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Abstract
It is well known that trimmed estimators of multivariate scatter, such as the Minimum Covariance Determinant (MCD)
estimator, are inconsistent unless an appropriate factor is applied to them in order to take the effect of trimming into account.
This factor is widely recommended and applied when uncontaminated data are assumed to come from a multivariate normal
model. We address the problem of computing a consistency factor for the MCD estimator in a heavy-tail scenario, when
uncontaminated data come from a multivariate Student-t distribution. We derive a remarkably simple computational formula
for the appropriate factor and show that it reduces to an even simpler analytic expression in the bivariate case. Exploiting our
formula, we then develop a robust Monte Carlo procedure for estimating the usually unknown number of degrees of freedom
of the assumed and possibly contaminated multivariate Student-t model, which is a necessary ingredient for obtaining the
required consistency factor. Finally, we provide substantial simulation evidence about the proposed procedure and apply it to
data from image processing and financial markets.

Keywords Consistency factor · MCD · Robust distance · Multivariate Student-t distribution

1 Framework and goals

Most robust multivariate methods either explicitly or implic-
itly assume that the available data, say {x1, . . . , xn}, have
been generated by a p-variate random vector X whose distri-
bution function FX is an element within the following family

C = {FX : FX = (1 − ε)F0 + εF1, ε ∈ [0, 1)}. (1)
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In thismodel F0 is the distribution function of the “good” part
of the data, i.e. F0 represents the postulated null model, F1 is
the contaminant distribution,which is usually left unspecified
except at most for the assumption of some regularity condi-
tions, and ε is the contamination rate. Unless F0 in (1) is free
of parameters, as it happens in the contamination models for
digits of Cerioli et al. (2019) and Barabesi et al. (2022), con-
sistent estimation of the parameters in F0 from {x1, . . . , xn}
is crucial for correct identification of the outliers from F1 and
for more elaborated statistical tasks under model (1), such as
dimension reduction, classification and clustering (see, e.g.,
Hubert et al. 2008; Farcomeni and Greco 2015).

Estimation requires the adoptionof robust high-breakdown
techniques, in order to avoid the well-known effects of mask-
ing and swamping. However, the operational implementation
of such high-breakdown techniques typically relies on the
additional assumption that “good” data come from a multi-
variate normal distribution. In the one-population case this
is stated as

Assumption 1 In model (1), F0 is the distribution function
of a p-variate normal random vector with mean vectorμ and
dispersion matrix Σ .

A further common requirement (see Rousseeuw and Leroy
1987, p. 14) is the following
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Assumption 2 Model (1) holds with ε < 1/2.

In this work we focus on trimmed estimators of μ and Σ

taking the form

μ̃αn = 1

wαn

n
∑

i=1

wi,αn xi (2)

and

˜Σαn = ηα,p

wαn

n
∑

i=1

wi,αn (xi − μ̃αn )(xi − μ̃αn )
T, (3)

where αn is a pre-specified tuning constant chosen in [0, 0.5)
and possibly depending on the sample size n, while wi,αn ∈
{0, 1} andwαn = ∑n

i=1 wi,αn ,withα = lim
n

αn . The constant

ηα,p is a dimension-dependent scaling factor ensuring consis-
tency of ˜Σαn when ε = 0 and n → ∞. If Assumption 1 holds
and robust estimation looks for a subset of “central” observa-
tions according to a suitable criterion, such as minimization
of the volume of the estimated scatter, this consistency factor
is (Croux and Haesbroeck 1999)

ηα,p = 1 − α

Fχ2
p+2

(χ2
p,1−α)

, (4)

where Fχ2
p
is the distribution function of a χ2

p random vari-
able, while

χ2
p,1−α = F−1

χ2
p
(1 − α) (5)

is its (1 − α)th quantile. In small and moderate samples,
the consistency factor can be supplemented with a bias-
correction factor computed by simulation under Assump-
tion 1 (Pison et al. 2002).

The weightswi,αn in (2) and (3) are often defined in such a
way thatwαn = �(1−αn)n�,where � �denotes thefloor func-
tion. The number αn thus gives the trimming level, which is
the proportion of sample observations discarded by the robust
procedure. The squared robust Mahalanobis-type distances

˜d2i,αn = (xi − μ̃αn )
T
˜Σ−1

αn
(xi − μ̃αn ), i = 1, . . . , n, (6)

are then used for outlier identification and, more generally,
for robustly orderingmultivariate data (Cerioli 2010). Finite-
sample corrections for the tail quantiles of these distances are
obtained by Cerioli et al. (2009), again under Assumption 1.

We do not here address the issue (and the potential advan-
tages) of performing adata-dependent choice ofαn , forwhich
we refer to Cerioli et al. (2018, 2019), Clarke and Grose
(2023) and to the references therein. We instead settle in the

worst-case scenario of highest contamination and fix

αn =
{

(�(n − p + 1)/2� − 1) /n if (n − p + 1) is even

�(n − p + 1)/2�/n if (n − p + 1) is odd,

which corresponds to themaximal value of the (replacement)
breakdown point

κn = �(n − p + 1)/2�
n

(7)

of μ̃αn and ˜Σαn for sample size n. In this case,

α = lim
n

αn = 1

2
.

With a slight abuse of notation, in the consistency arguments
that follow we then replace the finite-sample trimming level
αn from (7) with its limiting value α = 1/2.

The first goal of this work, addressed in Sect. 2, is to derive
a simple and easily computable expression for the consis-
tency factor to be used in formula (3) when Assumption 1 is
replaced by the more general

Assumption 3 In model (1), F0 is the distribution function
of a p-variate Student-t random vector with mean vector μ,
dispersion matrix Σ and ν degrees of freedom, where ν ≥ 3
is integer.

The motivation for our work comes from the need to
move towards a more general notion of robustness, where
the stringent normality constraint for the “good” part of the
data is relaxed. Our general approach could then be com-
bined with the popular notion that the Student-t distribution
accommodatesmild formsof outlyingness (see, e.g., Peel and
McLachlan 2000). In that case, the use of high-breakdown
estimators in place of the classical ones will further robus-
tify the results by preventing the effect of the most extreme
observations, that might follow a different and possibly non-
elliptical data generating process. Furtermore,we remark that
examination of the behavior of robust estimators under more
realistic elliptical models for uncontaminated data is becom-
ing increasingly popular in several research domains: see
Pokojovy and Jobe (2022) and Lopuhaä et al. (2022) for
recent examples.

A potential problemwith Assumption 3 is that the degrees
of freedom parameter ν is usually unknown in applications
and must be estimated from {x1, . . . , xn}, together with μ

and 	. The second purpose of our work is then to develop
an estimation procedure for ν based on the robust distances
(6). We accomplish this task in Sect. 3, where we follow a
MonteCarlo approach. In Sects. 4 and 5we provide extensive
empirical evidence about the performance of our method,
both through simulation and the analysis of two real data
sets.
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Although Assumption 3 allows for heavier tails than
Assumption 1, it retains an elliptical structure for F0. The
development of formal robust methods when F0 is the distri-
bution function of a skew random vector is an important task
(see Schreurs et al. 2021, for a recent contribution) that how-
ever lies outside the scope of the present work, requiring the
development of extended notions of trimming. Similarly, in
this work we do not question the validity of Assumption 2,
from which the requirement αn ∈ [0, 0.5) follows, but we
refer to Cerioli et al. (2019) for a study of the effects and
potential advantages of its relaxation.

2 Consistency correction

Although our approach is general and could be applied to
any trimmed estimator of type (3), for concreteness we refer
to the popular Minimum Covariance Determinant estima-
tor (MCD) of Rousseeuw and Leroy (1987, p. 262–265).
For trimming level αn , the MCD subset of {x1, . . . , xn}
is defined as the subset of wαn observations in the sample
whose covariance matrix has the smallest determinant. Let
Sαn = {i1, . . . , iwαn

} denote the set of the indexes of the
observations belonging to this subset. TheMCDestimators of
μ and Σ are then obtained through (2) and (3), with weights

wi,αn =
{

1 if i ∈ Sαn

0 otherwise.

The MCD estimator is consistent under very general condi-
tions on F0 (Cator and Lopuhaä 2010, 2012) and attains the
breakdown bound (7) with the value of αn selected in Sect. 1.
Paindaveine andVanBever (2014) also obtain a Bahadur rep-
resentation result for (3) that leads to MCD-based inference
procedures for shape under elliptical models.

