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Abstract: Diagnosing atypical pigmented facial lesions (aPFLs) is a challenging topic for dermatol-
ogists. Accurate diagnosis of these lesions is crucial for effective patient management, especially
in dermatology, where visual assessment plays a central role. Incorrect diagnoses can result in
mismanagement, delays in appropriate interventions, and potential harm. AI, however, holds the
potential to enhance diagnostic accuracy and provide reliable support to clinicians. This work aimed
to evaluate and compare the effectiveness of machine learning (logistic regression of lesion features
and patient metadata) and deep learning (CNN analysis of images) models in dermoscopy diagnosis
and the management of aPFLs. This study involved the analysis of 1197 dermoscopic images of
facial lesions excised due to suspicious and histologically confirmed malignancy, classified into
seven classes (lentigo maligna—LM; lentigo maligna melanoma—LMM; atypical nevi—AN; pig-
mented actinic keratosis—PAK; solar lentigo—SL; seborrheic keratosis—SK; and seborrheic lichenoid
keratosis—SLK). Image samples were collected through the Integrated Dermoscopy Score (iDScore)
project. The statistical analysis of the dataset shows that the patients mean age was 65.5 ± 14.2, and
the gender was equally distributed (580 males—48.5%; 617 females—51.5%). A total of 41.7% of the
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sample constituted malignant lesions (LM and LMM). Meanwhile, the benign lesions were mainly
PAK (19.3%), followed by SL (22.2%), AN (10.4%), SK (4.0%), and SLK (2.3%). The lesions were mainly
localised in the cheek and nose areas. A stratified analysis of the assessment provided by the enrolled
dermatologists was also performed, resulting in 2445 evaluations of the 1197 images (2.1 evaluations
per image on average). The physicians demonstrated higher accuracy in differentiating between
malignant and benign lesions (71.2%) than in distinguishing between the seven specific diagnoses
across all the images (42.9%). The logistic regression model obtained a precision of 39.1%, a sensitivity
of 100%, a specificity of 33.9%, and an accuracy of 53.6% on the test set, while the CNN model showed
lower sensitivity (58.2%) and higher precision (47.0%), specificity (90.8%), and accuracy (59.5%) for
melanoma diagnosis. This research demonstrates how AI can enhance the diagnostic accuracy in
complex dermatological cases like aPFLs by integrating AI models with clinical data and evaluat-
ing different diagnostic approaches, paving the way for more precise and scalable AI applications
in dermatology, showing their critical role in improving patient management and the outcomes
in dermatology.

Keywords: machine learning; deep learning; dermatoscopy; convolutional neural network; logistic
regression; skin cancer; pigmented facial lesions; iDScore

1. Introduction

Melanoma is a malignant tumour originating from melanocytes, the cells responsible
for producing melanin, the pigment that gives skin its colour. While it is curable with exci-
sion in the early stages, it is an aggressive form of skin cancer in more advanced stages. The
incidence of melanoma has risen globally. A new study from the International Agency for
Research on Cancer (IARC) and its partners predicted that the number of new cases of cu-
taneous melanoma per year will increase by more than 50% from 2020 to 2040, raising from
325,000 to 510,000 new cases, with a 68% increase in deaths (from 57,000 to 96,000 deaths
per year) [1]. In the United States alone, it is projected that about 100,640 new cases of
invasive melanoma will be diagnosed, leading to approximately 8290 deaths [2]. These
data highlight the continuing burden of melanoma [3] and underscore the importance of
ongoing research and advances in melanoma treatment. There is ongoing discussion about
the risk of overdiagnosis in the context of pigmented skin lesions [4]. Facial melanomas, par-
ticularly lentigo maligna (LM) and lentigo maligna melanoma (LMM), are often associated
with chronic exposure to ultraviolet (UV) light. LM is an in situ melanoma characterised
by atypical melanocytes along the basal layer of the epidermis. It typically affects elderly
individuals and is most commonly found on the face and neck. When LM invades the
dermis, it becomes LMM, a more aggressive form of melanoma [5]. Atypical pigmented
facial lesions (aPFLs) refer to unusual or abnormal spots or areas of discolouration on the
face that are darker than the surrounding skin. These lesions can vary in colour, size, shape,
and texture and may not fit the typical characteristics of common skin conditions. aPFLs
pose a unique challenge for dermatologists due to their complex visual characteristics and
the high stakes of an accurate diagnosis. Diagnosing facial melanoma is challenging due to
its atypical presentation and the presence of benign lesions that can mimic its appearance.
The introduction of dermoscopy—i.e., the examination of a skin lesion at high magnification
using transillumination to visualise its subtle features—has been a watershed moment in
the early detection of malignant melanoma [6]. However, dermoscopic-based diagnosis is
operator-dependent and requires extensive personal training [7]. Moreover, a misdiagnosis
could result in unneeded surgery or the incorrect treatment [8]. Epidemiological studies
that have assessed skin screening have found that it leads to increased detection of tumours,
which suggests a high degree of overdiagnosis [9].

