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Abstract: The differentiation/maturation trajectories of different blood cell types stemming from a
CD34+ common ancestor takes place in different biologically relevant multidimensional spaces. Here,
we generated microRNA and cytokine profiles from highly purified populations of hematopoietic pro-
genitors/precursors derived from cord blood hematopoietic stem/progenitor cells. MicroRNA and
cytokine landscapes were then analyzed to find their mutual relationships under the hypothesis that
the highly variable miRNome corresponds to the ‘force field’ driving the goal of a stable phenotype
(here corresponding to the cytokine abundance pattern) typical of each cell kind. The high dimen-
sionality and lack of linearity of the hematopoietic process pushed us to adopt a distance–geometry
approach to compare different trajectories, while a complex network analysis was instrumental in
revealing the fine structure of microRNA–cytokine relations. Importantly, the approach enabled
us to identify a limited number of factors (represented either by microRNAs or cytokines) corre-
sponding to crucial nodes responsible for connecting distinct interaction modules. Subtle changes
in ‘master nodes’, keeping the connections between different regulatory networks, may therefore
be crucial in influencing hematopoietic differentiation. These findings highlight the extremely inter-
connected network structures underlying hematopoiesis regulation and identify key factors in the
microRNA/cytokine landscape that may be potentially crucial for influencing network stability.

Keywords: hematopoiesis; regulatory networks; microRNAs; cytokines; differentiation

1. Introduction

Hematopoiesis is the continuous process by which blood cells are produced, main-
tained at normal levels, and increased in response to demand. Blood cells derive from
a small group of pluripotent hematopoietic stem cells (HSCs) that generate progenitors
committed to one or a few hematopoietic lineages. This process consists of a network
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of highly interconnected steps, including, as follows: the generation of stem cells; the
maintenance of HSCs by self-renewal; the proliferation and maintenance of multi-potent
progenitors; and the lineage commitment and maturation of hematopoietic precursors.
Hematopoiesis is a dynamic and adaptable process of blood cell generation in the bone
marrow, which can be modulated by a variety of conditions, including infection, trauma,
and disease. The various immune cells generated by hematopoiesis can modulate blood cell
generation through a variety of effector mechanisms, including the production of cytokines
and interferons. Certain immune cells, including neutrophils, macrophages, dendritic cells,
B cells, CD4+ T cells, CD8+ T cells, and Treg cells, establish enduring residencies within the
bone marrow. Their distinctive interactions with bone marrow sites of hematopoiesis and
with the bone marrow microenvironment are now identified, as well as their multifaceted
immune functions. These cells play a dual role in shaping hematopoiesis through direct
modulation of the quiescence, self-renewal, and multi-lineage differentiation of hematopoi-
etic stem and progenitor cells via direct cell-to-cell interactions or the secretion of various
factors known for their immunological functions or thorough interactions with the cellular
constituents of the bone marrow niche, particularly mesenchymal stem cells, endothelial
cells, osteoblasts, and osteoclasts, promoting their survival and contributing to tissue repair,
thus maintaining a supportive environment for hematopoietic stem and progenitor cells.

The microRNA (miRNA) expression profile is a relevant signature of the hematopoiesis
process [1] and has been demonstrated to regulate both HSC self-renewal and the fine-
tuning of cell fates during the lineage-specification process [2,3]. MiRNAs are small non-
coding RNAs that regulate gene expression by targeting the 3′ untranslated region (UTR)
of mRNAs [4]. Physical interactions between miRNAs and their target mRNA induce
cleavage of the mRNAs or block the translation of the mRNA into protein, regulating the
abundance of different proteins [5,6]. Here, we focus on the differentiation trajectories of
blood cell lineages in both miRNA and cytokine concentration profile spaces. Adopting a
physical metaphor, the miRNA space corresponds to a time-varying ‘force field’ driving
hematopoiesis, while the cytokine pattern is the state-space of the system changing under
the action of such a force field.

By using a serum-free culture systems developed for the unilineage differentiation
and maturation of cord blood CD34+ HSCs through the erythroid (E), monocytic (Mo),
granulocytic (G) or megakaryocytic (Mk) pathways, our group demonstrated the tenabil-
ity of such a metaphor [7], by analyzing the expression profile of protein coding genes
(state-space), and miRNAs at sequential stages of development. We observed a coordi-
nated, fully interconnected and scalable character of cell population behavior in both the
transcriptome and miRNome reminiscent of an attractor-like dynamics. However, while
the transcriptome reached a clear equilibrium state at the end of the process, reminiscent
of the attainment of a stable final maturation state, the miRNA space, consistent with its
force-field character, did not reach such a ‘terminal state’. This result mirrors the need for
a continuous regulation activity to sustain the homeostasis of the cell lineage phenotype.
The need for a relentless activity of non-coding RNAs in maintaining the ‘correct’ attractor
state was recently demonstrated [8] to be a general feature of biological regulation.

In this work, we investigated, in depth, the relation between ‘regulation’ and ‘pheno-
type’ views of differentiation and maturation trajectories by the analysis of miRNA and
cytokine spaces relative to E, Mo, MK and G lineages. We analyzed these trajectories in
terms of departure (expressed as log2 fold change (logFC) for each miRNA species) from
their common CD34+ ancestor, adopting a non-linear distance-based approach [9]. Both
miRNA and cytokine spaces were able to track the specificities of the different lineages’
trajectories with cytokines, consistent with the nature of the phenotypic space, having
a more stable and line-specific characterization. We investigated the mutual relations
between miRNA and cytokine spaces at the fine grain of molecular species by a complex
network approach, revealing lineage-specific regulation architectures.
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2. Results

To generate step-by-step miRNA and cytokine profiles of differentiating hematopoietic
cells, we used a serum-free culture system allowing for the analysis of sequential stages of
differentiation/maturation [7]. To this aim, we purified HSCs from donors’ cord blood by
positive selection based on CD34 antigen expression. Cells were then cultured in serum-free
media, allowing for the selective growth of erythroid, megakaryocytic, granulocytic, and
monocytic progenitors/precursors. This selective growth was reached by the agency of
specific growth factor combinations, including, as follows: Epo; IL-3; GM-CSF for erythroid
cells; Tpo for megakaryocytes; IL-3, GM-CSF, and G-CSF for granulocytes; and IL-6, Flt-3,
and M-CSF for monocytes [10,11].

