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Abstract
By applying robust control the decision maker wants to make good decisions when 
his model is only a good approximation of the true one. Such decisions are said to be 
robust to model misspecification. In this paper it is shown that the application of the 
usual robust control framework in discrete time problems is associated with some 
interesting, if not unexpected, results. Results that have far reaching consequences 
when robust control is applied sequentially, say every year in fiscal policy or every 
quarter (month) in monetary policy. This is true when unstructured uncertainty à la 
Hansen and Sargent is used, both in the case of a “probabilistically sophisticated” 
and a non- “probabilistically sophisticated” decision maker, or when uncertainty is 
related to unknown structural parameters of the model.

Keywords  Linear quadratic tracking problem · Optimal control · Robust control · 
Time-varying parameters

JEL Classification  C61 · C63 · D81 · D91 · E52 · E61

1  Introduction

Robust control has been a very popular area of research in Macroeconomics in the 
last three decades and shows no sign of fatigue.1 In recent years a growing attention 
has been devoted to its continuous time version (see, e.g., Hansen & Sargent, 2011, 
2016). A characteristic “feature of most robust control theory”, observes Bernhard 
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1  See, e.g., Giannoni (2002, 2007), Hansen and Sargent (2001, 2003, 2007a, 2007b, 2010, 2016), 
Hansen et al., (1999, 2002), Onatski and Stock (2002), Rustem (1992, 1994, 1998), Rustem and Howe 
(2002) and Tetlow and von zur Muehlen (2001a, 2001b). However the use of the minimax approach in 
control theory goes back to the 60’s as pointed out in Basar and Bernhard (1991, pp. 1–4).
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(2002, p. 19), “is that the a priori information on the unknown model errors (or sig-
nals) is nonprobabilistic in nature, but rather is in terms of sets of possible realiza-
tions. Typically, though not always, the errors are bounded in some way. … As a 
consequence, robust control aims at synthesizing control mechanisms that control in 
a satisfactory fashion (e.g., stabilize, or bound, an output) a family of models.” Then 
“standard control theory tells a decision maker how to make optimal decisions when 
his model is correct (whereas) robust control theory tells him how to make good 
decisions when his model approximates a correct one” (Hansen & Sargent, 2007a, p. 
25). In other words, by applying robust control the decision maker makes good deci-
sions when it is statistically difficult to distinguish between his approximating model 
and the correct one using a time series of moderate size. “Such decisions are said 
to be robust to misspecification of the approximating model” (Hansen & Sargent, 
2007a, p. 27).

Concerns about the “robustness” of the standard formulation of robust control 
have been floating around for some time. Sims (2001, p. 52) observes that “once one 
understands the appropriate role for this tool (i.e. robust control or maxmin expected 
utility), it should be apparent that, whenever possible, its results should be compared 
to more direct approaches to assessing prior beliefs.” Then he continues, “the results 
may imply prior beliefs that obviously make no sense … (or) they may … focus 
the minimaxing on a narrow, convenient, uncontroversial range of deviations from a 
central model.” In the latter case “the danger is that one will be misled by the rheto-
ric of robustness to devoting less attention than one should to technically inconven-
ient, controversial deviations from the central model.”2

Tucci (2006, p. 538) argues, “the true model in Hansen and Sargent (2007a) … is 
observationally equivalent to a model with a time-varying intercept.” Then he goes 
on showing that, when the same “malevolent” shock is used in both procedures, the 
robust control for a linear system with an objective functional having desired paths 
for the states and controls set to zero applied by a “probabilistically sophisticated” 
decision maker is identical to the optimal control for a linear system with an inter-
cept following a “Return to Normality” model and the same objective functional 
only when the transition matrix in the law of motion of the parameters is zero.3He 
concludes that this robust control is valid only when “today’s malevolent shock is 
linearly uncorrelated with tomorrow’s malevolent” shock” (p. 553). These results 
are shown to be valid, in a more general setting with arbitrary desired paths, both for 
a “probabilistically sophisticated” and a non- “probabilistically sophisticated” deci-
sion maker and in the presence of a structural model with uncertain parameters in 
Tucci (2021).

Indeed, it may be pointed out that “the fact that the transition matrix does not 
appear in the relevant expression in Tucci (2006, 2021) does not mean that the deci-
sion maker does not contemplate very persistent model misspecification shocks.” For 
instance, the robust control in the worst case may not depend upon on transition 

3  By probabilistic sophistication is meant that “in comparing utility processes, all that matters are the 
induced distortions under the approximating model” (Hansen and Sargent, 2007a, p. 406).

