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The dynamics of the three coupled bosonic wells (trimer) containing N bosons is investigated
within a standard (mean-field) semiclassical picture based on the coherent-state method. Various
periodic solutions (configured as π-like, dimerlike and vortex states) representing collective modes
are obtained analitically when the fixed points of trimer dynamics are identified on the N=const
submanifold in the phase space. Hyperbolic, maximum and minimum points are recognized in the
fixed-point set by studying the Hessian signature of the trimer Hamiltonian.

The system dynamics in the neighbourhood of periodic orbits (associated to fixed points) is
studied via numeric integration of trimer motion equations thus revealing a diffused chaotic behavior
(not excluding the presence of regular orbits), macroscopic effects of population-inversion and self-
trapping. In particular, the behavior of orbits with initial conditions close to the dimerlike periodic
orbits shows how the self-trapping effect of dimerlike integrable subregimes is destroyed by the
presence of chaos.

PACS numbers: 03.75.Fi, 05.45.-a, 03.65.Sq

I. INTRODUCTION

A remarkable progress in the experimental de-
sign has been done since the first direct obser-
vation of Bose-Einstein condensation in diluite
atomic gas [1]. One of most promising devel-
opment concerns the construction of experimen-
tal devices in which condensates, achieved within
complex geometries, interact with each other giv-
ing rise to quantum effects that are observable
at the macroscopic level [2] -[4]. In this re-
spect, one should recall, for example, the (super-
fluid) boson Josephson-junction arrays obtained
by means of optical lattices that trap weak inter-
acting BECs in periodic arrays of potential wells
[5]. In parallel with the experimental work, an
increasing attention has been devoted theoret-
ically to study the dynamical behavior of low-
energy states in arrays of Bose-Einstein conden-
sates (BEC) where the number of lattice sites
(namely the potential wells occupied by the con-
densate) is very large [6, 7].

Opposite situations, corresponding to ‘lattices’
formed by two or three interacting wells, have
been investigated as well in various recent pa-
pers (see Refs. [8] -[16]). In particular, the two-
well system (dimer) has been analysed thorougly

from both the semiclassical (mean-field) and the
purely quantum viewpoint in Refs. [13, 14] and
[10, 15, 16], respectively. Such investigations
have revealed how the nontrivial structure of
dimer phase space causes many significant phe-
nomena such as the symmetry-breaking effect
(issuing oscillation modes that are isoenergetic
but inequivalent), the onset of π-phase oscil-
lations, the self-trapping of boson populations,
and, quantum-mechanically, the occurrence of
(parameter-dependent, nondegenerate) doublets
in the energy spectrum entailing periodic self-
trapping.
The connection between the quantum and the

semiclassical picture of many interacting bosonic
wells has been illustrated in Ref. [10] and,
in view of the closed link between an array of
interacting BECs and the Bose-Hubbard (BH)
model [10, 18], in Ref. [19] within the BH
model theory. We wish to observe that the semi-
classical approach (corresponding to describing
condensates within the Bogoliubov approxima-
tion) is appropriate for interacting wells with
macroscopic boson populations. However, the
systems recently obtained, where condensate is
distributed among many wells are able to pro-
vide mesoscopic numbers of bosons per wells [4],
might be best modeled by using the space-mode

http://arxiv.org/abs/cond-mat/0203509v3
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approximation [8, 17] stemmed from the second-
quantized boson field theory.
Compared with the dimer nonlinear behavior,

indeed the system of three interacting bosonic
wells (trimer model) exhibits a new phenomenol-
ogy and provides a novel research topic, both
theoretically and experimentally. In fact, despite
the simplicity of the model, the trimer dynam-
ics is affected by a strong inner instability lead-
ing to the chaos onset. This feature originates
from the combination of the model nonlinearity
with the nonintegrable nature that distinguishes
trimer dynamics within extended regions of its
phase space. In respect of this, the solutions of
the trimer dynamical equations [displaying non-
linear periodic oscillations (dimerlike orbits) with
possible self-trapping effect] recognized in Refs.
[11, 12] must be viewed as special subregimes in
which dynamics is integrable. Concerning the
instability of trimer dynamics, we wish to re-
call that the presence of homoclinic chaos has
been revealed for the asymmetric trimer in Ref.
[20], while, at the quantum level, the survival of
breather configurations has been investigated in
Ref. [21].

In the present paper we perform a systematic
analysis of the trimer dynamics directed to as-
certain that the nonintegrability generates chaos
and that this dominates the interactions of three
BECs modeled in a standard semiclassical pic-
ture. A rich scenario of dynamical behaviors
emerges from our analysis, which confirms the
extremely structured character of trimer dynam-
ics and represents the natural prosecution of the
work of Ref. [12] in which we focused our atten-
tion on the special dimerlike (integrable) regime
of trimer and on the self-trapping effect.
Indeed the analysis we perform appears to be

topical in relation to the study of the dynamics of
solitons [7] and of vortices [22] on one-dimesional
chains of BECs as well as of experimental archi-
tectures obtained recently [4]. The observation
of such chain excitations, in fact, must take into
account the possible destructive action of inner
instabilities whose influence is clearly manifested
in the trimer chain. We emphasize the fact that
the trimer chain is the simplest possible situa-
tion in which interacting BECs turns out to be
governed by nonintegrable equations. The dimer
dynamics, in fact, is completely integrable.
The paper layout is the following. In Sec. II we

review the derivation of the space-mode Hamil-
tonian for three coupled wells from the quan-

tum field theory of bosonic fluids in the dilute-
gas approximation, and present the semiclassical
picture that describes coupled boson wells with
macroscopic populations. In Sec. III we identify
the set of fixed points of the trimer Hamiltonian
equations and show how such points are associ-
ated to periodic solutions (representing collective
modes) owing to the dynamically conserved total
boson number N . Sec. IV is devoted to study
the second variation (with N = const) of the
energy function for such extremal configurations
in order to make explicit their nature. In Sec.
V we perform a dimensional reduction of trimer
dynamics by defining a new set of canonical vari-
ables whereby the constant of motion N is incor-
porated in the dynamical equations. This paves
the way to the implementation of the Poincaré
sections’ method. The chaos onset in the trimer
dynamics is investigated in Sec. VI. First, in a
qualitative way, by constructing the Poincaré sec-
tions for trajectories whose initial conditions are
chosen in proximity of the fixed-point configura-
tions identified in Sec. III. Then, quantitatively,
by measuring the maximum Lyapunov exponent
of such trajectories. Sec. VII contains conclud-
ing remarks and comments on future work.

II. TRIMER DYNAMICS

The model for a chain (or more complex struc-
tures) of M interacting bosonic wells can be de-
rived from the quantum field theory for boson
fluids (with a nonlocal ψ4 term) by implement-
ing the M-(space)mode approximation [18]. If
the boson fluid is a diluite gas of N interacting
bosons trapped in an external potential Ve then
its dynamics is generated by the local boson-field
Hamiltonian [17, 23, 24]

Ĥ =

∫

dr ψ̂
†

(r)
[

Ve − h̄2∇2

2m
+

U0

2
ψ̂

†

(r)ψ̂(r)
]

ψ̂(r)

where m is the boson mass, U0 = 4πh̄2a/m takes
into account the two-body interaction strength,
and a is the s−wave scattering length. The

field ψ(r) [ψ̂+(r)] is the Heisenberg field oper-
ator that destructs [creates] bosons at position
r. The nonlinear term has been written in the
usual normal ordered form. In order to work
out the trimer Hamiltonian we state some as-
sumptions: First, Ve is a three-well symmetric-
shaped potential. Second, the lowest energy level
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of each well (within the approximation of Ve in
terms of a single-well parabolic potential) must
be well separated from the higher energy lev-
els [17]. Third, the binary particle interactions
is not strong enough to significatively change the
latter assumptions.
Some furher approximations are necessary to

make explicit the ground-state structure in Ĥ.
Let ri (i = 1, 2, 3) be the locations of the minima
of Ve and let Vj = V (r − rj) be the parabolic
approximation to the potential in the jth min-
imum, so that Ve(r) ≃ V (r − rj) when r ≃ rj .
Also, let us introduce the eigenstates uj that rep-
resent the normalized single-boson ground-states
with energy E0 of the local parabolic potential
Vj . These states are only approximatively or-
thogonal because of