Figure 1 summarizes the hematopoiesis process (Figure 1A) and the workflow of
experiments that, starting with the cord blood HSCs purification, led to the generation of
miRNA/cytokine networks (Figure 1B).

Int. J. Mol. Sci. 2024, 25, 12305 3 of 20 
 

 

relations between miRNA and cytokine spaces at the fine grain of molecular species by a 
complex network approach, revealing lineage-specific regulation architectures. 

2. Results 
To generate step-by-step miRNA and cytokine profiles of differentiating 

hematopoietic cells, we used a serum-free culture system allowing for the analysis of 
sequential stages of differentiation/maturation [7]. To this aim, we purified HSCs from 
donors’ cord blood by positive selection based on CD34 antigen expression. Cells were 
then cultured in serum-free media, allowing for the selective growth of erythroid, 
megakaryocytic, granulocytic, and monocytic progenitors/precursors. This selective 
growth was reached by the agency of specific growth factor combinations, including, as 
follows: Epo; IL-3; GM-CSF for erythroid cells; Tpo for megakaryocytes; IL-3, GM-CSF, 
and G-CSF for granulocytes; and IL-6, Flt-3, and M-CSF for monocytes [10,11]. 

Figure 1 summarizes the hematopoiesis process (Figure 1A) and the workflow of 
experiments that, starting with the cord blood HSCs purification, led to the generation of 
miRNA/cytokine networks (Figure 1B). 

 
Figure 1. (A) The process of hematopoietic differentiation: the red frame highlights myeloid 
differentiation, which is the object of the analyses performed within this study. Abbreviations are 
available in in the Supplementary Information. (B) Workflow of the study: cord blood (CB) is 
extracted from umbilical cord and CD34+ HSCs are isolated by positive selection. HSCs are cultured 
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of hematopoietic progenitors/precursors belonging to the E, Mo, G and MK lineages. RNA and 

Figure 1. (A) The process of hematopoietic differentiation: the red frame highlights myeloid differen-
tiation, which is the object of the analyses performed within this study. Abbreviations are available in
in the Supplementary Information. (B) Workflow of the study: cord blood (CB) is extracted from um-
bilical cord and CD34+ HSCs are isolated by positive selection. HSCs are cultured with appropriate
growth factor combinations in a serum-free medium to obtain pure populations of hematopoietic
progenitors/precursors belonging to the E, Mo, G and MK lineages. RNA and culture medium
supernatant are collected at three time points (days 5-10-15) from each culture to produce miRNA
and cytokine profiles that in turn are the objects of data analysis.
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Figure 2 outlines the differentiation dynamics in low dimensional spaces, showing
representative pictures of E, Mo, G and Mk precursors together with the marker expres-
sion (assessed by flow cytometry, as described in the figure legend) and morphological
evaluation at different times of culture. This culture system allowed us to pinpoint pro-
gressive phases of hematopoietic differentiation/maturation and to analyze the expression
of regulatory factors at discrete stages. Total RNA was extracted from CD34+ HSCs and
from unilineage cultures of E, Mo, G and Mk progenitors/precursors at days 5, 10, and
15 (thereafter dubbed T1, T2, T3). Monocytic differentiation/maturation develops along
approximately 20 days of unilineage culture. However, we chose day 15 as the last point
of our analysis as, in subsequent stages of culture, monocytes undergo progressive differ-
entiation into macrophages (Figure 2, panel 2). MiRNA profiles at each time point were
generated with the miRXplore® platform, while cytokine profiles were produced with the
Luminex® platform, as described in the Section 4.
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Figure 2. Panel 1. Growth and differentiation of E unilineage culture: (A) cell growth analysis
of E unilineage culture generated by CB CD34+ HSCs; (B) percentage of CD34- and GPA-positive
cells in unilineage erythroid differentiation and maturation; (C) representative picture of E at day
15 stained with May–Grünwald Giemsa; (D) the graph represents the morphological analysis of E
lineage elements at various stages of maturation; and (A,B,D) mean ± SEM of three independent
experiments is shown. Panel 2. Growth and differentiation of Mo unilineage culture: (E) cell growth
analysis of Mo unilineage culture generated by CB CD34+ HSCs; (F) flow cytometry analysis of CD34,
CD14 and CD11b expression during Mo differentiation; (G) representative picture of Mo at day 15,
stained with May–Grünwald Giemsa, is shown; (H) the graph represents the morphological analysis
of Mo lineage elements at various stages of maturation; and (E,F,H) mean ± SEM of three independent
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experiments is shown. Panel 3. Growth and differentiation of G unilineage culture: (I) cell growth
analysis of G unilineage culture generated by CB CD34+ HSCs; (J) Flow cytometry analysis of CD15,
CD11b, and CD34 expression during granulocytic differentiation; (K) representative picture of G at
day 15 stained with May–Grünwald Giemsa; (L) the graph represents the morphological analysis of
G lineage differentiation/maturation; and (I,J,L) mean ± SEM of three independent experiments is
shown. Panel 4. Growth and differentiation of MK unilineage culture: (M) cell growth analysis of
MK unilineage culture generated by CB CD34+ HSCs; (N) flow cytometry analysis of CD34, CD41,
CD42b, CD61 and CD62P expression during Mk differentiation; (O) representative picture of MK at
day 15 stained with May–Grünwald Giemsa; (P) the graph represents the inspection of number of
cells’ nuclei during megakaryocytic differentiation; and (M,N,P) mean ± SEM of three independent
experiments is shown. Scale bar in panels C, G, K, O corresponds to 100 µm.

