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Simple Summary: Building on the idea of a germline oligogenic origin of lung cancer, we performed
WES of DNA from patients’ peripheral blood and their unaffected sibs. Filtering for rare variants
and potentially damaging effects, we identified 40 deleterious variants mapping in genes previously
associated with cancer exclusively identified in patients. Transcriptome profiling on both tumor
and normal lung tissues revealed that, among the selected mutated genes, 16 variants mapping in
16 genes were either down- or upregulated in cancer specimens. Among the downregulated genes,
9 variants in 9 genes carried the mutated allele suggesting a loss of heterozygosity. Notably, the
group of mutated genes was unique for each patient, pinpointing to a “private” oligogenic germline
signature. In the era of precision medicine, this report emphasizes the importance of an “omic”
approach to uncover an oligogenic germline signature underlying cancer development and identify
suitable therapeutic targets.

Abstract: Lung cancer (LC) continues to be an important public health problem, being the most
common form of cancer and a major cause of cancer deaths worldwide. Despite the great bulk of
research to identify genetic susceptibility genes by genome-wide association studies, only few loci
associated to nicotine dependence have been consistently replicated. Our previously published
study in few phenotypically discordant sib-pairs identified a combination of germline truncating
mutations in known cancer susceptibility genes in never-smoker early-onset LC patients, which does
not present in their healthy sib. These results firstly demonstrated the presence of an oligogenic
combination of disrupted cancer-predisposing genes in non-smokers patients, giving experimental
support to a model of a “private genetic epidemiology”. Here, we used a combination of whole-
exome and RNA sequencing coupled with a discordant sib’s model in a novel cohort of pairs of
never-smokers early-onset LC patients and in their healthy sibs used as controls. We selected rare
germline variants predicted as deleterious by CADD and SVM bioinformatics tools and absent in
the healthy sib. Overall, we identified an average of 200 variants per patient, about 10 of which in
cancer-predisposing genes. In most of them, RNA sequencing data reinforced the pathogenic role
of the identified variants showing: (i) downregulation in LC tissue (indicating a “second hit” in
tumor suppressor genes); (ii) upregulation in cancer tissue (likely oncogene); and (iii) downregulation
in both normal and cancer tissue (indicating transcript instability). The combination of the two
techniques demonstrates that each patient has an average of six (with a range from four to eight)
private mutations with a functional effect in tumor-predisposing genes. The presence of a unique
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combination of disrupting events in the affected subjects may explain the absence of the familial
clustering of non-small-cell lung cancer. In conclusion, these findings indicate that each patient has
his/her own “predisposing signature” to cancer development and suggest the use of personalized
therapeutic strategies in lung cancer.

Keywords: whole-exome sequencing; lung cancer susceptibility; germline variants; next-generation
sequencing; oligogenic model

1. Introduction

Lung cancer (LC) is an important public health problem and a major cause of cancer
death worldwide [1]. Despite the strong relationship to tobacco smoking, less than 1 out of
5 heavy smokers develop lung cancer [2], whereas 25% of patients with lung cancer never
smoked [3], suggesting a role for genetic factors in the individual susceptibility to lung
cancer. Thus far, no specific environmental or genetic risk factors have been detected in
these individuals.

Previous genome-wide association studies (GWASs) have identified up to 45 suscep-
tibility loci for lung cancer in population-based series, mainly including smokers [4–15].
On the other hand, several studies found the rare germline T790M mutation in EGFR
correlated with the familial clustering of lung cancer [16–23]. The EGFR is a major cancer-
predisposition gene with an estimated 31% risk of lung cancer development in non-smoking
carriers [19]. However, the EGFR T790M mutation is weakly oncogenic and became signifi-
cantly enhanced when associated with a second activating mutation [18], more frequently
with the female sex and non-smoking status. Nevertheless, today, there is a need to better
understand the genetic factors associated with lung cancer in never-smokers’ patients in
non-predisposed families.

In this frame, using the whole-exome sequencing approach, in a previous study
analyzing discordant sib-pairs, we identified a combination of germline disruptive muta-
tions in known cancer susceptibility genes in never-smokers with lung adenocarcinoma
(ADCA) of early onset, that were not present in their healthy control sibs [24]. These results
demonstrated that each affected subject had an oligogenic combination of disrupted cancer-
predisposing genes. This evidence gives experimental support to a model of “private
genetic epidemiology” for lung cancer susceptibility that has previously only been hypoth-
esized. The oligogenic nature of the model may therefore explain the non-heritability of
the condition.

In the present study, we used a combination of genetic technical tools (whole-exome
sequencing analysis and RNA sequencing) coupled with a pedigree model in discordant
pairs of non-smokers with lung cancer of early onset. Healthy sibs were used as controls.
We identified in affected subjects a unique combination of private “predisposing signatures”
that further confirms and exploits the oligogenic model of the disease.