The consistency factor is derived through the functional
representation of the MCD estimator, as given by Croux
and Haesbroeck (1999) and Cator and Lopuhaä (2010). In
particular, let X be an absolutely-continuous random vec-
tor defined on R

p. We assume that the probability density
function of X is

fX (x) = |Σ |−1/2φ((x − μ)TΣ−1(x − μ)), (8)

where φ : R+ → R
+ is a non-negative and differentiable

function (named generator) with strictly negative derivative.
In the case of themultivariate Student-t distribution, the prob-
ability density function reduces to

fX (x) = �((ν + p)/2)

�(ν/2)(ν − 2)p/2π p/2

×|Σ |−1/2
(

1 + 1

ν − 2
(x − μ)TΣ−1(x − μ)

)−(ν+p)/2

,

(9)

for ν > 2. We remark that the previous probability den-
sity function is suitably parametrized with respect the usual
expression (see, e.g., Fang et al. 1990, p. 85) in order to let
Σ be the dispersion matrix of the random vector X .

The existence of a consistency factor under elliptical
models was proved by Butler et al. (1993), while Croux
and Haesbroeck (1999) originally suggested computation
through the use of symbolic programming. Numerical inte-
gration could also be feasible at the multivariate Student-t
distribution. Nevertheless, we argue that the availability of
a simpler formula only requiring one or few calls to stan-
dard numerical routines, as we obtain in Proposition 1,
may be useful for several purposes. First, this formula can
be easily implemented in virtually all programming lan-
guages, thus widening the audience for potential applications
of high-breakdown estimators beyond the usual normality
assumption. Second, it is also better suited to be plugged
into more sophisticated procedures that make repeated use
of robust estimators and distances, such as robust methods
based onmonitoring,where a possibly long sequence of trim-
ming levels is exploited (see, e.g., Hubert et al. 2012; Cerioli
et al. 2018). Also the algorithm developed in Sect. 3 for esti-
mating the usually unknown value of ν from data falls within
the latter class of methods and its implementation benefits
from our simplified expression. Finally, numerical methods
are no longer required in the bivariate case, where our result
simplifies to the analytic formula derived in Corollary 1.

We emphasize that the consistency factor becomes a func-
tion of ν under Assumption 3. Therefore, it is now denoted
as ηα,p(ν).

Proposition 1 If Assumption 3 holds, then the consistency
factor in (3) is

ηα,p(ν) =
{

ν − 2

(1 − α)p

∫ 1−α

0

1

1 − I−1
u (p/2, ν/2)

du

−ν − 2

p

}−1

, (10)

where Ix (a, b) is the regularized Beta function of parameters
a and b.

Proof Let T = (X − μ)TΣ−1(X − μ). Under (8), the prob-
ability density function of T is

fT (t) = π p/2

�(p/2)
t p/2−1φ(t)1R+(t),

where � is the Gamma function and 1A is the indicator func-
tion of set A. Let FT be the distribution function of T . From
Cator and Lopuhaä (2010, Formula (4.3)), we obtain that

ηα,p(ν) =
{

π p/2

2(1 − α)�(p/2 + 1)

∫ F−1
T (1−α)

0
t p/2φ(t)dt

}−1

,
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which can be written as

ηα,p(ν) =
{

1

(1 − α)p

∫ F−1
T (1−α)

0
t fT (t)dt

}−1

=
{

1

(1 − α)p

∫ 1−α

0
F−1
T (u)du

}−1

. (11)

By assuming the Student-t generator, from (9) we have

φ(t) = �((ν + p)/2)

�(ν/2)(ν − 2)p/2π p/2

(

1 + 1

ν − 2
t

)−(ν+p)/2

.

It then holds

fT (t) = �((ν + p)/2)

�(ν/2)�(p/2)(ν − 2)p/2
t p/2−1

(

1 + 1

ν − 2
t

)−(ν+p)/2

1R+(t).

The transformation

Y = T

ν − 2 + T

gives rise to a standard Beta distribution with shape parame-
ters (p/2) and (ν/2). If FY denotes the distribution function
of Y , it then holds FY (x) = Ix (p/2, ν/2), where Ix (a, b) is
the regularized Beta function of parameters a and b. Hence,

FT (t) = FY

(

t

ν − 2 + t

)

, (12)

from which

F−1
T (u) = (ν − 2)F−1

Y (u)

1 − F−1
Y (u)

= (ν − 2)

(

1

1 − F−1
Y (u)

− 1

)

= (ν − 2)

(

1

1 − I−1
u (p/2, ν/2)

− 1

)

for u ∈ [0, 1]. The result thus follows from (11). �	
Table 1 reports the values of 1/ηα,p(ν), which is the appro-

priate scaling factor for the squared robust distances in (6),
obtained fromProposition 1 for some selected values of p and
ν, when α = 0.5. Following (10), each value of ηα,p(ν) in
the table is easily computed through standard numerical rou-
tines, available in many programming languages. We refer to
the Supplementary Material for more details on the routines
of our choice and on a number of popular alternatives.

It is worth remarking that the result in Proposition 1
holds more generally than under Assumption 3, as it only
requires ν > 2 when F0 is the distribution function of a p-
variate Student-t random vector with ν degrees of freedom.

Table 1 Values of 1/ηα,p(ν) from Proposition 1 for selected values of
p and ν, when α = 0.5

ν p = 2 p = 3 p = 5 p = 10 p = 30

3 0.119 0.151 0.184 0.213 0.236

5 0.201 0.260 0.321 0.379 0.426

10 0.256 0.335 0.421 0.508 0.583

30 0.291 0.383 0.489 0.601 0.711

∞ 0.307 0.407 0.523 0.653 0.796

In Assumption 3, the additional condition that ν must be an
integer is instead appropriate for the Monte Carlo estima-
tion method developed in Sect. 3. We nevertheless argue that
this condition does not entail substantial restrictions on the
method applicability. Furthermore, it holds that

lim
ν→∞ ηα,p(ν) = ηα,p,

as it should be.
A remarkably simple analytic expression for ηα,p(ν) can

be further derived in the special case where p = 2.

Corollary 1 If Assumption 3 holds and p = 2, then

ηα,2(ν) =
{

ν

2(1 − α)

(

1 − α1−2/ν
)

− ν − 2

2

}−1

. (13)

Proof If Assumption 3 holds with p = 2,

fT (t) = ν

2(ν − 2)

(

1 + 1

ν − 2
t

)−ν/2−1

1R+(t).

Therefore,

FT (t) =
(

1 −
(

1 + 1

ν − 2
t

)−ν/2
)

1R+(t)

and

F−1
T (u) = (ν − 2)((1 − u)−2/ν − 1)

for u ∈ [0, 1], from which the result follows. �	
Furthermore, from (13) we obtain that

lim
ν→∞ ηα,2(ν) =

{

1 + α

1 − α
logα

}−1

,

in agreementwith result (4) corresponding to themultivariate
normal case. As an example, Fig. 1 considers the case ν = 5
and depicts the value of 1/ηα,2(5) for α ∈ [0, 0.5).

We conclude this section by evaluating the effect of model
misspecification. For this purpose, we assume to wrongly
work under Assumption 1 with Σ = Ip, where Ip is the
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Fig. 1 Plot of 1/ηα,2(5) for α ∈ [0, 0.5)

p-dimensional identity matrix, while instead Assumption 3
holds truewith ν degrees of freedom. In this case, the standard
MCD estimate ˜Σαn includes ηα,p from (4) as its consistency
factor and targets Ip .However, it follows from(9) that the true
dispersion matrix of the data generating process is ν

ν−2 Ip,
which is estimated by

˜Σαn (ν) = ηα,p(ν)

ηα,p

˜Σαn .

Matrix ˜Σαn (ν) is the MCD estimate that includes ηα,p(ν)

from Proposition 1 as its consistency factor for (asymptotic)
trimming level α and ν degrees of freedom. To appreciate the
advantage of (10) over (4) under Assumption 3, we need to
make the targeted dispersion matrices comparable. We thus
define the squared Frobenius matrix norms

˜Δαn ,p(ν) = ‖Ip − ν − 2

ν
˜Σαn (ν)‖2

and

˜Δαn ,p = ‖Ip − ˜Σαn‖2.

In ˜Σαn we now also incorporate the bias-correction factor of
Pison et al. (2002), which is instead unknown for ˜Σαn (ν), in
order to make the scenario less favorable for Assumption 3.
Table 2 reports the comparison of the discrepancy measures
100E[ ˜Δαn ,p(ν)]/p and 100E[ ˜Δαn ,p]/p, for α = 0.5 and
different values of n, p and ν, computed on 1000 samples
generated under Assumption 3. As expected, the value of
E[ ˜Δαn ,p(ν)] decreases steadily as n grows,while the effect of
choosing the inappropriate model, and thus the inappropriate

scaling, is paramount especially when ν or n (or both) are
low.