Artificial intelligence (AI) has emerged as a transformative technology in numerous
fields, including medicine. AI offers tools that enhance diagnostic accuracy, treatment
planning, and patient management. Within AI, machine learning (ML) and deep learning
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(DL) are capable of processing vast amounts of data, identifying patterns, and enhancing
the diagnostic accuracy and more objective decision-making in healthcare by reducing
misdiagnoses and overdiagnosis [10]. These capabilities are particularly valuable in fields
that rely heavily on image analysis, such as radiology, pathology, and dermatology [11].
ML encompasses a variety of algorithms that enable computers to learn from data. These
algorithms can be broadly categorised into supervised learning and unsupervised learning.
Supervised learning (e.g., logistic regression—LR; linear regression; decision tree; random
forest; and support vector machines), which involves training a model on a labelled dataset,
is particularly useful for classification tasks such as diagnosing diseases based on medical
images [12]. Unsupervised learning (e.g., hierarchical clustering, k-means clustering),
which identifies patterns in data without labelled outcomes, is often used for clustering
and dimensionality reduction [13]. On the other hand, DL involves neural networks
with multiple layers that can learn complex data representations. Convolutional neural
networks (CNNs) are a type of DL model specifically designed for image analysis. They use
convolutional layers to automatically detect features such as edges, textures, and shapes
within images, making them particularly effective for tasks such as image classification
and object detection, outperforming the traditional methods [14]. CNN-based decision
support systems are proven to be efficient tools in dermatology, as they can help reduce
the ratio of inappropriate excisions [8]. However, CNNs may exhibit poor performance
on skin lesion segmentation tests due to a lack of knowledge of the long-range spatial
linkages in skin lesion images. AI vision models based on the Transformer deep learning
architecture introduced in 2017 [15], such as Vision Transformers (ViTs) [16], can address
this constraint [17]. Moreover, recent studies have proposed modified DL models [18]
and multimodal AI systems [19] for improving skin cancer classifications. Multimodal
Large Language Models (MLLMs) may have a strong impact on visual medical specialities
such as dermatology. Specifically, they may have the capability to free up physicians’
time and allow them to focus on more complex cases and critical patient care by learning
simultaneously from images and words to tackle several tasks, including image recognition,
answering visual questions, understanding documents, and image captioning.

This study aims to compare a traditional ML approach with advanced DL tech-
niques by evaluating and comparing the effectiveness of two AI-based models—a logistic
regression-based scoring model and a CNN model—in the diagnosis of aPFLs. The training
dataset employed for both models is made up of 1197 dermoscopic images of facial lesions
excised due to suspicious and histologically confirmed malignancy collected within the
EU Integrated Dermoscopy Score (iDScore) project. The CNN-based model will be trained
only on the raw images. The key advantage of using a CNN for this task is that it can
automatically learn the important features without the need to incorporate other features
(such as patient metadata) to use as inputs to the model, as the CNN will learn these
features automatically from the data, providing an objective way to evaluate aPFLs. More-
over, recent studies have demonstrated how the integration of dermoscopic images with
metadata does not reflect a substantial increase in the model performance [8,20]. On the
other hand, the LR-based model will also incorporate patient metadata and dermoscopic
features identified by dermatologists, whose assessment is subjective and dependent on
their experience as physicians.

Its ultimate scope is to provide insights about their potential and limitations in im-
proving diagnostic accuracy and patient management.