2. Materials and Methods
2.1. Study Design and Samples

This study analyzed four non-smoker lung cancer patients with lung cancer (cases),
who underwent lung lobectomy in the Thoracic Surgery Unit at the Azienda Ospedaliero-
Universitaria Senese (AOUS, Siena, Italy), in comparison with their healthy sibs (controls).
The genetic comparison of discordant sibs, that share 50% of the genome, facilitates the
identification of variants associated with lung cancer susceptibility. For each patient,
formalin-fixed paraffin-embedded (FFPE) samples of tumoral and non-tumoral lung tissues
were obtained from the Pathology Unit of the recruiting hospital and analyzed through
whole-exome sequencing and RNA sequencing (RNA-seq).
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Each patient and sib signed the informed consent declaration for the use of their bio-
logical samples and clinical data for research purposes. The study protocol was approved
by the Institutional Ethical Committees. Information on histological diagnoses (by the
Pathology Unit) was retrieved from the clinical records.

2.2. DNA and RNA Extraction

Genomic DNA of cases and controls was isolated from EDTA peripheral blood using
QIAamp DNA Blood Kit (Qiagen®, Hilden, Germany) according to the manufacturer’s
protocol. DNA was extracted from FFPE lung tumoral and non-tumoral tissue samples
using MagCore® Genomic DNA FFPE One-Step Kit for MagCore® System (Diatech Phar-
macogenetics srl, Jesi, Ancona, Italy). RNA was extracted from FFPE lung tumoral and
non-tumoral tissue samples using High Pure FFPE-Tissue RNA Isolation Kit (Roche, Basel,
Switzerland) following the manufacturer’s instructions. RNA samples (1 µg) were pro-
cessed to remove ribosomal RNA (rRNA) using Ribo-Zero rRNA Removal Kit for Human
samples (Illumina, Grand Island, NE, USA) following the manufacturer’s instructions.
RNA integrity was verified using the Agilent Eukaryote Total RNA Nano Kit (Agilent
Technologies, Palo Alto, CA, USA) on Agilent2100 Bioanalyzer (Agilent Technologies). Both
DNA and RNA were quantified by spectrophotometry (ND-2000c; NanoDrop Products,
Wilmington, DE, USA) and Qubit® Fluorometer with Qubit® dsDNA HS Assay and Qubit®

RNA HS Assay Kits (Life Technologies, Carlsbad, CA, USA), respectively.

2.3. Whole-Exome Sequencing and Data Analysis

Whole-exome sequencing was performed using the Illumina Nextseq 550 on ge-
nomic DNA samples (500 ng) of cases and controls and tumor tissues as previously de-
scribed [25]. After variant annotation against external datasets, including 1000 genomes
[(http://www.1000genomes.org/), accessed on 19 February 2024] and dbSNP, in order
to identify susceptibility variants, we selected for rare variants (minor allele frequency—
MAF ≤ 0.01) with a potentially damaging effect and with a functional link to cancer de-
velopment. Additional filtering procedures were thus implemented for: (i) retrieving
exonic rare variants with a potential detrimental impact on protein function, i.e., truncating
frameshift insertion and deletion and nonsense variants predicted as deleterious that were
present in affected but not in unaffected sibs and vice versa; and (ii) identifying somatic
mutations present in tumor tissues.

2.4. RNA Sequencing and Data Analysis

RNA sequencing was performed using Illumina HiSeq2500 platform (Illumina), in a
2 × 100 bp paired-end (PE) configuration in High Output mode (V4 chemistry), with a total
of at least 250 million reads per lane. After quality check, RNA (50 ng) was used to prepare
sample libraries. Sequencing library construction included these steps: library construction
using Illumina TruSeq RNA Sample Pre Kit (Illumina), library purification using Beckman
AMPure XP beads (Beckman Coulter s.r.l., Milan, Italy), insert fragments test using Agilent
High Sensitivity DNA Kit on Agilent 2100 Bioanalyzer (Agilent Technologies), quantitative
analysis of library (ABI 7500 real time PCR instrument; KAPA SYBR green fast universal 2
9 qPCR master mix. GRN), and cBOT automatic cluster (TruSeq PE Cluster Kit v3-cBotHS).
Post-library quality controls were performed using the Agilent RNA 6000 Nano kit (Agilent
Technologies) on Agilent2100 Bioanalyzer (Agilent Technologies) and Qubit® Fluorometer
(Life Technologies). Libraries were then loaded on HiSeq2500 sequencing platform (Illu-
mina) and sequenced using 2 × 100 bp pair-end High Output Mode (V4 chemistry) per
lane. The reads generated on the HiSeq2500 were provided under FASTQ format.