2  See also Hansen and Sargent (2007a, pp. 14–17).
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matrix simply because the persistence of the misspecification shock does not affect 
the worst case! Again the robust decision maker accounts for the possible persis-
tence of the misspecification shocks, and that persistence may affect the evolution of 
the control variables in other equilibria, but it happens that transition matrix does not 
play a role in the worst case equilibrium. Moreover, as commonly understood, “the 
robust control choice accounts for all possible kinds of persistence of malevolent 
shocks, which again may take a much more general form than the VAR(1) assumed 
in Tucci (2006, 2021). It just happens that in the worst-case misspecification shocks 
are not persistent. While for many possible ‘models’, these misspecification shocks 
may be very persistent, such models happen to result in lower welfare losses than 
the worst-case model.” To shed some light on these issues, this paper will further 
investigate the characteristics of the most common specification of robust control 
in discrete time in Economics by explicitly considering the welfare loss associated 
with the various controls.

The remainder of the paper is organized as follows. Section 2 reviews the stand-
ard robust control problem with unstructured uncertainty à la Hansen and Sargent, 
i.e. a nonparametric set of additive mean-distorting model perturbations. In Sect. 3 
the linear quadratic tracking control problem where the system equations have a 
time-varying intercept following a ‘Return to Normality’ model is introduced and 
the solution compared with that in Sect. 2. Section 4 reports some numerical results 
obtained using a ‘robustized’ version of MacRae (1972) problem. Then the per-
manent income model, a popular model in the robust control literature (see, e.g., 
Hansen & Sargent, 2001, 2003, 2007a; Hansen et  al., 1999, 2002) is considered 
(Sect. 5). The main conclusions are summarized in Sect. 5.

2 � Robust Control à la Hansen and Sargent in Discrete Time

Hansen and Sargent (2007a, p. 140) consider a decision maker “who has a unique 
explicitly specified approximating model but concedes that the data might actually 
be generated by an unknown member of a set of models that surround the approxi-
mating model.”4 Then the linear system

with �t the n × 1 vector of state variables at time t, �t the m × 1 vector of control vari-
ables and �t+1 an l × 1 identically and independently distributed (iid) Gaussian vec-
tor process with mean zero and an identity contemporaneous covariance matrix, is 
viewed as an approximation to the true unknown model

(1)�t+1 = ��t+��t+��t+1 for t = 0, ...,∞,

(2)�t+1 = ��t+��t+�(�t+1 + �t+1) for t = 0, ...,∞

4  See Hansen and Sargent (2007a, Ch. 2 and 7) for the complete discussion of robust control in the time 
domain.
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The matrices of coefficients A, B and C are assumed known and �0 given.5
In Eq. (2) the vector �t+1 denotes an “unknown” l × 1 “process that can feed back 

in a possibly nonlinear way on the history of y, (i.e.) �t+1 = �t(�t, �t−1, ...) where 
{�t} is a sequence of measurable functions” (Hansen & Sargent, 2007a, pp. 26–27). 
It is introduced because the “iid random process … (�t+1) can represent only a very 
limited class of approximation errors and in particular cannot depict such examples 
of misspecified dynamics as are represented in models with nonlinear and time-
dependent feedback of �t+1 on past states” (p. 26).6 To express the idea that (1) is a 
good approximation of (2) the ω’s are restrained by

where E0 denotes mathematical expectation evaluated with respect to model (2) and 
conditioned on �0 and �0 measures the set of models surrounding the approximating 
model.7

“The decision maker’s distrust of his model … (1) makes him want good deci-
sions over a set of models … (2) satisfying … (3)” write Hansen and Sargent 
(2007a, p. 27). The solution can be found solving the multiplier robust control prob-
lem formalized as8

where r(�t, �t) is the one-period loss functional, subject to (2) with θ, 
0 < 𝜃∗ < 𝜃 ≤ ∞, a penalty parameter restraining the minimizing choice of the {�t+1} 
sequence and �∗ “a lower bound on �  that is required to keep the objective … (4) 
convex in … ( �t+1 ) and concave in �t ” (p. 161).9 This problem can be reinterpreted 
as a two-player zero-sum game where one player is the decision maker maximiz-
ing the objective functional by choosing the sequence for u and the other player is 