3 Robust estimation of the degrees of
freedom

3.1 Rationale

The consistency factor ηα,p(ν) obtained in Proposition 1
depends on the value of ν, which is usually unknown. When
the non-robust maximum likelihood estimators of μ and Σ

are adopted, several alternative estimators of ν exist and one
which is particularly suited to the present context is based
on an extension of the EM algorithm. However, numerical
instabilities and other issues are sometimes reported with
this estimator (Hasannasab et al. 2021; Pascal et al. 2021).
We argue that such issues may be possibly related with the
unsuspected presence of outliers or other forms of contami-
nation in the data, according to model (1), as well as with the
occurrence of singularities and non interesting local maxi-
mizers of the likelihood function, as it happens with EM-type
algorithms (García-Escudero et al. 2015). It is an open issue
whether the same approach can be robustified by the use of
(2) and (3), or by the inclusion of a trimming step in the
appropriate version of the EM algorithm. In this work we
then suggest an indirect procedure for robustly estimating
the value of ν in Assumption 3.

Our basic idea is to select the value of ν that provides
the best fit to the squared robust distances obtained from the
trimmed estimators of location and scatter. For simplicity,
and for stressing the portability of our method, in what fol-
lows we take {˜d21,αn , . . . , ˜d2n,αn

} in (6) to denote the squared
robust distances incorporating the normal-distribution con-
sistency correction 1/ηα,p, which is the standard output of
the robust estimation procedure in most available software
packages. We instead write

˜d2i,αn ,ν = ηα,p

ηα,p(ν)
˜d2i,αn , i = 1, . . . , n, (14)

for the squared robust distances that should be used under
Assumption 3, when the appropriate consistency factor
ηα,p(ν) from Proposition 1 replaces ηα,p in (3). By recalling
the proof of Proposition 1, FT becomes the limiting dis-
tribution of the random variables (14) when μ and Σ are
estimated consistently. In principle, we could then choose ν

by minimizing a discrepancy measure between the empiri-
cal distribution of the squared robust (t-adjusted) distances
{˜d21,αn ,ν , . . . , ˜d2n,αn ,ν

} and FT . This would be a somewhat
simple and cheap task, since Equation (12) shows that FT
depends on the regularized Beta function of parameters p/2
and ν/2 under Assumption 3.
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Table 2 Discrepancy measure
100E[ ˜Δαn ,p(ν)]/p computed on
1000 samples generated under
Assumption 3

p = 2 p = 5

n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

ν = 3 0.33 (4.96) 0.10 (3.84) 0.02 (3.20) 0.29 (1.06) 0.08 (0.64) 0.02 (0.46)

ν = 6 0.35 (1.80) 0.11 (1.18) 0.04 (0.94) 0.32 (0.44) 0.09 (0.19) 0.03 (0.10)

ν = 9 0.36 (1.15) 0.12 (0.69) 0.03 (0.46) 0.30 (0.31) 0.09 (0.12) 0.03 (0.06)

The analogous discrepancy measure 100E[ ˜Δαn ,p]/p obtained when (4) is the consistency factor of the MCD
estimator is reported within parentheses

However, reliance on the asymptotic distribution of the
squared robust distances (14) for the estimation of ν could
open the door to two orders of potential difficulties. The first
one is that several different algorithms typically attempt to
compute the same trimmed estimator, thus providing alter-
native approximations to the same (intractable) objective
function. For instance, the popular R package robustbase
(Todorov and Filzmoser 2009) allows three possible options
for the MCD estimator, namely the default Fast-MCD algo-
rithm of Rousseeuw and Van Driessen (1999) with random
selection of a pre-specified number of initial subsamples of
minimum cardinality, the same algorithm with enumeration
of all the possible initial subsamples or of a large number
of them, and the deterministic MCD algorithm proposed by
Hubert et al. (2012). Furthermore, other algorithmic propos-
als exist for the same task thatmight be preferable in different
frameworks (Chakraborty andChaudhuri 2008;DeKetelaere
et al. 2020; Boudt et al. 2020; Kalina and Tichavsky 2022),
and also the default Fast-MCD algorithm comes with a num-
ber of arguments (Fauconnier andHaesbroeck 2009;Mächler
2022) that should be possibly tuned to the specific problem at
hand. The second shortcoming is that the finite-sample bias
of (3) is often non-negligible, even if the appropriate con-
sistency correction is adopted. Pison et al. (2002) evaluate
this bias for the Fast-MCD algorithm under Assumption 1,
while to the best of our knowledge similar results are not yet
available under Assumption 3. Again, including the available
(but wrong) finite sample correction in (3) or excluding it (at
the expense of a greater bias) could lead to different solu-
tions, without any clear indication about which one should
be preferred.

To overcome the difficulties mentioned above, we exploit
aMonteCarlo approach inwhichwe estimate the distribution
function of the squared robust distances. Monte Carlo esti-
mation of the same distribution function is also the backbone
of the correction method developed by Cerioli et al. (2009)
when the observations actually follow Assumption 1. For
simplicity we base our computations on the standard output
(6) of most of the available packages for robust estimation
of μ and Σ , possibly after inclusion of the bias-correction
factor of Pison et al. (2002). However, we emphasize that the
same results could be obtainedwith any other scaling of these
robust distances, such as (14), provided that the scaling is
easily computable as in Proposition 1, or evenwith the uncor-

rected squared distances {ηα,p˜d21,αn , . . . , ηα,p˜d2n,αn
}. Indeed,

an important bonus of our Monte Carlo approach is that it
leads to cancel out the bias induced by the specific distance
choice, as well as other possible algorithmic effects.

3.2 Monte Carlo simulation of the robust distances

In our Monte Carlo approach, we first obtain an estimate of
the distribution function of the squared robust distances (6)
under Assumption 3 for each (integer) value of the degrees
of freedom below a fixed threshold, say νmax. This threshold
should be chosen according to problem-specific or practical
considerations. For computational simplicity, inwhat follows
we set νmax = 20, which seems to be close enough to the
limiting normal case for many practical purposes. Of course,
larger values of νmax may be selected when appropriate, at
the expense of an increased computing burden.

Let ˜d2(i),αn be the i th order statistic of the squared robust
distances (6) in the available sample {x1, . . . , xn}. Not all
the observations in the sample provide information about
the parameters of F0 in model (1) when ε > 0. Indeed, the
expected number of sample observations generated by F0
under such a model is

mn = �n(1 − ε)�. (15)

Only {˜d2(1),αn , . . . , ˜d2(mn),αn
} should thus be used to infer

the true value of ν under Assumption 3, provided that
F0 and F1 are sufficiently well separated. In that case
{˜d2(mn+1),αn

, . . . , ˜d2(n),αn
} would likely come from F1 and

contribute to bias the estimator of ν.
The first ingredient of our approach is a set of Monte

Carlo estimates of the expectation of the i th ordered squared
robust distance ˜d2(i),βn , for i ∈ {1, . . . ,mn}, under F0. Each
squared robust distance is computed from a sample of mn

observations with trimming level

βn = αn − ε

1 − ε
. (16)

We remark that the choice of the original trimming level αn

would be inappropriate in our simulation scheme. If ε > 0 in
(15), thenmn < n and only the firstmn sample order statistics
{˜d2(1),αn , . . . , ˜d2(mn),αn

} are used to infer the value of ν. These
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robust distances will exhibit the variability of random quan-
tities from a sample of mn “good” observations, to which
trimming level βn (not αn) is applied. In fact, the choice of
trimming (16) ensures that the cardinality of the MCD sub-
set is preserved when the original sample {x1, . . . , xn}, to
which trimming level αn is applied, is replaced by a sample
of reduced size mn , since for the latter the MCD estimator
is computed on wβn = �(1 − βn)mn� ≈ �(1 − αn)n� obser-
vations. We also note that other robust procedures based on
iteration, such as those of García-Escudero and Gordaliza
(2005) andRiani et al. (2009), show the importance of rescal-
ing the initial trimming level when a preliminary indication
of the number of “good” observations is available, in order to
take the appropriate sampling variability into account. Such
an update is also at the heart of the computation of the con-
sistency factor for the reweighted MCD estimator of scatter
under Assumption 1 (see, e.g., Croux and Haesbroeck 2000,
p. 604).