http://www.1000genomes.org/
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Sequence reads in FASTQ format were processing using the Fastqc software [(http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/), accessed on 4 March 2024, Version
0.12.0] for data quality check and removing excess adaptors to obtain high-quality and clean
reads. The high-quality reads were aligned to the GRCh38/hg38 reference human genome
[(ftp://jgi-psf.org/pub/compgen/phytozome/v9.0/Ptrichocarpa/assembly/Ptrichocarpa_
210.fa.gz), accessed on 4 March 2024] using the TopHat software (version 2.1.1) [26]. Tran-
script assembling and expression quantification were carried out using Cufflinks (version
2) [27]. Gene expression was expressed as fragments per kilo-base transcript per million
mapped reads (FPKM) value [28]. This normalized value was used for visualization on a
genome browser [(http://genome.ucsc.edu/), accessed on 20 March 2024] [29], as well as
to compare read coverage between and throughout different genes. Statistical analysis was
performed to compute the mean FPKM level with the associated P-value for lung normal
tissues together with the mean FPKM level with the associated P-value for lung cancer
tissues. Cuffdiff tool from Cufflinks was used to identify differentially expressed genes [30].
Potential gene fusion events were detected by TopHat-fusion [31] with spanning reads ≥10
in cancer and normal tissue. The cancer-specific fusion genes were obtained by excluding
the fusion genes that were also identified in distant normal tissue. Gene Ontology (GO)
and pathways analyses were performed using the Database for Annotation, Visualization,
and Integrated Discovery functional annotation tool [(DAVID Bioinformatics Resources
v2024q1, https://david.ncifcrf.gov), accessed on 16 April 2024].

3. Results
3.1. Exome Analysis of Constitutive DNA

We carried out the whole-exome sequencing of DNA from blood tissue in four dis-
cordant sib pairs (Table 1). Patients had early-onset lung cancer in the absence of smoking
history, and we used as controls their unaffected sibling. Exome sequencing generated a
mean of 28,960,442 reads per sample with a mean read length of 160 bp.

Table 1. Clinical characteristics and sequencing data for lung cancer cases and their healthy sibling.

Case 1 Sib 1 Case 2 Sib 2 Case 3 Sib 3 Case 4 Sib 4

Gender F M F F F F F M
Age at diagnosis, years 52 NA 65 NA 69 NA 55 NA
Age at sampling, years NA 44 NA 64 NA 75 NA 54
Smoker status Never Never Never Never Never Never Never Never
Histologic type ADCA NA ADCA NA ADCA NA ADCA NA
Clinical stage I NA I NA I NA II NA
Follow-up status Alive Alive Alive Alive Alive Alive Alive Alive
Age at follow-up 53 45 a 66 65 a 71 75 57 54
Exome sequence data, Mbp 5.63 5.48 9.06 6.72 3.11 11.8 12.8 5.3
Number of reads, Mil 38.3 37.5 49.9 36.8 17.1 65.1 69.0 28.3

NA, not applicable. a cancer-free.

Overall, we identified a total of 349,411 genetic variants in eight samples. After re-
moving variants with low coverage and filtering for exonic mutations with MAF ≤ 0.01
or not reported, we obtained 6086 total variants (Figure 1). We then filtered by excluding
variants with clinical significance as “benign” or “likely benign” and present in an in-house
database of variants identifying 3235 variants. Among them, we selected deleterious vari-
ants applied to the Combined Annotation Dependent Depletion (CADD) and the MetaSVM
(Support Vector Machine) bioinformatics tools. In this way, we obtained 961 potential
deleterious variants of which 370 were non-synonymous and 591 were truncating variants
(insertions and deletions (indels) causing exonic frameshifts, and nonsense mutations
leading to truncated proteins).

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
ftp://jgi-psf.org/pub/compgen/phytozome/v9.0/Ptrichocarpa/assembly/Ptrichocarpa_210.fa.gz
ftp://jgi-psf.org/pub/compgen/phytozome/v9.0/Ptrichocarpa/assembly/Ptrichocarpa_210.fa.gz
http://genome.ucsc.edu/
https://david.ncifcrf.gov
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Figure 1. Flowchart illustrating filtering process and variants selection.