(3)E0

[
∞∑

t=0

𝛽 t+1��
t+1�t+1

]
≤ 𝜂0 with 0 < 𝛽 < 1

(4)max
�

min
�

−E0

{
∞∑

t=0

� t
[
r(�t, �t) − ����

t+1�t+1

]
}

7  See Hansen and Sargent (2007a, p. 11).
8  Alternatively the constraint robust control problem, defined as extremize −E0[Σ

∞
t=0

� tr(�
t
,�

t
)] subject 

to (2), (3), can be solved. When �0 and � are appropriately related the two “games have equivalent out-
comes.” See p. 32 and Chapters 6–8 in Hansen and Sargent (2007a) for details.
9  As noted in Hansen and Sargent (2007a, p. 40) “this lower bound is associated with the largest set of 
alternative models, as measured by entropy, against which it is feasible to seek a robust rule … This cut-
off value of � … is affiliated with a rule that is robust to the biggest allowable set of misspecifications.” 
See also Ch. 7 in the same reference and Hansen and Sargent (2001).

6  When Eq. (2) “generates the data it is as though the errors in … (1) were conditionally distributed as 
N(�

t+1, �l) rather than as N(�, �
l
) … (so) we capture the idea that the approximating model is misspeci-

fied by allowing the conditional mean of the shock vector in the model that actually generates the data to 
feedback arbitrarily on the history of the state” (Hansen and Sargent, 2007a, pp. 27).

5  Matrix C is sometimes called the “volatility matrix” because, given the assumptions on the ε’s, it 
“determines the covariance matrix CC of random shocks impinging on the system” (Hansen and Sargent, 
2007a, p. 29). It is furthermore assumed, see e.g. page 140 in the same reference, that the pair (�1∕2�,�) 
is stabilizable.
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a malevolent nature choosing a feedback rule for a model-misspecification process 
ω to minimize the same criterion functional.10 For this reason, the multiplier robust 
control problem is also referred to as the multiplier game.11

The Riccati equation for problem (4) “is the Riccati equation associated with an 
ordinary optimal linear regulator problem (also known as the linear quadratic con-
trol problem) with controls (��t ��

t+1)
� and penalty matrix on those controls appear-

ing in the criterion functional of diag(�, −���l )” (Hansen & Sargent, 2007a, p. 
170).12 Then, when the one-period loss functional is

with Q a positive semi-definite matrix, R a positive definite matrix, W an n × m 
array, �d

t
 and �d

t
 the desired state and control vectors, respectively, the robust control 

rule is derived by extremizing, i.e. maximizing with respect to �t and minimizing 
with respect to ω, the objective functional

with

subject to

where

and �̃ = [� � ] with O and 0 null arrays of appropriate dimension.

(5)
r(�t, �t) =

(
�t − �̃d

t

)�
�
(
�t − �̃d

t

)
+ 2

(
�t − �d

t

)�
�
(
�t − �d

t

)
+
(
�t − �d

t

)�
�
(
�t − �d

t

)

(6)−E0

[
∞∑

t=0

𝛽 tr(�t, �̃t)

]

(7)
r(�t, �̃t) =

(
�t − �d

t

)�
�
(
�t − �d

t

)
+ 2

(
�t − �d

t

)�
�̃

(
�̃t − �̃d

t

)
+
(
�̃t − �̃d

t

)�
�̃
(
�̃t − �̃d

t

)

(8)𝐲t+1 = 𝐀𝐲t + 𝐁̃𝐮̃t + 𝐂𝛆t+1 for t = 0,… ,∞

(9)�̃ =

[
� �

� −𝛽𝜃�l

]
, �̃t =

[
�t

�t+1

]
,�̃ =

[
� �

]
, �̃d

t
=

[
�d
t

�

]

10  See Hansen and Sargent (2007a, p. 35).
11  Analogously, the constraint robust control problem is sometimes referred to as the constraint game.
12  This is due to the fact that the “Riccati equation for the optimal linear regulator emerges from first-
order conditions alone, and that the first order conditions for (the max–min problem (4) subject to (2)) 
match those for an ordinary, i.e. non-robust, optimal linear regulator problem with joint control process 
{u, ω}” (Hansen and Sargent, 2007a, p. 43).
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Setting εt+1 = 0 and writing the optimal value of (6) as −��t�t�t − 2��t�t,
13 the 