The required set of estimates is obtained under the hypoth-
esis that Assumption 3 holds with ν ∈ {3, . . . , νmax}.
Therefore, each element in this set of Monte Carlo esti-
mates is denoted by d̄∗

(i),βn ,ν
, for i = 1, . . . ,mn and ν =

3, . . . , νmax, to emphasize dependence on the degrees of free-
dom under F0. Specifically, d̄∗

(i),βn ,ν
is computed from B

replicates of the data-generating process of artificial sam-
ples of size mn , say {x∗

1,ν,b, . . . , x
∗
mn ,ν,b} for b = 1, . . . , B,

where the p-dimensional random vectors x∗
1,ν,b, . . . , x

∗
mn ,ν,b

are simulated according to Assumption 3 and yield the esti-
mators (again dependence on the degrees of freedom under
F0 is emphasized in subscripts)

μ̃∗
βn ,ν,b = 1

wβn

mn
∑

i=1

wi,βn x
∗
i,ν,b (17)

and

˜Σ∗
βn ,ν,b = ηβ,p

wβn

mn
∑

i=1

wi,βn (x
∗
i,ν,b − μ̃∗

βn ,ν,b)

(x∗
i,ν,b − μ̃∗

βn ,ν,b)
T, (18)

with β = lim
n

βn and wβn =
mn
∑

i=1
wi,βn . Correspondingly, for

i = 1, . . . ,mn , we compute

(˜d∗
i,βn ,ν,b)

2 = (x∗
i,ν,b − μ̃∗

βn ,ν,b)
T(˜Σ∗

βn ,ν,b)
−1

(x∗
i,ν,b − μ̃∗

βn ,ν,b). (19)

Then, for i = 1, . . . ,mn , (˜d∗
(i),βn ,ν,b)

2 denotes the i th order
statistics of the squared robust distances (19) in artificial sam-

ple {x∗
1,ν,b, . . . , x

∗
mn ,ν,b} and

d̄∗
(i),βn ,ν = 1

B

B
∑

b=1

(˜d∗
(i),βn ,ν,b)

2. (20)

The pseudocode of our Monte Carlo estimation procedure is
provided as Algorithm 1.

Algorithm 1 Monte Carlo algorithm for estimating the
expectation of ˜d2(i),βn under F0
1: set νmax and B; fix ε

2: compute mn and βn
3: for ν ∈ {3, . . . , νmax} do
4: for b ∈ {1, . . . , B} do
5: simulate {x∗

1,ν,b, . . . , x
∗
mn ,ν,b} under Assumption 3

6: compute (17), (18) and (19) on {x∗
1,ν,b, . . . , x

∗
mn ,ν,b}

7: sort the squared robust distances (19)
8: end for
9: for i ∈ {1, . . . ,mn} do
10: compute (20) to obtain d̄∗

(i),βn ,ν
11: end for
12: end for

Remark 1 Comparison of (3) and (18) with the same trim-
ming level shows that the actual value of the consistency
factor does not affect the estimation criteria to be described
below, provided that the same scaling – or even no scaling
– is used for computing both ˜d2(i),αn and the Monte Carlo

estimate d̄∗
(i),αn ,ν

. As anticipated in Sect. 3.1, this feature pro-
vides our approach with a kind of “algorithmic robustness”,
which may also apply to the other algorithmic choices and
tuning parameters to be selected for the computation of (2)
and (3).

Remark 2 In order to infer the value of ν in F0, the first mn

ordered squared robust distances ˜d2(1),αn , . . . ,
˜d2(mn),αn

in the
available sample {x1, . . . , xn} are compared with the corre-
sponding Monte Carlo estimates computed from simulated
samples of sizemn for varying degrees of freedom. However,
in (20) trimming level βn is adopted instead of αn . The esti-
mate d̄∗

(i),βn ,ν
must then be rescaled when ε > 0 in order to

take into account the different effect of trimming on ˜d2(i),αn
and ˜d2(i),βn ,ν . For i = 1, . . . ,mn and ν ∈ {3, . . . , νmax}, we
compute the scaled order statistics

δ∗
(i),αn ,ν = ηβ,p

ηα,p
d̄∗
(i),βn ,ν , (21)

where the required consistency factors are obtained from (4)
with α = lim

n
αn and β = lim

n
βn .

Remark 3 It is clear that the Monte Carlo estimate d̄∗
(i),βn ,ν

is
not appropriate for further statistical analysis under Assump-
tion 3, because it incorporates the normal consistency factor
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(4) instead of the appropriate factor from Proposition 1.
Therefore, when the computations are based on the standard
output of most of the available packages as above, at the end
of our procedure d̄∗

(i),βn ,ν
must be rescaled by factor

ηβ,p

ηβ,p(ν̌)
,

where ν̌ denotes the selected estimate of ν, according to the
criteria described in Sect. 3.3, to be inserted in (10). The same
holds for the empirical squared robust distances ˜d2i,αn , that
must be rescaled as in (14).

3.3 Minimum-distance estimates of �

Let ˜F∗
mn ,ν

be the Monte Carlo estimate of the distribution
function of themn scaled squared robust distances (21) when
Assumption 3 holds with ν ∈ {3, . . . , νmax}. Correspond-
ingly, let ˜Fmn ,ν denote the empirical distribution function of
the firstmn squared robust distances (6), which are supposed
to be generated by F0 when (1) holds with contamination rate
ε. A very natural estimator of ν is the Wasserstein distance
between ˜Fmn and ˜F∗

mn ,ν
, which is computed as

ν̃W = argmin
ν

mn
∑

i=1

|˜d2(i),αn − δ∗
(i),αn ,ν |. (22)

Another choice is the Kolmogorov-Smirnov statistic

ν̃K = argmin
ν

sup
x∈[0,1]

|˜Fmn (x) − ˜F∗
mn ,ν

|. (23)

Both ν̃W and ν̃K enjoy the properties of the corresponding
metrics.

To provide a reference we also compute the squared norm
between vectors of order statistics

ν̃L2 = argmin
ν

mn
∑

i=1

(

˜d2(i),αn − δ∗
(i),αn ,ν

)2
. (24)

Furthermore, we compare ν̃W and ν̃K with their non-robust
counterparts

ν̂W = argmin
ν

n
∑

i=1

|d̂2(i) − d̄∗
(i),ν | (25)

and

ν̂K = argmin
ν

sup
x∈[0,1]

|̂Fn(x) − ̂F∗
n,ν |, (26)

where d̂2(1), . . . , d̂
2
(n) are the order statistics of the squared

Mahalanobis distances

d̂2i = (xi − μ̂)T ̂Σ−1(xi − μ̂), i = 1, . . . , n, (27)

computed from the full-sample estimators μ̂ and ̂Σ , which
are obtained from (2) and (3) with αn = 0, wi,0 = 1 for i =
1, . . . , n, and η0,p = 1. Correspondingly, {d̄∗

(1),ν, . . . , d̄
∗
(n),ν}

are the Monte Carlo estimates of the same ordered squared
distances when Assumption 3 holds with ν ∈ {3, . . . , νmax},
while ̂Fn and ̂F∗

n,ν are the empirical distribution functions of

{d̂21 , . . . , d̂2n } and {d̄∗
(1),ν, . . . , d̄

∗
(n),ν}, respectively.

4 Simulation experiments

We study the empirical properties of ν̃W and ν̃K (and occa-
sionally also those of alternative estimators of ν) under
different scenarios involving ν ∈ {3, 6, 9} and p ∈ {2, 5}.
In our simulations we usually take n ∈ {500, 1000, 2000},
as in Table 2, since we are interested in consistency correc-
tion of trimmed estimators and in the corresponding behavior
of robust distances in relatively large samples. As mentioned
in Sect. 3.1, the possibility of computing further adjustments
for finite-sample bias in the vein of Pison et al. (2002) is
left for further research. In all the simulations that follow we
compute the trimmed estimators (2) and (3) through the Fast-
MCD algorithm of Rousseeuw and Van Driessen (1999). We
also adopt the default configuration of this algorithm derived
from the R package robustbase.

Unless otherwise stated, we perform 1000 simulations to
estimate the expected value and the standard deviation of
each estimator in each configuration. Furthermore, we use
B = 10000 Monte Carlo replicates in the computation of
(20). The specific choice νmax = 20 has only a marginal
effect on the estimated properties of ν̃W and ν̃K , since we
obtain ν̃W = ν̃K = νmax in a limited proportion of simula-
tions concerning the cases with the largest values of ν. This
proportion is otherwise negligible in the other instances.