∫

d3r ūjuk = δjk + Rjk but
the residue Rjk is a quantity exponentially sup-
pressed depending on the overlap between uj and
uk. The analysis is restricted to those potentials
for which Rjk << 1 thus making negligible such
contributions.
The picture of the system thus resulting sug-

gests that the boson field operator can be ex-

panded as ψ̂(r, t) = Σiūi(r)âi(t), where âi(t)
[â+i (t)] is the annihilation [creation] boson oper-
ator (associated to the space-mode state ui) that
satisfy the commutation relation [âi(t), â

+
k (t)] =

δik. By substituting this expression in the many-
body hamiltonian one can obtain, to the low-
est order in the overlap between the single-well
modes, the quantum trimer Hamiltonian [10, 11]

H3 = Σi[U(ni−1)−v]ni− T

2
Σ〈i,j〉

(

a
†

iaj + a
†

jai

)

,

where the site index i, j = 1, 2, 3, v = −E0, and

the operators ni
.
= a†iai count the number of

bosons at site i. Also, in H3

T = 2

∫

d3r ūj [Vj − Ve]uj±1 , U =
U0

2

∫

d3r|uj |4 ,

represent the (interwell) hopping amplitude and
the strength of the Coulomb on-site repulsion,
respectively [8, 17].
The quantum dynamics involved by Hamilto-

nian H3 can be cast in a classical form by repre-
senting the system quantum state through a trial
state |Z〉 written in terms of Glauber’s states |zi〉
(defined by ai|zi〉 = zi|zi〉). By implementing
the time-dependent variational principle (TDVP)
and the procedure discussed in Refs. [19], [25] on
|Z〉 = Πi|zi〉, one obtains the effective Hamilto-

nian [10]

H3(Z,Z
∗) := 〈Z|H3|Z〉 ≡

Σ3
j=1

[

U |zj |4 − v|zj |2 − T

2

(

z∗j zj+1 + c.c.
)

]

, (1)

(j = 1 ≡ 4 on the trimer chain) with the equa-
tions

ih̄ż1 = (2U |z1|2 − v)z1 − T

2
(z2 + z3) ,

ih̄ż2 = (2U |z2|2 − v)z2 − T

2
(z3 + z1) , (2)

ih̄ż3 = (2U |z3|2 − v)z3 − T

2
(z1 + z2) .

Such equations for zj (notice that zj ≡ 〈Z|aj |Z〉
and z∗j = 〈Z|a+j |Z〉) can be calculated from H3

via the Poisson brackets {z∗k, zj} = iδk,j/h̄ fur-
nished by the TDVP method. Those for z∗j are
easily obtained by complex conjugation. Various
aspects concerning the special dimeric subregime
of Eqs. (2), in which trimer dynamics is inte-
grable, have been studied in Refs. [11], [12].

III. FIXED POINTS AND PERIODIC

ORBITS

The distinctive features that characterize the
dynamics of a given Hamiltonian system can be
recognized by exploring the structure of its phase
space. The first step to do this is to locate the
fixed points. The latter are derived in the present
section based on Eqs. (2), whereas the nature of
such points is studied in the next section.
The fixed-point equations for the trimer are

obtained by setting żj ≡ 0 in Eqs. (2). Since the
trimer dynamics is constrained by the constant of
motionN = |z1|2+|z2|2+|z3|2, one must incorpo-
rate explicitly the restriction to the phase-space
submanifold defined by N = const through a La-
grange multiplier χ. This just requires that one
considers the variations of H3 − χN in place of
that of H3. The resulting equations are

0 =
(

2U |zj|2 − µ+
T

2

)

zj − T

2
Z , (3)

where j = 1, 2, 3, and Z := z1+z2+z3, µ := χ+v
have been introduced . Therefore, any fixed-
point, namely any vector (zi) ≡ (η1, η2, η3) that
satisfies Eqs. (3), provides, at the same time,
a dynamically active solution of Eqs. (2) rep-
resented by zj(t) = ηj exp[iχt/h̄]. Despite its
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time dependence, such a periodic orbit represents
a (one-dimensional) extremal configuration ofH3

on the hypersurface N = const. The solutions of
Eqs. (3) can be grouped in various classes the
first of which is represented by the case

Z = Σj zj = 0 .

The remaining cases are obtained from Eqs.
(A3)-(A4), where zi can be replaced with the real
quantities xi (see appendix A). Such cases are
given by

x1 = x2 = x3 6= 0 ,

x1 = −x2 6= x3 = 0 ,

x1 = x2 6= x3 6= 0 .

Such configurations are discussed below [27].

A. Ground-state configurations

When x1 = x2 = x3, Eqs. (A3) and (A4) are sat-
isfied. Based on Eq. (A2) combined with the con-

served quantity N , one finds that xj = ±
√

N/3
which provides

zi =
√

N/3 exp(iΦ) , (i = 1, 2, 3), (4)

and 3µ = 2UN−3T . The energy of such configu-
rations (they are shown to represent the ground-
state in Sec. III) is given by

Egs =
1

3
UN2 − TN . (5)

The ground-state phase Φ is arbitrary since it
represents a symmetry of the model. Also, the
fact that zj = |zj | exp(iφj) have the same phase
φj ≡ Φ reproduces the symmetry breaking phe-
nomenon that distinguishes the minimum energy
state and, particularly, the vanishing of the phase
difference (between closed points) in superfluid
media. Such two features, which are known to
characterize the superfluid ground-state of BH
lattice model, naturally extend to the trimer
model of condensates in our semiclassical pic-
ture. As regards Eqs. (2), they are solved by

zj(t) =
√

N/3 exp[i(Φ + χt/h̄)], with χ = µ− v,
that describes the ground-state collective mode.

B. Vortexlike configurations

The situation in which Z = 0 leads to a special
configuration. In this case Eqs. (3) reduce to 0 =
(

2U |zj|2 − µ+ T/2
)

zj implying, in turn, that

|zj|2 =
2µ−T

4U
, ∀j , µ =

4NU+3T

6

where the value of µ is derived from Σi|zi|2 = N .
As a consequence of the independence of |zj | on
the site index, the condition Z = 0 is realized
only if the phases of zj = |zj | exp(iθj) are such
that θj(k) = 2πjk/3+Φ0 where k = 1, 2 and Φ0 is
an arbitrary phase. This configuration represents
a particular case of the vortex state discussed
for the Bose-Hubbard model on a M -well chain
lattice (M > 2) in Refs. [22] and [10]. The energy
associated to the vortex states

zj(k) =
√

N/3 exp[iθj(k)] (6)

is given by

Ev = UN2

3
− TN cos

( 2π

3
k
)

= UN2

3
+

TN

2
, (7)

while dynamics issued from Eq. (2) is described
by the solution zj(t) = zj(k) exp[it(µ− v)/h̄].

C. Configurations with a single depleted

well

These configurations are characterized by the
presence of a single depleted well (SDW). With-
out losing generality, one can choose the second
well, so that one has x1, x3 6= 0, and x2 = 0. This
case can be faced based on Eqs. (A1): to satisfy
E2(x) = 0 one must impose x3 = −x1, which
entails, in turn, that the equation E1(x) = 0 is
equivalent to the equation E3(x) = 0. The lat-
ter, together with the constraint N = x21 + x23,

implies that x1 = ±
√

N/2 = −x3,x2 = 0, which
provides the fixed points

z1 =
√

N/2eiΦ, z2 = 0 , z3 =
√

N/2 ei(Φ+π),
(8)

with µ ≡ 2Ux21 + T/2. Their energy is

Edw =
1

2
UN2 +

1

2
TN . (9)

Permutations of site indices j of zj furnish other
five fixed points of the same type. In view of state
(8), it is worth noting that SDW configurations
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have the same structure of the π-states occurring
in the dimer dynamics [13], where the phases of
each well keep a constant phase difference π in
the course of time evolution. Solutions zi(t) =
zi(0) exp[it(µ − v)/h̄] –with zi(0) given by Eqs.
(8)– exhibit this property.

