to the one described above for the
2 × 2 × 2 case.

One computes that the operators � = ‘more’ and the operator �′ = ‘less’, for
instance, both determine the model in C

2 ⊗ C
2 corresponding to matrices of type:

M = {
(

(α2 + αβ + β2)a2 αβa2

(α2 + αβ + β2)b2 αβb2

)
) : α, β ∈ C}.
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Thus they cannot be distinguished by the analysis of the state of the network.
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