Bellman equation looks like14

with �t+1 = ��t , �t = � t� , �t = � t� , �t = � t� , �t =− (�t�
d
t
+�t�

d
t
 ) and 

�t = −(�t�
d
t
+��

t�
d
t
) . Then expressing the right-hand side of (10) only in terms of 

y and �̃t and extremizing it yields the optimal control for the decision maker

and the optimal control for the malevolent nature

It follows that the θ-constrained worst-case controls are15

and16

with17

The “robust” Riccati arrays �∗
t+1

 and �∗
t+1

 are always greater than, or equal to, 
Pand �t+1, respectively, because it is assumed that, in the “admissible” region, the 

(10)

−��t�t�t − 2��t�t = ext
�̃
−
[
��t�t�t + ��t�t�t − 𝛽𝜃��

t+1�t+1 + 2��t�t�t + 2��t�t

+ 2��t�t + ��t+1�t+1�t+1 + 2��t+1�t+1
]

(11)
�t = −

(
�t + ���t+1�

)−1[(
���t+1� +��

t

)
�t + ���t+1��t+1 + ���t+1 + �t

]

(12)�t+1 = (���l − ���t+1�)
−1(���t+1��t + ���t+1��t + ���t+1).

(13)�
t
= −

(
�

t
+ ���∗

t+1
�
)−1[(

���∗
t+1

� +��
t

)
�
t
+ ���∗

t+1
+ �

t

]

(14)
�

t+1 =
(
���

l
− ���

t+1�
)−1

���
t+1

{[
� − �

(
�

t
+ ���∗

t+1
�
)−1(

���∗

t+1
� +��

t

)]
�
t

−�
(
�

t
+ ���∗

t+1
�
)−1(

���∗

t+1
+ �

t

)
+ �−1

t+1
�
t+1

}

(15a)�∗
t+1

=
[
�
n
+�

t+1�(���l − ���
t+1�)

−1��
]
�
t+1

(15b)�∗
t+1

=
[
�n+�t+1�(���l − ���t+1�)

−1��
]
�t+1

15  See, e.g., Eqs. (7.C.18)–(7.C.19) in Hansen and Sargent (2007a, p. 169).
16  See, e.g., Eq. (7.C.9) in Hansen and Sargent (2007a, p. 168).
17  See, e.g., Eqs. (2.5.6) on p. 35 and (7.C.10) on p. 168 in Hansen and Sargent (2007a) where the quan-
tity �−1�∗

t+1
 is denoted by D(P).

14  The constant term appearing on the right-hand side and on the left-hand side of the equation have 
been dropped because they do not affect the solution of the optimization problem. See, e.g., Eqt. (2.5.3) 
in Hansen and Sargent (2007a, Ch. 2).

13  Using the deterministic counterpart to (6) and (8) allows to simplify some formulas by dropping con-
stants from the value function without affecting the formulas for the decision rules (Hansen and Sargent, 
2007a, p. 33).
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parameter θ is large enough to make (���l − ���t+1�) positive definite.18 They are 
equal when � = ∞.19

These results are slightly different from those presented in Hansen and Sargent 
(2007a, Ch. 2 and 7) where a simpler one-period loss functional with desired state 
and control vectors and W matrix set equal to zero, see e.g. Hansen and Sargent 
(2007a, Sect. 2.2.1 on page 28), is considered. Then the quantities �t , �t , �t and �∗

t
 

vanish in their case when the ‘modified certainty equivalence principle’, see Hansen 
and Sargent (2007a, Sect. 2.4.1), is applied.

3 � Optimal Control of a Linear System with Time‑Varying Parameters

Tucci (2006, pp. 538–539) argues that the model used by a “probabilistically sophis-
ticated’ decision maker to represent dynamic misspecification, i.e. Eq. (2), is obser-
vationally equivalent to a model with a time-varying intercept. When this intercept 
is restricted to follow a ‘Return to Normality’ or ‘mean reverting’ model,20 and the 
symbols are as in Sect. 2, the latter takes the form

with

where a is the unconditional mean of �t+1,� the l × l stationary transition matrix 
and �t+1 a Gaussian iid vector process with mean zero and an identity covariance 
matrix. Matrix �1 is such that �1�t + �� in (16) is equal to Ay in (2).21 In this case, 
a decision maker insensitive to robustness but wanting to control a system with a 
time-varying intercept can find the set of controls ut which maximizes22