4.1 Scenario I: All observations from the
multivariate Student-t distribution

We assume that model (1) holds with ε = 0, so that
Assumption 3 is verified for all the observations. We take
μ = (0, . . . , 0)T and assume that the random variables
(X1, . . . , X p) are independent.

The motivation for this scenario is twofold. On the one
hand, it can anticipate the effect of introducing robust esti-
mation in application domains, such as finance (Gupta et al.
2013), where Student-t models are often advocated, when
somemild formof contamination is suspected. In this respect,
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Table 3 Monte Carlo estimates
of E[̃νW ], E[̃νK ] and E[̃νL2 ]
based on 1000 replicates of
model (1) with ε = 0 and F0
following Assumption 3

p = 2 p = 5

n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

ν̃W ν = 3 3.45 (0.53) 3.26 (0.44) 3.19 (0.39) 3.33 (0.47) 3.16 (0.36) 3.06 (0.24)

ν = 6 6.65 (1.76) 6.38 (1.08) 6.24 (0.73) 6.29 (0.87) 6.17 (0.58) 6.12 (0.41)

ν = 9 10.63 (3.94) 9.90 (2.58) 9.35 (1.49) 9.57 (1.84) 9.20 (1.11) 9.21 (0.78)

ν̃K ν = 3 3.27 (0.71) 3.21 (0.42) 3.06 (0.22) 3.13 (0.34) 3.06 (0.23) 3.01 (0.07)

ν = 6 7.25 (3.70) 6.65 (2.28) 6.32 (1.26) 6.27 (1.25) 6.12 (0.81) 6.07 (0.56)

ν = 9 10.60 (5.08) 10.32 (4.14) 9.72 (2.92) 9.71 (2.77) 9.27 (1.59) 9.23 (1.15)

ν̃L2 ν = 3 3.74 (0.63) 3.60 (0.55) 3.69 (0.47) 3.67 (0.54) 3.56 (0.52) 3.59 (0.50)

ν = 6 6.73 (1.86) 6.57 (1.24) 6.37 (0.91) 6.40 (1.16) 6.28 (0.88) 6.22 (0.73)

ν = 9 10.48 (3.62) 9.81 (2.42) 9.40 (1.57) 9.61 (2.02) 9.24 (1.36) 9.24 (1.03)

Standard deviations of the estimates are given within parentheses

Table 4 Monte Carlo estimates
of E[̂νW ] and E[̂νK ] based on
1000 replicates of model (1)
with ε = 0 and F0 following
Assumption 3

p = 2 p = 5

n = 500 n = 1000 n = 2000 n = 500 n = 1000 n = 2000

ν̂W ν = 3 3.24 (0.66) 3.15 (0.54) 3.11 (0.41) 3.14 (0.47) 3.11 (0.38) 3.07 (0.29)

ν = 6 6.40 (1.44) 6.33 (1.00) 6.20 (0.70) 6.24 (0.94) 6.14 (0.64) 6.12 (0.48)

ν = 9 9.98 (3.00) 9.56 (1.98) 9.24 (1.28) 9.44 (1.69) 9.16 (1.08) 9.20 (0.78)

ν̂K ν = 3 3.15 (0.46) 3.10 (0.39) 3.03 (0.19) 3.11 (0.33) 3.04 (0.21) 3.01 (0.09)

ν = 6 6.24 (1.25) 6.21 (0.91) 6.12 (0.64) 6.14 (0.85) 6.09 (0.61) 6.08 (0.44)

ν = 9 9.60 (2.78) 9.41 (1.94) 9.17 (1.27) 9.27 (1.61) 9.10 (1.04) 9.17 (0.75)

Standard deviations of the estimates are given within parentheses

our approach can measure whether the loss of efficiency due
to trimming is appreciable or not. It can also provide a way
to possibly robustify the EM algorithms that are used to esti-
mate ν. On the other hand, this scenario corresponds to the
new “null model” under Assumption 3. It thus allows us to
investigate the fit between the empirical distribution of the
squared robust distances (6) and their theoretical asymptotic
distribution, which can be derived under Assumption 3 (see
the proof of Proposition 1).

Table 3 reports theMonteCarlo estimates of E[̃νW ], E[̃νK ]
and E[̃νL2 ], together with the corresponding standard errors.
The results appear to be generally good, with a slight (but
systematic) improvement in bias over both n and p, while
the standard errors are obviously smaller when n increases.
Although no estimator is uniformly best over the different
configurations, the performance of ν̃W is generally prefer-
able to that of ν̃K and ν̃L2 , except perhaps when ν = 3, since
the Kolmogorov-Smirnov statistic ν̃K suffers from a larger
variability when ν grows. It is apparent that estimation of ν

becomesmore difficult when its true value is large, as the dis-
tribution tails tend to become similar across different values
of ν. However, it is seen that the ability to recover the true
value of ν improves for all the estimators under consideration
if n increases, even when ν = 9.

To benchmark the null performance of estimators based on
robust distances, we repeat part of the analysis by using the

classical Mahalanobis distances (27) and by computing the
corresponding estimators ν̂W and ν̂K . Since no contamina-
tion is present in this scenario, classicalmethods are expected
to outperform their robust counterparts. Table 4 confirms the
expectation. However, it also shows that the finite-sample
bias and the loss of efficiency implied by trimming in the
estimation of ν are usually minor, even if the chosen robust
estimators achieve the maximal breakdown point κn .

We conclude our analysis of this scenario by examining
the effect of estimation of ν on the discrepancy measures
100E[ ˜Δαn ,p(ν)]/p and 100E[ ˜Δαn ,p]/p. Table 5 displays
these measures computed on the same replicates of model
(1) in the most problematic instance where p = 2, when ν is
estimated either by ν̃W or by ν̃K . Comparison with Table 2
clearly shows that the relative amount of bias induced by
our Monte Carlo approach to estimation of ν is minor and
negligible with respect to that determined by the use of the
incorrect consistency factor (4).

4.2 Scenario II: Heavy contamination

In our second scenario we assume that model (1) holds with
ε = 0.3, in order to describe a situationwhere evidence of the
need to adopt high-breakdown techniques is cogent. In partic-
ular, we define F0 as in Scenario I, withμ = (0, . . . , 0)T and
p independent variables, while F1 is the distribution func-
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Table 5 Discrepancy measure 100E[ ˜Δαn ,p(ν)]/p computed on 1000
samples generated under Assumption 3 with p = 2 and ν estimated by
ν̃W or by ν̃K

n = 500 n = 1000 n = 2000

ν̃W ν = 3 0.60 (4.96) 0.20 (3.84) 0.06 (3.20)

ν = 6 0.45 (1.80) 0.14 (1.18) 0.05 (0.94)

ν = 9 0.47 (1.15) 0.15 (0.69) 0.04 (0.46)

ν̃K ν = 3 0.54 (4.96) 0.18 (3.84) 0.03 (3.20)

ν = 6 0.53 (1.80) 0.16 (1.18) 0.06 (0.94)

ν = 9 0.46 (1.15) 0.16 (0.69) 0.05 (0.46)

The values within parenthesis refer to 100E[ ˜Δαn ,p]/p and are the same
as those reported in Table 2

tion of a multivariate Student-t distribution with mean vector
μ = (λ1, . . . , λp)

T,ν1 degrees of freedomand p independent
variables. In the mean vector of the contaminant distribution
we choose λ1 = . . . = λp = λ and λ = 20, to obtain enough
separation between F0 and F1. We also choose ν1 = 3 to
provide an example of strong contamination by F1.

We start our analysis with the performance of the non-
robust estimator ν̂W , as a specimen of the behavior of
methods based on the classical Mahalanobis distances (27).
The effect of masking is paramount, since we obtain ν̂W =
νmax in all the configurations that we consider. Also note that
we fix νmax = 20, so that allowing a larger parameter space
willmake all the estimates of ν even closer to the limiting nor-
mal case. Therefore, we can argue that Assumption 3 breaks
down to Assumption 1 if the non-robust estimators μ̂ and ̂Σ

are adopted in this heavily contaminated scenario. Further
evidence of masking is provided by the left-hand panel of
Fig. 2, which displays the index plot of the ordered squared
Mahalanobis distances (27) for one representative sample of
this scenario with n = 1000, p = 5 and ν = 6. Not sur-
prisingly, the real data structure is hidden when location and
scatter are estimated through μ̂ and ̂Σ .