D. Dimerlike configurations

For such states the variables xj (recall that x2j
is the boson number of the j-th well) satisfy the
condition xi = xj 6= xk. Three cases are thus
obtained through index permutation. In general,
since three fixed points turn out to be associ-
ated with each dimerlike configuration (namely
to each choice xi = xj 6= xk), nine fixed points
are finally found in the dimeric class.
To deal with an explicit case, we shall con-

sider the fixed points of the case x1 = x2 6= x3.
Owing to its complexity, their derivation is de-
scribed in appendix B. Here we discuss the re-
sults obtained. Fixed points depend on the pa-
rameter τ := T/NU and are representable as
points (x1, x2, x3) ∈ R

3 on a sphere due to the
constraint N = Σix

2
i . Their expressions read

A1 :=
(

a1, a1,−(a1/|a1|)
√

N − 2a21

)

,

A2 :=
(

a2, a2,−(a2/|a2|)
√

N − 2a22

)

,

A3 :=
(

a3, a3,−(a3/|a3|)
√

N − 2a23

)

,

(10)

where

a3 = ±
[

Np2

1 + 2p2

]
1

2

, aν = ±
[

N

2 + q2ν

]
1

2

, (11)

and ν = 1, 2. Parameters qν and p are defined as
implict functions of parameter τ through systems
(B3) and (B4), respectively. In particular, the
cubic equation

τ(2 + q2)(2 + q) + 4q (1 + q) = 0 , (12)

derived from Eq. (B3), with q ∈ [−1, 0] fur-
nishes the τ functions q1(τ), q2(τ) correspond-
ing to the real roots of Eq. (12). Notice that
−1 ≤ q1(τ) < q2(τ) ≤ 0 for τ < τ∗, whereas,
for τ > τ∗, there are no solutions. The value τ∗,
where q1(τ

∗) = q2(τ
∗) (and A1 ≡ A2), is calcu-

lated in appendix B. Instead, system (B4), with

p ∈ [−1/2, 0], always exhibits a single solution
p(τ) that is carried out from the equation

τ(1 + 2p2)(1 + 2p) + 4p (1 + p) = 0 . (13)

The dependence on physical parameters T , U , N
of A1(q1), A2(q2), A3(p) by means of parameter
τ is thus established.
Points Ai found in this way generate, by vary-

ing τ , three curves on the sphere with N = const
[in view of the sign ± in Eqs. (11) they actually
are six]. These become eighteen when consider-
ing the fixed points generated by index permu-
tations. This process is described in appendix
B, where the actual number of dimerlike fixed
points is shown to reduce to twelve. Such curves
[parametrized by τ via p(τ) and qν(τ)] can be
proven to never intersect with one another ex-
cept for the special case τ = τ∗ where A1 ≡ A2.
This coalescence effect is discussed below.
If the values of qν and p for some given τ ≤ τ∗

are carried out explicitly, the energy for Ai

Ed = U [N2+6a4i−4Na2i ]−T [a2i−2ai

√

N − 2a2i ] ,

(14)
(i = 1, 2, 3) is obtained via formulas (11).
We conclude illustrating the physical situa-

tions that correspond to configurations A1, A2

and A3 when τ changes. Also, we compare them
to the pure-dimer scenario [10, 13]. Let us start
with τ → 0. One has q1 = −1 and q2 = p = 0
that entail

A1(−1) := ±
(

√

N/3,
√

N/3,−
√

N/3
)

,

A2(0) :=
(

√

N/2,
√

N/2, 0
)

,

A3(0) :=
(

0, 0,
√
N
)

,

(15)

respectively. By increasing τ , A1(q1) and A2(q2)
get closer and closer (A1 = A2 for τ → τ∗).
When τ > τ∗ only the fixed point A3(p) survives.
In particular, τ → ∞ implies p = −1/2, so that
[from the third equation of Eqs. (10)] one obtains

A3(− 1

2
) = ±

(

√

N/6,
√

N/6,−
√

2N/3
)

. (16)

Since A3(p) [as well as B3(p), C3(p), obtained via
index permutation (see appandix B)] is shown to
be a maximum in Sec. IV, indeed A3(p) appears
to be comparable with the τ -dependent maxi-
mum of the (pure) dimer model [10], where a
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unique well ends up to be filled when τ → 0. In-
stead, when τ is increased, no merging of A3(p)
with other maxima [e.g., B3(p), C3(p)] happens
as that observed in the (pure) dimer model. In
this model, in fact, a (macroscopic) coalescence

effect takes place [see Ref. [10, 13]] since two
maxima merge in a unique one when τ > 1 [the
opposite effect (bifurcation) occurs for τ < 1].
As shown in Appendix A, such effects involving
maxima pairs do not distinguish trimer dynam-
ics.
A different macroscopic effect happens, how-

ever,in the trimer phase space. This is caused by
the merging of distinct saddle points (e. g., A1,
A2) discussed above, that disapper for τ > τ∗.
Since chaotic behavior develops around saddle
points, their coalescence should entail an evident
local regularization of dynamical behavior.
As a final remark, we wish to observe that

state A1(−1) exhibits the same per-well boson
distribution of the ground-state. Such two states
differ uniquely owing to the phase of the third
well. Similarly, state A1(0) and the π-like state

(
√

N/2,−
√

N/2, 0) just differ owing to the op-
posite phase of the second well. Despite their
identical boson distribution, such situations will
exhibit very different behavior thus confirming
the profound influence of the interwell phase dif-
ferences in distinguishing dynamical states.

IV. CHARACTER OF FIXED POINTS

In this section we consider the stability char-
acter of fixed points just identified. Such a char-
acter is recognized by studying the second varia-
tion of the energy function on the hyper-surface
defined by N = const. Explicitly, one should
analyze the signature of the quadratic form as-
sociated to the Hessian of H3 (with N = const)
in each fixed point. Being this process rather
technical, we mainly develop it in Appendix D.
Below, after showing how the separation of H3

in two independent (local) subhamiltonians sim-
plifies remarkably the stability analysis, we sum-
marize the results obtained.
To simplify H3, it is advantageous to introduce

the local variables ξj = zj − vj , where vj are
the coordinates of some given fixed point. Then,
neglecting third and fourth order terms, H3 takes
the form

H3 = H3(v) + Σ3
i=1

(

2U |vj|2 − µ− T
)

|ξi|2

+Σ3
j=1U(v∗j ξj + vjξ

∗
j )

2 +
T

4
Σi6=k|ξi − ξk|2, (17)

which undergoes the further semplification vi =
v∗i → xi when one recalls that the phase factor
of vi ∈ C is a constant that can be absorbed
by ξj . This fact allows us to separate H3 in a
q-dependent part and a p-dependent part, with
ξj := qj + ipj . By making explicit the latter
definition in H3, we find

H3 = H0 + h(q ; 6U, T, µ) + h(p ; 2U, T, µ) , (18)

where H0 := H3(v), and

h(q ; 6U, T, µ) :=
∑

ij

(Mq)ij qiqj , (19)

h(p ; 2U, T, µ) :=
∑

ij

(Mp)ij pipj . (20)

Dynamical matrices Mq and Mp are defined as

Mq = −T
2





∆1 1 1
1 ∆2 1
1 1 ∆3



 , (21)

Mp = −T
2





δ1 1 1
1 δ2 1
1 1 δ3



 , (22)

with ∆j := 2(µ − 6Ux2j)/T and δj := 2(µ −
2Ux2j)/T . Hence the diagonalization of the (lo-
cal) quadratic form associated to H3 can be per-
formed in a separate way on (19) and (20). Fur-
ther simplifications come from the fact that ma-
trix Mp is proven to always have a vanishing
eigenvalue (see Appendix C), while, due to the
conserved quantity N = Σi|zi|2 = const, the in-
duced local constraint q1x1 + q2x2 + q3x3 = 0
makes h(q ; 2U, T, µ) dependent only on two vari-
ables qi (see Appendix D).
The stability character for ground-states, vor-

tex states, SDW states, and dimerlike states is
studied explicitly in Appendix D. The calcula-
tion of the H3 second variation and, when this
is necessary, of Hessian eigenvalues provide the
following scenario.