(16)�t+1 = �1�t + ��t + ��t+1 for t = 0,… ,∞,

(17)�t+1 = � + �t+1 for t = 0,… ,∞,

(18)�t+1 = ��t + �t+1 for t = 0,… ,∞,

20  See, e.g., Harvey (1981).
21  When a is a null vector, �1 ≡ A. If a is not zero, �1 is identical to A except for a column of 0’s associ-
ated with the intercept and Ca is identical to the column of A associated with the intercept. It is apparent 
that, when �

t+1 ≡ ��
t
 , the robust control formulation and model (16)–(18) coincide.

18  See, e.g., Theorem 7.6.1 (assumption v) in Hansen and Sargent (2007a, p. 150). The parameter � is 
closely related to the risk-sensitivity parameter, say � , appearing in intertemporal preferences obtained 
recursively. Namely, it can be interpreted as minus the inverse of σ. See, e.g., Hansen and Sargent 
(2007a, pp. 40–41, 45 and 225), Hansen et al. (1999) and the references therein cited.
19  The first order conditions for problem (10) subject to (8) imply the Riccati equations.
  �

t
= �

t
+ ���

∗

t+1
� −

(
���

∗

t+1
� +�

t

)(
�

t
+ ���∗

t+1
�
)−1(

���
∗

t+1
� +�

t

)�

  �t = �t + �′�∗t+1 −
(

�′�∗
t+1� +�t

)(

�′�∗
t+1� + �t

)−1(�′�∗t+1 + �t
)

  (Hansen and Sargent, 2007a, Sect. 2.7).

22  Kendrick (1981, Ch. 10) analyzes the case where a = 0 and the hyperstructural parameter Φ is known. 
Tucci (2004) deals with the case where a and Φ are estimated.
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subject to (16)–(18) using the approach discussed in Kendrick (1981) and Tucci 
(2004). When the same objective functional used by the robust regulator is opti-
mized, Lt is simply the one-period loss functional in (5) times � t.

This control problem can be solved treating the stochastic parameters as addi-
tional state variables. When the hyper-structural parameters a and Φ are known, the 
original problem is restated in terms of an augmented state vector zt as: find the con-
trols ut maximizing23

subject to24

with25

and the arrays z and having dimension n + l, i.e. the number of original states plus 
the number of stochastic parameters. For this ‘augmented’ control problem the L’s 
in Eq. (20) are defined as

with �∗
t
= � t�∗ , �∗ = diag(�, −���l), �∗

t
= � t[�� �� ]� and �

t
= � t�.

By replacing �1�t + ��t+1 with �t + ��t+1 in (22), defining �t+1 = �c
t+1

+ �t+1 
with �c

t+1
≡ ��t and using the deterministic counterpart to (20)–(23),26 namely

with

(19)J = E0

[
−

∞∑

t=0

Lt
(
�t, �t

)
]

(20)J = E0

[
−

∞∑

t=0

Lt
(
�t, �t

)
]

(21)�t+1 = � (�t, �t) + �∗
t+1

for t = 0,… ,∞,

(22)�t =

[
�t
�t+1

]
,�
(
�t,�t

)
=

[
�1�t + ��t + ��t+1

��t+1 +
(
�l −�

)
�

]
and �∗

t
=

[
�

�t

]
.

(23)
Lt
(
�t, �t

)
=
(
�t − �d

t

)�
�∗

t

(
�t − �d

t

)
+ 2

(
�t − �d

t

)�
�∗

t

(
�t − �d

t

)
+
(
�t − �d

t

)�
�t

(
�t − �d

t

)

(24)�t+1 = �∗�t + �∗�t for t = 0,… ,∞,

24  When the error term is assumed iid it is equivalent to write the system equations as in (3.5) or as in 
Tucci (2004, Ch. 2).
25  Equations (18) are rewritten as αt – a = Φ(αt-1 –a) + εt in (23). In Tucci (2006, p. 540), the symbol �

t
 

should be replaced by �
t+1 and �

t
 by �

t+1.
26  These preparatory steps are needed to keep the following discussion as close as possible to that car-
ried out in Sect. 2 and 3.