The expression profiles of miRNAs and cytokines of the different lineages at separate
times are shown in Figures 3 and 4. For a better representation, we used log2 fold-change
values calculated with respect to the common precursor CD34+ for miRNAs, and log2
transformation for cytokines. In both cases, the names of the miRNAs and cytokines
that have an expression value ≥ |3| are reported. It is noteworthy that several of the
microRNAs shown in Figure 3 have been experimentally validated and documented as
being relevant in lineage-specific cell differentiation and maturation. For example, miR-451
regulates red blood cell production [12] and maturation by targeting GATA-2 [13] together
with miR-486, which controls the erythroid versus megakaryocyte lineage fate decision and
downregulates MAF [14]. MiR-22 was identified as a positive regulator of megakaryocyte
differentiation by repressing GFI1 expression [15] together with miR-126, which plays a
key role in platelet-supported thrombin generation. MiR-126 downregulates plexin B2 and
enhances a PI3K/AKT signaling pathway by promoting calcium influx [16]. MiR-17 and
miR-20a participate in the control of monocytopoiesis through AML1 targeting, M-CSF
receptor upregulation [17], and by regulating the HIF transcription factor system [18]. The
miR-181 family modulated granulocytic and macrophage-like differentiation by directly
targeting PRKCD, CAMKK1 and CTDSPL mRNAs, and their expression is significantly
increased in AML M1, M2 and M3 subtypes [19].

It is worth noting that most displacements from CD34+ stem cells are negative (de-
creasing concentration) for miRNAs (Figure 3) and positive (increasing concentration) for
cytokines (Figure 4). This result is consistent with the prevailing negative correlations [20]
between miRNAs and cytokines that was the basis for the choice of only taking into
consideration miRNA–cytokine negative correlations in subsequent network analyses.

To obtain a visual summary of the different patterns of miRNA expression during the
differentiation trajectories of the lineages, we adopted the so-called GEDI approach [21].
GEDI (Gene Expression Dynamics Inspector) is an application of self-organized maps
(SOM) [22]. Each miRNA species corresponds to a node of a bi-dimensional network in
such a way that the species with similar expression profiles are associated with the same
region of the graph, creating areas of co-expressed miRNAs. Each lineage is projected on
the map by means of a color code corresponding to its expression level on the reference
lattice (mean) (corresponding to the average expression of each species across all the
samples). Figure 5 reports SOMs in which the progressive change of the expression profile
in time is clear, as well as the lineage specificity of the miRNA expression pattern. It is
worth noting that the trajectories of the different lineages intersect, at various times, in
accordance with the force-field character of the miRNA space, while at the same time
showing some invariant features (i.e., the blue region on the upper right angle) blurring
the line’s individuality.
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The small number of cytokines makes a GEDI-like representation of this space 
irrelevant; thus, for cytokines, we preferred a simple correlation matrix heat-map. 

To obtain a synthetic picture of differentiation taking explicitly into consideration the 
high dimensionality of the phenomenon, we adopted a simple correlation approach. We 
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Panel 2. Barplot of logFC expression of miRNAs for Mo at time: (D) T1; (E) T2; and (F) T3. Panel 3.
Barplot of logFC expression of miRNAs for G at time: (G) T1; (H) T2; and (I) T3. Panel 4. Barplot of
logFC expression of miRNAs for Mk at time: (J) T1; (K) T2; and (L) T3.

The small number of cytokines makes a GEDI-like representation of this space irrele-
vant; thus, for cytokines, we preferred a simple correlation matrix heat-map.

To obtain a synthetic picture of differentiation taking explicitly into consideration the
high dimensionality of the phenomenon, we adopted a simple correlation approach. We
abandoned the idea of following each single miRNA (cytokine) trajectory, shifting to the
analysis of the mutual resemblance of different line profiles in both miRNA and cytokine
spaces. This is a common (and obligatory) choice when studying systems made by many
interacting elements, like in the case of the correlations of amino acid residue trajectories in
protein molecular dynamics [23].
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Figure 4. Panel 1. Barplot of logFC expression of cytokines for E in sequence at time: (A) T1; (B) T2;
and (C) T3. Panel 2. Barplot of logFC expression of cytokines for Mo in sequence at time: (D) T1;
(E) T2; and (F) T3. Panel 3. Barplot of logFC expression of cytokines for G in sequence at time: (G) T1;
(H) T2; and (I) T3. Panel 4. Barplot of logFC expression of cytokines for Mk in sequence at time:
(J) T1; (K) T2; and (L) T3.
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Figure 5. Self-organizing maps (SOM) used to show the development of hematopoietic lineages at
various time intervals with two-dimensional representation. SOM projects the values of each miRNA
(in terms of logFC with respect to CD34+ stem cells) on a bi-dimensional grid in which the values
cluster according to a color scale (mean pattern on the left). Keeping invariant the mutual position of
the miRNAs on the grid, new colors are assigned according to the actual values of each miRNA in
the different conditions. This allows us to visually appreciate the different patterns of miRNAs of the
lineages along the differentiation trajectory.

Thus, we computed the pairwise Pearson r correlation between the different cell lines
on both miRNA and cytokine spaces, obtaining the results reported in Figure 6.
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Figure 6. Correlations between samples in: (A) miRNA space; and (B) cytokine space.