Out of these, 40 variants mapped in genes that have been found previously associated
with cancer of lung or other tissues and, interestingly, all of these were present exclusively
in the affected sib (Table 2). The validation of these variants was carried out using a custom
next-generation sequencing (NGS) panel for the Ion PGM sequencer (Life Technologies) and
led to the confirmation of 40 variants probably responsible for lung cancer susceptibility in
our cases. All the 40 sequence variants identified were in a heterozygous state. No common
variants to all four cases were found. However, three variants were common to two out
of four patients (ANGPLT4, CARS, and ESRRA). The two variants in Angiopoietin-Like 4
(ANGPLT4) and Estrogen-Related Receptor Alpha (ESRRA) genes were common to case 1
and case 4, while the same variant in the Cysteinyl-TRNA Synthetase (CARS) gene was
found in case 3 and case 4. Each of the 40 variants were also present in the relative lung
tumor tissue in the heterozygous state.
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Table 2. Sequence variants in cancer-related genes identified by whole-exome sequencing.

Gene Symbol: Mutation Case 1 Case 2 Case 3 Case 4 Gene Name KEGG Pathway/Function

ACAP2:c.C976T:p.R326X ✓
ArfGAP with coiled-coil, ankyrin repeat,
and PH domains 2 Endocytosis/Arf6 signaling events

ACTL6A: c.T673A:p.S225T ✓ Actin like 6A Chromatin organization/DNA Double-Strand Break Repair

BUB1B:c.T2609C:p.V870A ✓
Budding uninhibited by benzimidazoles 1
homolog beta Cell cycle/Mitotic function (TS)

DDX11: c.G814A:p.V272M ✓ DEAD/H-box helicase 11 NA/(TS)

EPB41::c.G1264A:p.E422K ✓ Erythrocyte membrane protein band 4.1 Tight junction/Sertoli–Sertoli Cell Junction dynamics

MEN1: c.G301A:p.V101I ✓ Menin 1
Transcriptional misregulation in cancer/Putative TS
associated with a syndrome known as multiple endocrine
neoplasia type 1

ACACA:c.C1948T:p.R650W ✓ Acetyl-Coenzyme A carboxylase alpha Fatty acid biosynthesis, pyruvate metabolism, propanoate
metabolism, and insulin signaling pathway

AMIGO3: c.C669A:p.C223X ✓ Adhesion molecule with Ig like domain 3 NA

AVL9: c.37_38del:p.R13fs ✓ AVL9 cell migration associated NA/Late secretory pathway protein AVL9 homolog

CTBP2: c.C2149T:p.R717C ✓ C-terminal binding protein 2 Wnt signaling, notch signaling, and pathways in cancer

CTSZ:c.G358A:p.V120M ✓ Cathepsin Z Lysosome/Apoptosis (candidate O)

DEPTOR: c.A631T:p.R211X ✓
DEP domain containing MTOR-interacting
protein mTOR signaling pathway/

ENO3: c.C642G:p.Y214X ✓ Enolase 3 Glycolysis, gluconeogenesis, and RNA degradation/possible
TS in lung cancer (17p13.3)

GRM1:c.C2185A:p.P729T ✓ Glutamate receptor, metabotropic 1 Calcium signaling pathway, neuroactive ligand–receptor
interaction, and gap junction

MYO10: c.C5690T:p.S1897F ✓ Myosin X Fc gamma R-mediated phagocytosis/Epithelial adherens
junctions, innate immune system, and RhoGDI (Putative O)

PFKP:c.G311A:p.R104Q ✓ Phosphofructokinase, platelet Glycolysis, gluconeogenesis, pentose phosphate pathway,
fructose and mannose metabolism, and galactose metabolism



Cancers 2024, 16, 2887 7 of 17

Table 2. Cont.

Gene Symbol: Mutation Case 1 Case 2 Case 3 Case 4 Gene Name KEGG Pathway/Function

PSCA:c.G326A:p.W109X ✓ Prostate stem cell antigen NA/Overexpressed in prostate cancer

ROCK1:c.C727T:p.P243S ✓
Rho-associated, coiled-coil containing
protein kinase 1

Chemokine signaling pathway, vascular smooth muscle
contraction, Wnt signaling pathway, TGF-beta signaling
pathway, axon guidance, focal adhesion, leukocyte
transendothelial migration, and regulation of actin
cytoskeleton/cytoskeleton remodeling

WWTR1:c.1199_1200ins
TTTA:p.L400_X401delinsLX ✓

WW domain containing transcription
regulator 1 Hippo signaling pathway/Gene Expression (TS)

CARS:c.G775A:p.G259S ✓ ✓ Cysteinyl-tRNA synthetase Aminoacyl-tRNA biosynthesis/Localized in an important
tumor-suppressor gene region (11p15.5)

ANGPTL4:c.637delC:p.P213fs ✓ Angiopoietin-Like 4
PPAR signaling pathway. Also known as peroxisome
proliferator-activated receptor (PPAR). PPAR activates gene
expression.