23  See Kendrick (1981, Ch. 10) or Tucci (2004, Ch. 2).
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the optimal value of (20) can be written as −��t�t�t − 2��t�t and it satisfies the Bell-
man equation27

with �t+1 = ��t . Expressing the right-hand side of (26) only in terms of �t and �t 
and maximizing it yields the optimal control in the presence of time-varying inter-
cept (or tvp-control), i.e.28

with K11 and K12 denoting the n × n North-West block and the n × l North-East 
block, respectively, of the Riccati matrix29

and �1,t , containing the first n elements of �t , defined as

Then the optimal control (28) is independent of the parameter θ which enters only 
the l × l South-East block of K, namely �22,t.

When �c
t+1

≡ �t+1 , i.e. the same shock is used to determine both robust control 
and tvp-control, the latter is

with

(25)�t =

[
�t

�c
t+1

]
, �∗ =

[
� �

� �

]
and �∗ =

[
�

�

]
,

(26)

−��t�t�t − 2��t�t = max
�t

−

[(
�t − �∗

t

)�
�∗

t

(
�t − �∗

t

)
+
(
�t − �∗

t

)�
�

t

(
�t − �∗

t

)

+2
(
�t − �∗

t

)�
�∗

t

(
�t − �∗

t

)
+ ��t+1�t+1�t+1 + 2��t+1�t+1

]

(27)

�t = −
(
�t + ���11,t+1�

)−1

×
[(
���11,t+1� +��

t

)
�t + ��

(
�11,t+1� +�12,t+1�

)
�c

t+1
+
(
���1,t+1 + �t

)]

(28)
�1,t = �t + ���1,t+1 − (���11,t+1� +��

t)
�(�t + ���11,t+1�)

−1(���1,t+1 + �t)

(29)
�
1,t

= �t + ���
1,t+1

− (���
11,t+1

� +�
�

t)
�(�t + ���

11,t+1
�)−1(���

1,t+1
+ �t)

(30)
�t = −(�t + ���+

11,t+1
�)−1[(���+

11,t+1
� +��

t
)�t + ���+

11,t+1
�−1

11,t + 1
�
1,t+1

+ �t]

27  As in the previous sections, the constant term appearing on the right-hand side and on the left-hand 
side of the Bellman equation have been dropped because they do not affect the solution of the optimiza-
tion problem.
28  See also, e.g., Kendrick (1981, Ch. 2 and 10) and Tucci (2004, Ch. 2).
29  See Tucci (2004, pp. 26–27). It should be stressed that 
�12,t = (���11,t+1� + ���12,t+1�) − (���11,t+1� +��

t
)�(�

t
+ ���11,t+1�)

−1��(�11,t+1� +�12,t+1�), 
then even when the terminal condition for �12 is a null matrix, this array will not vanish as long as �11 is 
non-zero. Only the last control, i.e. that applied at the ‘final period minus 1’ of the planning horizon, will 
be independent of the transition matrix characterizing the time-varying intercept.
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The quantity �+

11,t+1
 collapses to the ‘robust’ Riccati matrix �∗

t+1
 when �t+1 = �

11,t+1
 

and Φ is a null matrix because the array �12,t+1 is generally different from zero. This 
means that the control applied by the decision maker who wants to be “robust to mis-
specifications of the approximating model” implicitly assumes that the ω’s in (2) are 
serially uncorrelated. Alternatively put, given arbitrary desired paths for the states and 
controls, robust control is “robust” only when today’s malevolent shock is linearly 
uncorrelated with tomorrow’s malevolent shock.

Before leaving this section it is worth it to emphasize two things. First of all the 
results in (30)–(31) do not imply that robust control is implicitly based on a very spe-
cialized type of time-varying parameter model or that one of the two approaches is 
better than the other. Robust control and tvp-control represent two alternative ways 
of dealing with the problem of not knowing the true model ‘we’ want to control and 
are generally characterized by different solutions. In general, when the same objective 
functional and terminal conditions are used, the main difference is due the fact that 
the former is determined assuming for �t+1 the worst-case value, whereas the latter is 
computed using the expected conditional mean of �t+1 and taking into account its rela-
tionship with next period conditional mean. As a side effect even the Riccati matrices 
common to the two procedures, named P and p in the robust control case and �

11
 and 

�11 in the tvp-case, are different. The use of identical Riccati matrices and of an identi-
cal shock in the two alternative approaches in this section, i.e. setting �11,t+1 ≡ �t+1 , 
�11,t+1 ≡ �t+1 and �c

t+1
≡ �t+1 or �c

t+1
≡ [��

1,t+1 ��
2,t+1 ]

� , has the sole purpose of 
investigating some of the implicit assumptions of these procedures.