As is evident in Figure 6, all profiles are positively correlated, pointing to a general
resemblance across times and lines of both miRNA and cytokine average values. From
a biological point of view, in addition to the global correlation, the recognition (darker
squares corresponding to a higher correlation) of different lineages in the correlation matrix
is relevant. This lineage-specific character of correlations (with near-to-unity values of
Pearson r) is much more evident in the cytokine than in the miRNA spaces. This is proof of
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the more ‘stable’ character of state (cytokines) than the force-field (miRNA) space, according
to our premises.

This point is further confirmed by the average correlation values obtained within the
lines (squares enclosed by red lines, see Figure 6). The numerical values of both within and
between line correlations are reported in Tables 1 and 2, respectively.

Table 1. Within-lineage correlation for: (A) miRNA space (average within-lineage correlation = 0.69);
and (B) cytokine space (average within-lineage correlation = 0.87).

A B

Lineage Pearson r Lineage Pearson r

Erytrocytes 0.78 Erytrocytes 0.80
Monocytes 0.54 Monocytes 0.93
Granulocytes 0.74 Granulocytes 0.79
Megakaryocytes 0.70 Megakaryocytes 0.96

Table 2. Between-lineage correlation for: (A) miRNA space (average between-lineage correla-
tion = 0.78); and (B) cytokine space (average between-lineage correlation = 0.80).

A B

Lineage 1 Lineage 2 Pearson r Lineage 1 Lineage 2 Pearson r

Erytrocytes Monocytes 0.66 Erytrocytes Monocytes 0.85
Erytrocytes Granulocytes 0.91 Erytrocytes Granulocytes 0.67
Erytrocytes Megakaryocytes 0.98 Erytrocytes Megakaryocytes 0.92
Monocytes Granulocytes 0.56 Monocytes Granulocytes 0.95
Monocytes Megakaryocytes 0.63 Monocytes Megakaryocytes 0.82
Granulocytes Megakaryocytes 0.96 Granulocytes Megakaryocytes 0.62

It is immediately noticeable how the line-specificity is higher for the cytokines than for
miRNAs, as can be seen in the ratio within/between the lineages correlation that is equal
to 0.87/0.80 = 1.09 for cytokines, and 0.69/0.78 = 0.88 for miRNAs.

To obtain a probabilistic appreciation of this result, we applied the F-test for the
analysis of variance (ANOVA) to the correlation results to determine, by a two factors
ANOVA, the non-random character of both individuality (within the lineage correlation)
and miRNA–cytokine differences. As dependent variables, we used the correlation values
obtained for miRNAs and cytokines. As independent variables, we used the factors
‘within/between lineages’ at two levels (Yes/No) and ‘miRNA/cytokine spaces’ at two
levels (Yes/No). The results are shown in Table 3.

Table 3. Result of F-test. The second and third columns show the value of the F statistic and the
p-value, respectively.

Contrasting Factors F-Value Pr(>F)

within/between lineages 7.46 0.007
miRNA/cytokine spaces 5.69 0.01

The marked lineage-specific character of the differentiation process (prevalence of
the internal correlation over the between-lineage correlation) is highly significant and
goes hand in hand with a global increase in cytokine correlations in the miRNA space.
These results are in close agreement with the ‘force-field’ and ‘state-space’ character of
miRNAs and cytokines, respectively. Then, we selected the most significant miRNAs for
each cell line by using an unsupervised k-means clustering procedure with a Euclidean
metric (see Section 4). About a hundred miRNAs were obtained for the erythrocytes, while
approximately seventy miRNAs were obtained for each of the remaining lineages. Through
the Venn diagrams (shown in Figure 7), we present information on the number of significant
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miRNAs shared between the lineages and on those specific to each lineage. It also appears
that there are around fifty miRNAs common to all cell lineages.
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So far, our analyses adopted a plain Euclidean metrics taking into consideration
the actual numerical values of all the considered miRNA and cytokine species. These
metrics, while being optimal for correlating miRNA and cytokine species, could severely
bias the mutual distances between experimental samples. In fact, it underestimates the
difference between the (very few) miRNA species, displaying a significant departure from
the CD34+ ancestor and the bulk of species that are not significantly modified during
differentiation trajectories. Furthermore, the presence of obvious ‘peaks’ emerging from
miRNA profiles (see Figure 3) pushed us to adopt a Jaccard metrics [24] to obtain a synthetic
bi-dimensional space to accommodate the different lineages and obtain a comprehensive
explicit representation of their mutual relations (see Section 4). The adopted procedure
takes into consideration only the miRNAs that emerged from the clustering analysis. The
procedure for using the Jaccard distance consists of constructing a matrix that has all the
initial miRNAs as statistical units and the various differentiation times of the cell lines as
variables. A value of one is assigned for each significant miRNA in each line (even more
than one) and a value of zero for the remainder. By doing so, we maintain ‘significant’
information, limiting the noise caused by miRNAs with weak or non-existent signals. The
choice of Jaccard metrics is optimal in the case of sparse matrixes (see Section 4) in which
the elevated proportion of zeros (miRNA species not significantly modified with respect to
CD34+) heavily biases the usual Hamming distance metrics [25]. The multidimensional
scaling applied to the between-samples Jaccard distances gave rise to the bi-dimensional
plot reported in Figure 8, where the discrimination among different lineages is truly clear
and fully concordant with their development path from the common precursor.