- States with x1 = x2 = x3 are energy minima;

- Vortex configurations are saddle points;

- SDW configurations are saddle points;
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- Dimeric states exhibit two saddle points and
one maximum point for 0 < τ < τ∗.

In the last case the merging of the two saddle
points to form a regular point is enacted for τ →
τ∗. Thus, for τ∗ < τ , a single maximum survives.

V. MAPPING OF DYNAMICS ON THE

REDUCED PHASE SPACE

We develop a both qualitative and quantita-
tive analysis of the chaotic behavior of the trimer
based on the Poincaré section method. After per-
forming a qualitative study of the periodic-orbit
instability, we effect a quantitative analysis by
measuring the very chaos’ indicator, namely the
Lyapunov exponent of every single orbit choosen
near a period one. To this end, we introduce a
more suitable coordinate system involving a sym-
plectic reduction of dynamics.
Hamiltonian (1) depends on three complex de-

grees of freedom and commutes with the boson
number N . This fact as well as the structure of
coupling term in H3 permit us to reduce from
six to four the number of (real) canonical coordi-
nates. The numerical integration of Eqs. (2) thus
furnishes a system picture consisting of a trajec-
tory in a four-dimensional (4d) reduced phase-
space P ∈ C

3. In P , a Poincaré section (PS) is
the figure made by the points where a trajectory
cut a 2d reference plane. The new set of canonical
coordinates used to construct the PS embodies
explicitly the conserved quantity Σ3

i=1|zi|2 = N .
Complex coordinates zi =

√
ni exp(iθi) are re-

placed by

φ1 = θ2 − θ1 , ξ1 = (n2 + n3 − n1)/N

φ2 = θ3 − θ2 , ξ2 = (n3 − n1 − n2)/N

ψ = (θ3 + θ1)/2 , N = n1 + n2 + n3 ,
(23)

which obey the canonical Poisson brackets

{φi, ξj} = −2δij/N , {φi, N} = 0 ,

{ψ, ξj} = 0 , {ψ,N} = −1 .
(24)

With such new variables [28] H3 becomes

E =
2

UN2
H(ξ1, ξ2, φ1, φ2) =

ξ21 + ξ22 − ξ1ξ2 − ξ1 + ξ2 + E0−

τ
√

(1 − ξ1)(ξ1 − ξ2)(1 + ξ2)×

[

cosφ1
√

(1 + ξ2)
+

cosφ2
√

(1− ξ1)
+

cosφ12
√

(ξ1 − ξ2)

]

(25)

in which φ12 := φ1 + φ2, E0 = 1 − 2µ/(UN)
(the associated Hamiltonian equations are con-
tained in Appendix E). In terms of coordinates
(ξ1, ξ2, φ1, φ2) the ground-state configuration (4)
and vortexlike fixed points (6) correspond to

(

1

3
,− 1

3
, 0, 0

)

,
(

1

3
,− 1

3
,
2

3
πk,

2

3
πk

)

,

(k = 1, 2), respectively. Dimeric fixed points
[consider, e. g., A1 in Eq. (10)] are given by

(ξ1, 2ξ1 − 1, 0, π) ,

where ξ1 = 1− 2a21(τ)/N and a1(τ) is defined by
Eqs. (11), whereas SDW states can be expressed
as (0, 0, ϕ, π − ϕ) for n2 = 0.
Operationally, the motion equations (2) are

numerically integrated by using a first-order bi-
lateral sympletic scheme; the algorithm precision
is checked by monitoring the conserved quanti-
ties, that is, the system energy and total number
of bosons. Trajectories can be traced in the phase
space P in terms of ξ1, ξ2, φ1, and φ2. For any
given value of the reduced energy, Hamiltonian
(25) defines a 3d hypersurface in P . The 2d sur-
face used to construct a PS then is obtained by
firming the value of ξ2 to a constant. Hence, PS
is made by coordinates (ξ1, φ1) of the points’ set
in which trajectories cut the selected 2d surface.

A. Discussion of numerical results

We present the results of the numerical analy-
sis aimed at investigating the phenomenology of
the trimer dynamics in proximity of fixed points
-these identify with the periodic orbits that sta-
tionarize H3 with N = const- calculated in Sec.
III. The Hamiltonian parameters and the total
boson number chosen for the numerical simula-
tions are

U = T = 1 , v = 0 , N = 10 ,

respectively. Simulations have been carried out
by using an integration time step of order 1 ×
10−4, while the total number of time steps em-
ployed in constructing each orbit is of order 228.
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For each periodic orbit a PS has been selected
by setting ξ2 = const and dξ2/dt > 0; on this
section we have considered samples of about 100
initial conditions (IC). Also, the maximum Lya-
punov exponent (MLE) has been measured for
each trajectorie of the samples associated to the
extremal periodic orbits.

Ground-state. The PS of this case is fixed by
the condition ξ2 = −1/3. About 100 initial con-
ditions have been choosen in the ξ1−φ1 plane,
placed close to the point (ξ1, φ1) = (1/3, 0).
The energy of the corresponding trajectories is
E ≃ 0.47(UN2/2). Fig. 1 shows that all the tra-
jectories are regular in the phase space P . Their
regular character appears to be consistent with
the periodic character shown by the oscillations
of populations ni = |zi|2 (see Fig. 2) of each
condensate.

Vortexlike initial conditions. The choice ξ2 =
−0.3, E ≃ 0.77(UN2/2) distinguishes the PS of
the present case. The initial conditions for the
trajectories have been chosen close to the fixed
points (ξ1, φ1) = (1/3, 2kπ/3), k = 1, 2 (vor-
tex state). Since no difference distinguishes the
PS with k = 1 and that with k = 2, we re-
strict our attention to k = 1. Fig. 3 shows the
presence of both regular and chaotic trajectories
[Fig. 4 supplies two examples, one for each or-
bit type]. It shows as well that the PS points
related to chaotic trajectories are distributed in
a region well separated from that occupied by
points generating regular orbits. In particular,
the PS displayed in Fig. 3 [together with other
PS involving slightly different ξ2 (≃ −1/3)] sug-
gests that the vortex-state fixed point is basically
surrounded by chaotic orbits. In Fig. 3, to reach
the nearest regular orbits starting from ξ1 = 1/3,
φ1 = −2π/3, a finite variation of both ξ1 and φ1
is necessary.
When this change is carried out the trimer-

population oscillations change in a significant
way. The time evolution of condensate popula-
tions ni (i = 1, 2, 3) related to the nonchaotic
orbit of Fig. 4 is illustrated in Fig. 5 and con-
firms its regular character. By considering IC
closer and closer to the vortex state position such
a character is progressively lost. This is shown
in Fig. 6 that plots populations ni, as a function
of time, for the chaotic trajectory of Fig. 4.
The regular orbit of Fig. 4 involves an evident

self-trapping effect provided their IC are enough
far from (ξ1, φ1) = (1/3,−2π/3). This is clearly

manifested in Fig. 5 where ni(t)’s oscillate in
such a way that n2(t) < n1(s), n3(s), ∀t, ∀s: a
stable gap, in fact, separates n2 from n1, n3. On
the contrary, no stable gap is involved, in general,
by chaotic orbits (see Fig. 6) that develop large
oscillations on the whole range of ni. The fact
that, in average, ni ≃ 1/3 is the only feature
inherited by the vortex state.