2. Materials and Methods

The iDScore project is a multicentric European project, promoted by the working
group of the teledermatology task force of the European Academy of Dermatology and
Venereology and focused on the development of a decision support system to improve the
diagnosis of difficult melanoma skin lesions [21]. The iDScore project has three different sub-
projects: the iDScore-PalmoPlantar project, the iDScore-Body project, and the iDScore-Facial
project. The three projects aim to study melanoma and its simulators and to create decision
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support systems to help dermatologists in diagnosing and distinguishing between them.
The iDScore-Facial project was a retrospective multicentric study aimed at developing
a diagnostic support tool for the differential diagnosis of LM [22,23]. It constituted two
phases: image collection and image testing. The former consisted of the enrolment of
several centres that contributed to providing dermoscopic images and other information
on melanoma and non-melanoma cases (Section 2.1). The latter consisted of the evaluation
of these images by European dermatologists with various levels of experience (Section 2.2).

2.1. Image Collection

This study involved a retrospective, multicentric collection of dermoscopic images
from twelve European centres: the Universities of Siena (Italy), Modena (Italy), Reggio
Emilia (Italy), Napoli (Italy), Bologna (Italy), Aviano (Italy), Trieste (Italy), Thessaloniki
(Greece), Nis (Serbia), Saint Etienne (France), Brussels (Belgium), and Gothenburg (Sweden).
Each centre provided at least 80 cases of facial skin lesions, including a minimum of 30 ma-
lignant and 50 benign lesions. Lesions on the eyelids, lips, and ears were excluded from the
study. Each lesion was excised due to suspicion of malignancy and subsequently confirmed
by histological examination. The dataset included two malignant diagnoses (LM and
LMM) and five benign diagnoses (atypical nevi—AN; pigmented actinic keratosis—PAK;
solar lentigo—SL; seborrheic keratosis—SK; and seborrheic lichenoid keratosis—SLK)
(Table 1). For each lesion, a high-quality dermoscopic image (at 10× to 20× magnification,
in JPEG/TIFF format, and with a resolution > 150 dpi) was provided (Figure 1). Optional
clinical images were included when they were available.

Figure 1. Examples of images for each diagnosis in the iDScore database. (A) Atypical nevi, (B) lentigo
maligna, (C) pigmented actinic keratosis, (D) seborrheic keratosis, (E) seborrheic lichenoid keratosis,
(F) solar lentigo.

The mandatory data collected for each case included the histological diagnosis, the
patient’s sex, the patient’s age, and the lesion’s diameter. Optional data included the
phototype, the presence of pheomelanin, whether the patient had blond hair, whether they
had green/light blue eyes, history of multiple nevi, family history of melanoma, and history
of sunburns before the age of 14.
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Table 1. Distribution of 1197 dermoscopic images collected.

Diagnosis Distribution of Images

Lentigo Maligna (LM) and Lentigo Maligna Melanoma (LMM) 503 (41.7%)
Pigmented Actinic Keratosis (PAK) 200 (19.3%)
Solar Lentigo (SL) 200 (22.2%)
Atypical Nevi (AN) 194 (10.4%)
Seborrheic Keratosis (SK) 50 (4.0%)
Seborrheic Lichenoid Keratosis (SLK) 50 (2.3%)

2.2. Image Testing

A total of 154 European dermatologists with varying levels of experience in der-
moscopy participated in this study according to the protocol described by Tognetti et al. [23].
The distribution of the dermatologists’ experience is reported in Figure 2.

Figure 2. Distribution of dermatologists’ expertise in dermoscopy.

Each dermatologist was provided with a panel of 20 cases to evaluate. The panels
were randomly assigned, ensuring that the participants did not assess images from their
own centres. Each panel included 12 benign and 8 malignant cases, with no indication
of the distribution provided to the participants. The evaluation process required the
dermatologists to assess (as present/not present) 14 dermoscopic patterns [23] (Table 2).
For each image, the physicians had to make a pattern diagnosis, rate their confidence in their
diagnosis and the difficulty of each case on a 5-point Likert scale (very easy, easy, moderate,
difficult, or very difficult) [24], and recommend a management plan (e.g., excision/biopsy,
reflectance confocal microscopy, other non-invasive examinations, or close follow-up).
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Table 2. Dermoscopic patterns assessed by dermatologists.