The actual amount of contamination can instead be eas-
ily deduced by inspection of the right-hand panel of Fig. 2,
which shows the index plot of the ordered squared robust dis-

tances (6) for the same data of the left panel. Even without
the help of a formal outlier detection rule, that would require
an appropriate scaling as in (14), we can set ε = 0.3 in (15)
and correspondingly compute βn , as well as the scaled order
statistics {δ∗

(1),αn ,ν
, . . . , δ∗

(mn),αn ,ν
}. Table 6 focuses on the

estimators of ν under consideration and reports the Monte
Carlo estimates of E[̃νW ], E[̃νK ] and E[̃νL2 ], together with
standard errors. In this scenario we add the configuration
n = 4000 and p = 2 (based on 500 replicates), which
can help to understand the performance of estimators in
larger samples under such a nasty contamination scheme.
The overall performance of our estimators closely resem-
bles that observed under Scenario I, with ν̃K again exhibiting
larger variability when ν increases and ν̃L2 being generally
outperformed.

The advantage of selecting the appropriate model under
this heavy contamination scenario is depicted in Table 7,
again for the most problematic case p = 2. Since only mn

observations are now generated under Assumption 3, the
actual trimming level (16) of the MCD subset must be taken
into account in the computation of the appropriate consis-
tency factor, which is ηβ,p(ν), where β = lim

n
βn . We then

write ˜Δβn ,p(ν) and ˜Δβn ,p for the corresponding squared
norms. We observe a relative increase in the multivariate
bias under Assumption 3, as expected, but this increase is
still negligible if compared to that computed under mistaken
confidence on Assumption 1.

4.3 Scenario III: misspecification of the
contamination rate

We conclude our simulation experiment with an assessment
of the stability of the proposed estimators of ν when the
contamination rate ε is misspecified. We have seen that ν̃W
and ν̃K exhibit good empirical properties when ε is known,
when it is zero, or when it can be inferred reliably from
the data, as in the right-hand panel of Fig. 2. We are now
interested in evaluating the empirical behavior of our esti-
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Fig. 2 Index plot of the ordered squared distances for one representative sample generated under Scenario II with n = 1000, p = 5 and ν = 6.
Left: classical Mahalanobis distances (27). Right: robust distances (6) from the MCD estimator

123



Statistics and Computing (2023) 33 :132 Page 11 of 17 132

Table 6 Monte Carlo estimates of E[̃νW ], E[̃νK ] and E[̃νL2 ] based on 1000 replicates of model (1) (500 replicates when n = 4000) with ε = 0.3
and F0 following Assumption 3

p = 2 p = 5
n = 500 n = 1000 n = 2000 n = 4000 n = 500 n = 1000 n = 2000

ν̃W ν = 3 3.53 (0.56) 3.43 (0.50) 3.30 (0.46) 3.22 (0.41) 3.45 (0.51) 3.27 (0.45) 3.15 (0.36)

ν = 6 6.99 (2.04) 6.51 (1.16) 6.27 (0.77) 6.19 (0.55) 6.42 (1.00) 6.29 (0.71) 6.17 (0.51)

ν = 9 11.28 (4.14) 10.26 (2.79) 9.60 (1.66) 9.33 (1.11) 9.87 (2.16) 9.50 (1.42) 9.25 (0.93)

ν̃K ν = 3 3.36 (0.64) 3.18 (0.41) 3.11 (0.31) 3.02 (1.45) 3.16 (0.39) 3.07 (0.26) 3.02 (0.13)

ν = 6 6.73 (3.15) 6.54 (2.25) 6.28 (1.24) 6.21 (0.86) 6.23 (1.35) 6.18 (0.93) 6.07 (0.64)

ν = 9 10.31 (4.79) 10.19 (4.03) 9.77 (3.06) 9.33 (1.92) 9.67 (2.95) 9.44 (2.09) 9.20 (1.32)

ν̃L2 ν = 3 3.77 (0.70) 3.78 (0.55) 3.99 (0.26) 4.00 (0.04) 3.67 (0.59) 3.61 (0.54) 3.67 (0.49)

ν = 6 7.17 (2.31) 6.69 (1.42) 6.46 (1.08) 6.37 (0.82) 6.55 (1.33) 6.39 (1.05) 6.34 (0.84)

ν = 9 11.10 (4.06) 10.14 (2.93) 9.65 (1.81) 9.54 (1.33) 9.89 (2.53) 9.53 (1.74) 9.24 (1.29)

F1 is the distribution function of a multivariate Student-t random vector with ν1 = 3 degrees of freedom and mean shift λ = 20. Standard deviations
of the estimates are given within parentheses

Table 7 Discrepancy measure 100E[ ˜Δβn ,p(ν)]/p computed on 1000
samples generated under Assumption 3 with p = 2 and ν estimated by
ν̃W or by ν̃K .

n = 500 n = 1000 n = 2000 n = 4000

ν̃W ν = 3 3.96 (12.6) 2.87 (10.9) 2.37 (10.3) 2.12 (10.0)

ν = 6 1.34 (3.33) 0.75 (2.55) 0.55 (2.29) 0.48 (2.17)

ν = 9 0.82 (1.64) 0.52 (1.34) 0.30 (1.06) 0.20 (0.90)

ν̃K ν = 3 3.65 (12.6) 2.47 (10.9) 2.13 (10.3) 1.82 (10.0)

ν = 6 1.28 (3.33) 0.75 (2.55) 0.59 (2.29) 0.48 (2.17)

ν = 9 0.75 (1.64) 0.51 (1.34) 0.30 (1.06) 0.20 (0.90)

The analogous discrepancy measure 100E[ ˜Δβn ,p]/p obtained when
ηβ,p is the consistency factor of the MCD estimator, with β = lim

n
βn ,

is reported within parentheses

mators under mild violations of the last scenario. For this
purpose, we assume that the data generating process still fol-
lows the heavy-contamination specifications of Scenario II,
with ε = 0.3, but that ε† 
= ε is mistakenly assumed in
formula (15) and in the subsequent computations.

We cannot expect any sensible estimator of ν, even if
based on robust principles, to perform equally well under
wild differences between ε and ε†. The main reason is that
the choice of a wrong value of the contamination rate in
(15) induces bias in the ordered squared robust distances
{d̄∗

(1),βn ,ν
, . . . , d̄∗

(mn),βn ,ν
}, which ismirrored by awrong scal-

ing factor in (21). Nevertheless, wewould like to observe that
good properties are somewhat preserved when ε† is close to
ε. Table 8 thus provides the estimates of E [̃νW ] and E [̃νK ]
under the frame of Scenario II for n = 1000 and p = 2,
when |ε† − ε| ≤ 0.03. For simplicity, we now base our esti-
mates on 500 replicates of model (1) and take B = 5000
in the computation of (20). Comparison with Table 6 shows
that both ν̃W and ν̃K are sensitive to the choice of the con-
tamination rate. If ε† > ε the tails of the distribution of the
squared robust distances are not properly taken into account,

so that a consequence similar to masking is observed. On the
contrary, the effect of the contaminated distribution tails on
the estimators, and especially on E [̃νW ], is magnified when
ε† < ε, leading to favor low values of the degrees of freedom
under the selected choice of F1.

Our suggestion in order to reduce the bias due to misspec-
ification of ε is to discard the largest squared robust distances
in (22) and (23). We thus compute the ϕ-trimmed estimators
of ν:

ν̃Wϕ = argmin
ν

�mn(1−ϕ)�
∑

i=1

|˜d2(i),αn − δ∗
(i),αn ,ν |, (28)

and

ν̃Kϕ = argmin
ν

sup
x∈[0,1−ϕ]

|˜Fmn (x) − ˜F∗
mn ,ν

|, (29)

with ϕ ∈ [0, 0.5]. Typical choices may include ϕ = 0.5,
which only considers the first half of the squared robust
distances, or ϕ = 0.25, if there are indications that the con-
tamination rate is substantially lower that 50% (Hubert et al.
2008).