It is worth noting how the Jaccard metrics, relying only on the (small) fraction of
miRNAs significantly different from the CD34+ state, allow us to single out the lineage
specificity even in the miRNA space (that was barely present in the Euclidean space of
the Pearson correlation). This corresponds to a sort of ‘derivative space’, considering as
‘active’ only the elements of the miRNome heavily modified with respect to the starting
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point (CD34+ profile). The conclusive step of the analysis was the modeling of the relations
between the cytokine and miRNA spaces. Given the complexity of such interactions, we
imposed some hard constraints on the analysis:

• Considering only the miRNA–cytokine pair correlations without considering the
correlations inside each space;

• Limiting the analysis to significantly modified CD34+ miRNA species;
• Accepting only negative correlations (miRNAs exert direct inhibitory action on cy-

tokines, the positive correlation being the consequence of indirect correlations stem-
ming from the composition of two negative direct links);

• Limiting the analysis to the near-to-unity correlation (more negative than r = −0.9).
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Network analysis was performed individually for each cell lineage, mapping only the
miRNA/cytokine relationships that meet the previous constraints. For our purposes, it is
useful to work on ‘communities’, defined as a subset of nodes within a graph, such that the
connections between nodes are denser than the connections with the rest of the network.
Community detection, as explained in [26], allows for cohesive and meaningful sub-graphs
to be revealed that can allow for the features, functions, structure and dynamic of complex
networks at the modular (community) level to be recognized.

Numerous algorithms aim to detect groups consisting of densely connected nodes with
fewer connections between the groups; here, we relied on the Newman–Girvan algorithm
(based on edge betweenness). The Newman–Girvan algorithm [27] is a hierarchical method
for community structure detection and analysis based on the iterative elimination of edges
that have the highest number of shortest paths between nodes passing through them.
By removing edges from the graph one at a time, the network breaks down into smaller
pieces, the so-called communities. The idea is to find which edges in a network occur most
frequently between other pairs of nodes by finding the betweenness centrality of the edges.
The edges joining the communities should, therefore, have high edge betweenness. The
underlying community structure of the network will be much finer once the edges with the
highest betweenness are eliminated (which means that communities will be much easier to
detect). In addition, as network analysis provides deep insight into real complex systems,
revealing the link between the topological and functional role of network elements can be
crucial to understanding the mechanisms underlying the system [28]. Referring to the work
of Guimerà and Amaral [29], we examined the role of nodes for each lineage, by calculating
the within-module degree and the participation coefficient. In this way, we can classify
nodes into universal roles according to their pattern of intra- and inter-module connections.

The within-module degree Zi measures how ‘well-connected’ node i is to other nodes
in the module. High values of Zi indicate a high within-module degree, pointing to the
central role of the node in organizing its specific module. The participation coefficient Pi
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measures how ‘well-distributed’ the links of node i are among different modules. The
participation coefficient Pi is close to 1 if its links are uniformly distributed among all the
modules, and 0 if all its links are within its own module (see Section 4). Our interest is
aimed at the nodes that, in the two-dimensional Z–P representation, have high Z and low P
(top left in the graph) and low Z and high P (bottom right in the graph). The first typology
represents the nodes that have relevance only within the module they belong to, while the
second represents the nodes that have the role of connector with different modules within
the network. Furthermore, we computed the modularity index for each network to measure
the strength of the division of a network into communities. Modular networks have dense
connections between nodes within communities but sparse connections between nodes
in different communities. Figure 9 reports all this information comprehensively for each
cell lineage.
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Figure 9. Network analysis with Newman–Girvan algorithm with associated Z–P plot for: (A) E
lineage (modularity score = 0.64); (B) Mo lineage (modularity score = 0.63); (C) G lineage (modularity
score = 0.53); and (D) Mk lineage (modularity score = 0.65). Different colors mark the different
clusters (communities) emerging from Newman-Girman algorithm, the size of the colored areas are
proportional to the number of elements of the corresponding cluster.
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The analysis of both structural (high Z responsible for the modules’ resilience) and
dynamical (high P favoring the variability of mutual arrangements between modules) [28]
can potentially provide some hints on the nature of different lineage differentiations and
functions. In addition to the modular organization level, it is worth investigating the
general features of the miRNA–cytokine networks by means of the most common network
descriptors, whose values are reported in Table 4.

Table 4. The following values are reported for each network: Edge density: the density of a graph
is the ratio of the actual number of edges and the largest possible number of edges in the graph,
assuming that no multi-edges are present; Diameter: a network diameter is the longest geodesic
distance (length of the shortest path between two nodes) in the network; Centrality degree: the graph-
level centrality index is based on degrees of vertices; Centrality closeness: the graph-level centrality
index is based on the closeness of vertices; Centrality betweenness: the graph-level centrality index
based on betweenness of vertices.

Lineage Edge
Density Diameter Centrality

Degree
Centrality
Closeness

Centrality
Betweenness

Erytrocytes 0.07 16 0.14 0.09 0.49
Monocytes 0.05 20 0.23 0.08 0.44
Granulocytes 0.10 8 0.10 0.29 0.04
Megakaryocytes 0.07 13 0.13 0.07 0.14

It is worth noting the sparsity (low density/high diameter) of the monocytes network
with respect to the other lineages corresponding to small communities. On the contrary,
both granulocytes and megakaryocytes display a complex and intermingled regulation
network corresponding to a more finely tuned phenotype. The nodes with high between-
ness values in the various networks are identified. This is because, as highlighted in [30],
a node with high betweenness is a node that is frequently on the shortest path between
other nodes, thus mediating a relevant part of the information flux through the network. In
other words, it acts as a ‘bridge’ between nodes within the network. This measure is useful
for identifying key nodes that connect to other parts of the network. We then observe the
relationships between these nodes, belonging to specific communities, and the cytokines
occupying the more central (most-connected) location within them.