CUX1: c.2413dupC:p.G804fs ✓ Cut like homeobox 1 NA/FGFR1 mutant receptor activation (TS)

EPHB6: c.840delC:p.S280fs ✓ EPH receptor B6 Axon guidance/(TS)

FBN2:c.G3883A:p.D1295N ✓ Fibrillin 2 NA/ ERK Signaling, and degradation of the extracellular
matrix (TS)

GANAB: c.C583T:p.R195C ✓ Glucosidase II alpha subunit N-Glycan biosynthesis/Metabolism (TS)

KDM4C:c.3110delG:p.S1037fs ✓ Lysine demethylase 4C NA/Involved in signal transduction, signaling by Rho
GTPases, and chromatin organization (Putative O)

MMP14:c.C609A:p.Y203X ✓ Matrix metallopeptidase 14 GnRH signaling pathway/Cell adhesion_ECM remodeling

PTPN23:c.G4189T:p.G1397C ✓
Protein tyrosine phosphatase non-receptor
type 23

Involved in the regulation of small nuclear ribonucleoprotein
assembly and pre-mRNA splicing (within a putative tumor
suppressor region)

RNASEL: c.G793T:p.E265X ✓ Ribonuclease L Immune system/Mutations in this gene have been associated
with predisposition to prostate cancer

TP73:c.G749T:p.G250V ✓ Tumor protein p73 p53 signaling pathway, neurotrophin signaling pathway/cell
cycle (TS)
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Table 2. Cont.

Gene Symbol: Mutation Case 1 Case 2 Case 3 Case 4 Gene Name KEGG Pathway/Function

ESRRA: c.C1162T:p.L388F ✓ ✓ Estrogen-related receptor alpha NA/Nuclear receptor transcription pathway (O)

ESRRA: c.C1165T:p.R389C ✓ ✓ Estrogen-related receptor alpha NA/Nuclear receptor transcription pathway (O)

ABHD5:c.G341T:p.R114L ✓ Abhydrolase domain containing 5 Regulation of lipolysis in adipocytes/Metabolism of lipids
and lipoproteins

ACAD9:c.G976A:p.A326T ✓ Acyl-CoA dehydrogenase family member 9 Mitochondrial biogenesis/Respiratory electron transport

EPHA7: c.A2009C:p.Q670P ✓ EPH receptor A7 Axon guidance

EPN3:c.879delA:p.L293fs ✓ Epsin 3 Endocytosis/Promoting senescence (O)

FAM188A:c.1107delT:p.F369fs ✓
Family with sequence similarity 188
member A NA (Novel TS in NSCLC)

IQGAP2:c.G1135C:p.E379Q ✓
IQ motif containing GTPase activating
protein 2 Regulation of actin cytoskeleton

ITIH5: c.1063delG:p.D355fs ✓
Inter-alpha-trypsin inhibitor heavy chain
family member 5 NA/RHO GTPase effectors (TS)

PSAT1:c.G511C:p.A171P ✓ Phosphoserine aminotransferase 1 Glycine, serine, and threonine metabolism, vitamin B6
metabolism/metabolism of amino acids and derivatives

URI1:c.G1303T:p.E435X ✓ URI1, prefoldin like chaperone NA/Scaffolding protein with roles in ubiquitination and
transcription (Putative TS)

In bold: mutations associated with an effect at RNA level. NA, not applicable.
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3.2. Somatic Mutations in Tumor Lung Tissues

In the four tumor lung samples, we identified an average of 2.568 somatic mutations
per tumor (ranging from 2.169 to 3.348). When we limited the mutations in the coding
regions, the average number of mutations in each tumor was 1.510 (range 1.172–1.865),
among which an average of 1092 (range 797–1542) were missense, 374 (range 85–735) were
frameshift ins/del, and 43 (range 32–56) were nonsense mutations (Figure 2). The number
of mutations was not associated with clinical and pathological variables (stage and age at
diagnosis). No recurrent mutations, such as mutations in EGFR, KRAS, or AKT genes, were
present in our tumor samples.
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3.3. RNA-Seq Analysis of Tumors and Non-Involved Lung Tissues

To detect differences in the expression level, splicing pattern, and/or polyadenylation
sites that could both help the understanding of the functional role of germline variants
in the development of lung cancer and shed light on the pathogenic mechanisms, we
performed an RNA sequencing (RNA-seq) analysis of RNA extracted from both the FFPE
tumor and non-involved lung tissues of the four lung cancer patients. RNA-seq generated a
mean of 73,865,049 reads per sample and 91.07% of bases sequenced above the Q30 quality
score (Supplementary Table S1).