Table 9 exhibits the performance of the trimmed estima-
tors with ϕ = 0.5 in the same setting of Table 8. It is seen that
the empirical properties of both ν̃W0.5 and ν̃K0.5 are nowmuch
closer to those displayed in Sect. 4.2, when the true value
of ε is inserted in (15) and in the subsequent computations.
Although for simplicitywe do not report detailed results here,
we also find that the increase in bias and the reduction in effi-
ciency implied by the adoption of ν̃Wϕ and ν̃Kϕ , instead of
ν̃W and ν̃K , are usually minor in Scenario II. These trimmed
estimators can thus be recommended whenever there is some
uncertainty about the value of the contamination rate. We do
not here address the possibility of adopting different strate-
gies when some a priori information is available on the sign
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Table 8 Monte Carlo estimates
of E[̃νW ] and E[̃νK ] based on
500 replicates of model (1) with
the specifications of Scenario II
and B = 5000, in the case
n = 1000 and p = 2

ε† = 0.33 ε† = 0.32 ε† = 0.31 ε† = 0.29 ε† = 0.28 ε† = 0.27

ν̃W ν = 3 7.05 5.74 4.58 3.00 3.00 3.00

ν = 6 18.24 15.33 10.34 3.00 3.00 3.00

ν = 9 19.93 19.42 16.63 3.00 3.00 3.00

ν̃K ν = 3 4.65 3.66 3.46 3.03 3.01 3.00

ν = 6 12.51 10.12 7.83 5.51 4.19 3.20

ν = 9 17.85 15.22 12.23 8.30 5.44 3.88

The true contamination rate is ε = 0.3, but ε† is mistakenly assumed in (15)

Table 9 As Table 8, but now for
estimators ν̃W0.5 and ν̃K0.5

ε† = 0.33 ε† = 0.32 ε† = 0.31 ε† = 0.29 ε† = 0.28 ε† = 0.27

ν̃W0.5 ν = 3 3.97 (1.47) 3.69 (1.22) 3.50 (0.87) 3.24 (0.56) 3.18 (0.56) 3.12 (0.46)

ν = 6 9.28 (5.36) 8.57 (5.03) 7.71 (4.83) 6.31 (3.84) 5.85 (3.83) 5.65 (3.61)

ν = 9 13.00 (5.81) 11.67 (5.84) 11.24 (6.07) 9.45 (5.37) 8.37 (5.10) 7.50 (4.47)

ν̃K0.5 ν = 3 3.94 (1.28) 3.66 (1.08) 3.51 (0.99) 3.03 (0.16) 3.14 (0.53) 3.13 (0.46)

ν = 6 8.83 (4.89) 8.21 (4.67) 7.15 (4.17) 6.11 (3.71) 5.57 (3.28) 5.36 (3.11)

ν = 9 11.99 (5.32) 11.01 (5.40) 10.33 (5.27) 8.88 (5.10) 7.70 (4.33) 7.02 (3.89)

Standard deviations of the estimates are given within parentheses

of ε − ε†, as suggested by Table 9, and the consequences of
non-ignorable overlap between F0 and F1 in model (1).

Another promising strategy that we leave for further
research is to analyze the sequence of minimum values
attained by the sums in (22), or attained by the supreme
values in (23), when considering a grid of tentative contam-
ination rates ε† belonging to interval [0, 0.5). We currently
use these sums (or suprema, respectively) to infer the value
of ν for a fixed and supposedly known ε, but we argue that
they could also provide useful information for the purpose
of determining the contamination rate ε when it is unknown.
Preliminary experiments seem indeed to confirm that the ten-
tative contamination rate ε† where the smallest value of the
selected divergencemeasure is observed can often be a sensi-
ble choice for the unknown value of ε. In this respect, we note
that we take advantage of the behavior already observed in
Table 8: a choice of ε† < ε results in including Mahalanobis
distances corresponding to contaminated observations which
depart from the simulated ones, while a value of ε† larger
than needed leads to omit a fraction of wrongly discarded
observations in the tails of F0, thus yielding incorrect calibra-
tion. Of course, our envisaged data-dependent determination
of ε should also entail estimation of ν through the associ-
ated divergence ν̃W or ν̃K . Although we do not pursue this
path here, we believe that further investigation of these pre-
liminary ideas could provide an extension of the proposal
for determining the contamination rate given by García-
Escudero and Gordaliza (2005) under Assumption 1.

5 Data analysis

5.1 Image denoising

The use of Student-t models is becoming increasingly pop-
ular in the field of image processing (see Hasannasab et al.
2021 and the references therein). A benchmark data set for
this task, also considered by Pokojovy and Jobe (2022), is
available from the UCI Machine Learning Repository at
https://archive.ics.uci.edu/ml/datasets/Image+Segmentation.
In these data, 2310 instances were drawn randomly from a
database of seven outdoor images. The images were then
hand-segmented to create a classification for every pixel.
Each instance is formed by a 3 × 3 pixel region and each
image is formed by 330 instances.

Our methodology relies on the one-population Assump-
tion 3 and we are not interested in the more complex task of
image segmentation. We thus analyze the image labeled as
GRASS, which is the supposedly most homogeneous one in
the whole data set. We focus on the three available variables
directly related to the classical RGB color decomposition.
These variables provide the average of the Red, Green and
Blue values, respectively, over each pixel region. For the
GRASS image thus n = 330 and p = 3. Although closer
inspection of the data shows that a three-variate Student-t
model may hold only as a crude approximation for the RGB
variables of the GRASS image, we take this image denoising
application as a practical example of the situation where the
contamination rate can be easily inferred by inspection of
the robust distances, as described under Scenario II. A fur-
ther question of interest concerns the supposed homogeneity
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of the analyzed image. We do not instead address the pos-
sible issue of spatial correlation among adjacent pixels or
instances.

We start our empirical investigation by looking at the esti-
mated value of ν based on theMonte Carlo distribution of the
squared robust distances ˜d21,αn , . . . ,

˜d2330,αn , i.e. by assuming
ε = 0 in (15). Application of (22) and (23) yields ν̃W =
ν̃K = 5, corresponding to η0.5,3(5) = 1/0.260 = 3.85. On
the contrary, the non-robust distances (27) would lead to the
larger estimates ν̂W = 9 and ν̂K = 8. This discrepancy and
comparison with the findings of Sect. 4.2 suggest that some
mild form of noise or contamination may indeed be present
in the original GRASS image.

We then replace 30 instances of the GRASS image with a
random sample of instances from the SKY image of the same
data set. Such a contamination produces an index plot of
the ordered squared distances (displayed in the Supplemen-
tary Material) which is similar to that given in the right-hand
panel of Fig. 2 and which allows us to define mn = 300 in
(15). With this choice of mn , the Monte Carlo procedure for
estimating the expectation of ˜d2(i),βn under F0, described in
Algorithm 1, again yields ν̃W = ν̃K = 5. Our approach thus
proves to be robust to the contaminated pixels. In the Supple-
mentary Material we report the estimated model parameters
before and after contamination of the GRASS image, as well
as a link to the specific data under investigation and to the
output of Algorithm 1.

We conclude our analysis of the contaminated GRASS
image with some results about outlier identification through
the squared robust distances˜d21,αn , . . . ,

˜d2330,αn . Although we
have already argued in Sect. 4.3 that the development of an
automated formal procedure for jointly estimating ν and ε,
and thus for detecting outliers under Assumption 3, is outside
the scope of the present work, the index plot displayed in the
left-hand panel of Fig. 1 of the Supplementary Material can
be fruitfully complemented with distributional arguments.
By comparing the observed distances with the estimated
quantiles of their exact distribution for clean samples of size
mn = 300, we see that 34 instances are labeled as outliers at
the 5% significance level if Assumption 3 holds with ν = 5.
Among the outliers we obviously find all the contaminating
instances from SKY but also a few observations from the
original image, thus supporting the idea that some possible
weak and isolated form of contamination might affect the
supposedly homogeneous GRASS image. On the other hand,
a plethora of potential false discoveries would arise under the
light tails ofAssumption 1. In that case asmany as 64 squared
robust distances would exceed the corresponding asymptotic
cut off χ2

3,0.95, while just a few distances less are below the
scaled-F threshold of Hardin and Rocke (2005), which is
more accurate than the asymptotic cut off in moderately-
sized normal samples.

5.2 Stock index returns

Gupta et al. (2013, Chapter 10) argue that elliptically con-
toured distributions are often suitable to describe stock
returns and provide both theoretical and empirical evidence
of this behavior. In particular they consider daily data from
Morgan Stanley Capital International for the equity mar-
kets returns of three developed countries (Germany, UK and
USA), to which they fit Student-t models with fixed degrees
of freedom. Estimation of the degrees of freedom in a mul-
tivariate Student-t model for daily returns is considered by
Dominicy et al. (2013), while Ley and Neven (2015) propose
an efficient and possibly robust test for ν in the same context.
Li (2017) also supports the adoption of Student-t models for
daily index returns.