We obtained, for the miRNA/cytokine network relative to erythrocytes, the main
relevance of miR-125b, miR-23b, miR-221, miR-17, miR-551B, miR-320b, miR-1469 and the
cytokines IFN-γ, IL-10, CCL1, CCL7, CCL13, CCL2, MIF, IL-1β. For the miRNA/cytokine
monocyte network, we obtained miR-19a, miR-17, miR-130a, miR-223, and the cytokines
CCL11, SCF, CXCL10, CXCL1, CCL7, CXCL2.

Instead, for the miRNA/cytokine granulocyte network, we obtained miR-93, miR-103,
miR-425, miR-30d, miR-99a, let-7c, and the cytokines CXCL2, PIGF, CCL13, MIF, IL-1β. For
the megakaryocyte miRNA/cytokine network, the relevant role of miR-1274b, miR-23b,
miR-23a, miR-342-3p, miR-22, miR-130a, and the cytokines SDF-1, IL-1α, CCL22, CCL1,
CCL8 and ANG-1, was found.

In addition, the role of some nodes that simultaneously present high values for Z
and P will be addressed in the discussion, as they play a key role in the connectivity of
the networks. For erythroids, CCL8 and VEGF were found for monocytes miR-151 and
IL-1α, for granulocytes CXCL11 and CXCL1, and for megakaryocytes miR-486, miR-1260
and CXCL11.

3. Discussion

The most common explanation style of a given cellular behavior, such as cell fate
control, makes use of molecular pathways in which individual molecular regulatory events
are linked by an ‘arrow-to-arrow’ scheme [31]. This pathway-based approach implies
a linear chain of causation. Thus, cell behavior collapses to a sequence of deterministic
causal relationships between symbols. This qualitative description is disconnected from
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the elementary principles of a dynamical system, which the cell’s regulatory network must
obey [31]. Limiting ourselves to pathways analysis corresponds to discarding the basic fact
that cell physiology is governed by a ‘self-sustaining’ intricate web of interactions living in
a highly multidimensional state-space, whose energy minima mathematically correspond
to a vector of concentration values of a huge number of molecules that define a stable cell
type [31,32]. Pathways (when considered in isolation) derive from Newtonian dynamics
characterized by a hierarchy of cause–effect relations. This style of reasoning implies a sort
of ‘regressio ad infinitum’ toward an initial cause placed at the most basic organization
layer. On the contrary, pathways are only partial views of a network system that in turn,
at odds with Newtonian dynamics, implies a circular causality and asks for a different
epistemology [32]. As aptly stressed by Donald Mickuleky in [32], these systems ask for a
thermodynamic approach in which the central concept is the ‘state’. The state of a system
cannot be defined in terms of microscopic causative chains (in the great majority of cases,
the elemental players are too many and largely unknown) and its trajectory is driven by
both internal and micro-environmental constraints to which the system adapts [31,32].

The case of blood cell differentiation is paradigmatic of this ‘thermodynamic’ approach;
we have functionally well-defined trajectories unified by the same starting point (CD34+

HSCs) ending in diverse stable states (erythrocytes, monocytes, granulocytes, megakary-
ocytes) and acting as ‘attractors’ of the dynamical process. The choice of the specific fate
of a cell is not strictly deterministic [33] but is driven by specific effectors imposing a
preferential direction to the process [33].

As stressed above, the complete definition of the state of a cell is out of reach; however,
we can select some ‘reduced’ versions of the complete phase space that offer a view of both
the state and dynamics of the studied cell endowed with different ‘amounts of realism’.
The only way to determine the relevance of a chosen state description emerges a posteriori
by obtaining a statistically significant and stable discrimination among different cell fates
in the chosen description space. This was the goal of this work that is demonstrated by
both the scoring of widely different ‘within-lineage’ and ‘between-lineage’ correlations and
by the possibility of projecting the different samples in a bi-dimensional space emerging
from their different miRNA profiles (Figure 8).

Following the indications of a previous work by our group [7], we present an in-depth
investigation into the character of the miRNome as a ‘force-field’, reporting on the transient
regulatory state of the system, in contrast with a more ‘stable’ phenotypic description corre-
sponding to the cytokine concentration profile. This working hypothesis was confirmed
by the experimental results, demonstrating the stronger lineage discrimination ability of
cytokines with respect to the miRNA space. In a previous study [7], the miRNome was
contrasted with the transcriptome space that played the role of the ‘most stable’ description.
Substituting the transcriptome with cytokines represents a drastic jump toward a more
functionally relevant role played by miRNAs (cytokines space is a proper functionally
interpretable description at odds with the transcriptome), while at the same time high-
lighting the possibility of obtaining an extremely robust description of the differentiation
process. This result was (partially) unexpected; after all, mRNAs are the direct targets of
miRNAs and the subsequent step to protein molecules concentrations (cytokines) is highly
non-linear, with only weak expected correlations between mRNA and relative protein abun-
dances at steady state [34]. This result, in naïve physical terms, corresponds to the lower
level of correlations of a comfort zone (steady state) with respect to a rapidly changing
condition (differentiation process) in the same manner as a set of independently wandering
water molecules at steady state acquire a strong correlation (convective cells) only when
moving toward a drastic phase transition (boiling point) [35,36].

The emergence of such strong correlations between miRNA and cytokine spaces
prompted us to investigate, in greater detail, the character of this relation. Adopting a
network formalism allows us to highlight the richness of mutual relations between the two
spaces, moving beyond simple linear causative chains. The most relevant miRNA–cytokine
interactions were the bases for generating interaction graphs, relative to the different lin-
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eages, that highlight a strong lineage dependency of miRNA–cytokine correlation patterns,
together with the identification of the most important miRNA–cytokine interaction pairs at
the basis of the blood cell differentiation process.