SDW-like intial conditions. In this case the
choice ξ2 = −0.002 and E ≃ 1.09(UN2/2) fixes
the PS that is represented in Fig. 7. The zoom
of the section reveals regular trajectories in P
placed near SDW fixed points the latter being
characterized by ξ2 = 0 = ξ1, φ1 = ϕ, φ2 = π−ϕ,
where we have set (ϕ can be choosen arbitrar-
ily) ϕ = 0.57 π. Fig. 8 describes the PS of a
chaotic orbit chosen among those of Fig. 7: The
PS points are distributed in two, well separated,
basins in a quite evident way. The interpretation
of such an effect is the following: after recalling
that setting ξ2 ≃ 0 implies that n3 ≃ 1/2, one
deduces that, concerning the points of the PS,
the values allowed for n1 are either n1 ≃ 1/2 or
n1 ≃ 0, which involves either n2 ≃ 0 or n2 ≃ 1/2,
respectively.
One therefore recognizes the presence of an in-

version population phenomenon beetwen n1 and
n2. Interestingly, no intermediate values seems
to be permitted. The corresponding scenario is
given, on a shorter time interval, in Fig. 9 where
the nonperiodic oscillations of populations n1(t),
n2(t), and n3(t) are compared and a population
inversion effect involving n1, n2 gets going. The
population oscillations referred to a regular or-
bit of those contained in the zoom of Fig. 7 are
shown in Fig. 10.

Dimerlike initial conditions. As proven in Secs.
III and IV, the fixed points of this case con-
sist of two saddle points and a maximum. The
conditions ξ2 = −0.295, E ≃ 0.73(UN2/2) and
ξ2 = −0.005, E ≃ 0.91(UN2/2) firm the PS as-
sociated to the first saddle (see Fig. 11) with
coordinates ξ1 = −ξ2 = 0.295, φ1 = −φ2 = π,
and to the second saddle (see Fig. 15) with co-
ordinates ξ1 = −ξ2 = 0.005, φ1 = −φ2 = π,
respectively. In both the cases, the PS’s exhibit
both regular and chaotic trajectories. Concern-
ing Fig. 11 (first saddle point), the coexistence of
such regimes is confirmed in Fig. 12, where the
PS of a regular trajectory is compared with the
PS of a chaotic one. Figs. 16 shows analogous
quantities referred to the second saddle point. It
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is worth noting that in the latter case the neigh-
bourhood of the saddle point is characterized IC
issuing regular orbits, whereas the first saddle is
surrounded by IC generating chaotic motions.
In Fig. 15, regular orbits reside either on the

bottom or on the top of the figure, but dynamics
never connects the top orbits with the bottom
ones. This feature is confirmed by the time be-
havior (see Fig. 17) of ni(t) related to the regular
trajectory of Fig. 16. In Fig. 17, the presence
of the gap beetwen n2 (≃ 0.5) and n1, n3 (≃ 5)
indicates a macroscopic self-trapping effect. The
latter differs from the dimeric self-trapping re-
viewed in Sec. II-A, where z1 = z3 → n1 = n3,
in that n1, n3 develop independent oscillations.
The scenario just described no longer holds for
the chaotic orbits: Fig. 18 shows an intermittent

effect of population inversion beetwen n1 and n2.
This reflects the fact the points of the chaotic or-
bit of Fig. 16 are distributed intermittently both
in the higher and in the lower part of the PS.
The trajectories near the maximum (we con-

sider the case ξ1 = 0.999, ξ2 = 0.998, φ1 =
−φ2 = π,) appear to be regular, as one can
deduce from Fig. 19 that shows PS close to
a maxium fixed point with ξ2 = 0.8 and E ≃
1.7(UN2/2). In this case, populations n1(t),
n2(t), and n3(t) display in Fig. 20 a periodic
effect of population-inversion involving n1, n2,
whereas the fact that n1, n2 << n3 entails an
evident self-trapping phenomenon.
The averages of the MLEs calculated for the

chaotic orbits are 0.74 (Fig. 3), 0.42 (Fig. 7),
0.29 (Fig. 11), and 0.96 (Fig. 15). The evalua-
tion of the MLE for the regular trajectories de-
scribed in the previous examples (as well as for
those of Fig. 1 and Fig. 19) exhibit the expected
decreasing behavior thus suggesting that a weak
stochasticity occurrs on such trajectories.

VI. CONCLUSIONS

In this paper we have focused our attention
on the structure of the phase space of ’classic’
trimer, that is the mean-field form of the model
describing three interacting BECs. Our analysis
puts in light, on the one hand, the remarkable
complexity that characterizes the trimer dynam-
ics (by comparison with the integrable dynamics
of the dimer system), on the other hand, the phe-
nomena that are expected to characterize theM -
well chain of interacting condensates. In view of

the recent experimental results, the phenomenol-
ogy of this system seems more and more viable to
experimental observations. Trimer dynamics has
been investigated within a semiclassical Hamilto-
nian picture, reviewed in Sec. II and developed in
previous papers, based on a coherent-state rep-
resentation of the trimer quantum state.
The identification of the set of fixed points

of trimer Hamiltonian equations and the fact
that such points are associated to periodic so-
lutions (collective modes) of several types rep-
resents the initial, central result of our paper.
The presence of the constraint N = const en-
tails that the states that stationarize the Hamil-
tonian are not isolated points but periodic orbits
(one-dimensional manifolds). The solutions thus
found enlarge the set of exact solutions [11, 12]
pertaining the dimerlike integrable subregimes
of trimer and exhibiting a parameter-dependent
self-trapping effect.
Based on the second variation (with N =

const) of the energy function around its fixed
points, the character of the latter has been recog-
nized in Sec. IV and appendix D thereby reveal-
ing the presence of several saddle points and max-
ima, in addition to the expected ground-state.
Numerical simulations and the PS method have
furnished a wide scenario of trimer dynamical be-
haviors whose possible chaotic character has been
tested by measuring the maximum Lyapunov ex-
ponent. We summarize the results of our dynam-
ical simulations.
i) The orbits that have ICs close to ground-state
exhibit a regular behavior with periodic oscilla-
tions of populations ni.
ii) On the contrary, orbits with vortexlike IC
(namely based at points close to vortex fixed
points) are, in general, chaotic. Regular orbits,
however, are found at sufficient distance from
vortex fixed points. For such orbits a stable gap
separates the oscillations of ni from those of nj ,
nk (j, k 6= i) thus generating self-trapping; nj , nk

show independent oscillations (in Sec. VI con-
figurations with i = 2, j = 1, k = 3 has been
considered). The gap disappears for chaotic or-
bits.
iii) Orbits with SDW-like ICs also display both
regular and chaotic behaviors but their ICs are
not separated spatially. The regular orbits we
have considered keep memory the IC since one
of the three wells remains almost empty (pure
dimer) while the other two undergo regular os-
cillations. Such states identify essentially with
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π-like states and manifest a stable character. An
example of chaos emergence, which starts with
a macroscopic population inversion entailing the
filling of the (initially) depleted well, has been
detected by assuming various SDW-like ICs in-
volving a chaotic orbits.
iv) Regular orbits generated by dimerlike ICs
(related to the second saddle point) exhibit pe-
riodic oscillations of ni’s with an evident self-

trapping. Chaotic orbits, instead, give rise to os-
cillations displaying self-trapping on short time
intervals and intermittent population-inversion
effects. ICs close to the maxima further gener-
ate regular orbits with self-trapping. The corre-
sponding states display the presence of a unique
almost filled well [21].
The scenario just depicted supplies a rich ac-