4 � Some Numerical Results

In this section some numerical results are presented. The classical MacRae (1972) 
problem with one state, one control and two periods, extensively used in the control 
literature, has been ‘robustized’ in Tucci (2006) to compare robust control with tvp-
control. The robust version of this problem may be restated as: extremize, i.e. maximize 
with respect to uand minimize with respect to �t+1 , the objective functional

subject to

with yt and ut the state and control variable, respectively, qt and rt the penalty weight 
on the state and control variable and their desired path, respectively, wt the cross 
penalty, θ the robustness parameter, β the discount factor, �t+1 an iid random vari-
able with mean zero and variance 1, �t+1 the misspecification process and a, b and c 

(31)�+

11,t+1
= [�n + (�

11,t+1
� +�

12,t+1
�)(���l − ���t+1�)

−1��]�
11,t+1

.

(32)J = − E0

[
2∑

t=1

(qty
2
t
+ wt−1yt−1ut−1 + rt−1u

2
t−1

) − �

2∑

t=1

� t�2
t

]

(33)yt+1 = ayt + but + c
(
�t+1+�t+1

)
for t = 0, 1,
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the system parameters. The system parameters are assumed perfectly known and in 
addition �t+1 = 0 , qt = � tq0 , rt = � tr0 , wt = � tw0 , � = .99 and � = 100.

When the parameters are30

the control selected by the controller interpreting c�t+1 as a time-varying intercept 
following a ‘return to normality’ or ‘mean reverting’ model coincides with robust 
control, u0 = 0.10839 , when the transition parameter �  in (18) is equal to 0. Alter-
natively the former is higher (lower) than the latter when the malevolent shocks 
are assumed positively (negatively) correlated. For instance for � = 0.1 tvp-control 
increases to 0.11245. This is shown in Fig. 1 where the solid line refers to tvp-con-
trol and the dashed line to robust control. The intuition behind this result is that, by 
knowing (or fearing) that today’s malevolent shock is going to make worse tomor-
row’s shock, the controller acts proactively to offset some of the negative effects 
that will materialize tomorrow. Therefore, as an anonymous referee put it, “a posi-
tive transition parameter produces a more aggressive interest rate response from the 
monetary authority and a less aggressive response when it is negative”.

The expected costs associated with these controls, given the malevolent shocks 
determined by standard robust control theory (i.e. those corresponding to robust 
controls), are shown in Fig. 2. In this case nature ‘doesn’t care’ about the actual con-
trol applied by the regulator in the sense that the malevolent shocks are insensitive 
to the �  used by the regulator assuming a time-varying intercept.31 It is apparent 
that the tvp control derived assuming � = 0 , i.e.standard robust control, is associ-
ated with the maximum of the objective functional.

When the usual malevolent shock generated by the standard robust control frame-
work is contrasted with an hypothetically correlated malevolent control defined as32

with |𝜌| < 1 and the shocks �t and �t+1 as in (12), some interesting results emerge. 
As reported in Fig. 3 the objective functional associated with the hypothetically cor-
related malevolent control reaches its minimum for � = 0 at a cost of − .9065.

Therefore both players optimize their objective functional by treating today’s 
shock (either malevolent or not) as linearly uncorrelated to tomorrow’s shock. This 
means that, by construction, the most common robust control framework implies 
that the game at time t is linearly uncorrelated with the game at time t + 1.33

These results are not confined to the simple ‘robustized’ version of the classi-
cal MacRae (1972) problem. Indeed, exploiting Tucci’s (2021) results, they apply 

(34)a = .7, b = −.5, c = 3.5 a.4, q0 = 1, r0 = 1 and w0 = .5

�H
t+1

= ��
t
+ �

t+1

30  This is the parameter set originally used in MacRae (1972).
31  These are the malevolent shocks associated with the robust control, i.e. �1 = 0.02974 and 
�2 = 0.01279.
32  In a problem with a longer time horizon this malevolent control may be defined as �H

t+1
= ��H

t
+ �

t+1
 

with �
t+1

 as in (2.12) and �H

1
≡ �

1
, i.e. the usual first period robust control.