Dermoscopic Pattern Definition

Hyperpigmented follicular ostia Fine, irregular semicircles or double circles
Obliterated follicular ostia Closed follicular openings
Rhomboidal structures Polygonal lines forming rhomboids
Grey rhomboidal lines Grey dots/lines arranged in a rhomboidal pattern
Slate-grey dots and globules Grey dots/globules around follicles
Grey structureless areas Homogeneous grey areas
Grey pseudo-network Grey lines forming a pseudo-network
Light brown/dark brown pseudo-network Brown lines forming a pseudo-network
Fine pigmented brown network Thin brown lines forming a network
Atypical network Irregularly arranged network lines
Circle within a circle Dark circle within a hyperpigmented hair follicle
Irregularly pigmented globules Dispersed brown/black globules
Dark dots Black dots within the lesion
Pseudopods Peripheral projections of pigment

2.3. Model Development

Two models were developed for this study: a logistic regression-based scoring model
and a CNN model. The former was developed with R v4.3.1, while the latter was developed
with Python v3.8 and the PyTorch framework v2.2.0.

• The Logistic Regression Scoring Model: This model was developed using a stepwise
logistic regression approach, incorporating the 14 dermoscopic patterns described in
Section 2.2, the patient’s age and sex, and lesion diameter as the predictor variables.
The binary outcome consisted of malignant lesions (LM + LMM) vs. benign lesions
(SK + SL + SLK + PAK + AN). The stepwise procedure was a forward–backward pro-
cedure based on the Area Under the Receiver Operating Characteristic (AUROC) [25].
A variable could be added or removed only if it contributed at least 0.003 of the
AUROC and was statistically significant. The model was trained and validated with a
5-fold cross-validation technique on 80% of the dataset. The best-performing model
was then selected and tested on the remaining 20% of the data. The coefficients were
transformed into integer scores to create a user-friendly scoring system for clinical use.

• The CNN Model: A ResNet-34 architecture [26] was employed. Other experiments
with more complex models, such as ResNet-101, EfficientNet B0, and EfficientNet
B1, have also been performed previously, obtaining similar or worse results. For this
reason, the simplest model (ResNet-34) was chosen and presented. The pre-trained
model was fine-tuned on 1197 collected images (see Section 2.1) and 743 images of
facial aPFLs extracted from the International Skin Imaging Collaboration (ISIC) 2018
dataset [27]. LM and LMM diagnoses were aggregated because of their similar super-
ficial patterns. The model was trained and validated with 5-fold cross-validation and
finally tested on 111 unseen images. Data augmentation was performed on the dataset
by applying geometric and colour transformations: crop (probability = 0.1), horizontal
flip (probability = 0.5), vertical flip (probability = 0.5), and colour transformations
(brightness, contrast, and saturation transformations with probability = 0.1). The final
parameters for training the CNN model were selected after 5-fold cross-validation to
optimize the performance (Table 3). An early stopping rule was also defined to manage
overfitting. The training stopped if the validation loss did not decrease by at least 0.03
within 10 epochs. The final model was that with the lowest loss at the beginning of the
early stopping epoch count. Cross-entropy weighted for class frequency was chosen
as the loss function, the AdamW stochastic gradient descent method was chosen as
the optimizer, and “reduce learning rate on plateau” was chosen as the learning rate
scheduler (factor = 0.1, patience = 3, and threshold = 0.0001) [28].
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Table 3. Parameters set for the CNN training.

Parameter Value

Initial learning rate 1 × 10−5

Maximum epochs 50
Batch size 32
Early stopping 10 epochs
Loss function Cross-entropy weighted for class frequency
Optimizer AdamW
Learning rate scheduler Reduce learning rate on plateau

3. Results
3.1. Statistical Analysis

The majority (90%) of the 1197 images collected (see Section 2.1) were captured with a
camera-based system or a videodermatoscope. The remaining images were collected with a
smartphone-based system. The patients’ mean age (±standard deviation) was 65.5 ± 14.2,
and their gender was equally distributed (580 males—48.5%; 617 females—51.5%). A total
of 41.7% of the sample constituted malignant lesions (LM and LMM). Meanwhile, the
benign lesions were mainly PAK (19.3%), followed by SL (22.2%), AN (10.4%), SK (4.0%),
and SLK (2.3%) (Table 1). Figure 3 shows the distribution of the anatomical sites of the
collected lesions. The lesions were mainly localised in the cheek and nose areas.

Figure 3. Distribution of the specific subareas of the face.