count of properties, behaviors and possible ob-
servable effects issuing from trimer dynamics and
suggests promising future developments. An ef-
fect that might have a macroscopic character is
related to the expected chaos suppression (see
Sec. IIID) caused by the A1-A2 coalescence for
τ = τ∗. The basic configurations (ground-state,
vortex states, SDW states, and dimerlike states
involving both saddle and maximum points) rec-
ognized in the present work, and the complex-
ity of dynamical regimes, both chaotic and reg-
ular, that develop in their neighbourhoods de-
serve further investigations in two directions at
least. First, classically, one should carry out a
systematic study (requiring huge computational
resources) of long-time behavior of dynamical
states of interest to disclose further macroscopic
effects. For the same reason, a larger number of
ICs (together with the trajectories thus issued)
should be considered near fixed-point configura-
tions.
We point out the fact that predictions on

the dynamics of phases φi should be important
in relation to phase-interference experiments [3].
This aspect, which has not been deepened in the
present work, requires a separate analysis and
further numerical study directed to detect phe-
nomena exhibiting phase coherence and their sta-
bility in proximity of states endowed with or-
dered phase configurations such as vortex states
(φi = 2πk/3, k = 1, 2), SDW states (φi−φj = π,
i 6= j, |zk| = 0 with i, j 6= k), and dimer configu-
rations (φi = φj , zk 6= zi = zj with i, j 6= k).
Second, in view of the possibility of realizing

systems with small per-well populations, the pure
quantum approach to trimer dynamics (along the

same lines of previous work directed to study the
spectral properties of dimer) seems to be quite
natural. The study of quantum trimer might
put in evidence unexpected effects caused by the
competition of chaotic (classical) behavior and
integrable (quantum) behavior on the border-
line of appropriate mesoscopic regimes where the
transition from quantum to classical dynamics
takes place.
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APPENDIX A: DERIVATION OF FIXED

POINTS

Eqs. (3) can be simplified by noting their in-
variance under the global symmetry transforma-
tion zℓ → zℓ exp(iΦ) and the fact that zℓ/Z ∈ R

(whenever Z 6= 0) with ℓ = 1, 2, 3. Then one can
set zℓ ≡ xℓ exp(iΦ), where the xℓ are real num-
bers and Φ is an arbitrary phase, thus reducing
Eqs. (3) to a system of the three real equations

Ej(x) :=
(

2Ux2j − µ+
T

2

)

xj − T

2
X ≡ 0 , (A1)

with j = 1, 2, 3 and X := x1 + x2 + x3. When
the condition xi 6= 0 for i = 1, 2, 3 is imposed,
the latter equations can be recast in terms of an
equivalent system of three equations one of which
fixes the Lagrange multiplier µ, while the other
two, now formulated in a µ-independent form,
determine x1, x2, x3 thanks to the further con-
dition N = const. In fact, the sum of the quan-
tities Ej(x)/xj can be set equal to zero provided
xj 6= 0 thus giving the equation

3µ = 2UN − T

2
Σi

X − xi
xi

. (A2)



11

Moreover, from E1(x)/x1 − E2(x)/x2 = 0 and
E3(x)/x3 − E2(x)/x2 = 0 one obtains

0 = (x2 − x1)

[

2U(x2 + x1) +
T X

2x1x2

]

, (A3)

0 = (x2 − x3)

[

2U(x2 + x3) +
T X

2x3x2

]

, (A4)

completed by the condition N = x21 + x22 + x23.

APPENDIX B: DERIVATION OF FIXED

POINTS OF DIMER TYPE

Because of the identification x1 = x2 (character-
izing dimerlike fixed points), Eqs. (A3) and (A4)
become a unique equation that can be written as

2U(x21 − x23) =
T

2

[

1 +
x3
x1

− 2
x1
x3

]

. (B1)

Such an expression suggests two possible ways to
parametrize x1, x3

x1 =
√
NR chα , x3 =

√
NR shα ,

x1 =
√
NR shβ , x3 =

√
NR chβ ,

(B2)

both allowing for the elimination of N in the con-
straint 2x21 + x23 ≡ N . They also provide two
independent class of solutions that make explicit
the three roots involved by the cubic character of
Eq. (B1). In the first case one finds

R2 =
1− q2

2 + q2
, R2 =

τ

4

[

1 + q − 2

q

]

, (B3)

[the first formula comes from the constraint on
the total number of bosons, the second one comes
from Eq. (B1)], whereas the second choice gives

R2 =
1− p2

1 + 2p2
, R2 =

τ

4

[

2 p− 1− 1

p

]

, (B4)

where τ := T/UN , q = thα, p = thβ, and α, β ∈
R. System (B3) reduces to the cubic equation

τ(2 + q2)(2 + q) + 4q (1 + q) = 0 , (B5)

which, provided q ∈ [−1,+1] in order to ensure
the condition R2 ≥ 0, supplies either two or none
solutions, depending on the fact that τ < τ∗,
τ > τ∗. By solving the system one finds that

the two roots qν(τ), ν = 1, 2 range in [−1, 0] and
fulfil the conditions

−1 ≤ q1 ≤ q2 ≤ 0 , for 0 ≤ τ ≤ τ∗ ,

with q1(τ) = q2(τ) for τ = τ∗. The parameter
τ∗ is identified by imposing, in addition to Eq.
(B5), the requirement that the two q-dependent
functions of Eqs. (B3) (that is, the two right-
hand sides) are tangent at some point

−6q

(2 + q2)2
≡ τ

4

[

1 +
2

q2

]

. (B6)

Equations (B5) and (B6), solved numerically,
supply the value τ∗ ≃ 0.29718.
Such a structure does not characterize system

(B4), which always exhibits a single solution for
some appropriate value in the sector p ∈ [−1/2, 0]
obtained from the equation

τ(1 + 2p2)(1 + 2p) + 4p (1 + p) = 0 . (B7)

In view of the restriction q, p < 0, from defini-
tions (B2) one deduces that the fixed-point coor-
dinates are such that x1x3 < 0. The three solu-
tions q1(τ), q2(τ), p(τ) just obtained correspond,
within the space of coordinates {(x1, x2, x3)} ≡
R

3, to three vectors expressed as

A1 :=
(

a1, a1,−(a1/|a1|)
√

N − 2a21

)

,

A2 :=
(

a2, a2,−(a2/|a2|)
√

N − 2a22

)

,

A3 :=
(

a3, a3,−(a3/|a3|)
√

N − 2a23

)

,

(B8)

where

a3 = ±
[

Np2

1 + 2p2

]

1

2

, aν = ±
[

N

2 + q2ν

]
1

2

,

(B9)
with qν , p solving Eqs. (B5), (B7). One can eas-
ily check that the two τ -dependent curves A1 and
A2 can be seen as two branches of a unique curve
based at the common point A1(q1) = A2(q2) for
τ = τ∗, where they join smoothly.
Dimerlike fixed points become nine when con-

sidering the further set of points generated by
index permutations

B1 := (a1,−(a1/|a1|)
√

N − 2a21, a1),

B2 := (a2,−(a2/|a2|)
√

N − 2a22, a2),

B3 := (a3,−(a3/|a3|)
√

N − 2a23, a3),

(B10)
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C1 := (−(a1/|a1|)
√

N − 2a21, a1, a1),

C2 := (−(a2/|a2|)
√

N − 2a22, a2, a2),

C3 := (−(a3/|a3|
√

N − 2a23, a3, a3),

(B11)

related to the subcases x1 = x3 6= x2 and x3 =
x2 6= x1. Such nine curves become actually six.
Our previous observation on considering A1 and
A2 as a unique curve, in fact, readily extends the
other curves B1, B2, and C1, C2. Owing to the
double choice ± in formula (11) such curves are
twelve.
In order to visualize the dimerlike fixed points,

one can plot their position vectors Aℓ, Bℓ, Cℓ

ℓ = 1, 2, 3 within the three-dimensional space by
varying their parameters aℓ (ℓ = 1, 2, 3) in the
appropriate range. As noted above, in the case
τ < τ∗, for q ranging in the intervall [−1, 0 ], Eq.
(B5) exhibits two solutions, whereas, for any τ ,
Eq. (B7) admits one solution with p ∈ [−1/2, 0 ].
The corresponding ranges of variation for aν
(ν = 1, 2) and a3 are