To assess the potential functional role of the 40 germline variants identified by whole-
exome sequencing (WES) and predicted as deleterious by bioinformatics tools, we combined
the results from the WES experiments with the respective expression profile from RNA-seq.
In 16 variants mapping in 16 genes, the RNA sequencing data reinforced the pathogenic
role of the identified variants showing three different effects (Figure 3). Firstly, eight genes
[Acetyl-CoA carboxylase alpha (ACACA), Angiopoietin like 4 (ANGPTL4), BUB1 mitotic
checkpoint serine/threonine kinase B (BUB1B), Fibrillin 2 (FBN2), Menin 1 (MEN1), Matrix
metallopeptidase 14 (MMP14), Tumor protein 73 (TP73), and WW domain-containing
transcription regulator protein 1 (WWTR1)] showed a downregulation in lung cancer tissue,
indicating a possible “second hit” in tumor suppressor genes responsible for gene inactiva-
tion (Figure 3A). Secondly, three genes [ArfGAP With Coiled-Coil, Ankyrin Repeat And PH
Domains 2 (ACAP2), Enolase3 (ENO3), and prostate stem cell antigen (PSCA)] showed an
upregulation in lung cancer tissue, suggesting their role as an oncogene (Figure 3B). Lastly,
five remaining genes [Adhesion Molecule With Ig Like Domain 3 (AMIGO3), Cysteinyl-
tRNA synthetase (CARS), DEP Domain Containing MTOR Interacting Protein (DEPTOR),
IQ Motif Containing GTPase Activating Protein 2 (IQGAP2), and Ribonuclease L (RNASEL)]
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were downregulated in both normal and cancer tissue, indicating a possible transcript
instability (Figure 3C). In addition, a nonsense variant that was predicted as deleterious
in the putative tumor suppressor URI1 Prefoldin Like Chaperone (URI1) gene, although
it was not associated with changes in mRNA levels, was also retained in the panel of
candidate genes.
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Figure 3. RNA transcript levels in normal and tumor tissue pairs of 16 candidate germline mutated
genes. RNA levels were expressed as FPKM value in tumor tissue (T), in the normal counterpart (N)
and in the group of normal tissues (C). ACACA, ANGPTL4, BUB1B, FBN2, MEN1, MMP14, TP73,
and WWTR1 showed a downregulation in lung cancer tissue (panel (A)); ACAP2, ENO3, and PSCA
showed an upregulation in lung cancer tissue (panel (B)); AMIGO3, CARS, DEPTOR, IQGAP2, and
RNASEL were downregulated in both normal and cancer tissue (panel (C)).

The data obtained from tumor tissues were then compared with those from normal
tissues in order to identify differences in the expression level using well-established and ac-
cepted analysis tools such as Cufflink-Cuffdiff [30]. Cuffdiff differential expression analysis
identified 315 genes significantly downregulated (fold ≤ −2 change, p-value ≤ 0.05) and
347 genes significantly upregulated (fold change ≥ 2, p-value ≤ 0.05) in lung tumor tissues
compared to normal tissues. We then interrogated these data both for the enrichment of
genes involved in peculiar cell functions and for the involvement of specific pathways. A
GO analysis of upregulated differentially expressed genes revealed a statistically signifi-
cant enrichment for genes mainly involved in the cellular process (p-value = 1.29 × 10−4),
cellular component organization (p-value = 1.78 × 10−4), and developmental process
(p-value = 0.002) (Figure 4A). The GO terms of downregulated differentially expressed
genes were mainly related to the acute inflammatory response (p-value = 0.015) and cell
adhesion (p-value = 0.028) (Figure 4B).
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Figure 4. Results of GO analysis of upregulated (panel (A)) and downregulated (panel (B)) tran-
scripts in lung tumor tissues compared with lung normal tissues (all components with >10% and
p-value < 0.05).

Pathways analysis individually performed on the differentially expressed genes be-
tween each normal–tumor tissue pair showed the ECM–receptor interaction pathway as
the common involved pathway in all four lung tumor tissues (Table 3).

Table 3. Results of pathways analysis on deregulated genes in tumor tissues compared with normal
tissues.

Case 1 Case 2 Case 3 Case 4

KEGG Pathway p-Value Count p-Value Count p-Value Count p-Value Count

ECM–receptor interaction 9.50 × 10−8 22 1.40 × 10−6 17 5.20 × 10−5 20 2.60 × 10−3 13

Focal adhesion 4.20 × 10−3 25 1.80 × 10−4 23 3.10 × 10−2 26

ABC transporters 8.30 × 10−3 9

Integrin signaling pathway 3.70 × 10−2 26

Tight junction 2.40 × 10−2 13

Cell adhesion molecules (CAMs) 4.70 × 10−2 12

Calcium signaling pathway 3.90 × 10−2 23
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3.4. Analysis of Tumor Loss of Heterozygosity