Since experience is a major factor influencing diagnostic accuracy and pattern recogni-
tion, a stratified analysis of the assessment provided by the enrolled dermatologists was
performed. At the end of the image testing phase, 2445 evaluations of 1197 images were
obtained (2.1 evaluations per image on average). Considering the assessment of case diffi-
culty, the dermatologists found the malignant lesions were the most challenging to evaluate.
Similarly, cases that were considered easier to assess coincided with SL. Regarding their
diagnostic confidence, the dermatologists also felt more confident about SL, but once again,
they were less confident about malignant lesions (Table 4). Histology was not known to the
participants at this stage.
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Table 4. Distribution of case ratings, confidence in pattern diagnosis, and management for each diagnosis.

Atypical
Nevus

Lentigo
Maligna

Lentigo
Maligna

Melanoma

Pigmented
Actinic Keratosis

Seborrheic
Keratosis

Seborrheic
Lichenoid
Keratosis

Solar
Lentigo

Case rating

Very easy 11 8.5% 19 14.7% 24 18.6% 23 17.8% 9 7.0% 0 0.00% 43 33.3%
Easy 52 10.1% 115 22.3% 37 7.2% 110 21.4% 26 5.1% 21 4.1% 154 29.9%
Moderate 106 10.2% 306 29.6% 102 9.9% 202 19.5% 44 4.2% 28 2.7% 247 23.9%
Difficult 71 12.5% 177 31.2% 91 16.0% 113 19.9% 19 3.4% 10 1.8% 87 15.3%
Very difficult 27 13.6% 52 26.3% 30 15.2% 35 17.7% 7 3.5% 4 2.0% 43 21.7%

Confidence in diagnosis

Very confident 24 8.1% 60 20.2% 35 11.8% 47 15.8% 15 5.1% 11 3.7% 105 35.4%
Mildly confident 110 11.6% 249 26.2% 82 8.6% 201 21.1% 54 5.7% 30 3.2% 226 23.7%
Uncertain 72 10.3% 220 31.5% 97 13.9% 139 19.9% 20 2.9% 15 2.2% 135 19.3%
Mildly under-confident 34 13.3% 68 26.7% 42 16.5% 45 17.7% 8 3.1% 2 0.8% 56 22.0%
Not confident 27 11.1% 72 29.6% 28 11.5% 51 21.0% 8 3.3% 5 2.1% 52 21.4%

Management

Skin biopsy 74 8.8% 314 37.2% 187 22.2% 129 15.3% 28 3.3% 19 2.3% 93 11.0%
Reflectance confocal
microscopy 72 12.1% 165 27.7% 64 10.8% 122 20.5% 24 4.0% 20 3.4% 128 21.5%

Close dermoscopic follow-up 121 12.0% 190 18.9% 33 3.3% 232 23.1% 53 5.3% 24 2.4% 353 35.1%

The physicians demonstrated higher accuracy in differentiating between malignant
and benign lesions (71.2%) than in distinguishing between the seven specific diagnoses
across all the images (42.9%, Table 5).

Table 5. Accuracy with differently grouped diagnoses.

Diagnosis Categories Accuracy (%)

Seven diagnoses 42.9
Six diagnoses (Grouped LM with LMM) 48.7
Four diagnoses (Grouped LM with LMM and SL with SLK and SK) 55.8
Two diagnoses (malignant vs. benign) 71.2

3.2. Logistic Regression Model Performance

The initial model constituted the 14 dermoscopic patterns (Section 2.2), the lesion’s
maximum diameter, its specific location on the body, patient sex, and patient age. The age
was transformed into five dichotomous variables, setting the cut-offs at 30, 40, 50, 60, and
70 years old. In the same way, the diameter was transformed into six different dichotomous
variables, setting the cut-offs at 4, 8, 12, 16, 20, and 24. All of the coefficients of the logistic
model could be only positive. Five-fold cross-validation was performed, and the best
model was chosen. The best model is described in Table 6. It has 10 variables (diameter, age,
sex, and the seven dermoscopic patterns). The coefficients of the logistic regression were
standardised and then rounded to an integer. The resulting score (namely iDScore-Facial)
varied from 0 to 16.