√

N

3
≤ |aν | ≤

√

N

2
, 0 ≤ |a3| ≤

√

N

6
,

respectively. The representation of the position
of dimeric fixed points on the sphere Σix

2
i = N

provides arcs that never intersect the one with
the other when τ ranges in [0,∞].
The double sign ± in parametrizations (B9)

entails that each curve Pj (P = A,B,C) is
formed by two disjoint curves. For P3 (P =
A,B,C) one has

a3 ∈ [−
√

N/6, 0[ , a3 ∈ ]0,
√

N/6],

while for P1 and P2 (P = A,B,C) the two dis-
joint branches are originated by the mappings
aν → Pν with

aν ∈ [−
√

N/2,−
√

N/3] , aν ∈ [
√

N/3,
√

N/2] .

APPENDIX C

The diagonalization process of Mp allows one to
prove that one of the eigenvalues is always zero.
¿From the standard condition det(Mp − λ) = 0
one obtains the eigenvalue equation (upon intro-
ducing Λ := 2λ/T )

Λ3 + (Σjδj)Λ
2 + (δ1δ2 + δ2δ3 + δ3δ1 − 3)Λ+

+ δ1δ2δ3 + 2− Σiδi = 0 (C1)

where δ1δ2δ3+2−Σjδj , upon setting δj ≡ −(xℓ+
xk)/xj owing to Eqs. (A1), can be shown to
vanish in virtue of the identity

Π∗
j

xℓ + xk
xj

= 2 + Σ∗
j

xℓ + xk
xj

.

The superscript symbol ∗ recalls that the indices
ℓ, k, and j must differ the one from the other.
Hence, as a general result, the diagonalization
of Mp entails the presence of a zero eigenvalue
consistent with the analysis of dynamics in the
reduced phase space we develop in the sequel. In
view of the invariance of the matrix trace, one
also finds

Σ3
j=1λj = −T

2
Σ3

j=1δj →

→ λ1 + λ2 ≡ T

2
Σj

xℓ + xk
xj

(≡ −3µ+ 2UN)

while the two roots

λν =
T

4

[

−∆±
√

(∆)2 − 4(∆123 − 3)
]

(C2)

where, ∆ = Σi δi and ∆123 := Σi δ1δ2δ3/δi, and
ν = 1, 2, [ λ1 (λ2) is associated with − (+) in the
formula], are derived from the quadratic equation
that emerges from Eq. (C1) when removing a
factor Λ.

APPENDIX D

This appendix is devoted to recognize, case by
case, the minima, the maxima and the hyperbolic
points within the four (class of) states identified
as fixed points.
Concerning the eigenvalues of matrix Mq one

must take into account the restriction on the dis-
placements ξi from vi induced by the constraint
N = Σi|zi|2 = const. After recalling that the
phase of vi can be absorbed, for each i, by ξi
due to its arbitrariness, the substitution vi → xi
implies that

N = Σi |ξi + xi|2 = Σi

[

|ξi|2 + 2qixi + x2i
]

,

which, in turn, entails Σi|ξi|2+2qixi = 0, namely
–to first order– the plane equation

q1x1 + q2x2 + q3x3 = 0 .



13

It represents the restriction on the displacements
that variables ξi’s are allowed to effect. Substi-
tuting qi with qi = −(xrqr + xsqs)/xi, where
r, s 6= i (and the choice of i depends in general
on the condition xi 6= 0) finally gives

h(q ; 6U, T, µ) ≡

[

2
xrxs
x2i

(6Ux2i − µ) +
T (xr + xs − xi)

xi

]

qrqs+

+Σj 6=i

[

12Ux2j −
µ

x2i
(x2i + x2j ) + T

xj
xi

]

q2j , (D1)

1. Ground-state case

These fixed points are characterized by the fact
that xj = ±

√

N/3, for j = 1, 2, 3, and µ =
2UN/3 − T . By inserting this solutions in Eq.
(18) one obtains the Hamiltonian written as

H3 = Egs +

3
∑

j=1

[

(
4

3
UN + T )q2j + Tp2j

]

+

− T

2

3
∑

i6=j=1

(pipj + qiqj) ,

where Egs is the ground state energy defined pre-
viously. Then, by taking the constraint N =
Σ3

j=1|zj|2 into account, one obtains Σ3
j=1[q

2
j +

p2j ± 2
√

N/3qj ] = 0. For little displacements
from qj = 0 = pj the latter equation reduces
to Σ3

j=1qj = 0, which implies that

H3 ≃ Egs + (
8

3
UN + 3T )(q21 + q22 + q1q2) +

T

3
∑

i=1

p2i −
T

2

3
∑

i6=j=1

pipj . (D2)

The eigenvalues of the Hessian corresponding to
the q-dependent and the p-dependent part of
H3 are {(3τ + 8/3)UN/2, (9τ + 8)UN/2} and
{0, 3T/2, 3T/2}, respectively. They are positive,
coherent with the fact this is a minimum.

2. Vortex case

The conditions |xi|2 = N/3 and µ = (4NU +
3T )/6 characterize vortex configurations. One

thus finds

h(p; 2U, T, µ) = −T (p1 + p2 + p3)
2/2 < 0 ,

whereas from Eq. (D1) one gets

h(q ; 6U, T, µ) = 8UN(q21 + q22 + q1q2)/3 > 0

whose eigenvalues are always postive. Vortex
configurations are therefore saddle points.

3. SDW case

The previous analysis shows that the (fixed
point) configurations in which one of the three
well is depleted (e. g., well i = 2) is such that

x2 = 0, x1 = −x3 = ±
√

N/2 (π-state structure),
and µ = NU + T/2. Site index permutations al-
lows one to obtain two further, similar cases. In
these points, Hamiltionan (18) can be written as

H3 = Edw + UN
[

2(q21 + q23)− q22

]

+

− T

2

[

(

3
∑

i=1

qi)
2 + (

3
∑

i=1

pi)
2
]

,

In this case, the constraint on the total number of
particles supplies the constraint

∑3
j=1(p

2
j + q

2
j )±√

2N(q1 − q3) = 0, which reduces to q1 − q3 ≃ 0
when qj , pj ≃ 0. Then H3 takes the form

H3 ≃ Edw + UN(4q21 − q22)− UNp22 +

−T
2

[

(2q1 + q2)
2 + (p1 + p2 + p3)

2
]

, (D3)

whose Hessian matrix is endowed with the eigen-
values {(6−5τ±

√

5(20− 12τ + 5τ2))UN/4} and
{0,−(2 + 3τ ±

√
4− 4τ + 9τ2)UN/4} for the q-

dependent part and the p-dependent part, re-
spectively. The analysis of the signature of such
eigenvalues leads to identify the fixed points of
the empty-well case with saddle points.