We performed the whole-exome sequencing of DNA from the four tumor tissues in
order to identify potential driver genes. An analysis of the exome sequencing in DNA
from blood compared to the exome sequencing in DNA from tumor tissues allowed us to
identify the presence of nine variants in nine genes that were in a heterozygous state in
DNA from the patient’s blood and in a homozygous state in tumor tissue (Figure 5), thus
representing a possible second hit responsible for gene inactivation in this tissue.
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Figure 5. Networks among germline mutated genes. Three independent networks involving mutated
genes were identified in different cases. Network nodes (colored spheres) represent proteins (empty
nodes = proteins of unknown 3D structure; filled nodes = a 3D structure is known or predicted).
Straight lines connecting the nodes represent protein–protein associations (blue lines = known inter-
actions from curated databases; purple lines = known experimentally determined interactions; dark
green lines = predicted interactions such as neighborhood gene; light green = predicted interactions
by text mining; black lines = co-expression).

3.5. Protein–Protein Interaction

To explore possible pathogenic mechanisms in lung cancer, we further investigated
the existence of possible interactions among the involved cancer genes that had germline
mutations. We found three networks involving mutated genes belonging to different cases
(Figure 5). The main network connects the EPHB6 gene (mutated in case 1) with the ACACA
and ENO3 genes (mutated in case 3), CARS gene (mutated in case 3 and 4), and ACAP2
gene (mutated in case 2). Overall, each patient had deleterious germline variants in genes
belonging to this network.

Expanding the analysis of this network with a threshold of 20 interactors, we identified
associations between the mutated genes in our patients with many genes involved in cancer
development. In particular, the network clustered in two relevant groups, the former
involving PRKA interactors, which comprised our mutated genes, and the latter involving
RAD51 interactors (Figure 6).
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Figure 6. Expanded network among EPHB6, ACACA, ENO3, CARS, and ACAP2 genes. Network
nodes (colored spheres) represent proteins (empty nodes = proteins of unknown 3D structure;
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as neighborhood gene; light green = predicted interactions by text mining; black lines = co-expression;
dark blue lines = gene co-occurrence; red lines = gene fusion).

4. Discussion

In this study, we used an integrative approach of next-generation sequencing tech-
nologies to dissect the genetic susceptibility to lung cancer in non-smoker patients for the
identification of a genetic profile that could be predictive of the individual risk for lung
cancer. The whole-exome sequencing technique, coupled with a model of cases and controls
deriving from the same kindred, demonstrated that each patient has a combination of an
average of 10 (range 7–14) deleterious “private” germline variants in tumor-predisposing
genes. These mutations were absent in unaffected sibs.

In addition to performing a genome-wide analysis in the search of oligogenic signa-
tures that could differentiate affected from non-affected siblings, we also analyzed, in the
same patients, the RNA-seq data in tumor specimens, comparing tumoral vs non-tumoral
tissue. Using this approach, we confirmed the potential functional effect of most of the
identified variants with an average of 6 (range 4–8) variants per patients. In particular, we
distinguished three class of alterations: (1) variants associated with the downregulation of
the gene in lung tumoral tissue compared to non-tumoral tissue, indicating the presence
of a “second hit” in a putative tumor suppressor gene; (2) variants associated with up-
regulation in tumoral compared with non-tumoral tissue of the gene that could represent
a likely oncogene; and (3) variants associated with downregulation in both tumoral and
non-tumoral tissue, indicating possible mechanisms for transcript instability.
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Concerning oncogenic genes, the comparison of RNA-seq data in the tumoral vs
non-tumoral tissue showed the involvement of genes belonging to molecular localization,
cell movement, and cellular component assembly pathways among the upregulated genes,
while, among the downregulated genes, the mainly involved pathways were cell local-
ization, transport, negative regulation of cellular processes, and response to stress. These
results seem to suggest that cancer cells miss proper intracellular molecular localization
and are more resistant to stress. Comparing differentially expressed genes in matched
tissue pairs, we showed the involvement of the ECM–receptor pathway in all four pairs
of siblings. Similar findings have already been reported in prostate cancer [32]. Since
the pathways analysis showed the ECM–receptor interaction pathway as the common
involved pathway in all four lung tumor tissues, we also found that there is a relationship
between this pathway and 7 of the 17 variants associated with an effect at the RNA level.
The WWTR1 in its Wwtr1/Yap Hippo pathway is known to play an essential role in the
mechanosensing of alterations in cell rigidity and in the extracellular matrix (ECM) [33].
The ANGPTL4 overexpression decreases the mRNA levels of ECM-related genes [34], the
Fibrillin 2 (FBN2) is a glycoprotein of the elastin-rich ECM, being a ubiquitous glycoprotein
that self-polymerize into filamentous microfibrils and is critical for ECM formation and
remodeling [35]. The MMP-14 is the driving force behind the ECM destruction during
cancer invasion, and metastasis also influences both intercellular and cell–matrix communi-
cation by regulating the activity of several plasma-membrane-anchored and extracellular
proteins [36]. Interestingly, RNASEL regulates the matrix metalloproteinases activities
remodelling the ECM and plays a critical role in cell migration, invasion, tissue metastasis,
and impact tumor progression [37]. The ancestor role of TP73 was associated with the
tissue organizer, but, in the developing ovary, p73 regulates a set of genes involved in ECM
interactions, and other biological processes required for proper follicle development [38].
Finally, the role of IQGAP2 in receptor signaling has recently emerged, although the func-
tions of the LGR4:IQGAP2 complex remain unidentified. However, the best known and
most studied isoform of the known three, IQGAP1, promote the degradation of the ECM
by matrix metalloproteinases, thereby coordinating cell invasion [39].