Figure 4 shows the Receiver Operating Characteristic (ROC) curves of the model for the
two samples comparing the performance obtained with the iDScore-aided diagnoses and
with intuitive clinical diagnoses. Three ranges were then defined based on the distribution
of benign and malignant cases of each score value:

• Very low (range of 0–2): Malignant lesions are rarely observed within this score range.
• Intermediate (range of 3–9): It is not possible to confidently determine whether a

lesion is more likely benign or malignant in this range.
• Very high (range of 10–16): Observed lesions are highly likely to be malignant in

this range.
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Table 6. Integer score (iDScore-Facial) of the model for a differential diagnosis of LM/LMM from the
other benign facial lesions.

Variable Coefficient

Maximum diameter ≥ 8 cm +3
Age ≥ 70 years +2
Male sex +1
Presence of rhomboidal structures +2
Presence of obliterated follicular openings +2
Presence of a target-like pattern +2
Presence of hyperpigmented follicular openings +1
Absence of diffuse opaque yellow/brown pigmentation +1
Absence of light brown fingerprint-like structures/areas +1
Absence of red structures and lines +1
Total score 0–16

The distribution of LM/LMM and benign cases for the model on the testing set within
the three identified ranges is reported in Table 7. The cut-off value was chosen to maximize
the sensitivity of the model in classifying the model diagnoses into malignant/benign cases.
By choosing a value of 3, a sensitivity of 100%, a specificity of 33.9%, a precision of 39.1%,
and an accuracy of 53.6% were obtained on the test set.

Table 7. Distribution of LM/LMM and benign cases of the iDScore-Facial model on the testing set for
the three identified ranges.

Range LM/LMM Benign

Very low (0–2) 0% 19.2%
Intermediate (3–9) 73.3% 73.4%
Very high (10–16) 26.7% 7.3%

Figure 4. ROC curves for the model on the validation and testing samples and the pattern recognition
diagnoses of the dermatologists.
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The values of the direct diagnosis were added to compare the model performance with
the direct diagnosis performance. The difference in the area between continuous and dashed
lines of the same colour shows the impact of the model in terms of its diagnostic accuracy.

3.3. CNN Model Performance

A loss plot during training and validation for the best-performing CNN model af-
ter five-fold cross-validation is depicted in Figure 5, while a confusion matrix is shown
in Figure 6.

Figure 5. Loss value and mean recall and accuracy for each epoch in the training and validation sample.

Figure 6. Confusion matrix of the CNN model on the testing sample.

The CNN-based model obtained a mean sensitivity of 58.2%, a specificity of 90.8%,
a precision of 47.0%, and an accuracy of 59.5%. Table 8 shows the sensitivity of the
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model for each class on the testing samples compared to the sensitivity of the responses of
the dermatologists involved.

Table 8. Sensitivity of the CNN model on the testing set compared to the sensitivity of the dermatologists.

Class Sensitivity (%) of the CNN Model Sensitivity (%) of the Dermatologists

AN 27.3 48.0
PAK 42.9 42.0
SK 50.0 41.7
SL 50.0 50.0

SLK 100.0 67.9
LM + LMM 78.7 55.5

4. Discussion

The logistic regression model and the CNN model have distinct advantages and lim-
itations. The logistic regression model based on iDScore-Facial, grounded in traditional
statistical methods, is simpler and easier to integrate into clinical practice. It provides
reliable accuracy with a smaller dataset and can easily be understood and implemented by
clinicians, as the defined ranges can then be translated into management recommendations,
allowing the model to function as a decision support system. If the score falls within the
range of 0–2, as cases of malignant lesions are rarely observed within this score range,
the lesion can be dismissed or indicated for follow-up. If the score exceeds 10, then the
lesion should be biopsied, as lesions with such high scores have a high likelihood of being
malignant. Benign lesions with such high scores often exhibit dermoscopic features very
similar to those of malignant lesions, so a dermatologist would still opt for their removal.
For the intermediate range between 3 and 9, it is not possible to confidently determine
whether a lesion is more benign or malignant. Therefore, if the score falls within this range,
the recommendation is to conduct further assessments such as follow-ups, examinations
with non-invasive diagnostic methods like confocal microscopy, or biopsies. The manage-
ment suggested by the model was cross-referenced with that directly recommended by
the dermatologists and stratified by histology (Figure 7) to quantify the model’s impact on
decision-making processes. It can be observed that when using the model, approximately
18% of malignant lesions for which a dermatologist opted for follow-up would instead be
assessed with another non-invasive diagnostic tool and therefore potentially recognised
as melanomas. Another 5%, on the other hand, would have been biopsied directly. As for
benign lesions, the model would have saved approximately 17% of biopsies.