Figure 9 highlights a very important feature common to all the analyzed lineages:
the high clustering coefficient (high-left quadrant of the scatter plots) zone contains only
cytokine species, while the bottom-right quadrant corresponding to the high participation
coefficient is prevalently made of miRNA species. This is consistent with the regulatory role
in the development of miRNAs (force field) and the opposite phenotypic (state variables)
role of cytokines. This implies that, while cytokines best mark the development phase of any
lineage, the development dynamics are mirrored by miRNAs. This effect is present in any
network system, as in the paradigmatic case of the allosteric effect in protein molecules [28].

From a more applicative point of view, we expect that eventual alterations of the
high P nodes have a crucial role in terms of pathogenesis. This was exactly the case for
the high P miRNAs we experimentally derived, namely: miR-125b, miR-22, miR-23a,
miR-23b, miR-221, miR-223, miR-17, miR-551b, miR-320b, miR-1469, miR-19a, miR-130a,
miR-93, miR-103, miR-425, miR-30d, miR-99a, let-7c, miR-1274b, and miR-342-3p. All
these miRNAs were reported as being involved in normal/pathological hematopoiesis
discrimination (see for example Refs. [37–44]). In rare cases (ANG-1, CCL8, PIGF, CXCL2,
CXCL10, CCL11), cytokine species can have a high partition coefficient value. As we noted
above for miRNAs, even in this case, nodes in charge of network long-range connections
are involved in different pathologies (see for example Refs. [45–51]). Unlike the miRNAs
shown in Figure 3, the role of some of these miRNAs during hematopoietic lineage-specific
differentiation is currently unknown. Future studies will be required to elucidate the
pathways regulated by these miRNA/cytokine networks.

In summary, our results highlight a previously unexplored interaction between miRNA
and cytokine spaces during hematopoietic differentiation. The identification of miRNA net-
works of influence within the complex landscape of cellular and soluble factors that shape
human hematopoiesis may contribute to future advancements in RNA-based therapies for
hematologic disorders.

4. Materials and Methods
4.1. Human Cord Blood CD34+ HSCs Purification

Human cord blood (CB) was obtained, after informed consent, from healthy, full-
term placentas according to the institutional guidelines of A.Fa.R. Centro Trasfusionale,
Università La Sapienza, Rome, Italy and approved by the local ethical committees of
Istituto Superiore di Sanità, Rome (file number # 171639). Isolation of CD34+ cells from
CB, unilineage culture and morphological analyses were performed as described [52].
Briefly, low-density mononuclear cells were isolated and CD34+ cells were purified by
positive selection using the MACS immunomagnetic separation system (Miltenyi Biotec,
Bergisch Gladbach, Germany) according to the manufacturer’s instructions. The purity of
CD34+ cells was assessed by flow cytometry using a monoclonal PE-conjugated anti-CD34
antibody (Miltenyi Biotec) and was routinely over 95% (range comprised between 92 and
98%). Each single experiment may have included pooled cells derived from different (2/3)
cord blood.

4.2. Unilineage Differentiation

CD34+ progenitors were cultured in a BIT 9500 serum-free medium (STEMCELL Tech-
nologies Inc., Vancouver, BC, Canada) supplemented with human low-density lipoprotein
(40 µg/mL) in the presence of various recombinant human cytokine combinations. For the
erythroid unilineage culture, a serum-free medium was supplemented with 0.01 U/mL
IL-3, 0.001 ng/mL GM-CSF (PeproTech Inc., Rocky Hill, NJ, USA) and 3 U/mL erythropoi-
etin (Amgen, Thousand Oaks, CA, USA). For the megakaryocytic unilineage culture, the
medium was supplemented with 100 ng/mL thrombopoietin (PeproTech). For granulocytic
unilineage culture, the medium was supplemented with 1 U/mL IL3, 0.1 ng/mL GM-CSF
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combined with a plateau level of G-CSF (500 U/mL) (PeproTech). For the monocytic unilin-
eage culture, the serum-free medium was supplemented with 1 ng/mL IL-6, 100 ng/mL
Flt3-ligand, combined with plateau-level M-CSF (50 ng/mL) (PeproTech).

4.3. Cell Growth and Viability

Cells were cultured at 37 ◦C in a 5% CO2/5%O2/90%N2 atmosphere. Cell growth,
the rate of proliferation, and the percentage of viable cells were analyzed by cell counting
using Trypan Blue.

4.4. Morphology and Flow Cytometry Analysis

Cells were harvested on different days of the culture, smeared on slides by cytospin
centrifugation, and stained with May–Grunwald Giemsa. A morphological analysis was
performed to assess both cell maturation and the number of nuclear lobes per cell (400×
magnification under a microscope, Eclipse 1000, Nikon, Tokyo, Japan, equipped with a
digital camera). Analysis of the cell surface antigens was performed by flow cytometry
using the following monoclonal antibodies (mAbs): fluorescein isothiocyanate (FITC)
anti-CD15; phycoerythrin (PE); anti-CD11b; anti-CD14; anti-CD34; anti-CD41; anti-CD61;
anti-CD62P; and anti-CD235a (GPA) (all from BD Pharmingen, San Diego, CA, USA).
Phycoerythrin anti-CD42b (from Miltenyi Biotec, Bergisch Gladabach, Germany) was used.
Briefly, the cells were suspended in Ca2+Mg2+ free phosphate-buffered saline solution (PBS)
containing 20% FCS, mouse IgG (40 µg/mL), incubated for 10 min on ice and labelled with
fluorochrome–conjugated mAbs for 30 min on ice. Cell fluorescence was analyzed with the
FACS Canto (Becton Dickinson, Franklin Lakes, NJ, USA).