33  It is understood that t does not necessarily stand for calendar year. It may indicate a U.S. administra-
tion or a central banker term.
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when unstructured uncertainty à la Hansen and Sargent is used, both in the case of 
a “probabilistically sophisticated” and a non- “probabilistically sophisticated” deci-
sion maker, or when uncertainty is related to unknown structural parameters of the 
model. For instance when the permanent income model is used, with the parameter 
estimates in Hansen et  al. (2002),34 both tvp-control and robust control are equal 
− 51.1 when � = 0 but tvp-control is − 57.8 when � = −.1 , − 64.5 when � = −.2 
and so on, as reported in Fig. 4.35

Again, the value of the objective functional associated with tvp-control is exactly 
the same as that for robust control, i.e. 11,434, when the former uses the transition 
parameter � = 0 in (18) and decreases to 10,874 for � = −.1 , 9193 for � = −.2  and 
so on (Fig. 5).

As in the ‘robustized’ MacRae problem, the hypothetically correlated malevolent 
control attains its minimum when � = 0 at a cost of 11,434 (Fig. 6).

Even in this problem, widely used in robust control literature, both players (the 
controller and malevolent nature) optimize their objective functional by treating 
today’s shock (either malevolent or not) as linearly uncorrelated to tomorrow’s 
shock.

Fig. 1   Control at time zero determined assuming various � ’s for the ‘return to normality’ model of the 
time-varying intercept (solid line) vs. robust control (dashed line)

34  See, e.g., Hansen and Sargent (2001, 2003, 2007a), Hansen et al., (1999, 2002) or Tucci (2006, 2021) 
for a description of the model.
35  See Tucci (2021) for details.
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Fig. 2   Expected cost associated with controls at time zero determined assuming various � ’s for the 
‘return to normality’ model of the time-varying intercept (solid line) vs. expected cost associated with 
standard robust control (dashed line)

Fig. 3   Expected cost associated with the control at time zero determined assuming various ρ’s for the 
hypothetically correlated malevolent control (solid line) vs. expected cost associated with standard robust 
control (dashed line)
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Fig. 4   Control at time zero determined assuming various � ’s for the ‘return to normality’ model of the 
time-varying intercept (solid line) vs. robust control (dashed line)

Fig. 5   Expected cost associated with controls at time zero determined assuming various � ’s for the 
‘return to normality’ model of the time-varying intercept (solid line) vs. expected cost associated with 
standard robust control (dashed line)
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5 � Conclusion

Tucci (2006) argues that, unless some prior information is available, the true model 
in a robust control setting à la Hansen and Sargent is observationally equivalent to a 
model with a time-varying intercept. Then he shows that, when the same “malevo-
lent shock” is used in both procedures, the robust control for a linear system with 
an objective functional having desired paths for the states and controls set to zero 
applied by a “probabilistically sophisticated” decision maker is identical to the opti-
mal control for a linear system with an intercept following a ‘Return to Normality’ 
model and the same objective functional only when the transition matrix in the law 
of motion of the parameters is zero.

By explicitly taking into account the welfare loss associated with the various con-
trols, this paper shows for the first time, as far as the author is aware of, that the 
application of the usual robust control framework in discrete time problems implies 
that both players (the controller and malevolent nature) optimize their objective 
functional by treating today’s shock (either malevolent or not) as linearly uncor-
related to tomorrow’s shock. Therefore, by construction, the most common robust 
control framework implies that the game at time t is linearly uncorrelated with the 
game at time t + 1. It is then useless to handle situations characterized by correlated 
malevolent shocks. Were the Fukushima tsunami and the following nuclear disaster 
uncorrelated? What about the Great Recession of 2008 and the European sovereign 
debt crisis? Is the worst case shock for 2023 linearly independent of the malevo-
lent shock in 2022? The conclusion of this paper holds not only when unstructured 

Fig. 6   Expected cost associated with the control at time zero determined assuming various ρ’s for the 
hypothetically correlated malevolent control (solid line) vs. expected cost associated with standard robust 
control (dashed line)
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uncertainty à la Hansen and Sargent is used in the case of a “probabilistically 
sophisticated” decision maker but also, as shown in Tucci (2021), when the decision 
maker is non- “probabilistically sophisticated” or uncertainty is related to unknown 
structural parameters of the model as in Giannoni (2002, 2007).
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