Table 9 shows the performance of both models. For the CNN-based model, only the
values for the LM + LMM class are reported so that the performance can be evaluated based
on the same binary classification. The comparison of these models highlights the trade-off
between simplicity and technological advancement. The CNN model demonstrated higher
specificity for melanoma diagnoses, with a diagnostic sensitivity about 23% higher than
that of the dermatologists. Its ability to automatically learn and extract meaningful features
from dermoscopic images makes it particularly effective in identifying complex patterns.
However, the CNN model requires extensive data to achieve clinic-ready accuracy. On the
other hand, the logistic regression model is more practical for immediate clinical use. Still,
it is also “subjective”, as its training highly relies on the dermatological features identified
based on the experience and personal assessments of the physicians. To conclude, the CNN
model represents the future directions of AI in dermatology, offering an “objective” way
to evaluate dermatological lesions with the potential for greater accuracy as more data
become available.
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Figure 7. Management distributions according to dermatologists compared to the scores of the model
for LM/LMM (top) and for other aPFLs (bottom) [23].

Table 9. Comparison of the sensitivity, specificity, and precision of the CNN and LR models. For the
CNN-based model, only the values for the LM + LMM class are reported.

Model Sensitivity (%) Specificity (%) Precision (%)

LR 100.0% 33.9 39.1
CNN 78.7 79.7 75.5

Limitations

The first major limitation of this study is the scarcity of the dataset of images for
training the CNN, which typically requires larger datasets for optimal performance. This
shortage of data is mainly because these images depict specific, rare, and hard-to-assess
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lesions, restricted only to the face area, which currently present a challenge in diagnosis for
dermatologists (i.e., the public HAM10000 dataset [27] contains “only” about 750 images
related to aPFLs, that is, 37% less than those in the iDScore dataset employed). On the
other hand, the LR model incorporates evaluations performed by dermatologists, whose
assessments are “learned” by the model . The expertise of the physicians and the number
enrolled represent the second major limitation, specifically for the ML model.

5. Conclusions

This study provides a significant advancement in the application of AI in dermatoscopy,
specifically for significantly enhancing the diagnosis and management of aPFLs. By compar-
ing traditional machine learning approaches, like logistic regression, with advanced deep
learning techniques using convolutional neural networks (CNNs), this research demon-
strates how AI can enhance the diagnostic accuracy in complex dermatological cases by
integrating AI models with clinical data and evaluating different diagnostic approaches,
also paving the way for more precise and scalable AI applications in dermatology. Specifi-
cally, the logistic regression model offers a practical solution with reliable accuracy, suitable
for immediate integration into clinical practice. However, its performance is highly de-
pendent on the experience and evaluations of the dermatologists enrolled in assessing
dermoscopic patterns, as they are specific features incorporated into the model, together
with patient metadata. The CNN model, despite its higher specificity and precision, faces
challenges in integration into clinical settings due to its need for extensive data, requiring
further development and resources. The CNN model may still offer improved diagnostic
accuracy though, especially in the long term as data resources grow. Equally, it offers an
“objective” way to classify aPFLs, as no assessments of the lesions by dermatologists are
required to train it. Future research should focus on refining these models, expanding
the datasets, and exploring methods to integrate AI-based decision systems into routine
dermatological practice. These contributions push the boundaries of AI in medical imaging,
showing its critical role in improving patient management and outcomes in dermatology,
freeing up physicians’ time and allowing them to focus on more complex cases and critical
patient care.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AN Atypical Nevi
AUROC Area Under the Receiver Operating Characteristic
aPFLs Atypical Pigmented Facial Lesions
CNN Convolutional Neural Network
DL Deep Learning
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IARC International Agency for Research on Cancer
iDScore Integrated Dermoscopy Score
ISIC International Skin Imaging Collaboration
LM Lentigo Maligna
LMM Lentigo Maligna Melanoma
LR Logistic Regression
ML Machine Learning
MLLM Multimodal Large Language Model
PAK Pigmented Actinic Keratosis
ROC Receiver Operating Characteristic
SK Seborrheic Keratosis
SL Solar Lentigo
SLK Seborrheic Lichenoid Keratosis
UV Ultraviolet
ViT Vision Transformer
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