4.5. Cytokine Assays

The levels of 41 inflammatory and immune response mediators were evaluated by
a combination of multiplex immune assays based on the Luminex technology (BioRad
Hu chemokine custom 33-plex panel of a 40-plex panel #171AK99MR2 with the following
analytes: CCL1/I-309, CCL2/MCP-1, CCL3/MIP-1α, CCL7/MCP-3, CCL8/MCP-2,
CCL11/EOTAXIN, CCL13/MCP-4, CCL15/MIP-1δ, CCL19/MIP-3β, CCL20/MIP-3α,
CCL21/6Ckine, CCL22/MDC, CCL23/MPIF-1, CCL24/EOTAXIN-2, CCL25/TECK,
CCL26/EOTAXIN-3, CX3CL1/Fractalkine, CXCL1/Gro-α, CXCL2/Gro-β, CXCL6/GCP-
2, CXCL8/IL-8, CXCL9/MIG, CXCL10/IP-10, CXCL11/I-TAC, CXCL12/SDF-1α+β,
CXCL13/BCA-1, CXCL16/SCYB16, FGF basic/FGF2/bFGF, IFN-γ, IL-10, IL-16, IL-
2, MIF, TNF-α, Bio-Rad, Hercules, CA, USA; Hu magnetic Luminex # LXSAHM-8 kit
(Angiopoietin-1, Angiopoietin-2, IL-1α, SCF, VEGF, FGF basic, IL-1β, PIGF) and a Bio-
Plex X200 System equipped with a magnetic workstation (Bio-Rad Laboratories, Hercules,
CA, USA) according to the manufacturer’s instructions. The analysis was performed in
duplicate. The Bio-Plex Manager Software 6.1 (Bio-Rad) assessed the quantification, and
data were expressed as pg/mL [53].

4.6. RNA Extraction and Microarray Analysis

To examine microRNA expression in human hematopoietic cells, total RNA was
extracted using TRIzol Reagent (Invitrogen Life Technologies, Carlsbad, CA, USA). The
generation of miRNA profiles for T1–T3 of E, Mo, G and Mk cultures was conducted with
the miRXplore microarray. The analysis of the miRNA microarray included procedures of
background correction/normalization, re-ratio calculation/normalization, and dye-swap
control experiments. Values relative to CD34+ HSCs were used to calculate the ratio be-
tween HSCs and each time point. This ratio was transformed using the log2 transformation
to obtain the log2 fold change (logFC). A positive value indicates an upregulation of the
miRNA compared to its control; a negative value indicates its downregulation.
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4.7. Statistical and Bioinformatics Analysis

All statistical analyses were performed using R Statistical Software (version 4.4.0; R
Core Team 2024). In the case of miRNAs, the data are expressed in terms of the log2 fold
change (logFC) with respect to the common ancestor (CD34+), while the cytokines, defined
by their concentration (pg/mL) in the different lineages, are normalized for subsequent
analyses. Using the ‘kohonen’ package [54], a Gene Expression Dynamics Inspector (GEDI)
analysis was applied to the scaled logFC values of microRNAs, creating heat-maps via
the self-organizing maps (SOM) algorithm to group similarly behaving microRNAs. The
selection of the most significant miRNAs was based on the results obtained from an
unsupervised k-means clustering procedure with a Euclidean metric. A prerequisite
for meaningful clustering is the coverage of at least 60% of time points with expression
values for each miRNA. This analysis was carried out by Miltenyi Biotec, a German
global biotechnology company. Through the ‘VennDiagram’ package [55], information was
provided on the number of significant miRNAs shared by all the lines and those specific
for each line.

The multidimensional scaling analysis (PCoA, principal correspondence analysis)
of the miRNA space was derived from the Jaccard metrics defining the relative distance
between A and B samples as follows:

Dj(A, B) = 1 − J(A, B) = 1 − (|A
⋂

B|)
(|A ∪ B|)

Here, A and B correspond to two independent samples whose distance is a function
of the number of shared significant miRNA species |A∩B| and of the species present in
at least one of the two samples, with |A∪B| being J(A,B), the Jaccard similarity index.
The presence/absence matrix stems from the relative superposition of miRNA species
in the two samples. At odds with the miRNome, the cytokine patterns are expressed
in terms of their actual concentration; this directed our choice toward a plain Euclidean
space being any ‘presence/absence’-based metrics as arbitrary. To have a common basis to
compute between profiles correlations in both spaces, we considered miRNA and cytokine
concentrations as living in a Euclidean space in evaluating the pairwise Pearson correlation
between samples with the consequent comparison of the line-discrimination power of the
two spaces.

The complex network approach was performed with the ‘igraph’ package [56]. By
adopting a Pearson correlation threshold r ≤ −0.9 for the insertion of an edge between
two nodes (miRNA–cytokine), we generated the networks relating to the most significant
interactions for the various lines, in terms of cell line-specific miRNAs and miRNAs com-
mon to all cell lines. Using the Newman–Girvan algorithm for identifying communalities
and calculating the modularity index, networks were analyzed with respect to a series of
indices that provided relevant information on their structural characteristics. In addition,
for each node in the networks, we calculated the within-module degree Z index and the
participation coefficient p, following the guidelines defined in [21]. The within-module
degree index is as follows:

Zi =
Ki − KSi

σKSi

=
A − B

D
,


A = Ki
B = KSi
C = Si
D = σKSi

where K is the number of links of node i to other nodes in its module A, B is the average of
K over all the nodes in C and D is the standard deviation of K in C, while the participation
coefficient is as follows:

Pi = 1 − ∑NM
s=1

(
Kis
Ki

)2
= 1 − ∑NM

s=1

(
E
F

)2
,

{
E = Kis
F = Ki
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where E is the number of links of node i to nodes in module s, and F is the total degree of
node i.

For each network, nodes that meet the conditions of a high Z-value and low p-value
and low Z-value and high p-value were considered. Finally, their roles within the network
in which they are located were discussed.
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