4. Dimeric case

In the dimeric case the conditions on the co-
ordinates are x := x1 = x2 6= x3 =: y (none
vanishing). Furthermore, one has to impose the
condition (2Ux2j − µ)xj = T/2

∑

k 6=j xk on the
Lagrange multiplier µ that becomes

µ = (2UN − T (1 + y/x+ x/y))/3 . (D4)
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Let us start by analyzing the Hessian eigenval-
ues of Hamiltonian p sector namely of Eq. (20).
These eigenvalues are given by Eq. (C2) and one
has that whenever the term σ := (δ1δ2 + δ2δ3 +
δ3δ1 − 3) is greater then zero, these eingevalues
are negative. To verify the condition σ > 0 one
can proceed in the following way. First, one sub-
stitutes in σ the δj written in term of thier defi-
nitions; namely in term of µ, T , U and the fixed
points coordinates x, y, Second, one writes µ in
terms of x, y and etc. [Eq. (D4)]. Finally, one
eliminates the dependence on x, y and T in σ by
choosing either the parametrization

y/x = q , x = ±
√

N/(2 + q2)

combined with Eq. (B5) to express the q-
dependence of τ , or the parametrization

x/y = p , x = ±
√

Np2/(1 + 2p2)

combined with equation (B7) to express the p-
dependence of τ . The expression for σ achieved
in such a way depends on q or p, respectively.
One can show that both the expressions are al-
ways positive in the range of definition of q
([−1, 0]) and p ([−1/2, 0]), which means that
eigenvalues (C2) are all negative.
As usual, for working out the Hessian eigen-

values of Hamiltonian (19) related to the q part
of the original one, it is necessary to take into
account the constraint Σi|zi|2 = N = const.
The latter, in the present case, becomes q3 ≡
−(q1 + q2)x/y. By means of this condition, one
can reduce the dimension of the eigenvalues prob-
lem related to Hamiltonian (19) from 9 to 4. The
Hamiltonian hr(q1, q2, U, µ, T ) thereby obtained
can be further simplified through the substitu-
tions µ → µ = [2UN − T (1 + y/x + 2x/y)]/3
and y/x = q or x/y = p, depending on the
parametrization one adopts. With the first choice
(y/x = q), and relying on Eq. (B5), one finds two
Hessian eigevalues one of which is always posi-
tive, whereas the other has an illdefined sign in
the domain q ∈ [−1, 0]. By using the second
parametrization x/y = p and Eq. (B7), both the
eigenvalues thus obtained can be proven to be
negative for p ∈ [−1/2, 0]. In summary, in the
dimeric case, for 0 < τ < τ∗, one has two saddle
points and one maximum point; for τ∗ < τ , in-
stead, fixed points reduce to a single maximum
point.

APPENDIX E

The fixed-point configurations corresponding to
the change of Hamiltonian variables zi, z

∗
i → ξa

φa, N , ψ are obtained from the equations of mo-
tion rewritten in terms of the new variables (see
below). Coordinates transformation (23) can ex-
hibit (isolated) singular points in which they are
not invertible. Dimer configurations in the pres-
ence of an empty well provides an explicit exam-
ple where transformations (23) are illdefined. In
fact, fixed points

(zi) = (
√

N/2 exp iφ, 0,
√

N/2 exp i(φ+ π))

correspond to the set {(0, 0, χ, π−χ)|∀χ}, in the
new description. As regards dynamical applica-
tions, fortunately, this problem is bypassed be-
cause the trajectories chosen in proximity of the
periodic orbits associated to this kind of fixed
points (as well as the PS used to study the dy-
namics near the same fixed points) do not con-
tain, by construction, such pathological points.
Upon setting φ12 := φ1 + φ2, s := UNt, the
equations of motion on the reduced phase space
are given by

dφ1
ds

= 1− 2ξ1 + ξ2 +
τ

2

[

√

1 + ξ2
ξ1 − ξ2

cosφ2 +

(1− 2ξ1 + ξ2) cosφ1
√

(1− ξ1)(ξ1 − ξ2)
−
√

1 + ξ2
1− ξ1

cosφ12

]

(E1)

−dφ2
ds

= 1− ξ1 + 2ξ2 +
τ

2

[

√

1− ξ1
ξ1 − ξ2

cosφ1 +

(1− ξ1 + 2ξ2) cosφ2
√

(ξ1 − ξ2)(1 + ξ2)
−
√

1− ξ1
1 + ξ2

cosφ12

]

(E2)

dξ1
ds

= τ
√

(1− ξ1)(ξ1 − ξ2) sinφ1 +

τ
√

(1− ξ1)(1 + ξ2) sinφ12 (E3)

dξ2
ds

= τ
√

(ξ1 − ξ2)(1 + ξ2) sinφ2 +

τ
√

(1 − ξ1)(1 + ξ2) sinφ12 . (E4)
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FIG. 1: Poincaré section at E ≃ 0.47(UN2/2) and
ξ2 = −1/3. In the neighbourhood of the ground-state
the phase-space trajectories are regular.

FIG. 2: Tipical time evolution of the condensates’
populations related to a motion with initial condi-
tions close to a ground-state configuration. Solid
line refers to n1(t), dashed line corresponds to n2(t),
n3(t) is represented by the dotted line. The dynam-
ics appears to be periodic (within the simulation time
scale).

FIG. 3: Poincaré section at E ≃ 0.77(UN2/2) and
ξ2 = −0.3 for orbits close to a vortexlike fixed point.
Even if some regular orbits are present, phase-space
trajectories show a dominating chaotic character.
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FIG. 4: Representation of a regular orbit (identified
by the almost continuous line) and of a chaotic one
chosen among those of the PS of Fig. 3.

FIG. 5: Time evolution of condensate populations
n1(t) (solid line), n2(t) (dashed line) and n3(t) (dot-
ted line) for the regular trajectory of Fig. 4.

FIG. 6: Populations n1 (solid line), n2 (dashed line)
and n3 (dotted line) are plotted as a function of the
time for the chaotic trajectory showed in Fig. 4.

FIG. 7: Poincaré section at E ≃ 1.09(UN2/2) and
ξ2 = −0.002 relative to orbits close to a SDW fixed
point

FIG. 8: Representation of one of the chaotic trajec-
tories contained in the Poincaré section of Fig. 7.

FIG. 9: The figure plots the populations n1(t) (solid
line), n2(t) (dashed line) and n3(t) (dotted line), as
a function of the time, for the chaotic trajectory
showed in Fig. 8.

FIG. 10: Populations of the three condensates: n1

(solid line), n2 (dashed line) and n3 (dotted line) as
a function of the time for a regular trajectory of the
zoom showed in Fig. 7.

FIG. 11: Poincaré section firmed by the conditions
ξ2 = −0.295 and E ≃ 0.73(UN2/2), close to a
dimeric (saddle) fixed point.

FIG. 12: This figure shows a regular trajectory and
a chaotic one chosen among those of Fig. 11.

FIG. 13: Temporal behavior of the condensates pop-
ulations related to the regular trajectory of Fig. 12.
The solid line, the dashed line, and the dotted line
refer to n1(t), n2(t) and n3(t), respectively.

FIG. 14: Condensates populations, as a function of
the time, related to the chaotic trajectory of Fig. 12.
The solid line, the dashed line, and the dotted line
refer to n1(t), n2(t) and n3(t), respectively.

FIG. 15: Poincaré section firmed by the conditions
ξ2 = −0.005 and E ≃ 0.91(UN2/2), close to a saddle
dimeric fixed point.

FIG. 16: This figure shows a regular trajectory and
a chaotic one chosen among those of Fig. 15.

FIG. 17: Temporal behavior of the condensates pop-
ulations related to the regular trajectory of Fig. 16.
The solid line, the dashed line, and the dotted line
trace n1(t), n2(t) and n3(t), respectively.
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FIG. 18: Condensates populations, as a function of
the time, related to the chaotic trajectory of Fig. 16.
The solid line, the dashed line, and the dotted line
trace n1(t), n2(t) and n3(t) respectively.

FIG. 19: Poincaré section near a maximum at E ≃

1.7(UN2/2) and ξ2 ≃ 0.8. In the neighbourhood of
the maxima the phase space trajectories are regular.

FIG. 20: Time evolution of the condensates popula-
tions related to a motion with initial conditions close
to a maximum state configuration. Figure shows
n1(t) (solid line), n2(t) (dashed line), and n3(t) (dot-
ted line). The motion appears to be regular.
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