Network analysis concerning the identified cancer susceptibility genes showed three
networks that were shared by different patients, suggesting a possible common path for
private oligogenic signatures. The main network involving genes mutated in all four
patients (ACACA, ACAP2, ENO3, EPHB6, and CARS) connected the candidate mutated
genes with the group of RAD51 (RAD51 recombinase) and PRKA interactors. RAD51
encodes for a key recombinase that seems to be essential for homologous recombination
and DNA repair [40]. It interacts with a large number of proteins involved in double-
strand DNA breaks and in the cell cycle with important implications in tumorigenesis,
such as BRCA1 and TP53 (as reviewed in [41]). PRKA encodes for the catalytic subunit
of AMP-activated protein kinase (AMPK) that is a cellular energy sensor that maintains
energetic homeostasis [42] and has been suggested as a novel target for anticancer therapy
since its activation determines a reduction in mRNA translation and protein synthesis [43].
Figures 5 and 6 show the possible network (Figure 5) and “expanded” network (Figure 6)
of proposed cooperation among the main mutated genes in the occurrence of “increased
susceptibility” to NSCLC. We have previously discussed the putative role of each gene in
the occurrence of lung cancer.

Our study has a number of strengths and limitations. One of the main strengths is that
we used an integrative next-generation sequencing approach combining the whole-exome
sequencing technique (germline and tumor DNA) with transcriptome sequencing (tumor
and matched normal tissue). In addition, the original selection strategy of discordant sibs
has been used. Among the limitations, variants in noncoding regions, copy number varia-
tions, genome rearrangements, and common susceptibility variants have been missed due
to the study design. Secondly, the number of samples analyzed is relatively small. However,
the private nature of the oligogenic susceptibility reduces the potential contribution of
additional discordant sib-pairs.
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In any case, the “novelty” that present results strongly suggest is the following. Oppo-
site to what occurs in inherited multitumoral syndromes, such as Familial Adenomatous
Polyposis (FAP), where germline mutations of a single gene (i.e., APC gene) determines
colon cancer in 100% of affected patients, in the present model, that is likely to occur in
most frequent sporadic cancers, variable oligogenic combinations of germline mutations,
that change from an individual to another, all together are responsible for the occurrence of
a “susceptible” or “resistant” phenotype towards a given cancer.

In this “omics” study, in which various next-generation technologies were used, a lot
of data both in quantitative and qualitative terms for each patient were produced, and this
is a clear example of how their interpretation is the keystone to uncovering the oligogenic
germline signature and achieving personalized precision medicine in lung cancer. Precision
medicine in lung cancer is already a reality in the metastatic stage, but studies like this
must be implemented to extend this approach to all lung cancer patients at different
stages. Indeed, our findings showed that private oligogenic signatures could be part of an
individual way to cancer. We suggest that every patient has his/her peculiar signature of
germline mutations, governing personal cancer susceptibility. This signature may play a
major role in the development and growth of lung cancer, namely, in non-smoker patients,
and this may therefore explain the non-heritability of the condition. In fact, lung cancer
in non-smokers rarely shows familial aggregation but rather seems sporadic or occurs in
phratries. These two possibilities were perfectly explained by our private oligogenic model
of inheritance [24]. The proposed model may have important implications in the evaluation
of individual risk for lung cancer and may lead to a “germline genetic signature”, which,
in the modern era of personalized medicine, could be of benefit to the early detection
of cancer.

5. Conclusions

In conclusion, further studies are necessary in order to confirm the present findings
in larger studies. In any case, our “focused analysis” in a small number of patients could
contribute to a deeper insight into the complexity of the various subtypes of lung cancer
and the variable interplay among gene programs involving biological processes, which
could seem apparently distinct and/or distant from each other.
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