To show the performance of our approach in a low-
dimensional financial scenario, where we only look at the
relationship between markets and exclude any sophisticated
form of serial dependence in each series, we analyze bivari-
ate data on the daily stock index returns of the Canadian and
UK equity markets available from Li (2018). Specifically,
we take the observations corresponding to the working days
of years 1991 and 1992, so that in our data set n = 520
and p = 2. We then simulate the shock of a financial crisis
by replacing the last 60 observations of the data set with the
daily stock index returns observed in the same countries from
15/09/2008 onwards, the date when Lehman Brothers filed
for bankruptcy. As for the previous application, the Supple-
mentaryMaterial provides a link to the data and gives further
numerical results that complement those reported below.

Our approach gives ν̃W = 6 and ν̃K = 5 for the two-years
bivariate series of uncontaminated index returns, assuming
ε = 0, with a slight discordance that might perhaps be
attributed to a mild difference in the kurtosis of the two
marginal return series after trimming. Nevertheless, these
results are in good agreement with those obtained through
the non-robust distances (27), that lead to ν̂W = ν̂K = 6.
Following the findings of Sect. 4.1, we thus conclude that
a bivariate Student-t model with 6 degrees of freedom may
provide a sensible representation of the joint distribution of
such returns, as indeed expected in the presence of a rel-
atively homogeneous data-generating process for the stock
index returns.

The situation is instead very different when we replace
the last 60 bivariate observations with pairs of index returns
exhibiting the very high volatility typical of periods of great
financial instability and turbulence, such as the last months
of 2008. The estimated entries of Σ are grossly inflated by
this contamination and the need for robust methods becomes
paramount. However, the index plot of the ordered squared
robust distances (6), displayed in left-hand panel of Fig. 3,
now does not allow straightforward identification of the
contamination rate. Neither is this information available by
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Fig. 3 Squared robust distances
for the contaminated series of
index returns. Left: index plot of
the ordered squared distances.
Right: time series view of the
squared distances
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looking at the time series of the squared robust distances
(right-hand panel of Fig. 3), which shows a clear change in
regime around Day 460, but also many small distances after
that date. To infer the bivariate structure of the data, we then
rescale the squared robust distances as in (14). These rescaled
distances are available through the Supplementary Material
for ν = 3, . . . , 20.

In the absence of an automated procedure for jointly esti-
mating ν and ε, we take advantage of the preliminary estimate
ν̌ = 6 and of the informal ideas briefly sketched in Sect. 4.3
for the purpose of reaching a tentative estimate of the con-
tamination rate.We then see that the 45 largest squared robust
distances˜d2i,αn ,6 are above the asymptotic 0.99 quantile of T ,
which is 14.57, and correspondingly compute the contami-
nation rate as ε = 45/520. We finally plug in the value in
(15). With this choice of ε, we consistently obtain ν̃W = 6
and ν̃K = 5, as before, while the non-robust estimates of
ν become completely unreliable for the contaminated series
(ranging from ν̂K = 3, to ν̂W = 9 and ν̂L2 = νmax). The
trimmed discrepancy measures (28) and (29) with ϕ = 0.25,
a sensible amount of trimming given the chosen value of ε,
yield the estimate ν̃W0.25 = ν̃W0.25 = 5, for which we obtain
η0.5,2(5) = 4.97 under Assumption 3. Although stringent
sensitivity checkswould be difficultwithout knowing the true
value of either ν and ε, we note that similar results mainly
pointing to ν̃ = 5 are obtained by adopting slightly different
choices of ε, such as ε = 50/520 from the asymptotic 0.975
quantile of T on 5 degrees of freedom. Furthermore, a value
of 5 or 6 degrees of freedom is still a plausible tentative esti-
mate of ν when our approach is applied with ε = 0 to the
shorter series made by the first 460 bivariate observations of
returns, as it would be the case if we only had available the
right-hand panel of Fig. 3.

Finally, we apply the outlier identification approach
already depicted in Sect. 5.1 to the squared robust distances
˜d21,αn , . . . ,

˜d2520,αn from this data set. If we compare the
observed distances with the estimated quantiles of their exact
distribution for clean samples of size mn = 475, we see
that 49 observations are labeled as outliers at the 5% sig-
nificance level if Assumption 3 holds with ν = 5. In this
example not all the contaminant returns are anomalous with
respect to the baselinemodel, and indeed a fewof themdo not
stand out in our robust analysis, but only 6 genuine pairs of
returns arewrongly declared to be outliers under the bivariate
Student-t model with ν = 5 (if we believe it being the true
data-generating process). Not surprisingly, the rate of false
detections is instead much higher under the bivariate normal
model, with 41 uncontaminated pairs spotted by the asymp-
totic cut off χ2

2,0.95 and two less by the scaled-F threshold
of Hardin and Rocke (2005). On the other hand, the gain in
power implied by the simplistic assumption of light tails is
very limited (only 6 contaminated returns in the asymptotic
framework) and does not compensate the large swamping
effect that occurs before the volatility break.

6 Concluding remarks

Motivated by the large prevalence of a normality assump-
tion for the “good” part of the data in the operational usage
of (multivariate) high-breakdown estimators based on trim-
ming, in this work we have addressed two issues. The first
one concerns the derivation of a ready-to-use formula for the
factor that makes the trimmed estimator of scatter consistent
under a multivariate Student-t model with ν > 2 degrees of
freedom, with the aim of extending the feasibility of a robust
approach to heavy-tail scenarios. Although the proof of the
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existence of such a factor is available since long time (Butler
et al. 1993; Croux andHaesbroeck 1999), our formula is very
simple and only involves standard numerical routines, which
are available in virtually all programming languages. It can
thus be easily plugged into more sophisticated procedures
that make repeated use of robust estimators and distances,
such as methods that monitor the effects of different choices
in the level of trimming (Riani et al. 2009; Hubert et al.
2012; Cerioli et al. 2018, 2019; Clarke and Grose 2023),
large-scale outlier detection tools for anti-fraud applications
(Perrotta et al. 2020) and robust versions of the EMalgorithm
for classification purposes (Cappozzo et al. 2020b, a). Also
the extension of our formula to regression problems becomes
straightforward. In that framework, an important and difficult
problem that crucially relies on the consistency factor is how
to obtain a consistent estimator of the proportion of “good”
observations (Berenguer-Rico et al. 2023).

We argue that the adoption of elliptical models in real-
world applications involving high-breakdown estimators has
been discouraged by the requirement of estimating the tail
parameter of the model, which is usually unknown. There-
fore, in the second part of our work, we have developed
a Monte Carlo procedure for obtaining an integer estimate
of the degrees of freedom parameter of the assumed multi-
variate Student-t model. Our procedure takes advantage of a
suitably rescaled version of the squared robust Mahalanobis-
type distances computed from high-breakdown estimators.
Estimation of ν from the quantiles of t-based Mahalanobis
distances has been advocated, but not pursued, by Ley and
Neven, (2015, p. 123). We can thus see our approach also as
a robust development along that suggested path.

Admittedly, there remain a number of open issues that
deserve further research. The first apparent shortcoming of
our method concerns the assumption of an integer value
of ν in the postulated multivariate Student-t distribution.
Although we do not believe it to be a substantial limitation
in most practical situations, this assumption could be poten-
tially relaxed by considering thematch between the empirical
and the asymptotic distribution of the squared robust dis-
tances, even if at the likely expense of a larger finite-sample
bias, as explained in Sect. 3.1. The most relevant method-
ological open problem is, in our opinion, the derivation of
the theoretical properties of the suggested estimators of ν,
aboutwhichwe have provided substantial empirical evidence
both through simulation and data analysis. These properties,
that still appear to be out of reach, would provide a solid
methodological ground for the development ofmore efficient
iterative procedures based on reweighting and of formal out-
lier detection rules, such as those of García-Escudero and
Gordaliza (2005) and Cerioli (2010), under Student-t mod-
els, thus improving over the heuristic approach adopted in our
data analysis examples of Sect. 5. We also acknowledge the
intrinsic limitation of popular multivariate trimming meth-

ods, like theMCDestimator adopted in thiswork, to elliptical
low-dimensional models. Boudt et al. (2020, p. 125) note that
the usual approximations to the distribution of the squared
robust distances do not work in a high-dimensional frame-
work when they are computed from a regularized version of
the MCD. The extension of the results of this paper to non-
elliptical and high-dimensional data generating processes is
thus another important task for future research.

Finally, we have briefly argued in Sect. 4.3 that simultane-
ous determination of both ν and ε in an automated fashion is
an important open problem that deserves further theoretical
and empirical attention. Our conjecture looks in the direc-
tion of exploring a grid of tentative contamination rates, but
further substantial work is needed. We also believe that such
an automated procedure could be a promising framework
for establishing the hoped-for formal outlier detection rules
mentioned above.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-023-10296-
2.
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