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Abstract

Aims: Heterogeneity in the rate of β‐cell loss in newly diagnosed type 1 diabetes

patients is poorly understood and creates a barrier to designing and interpreting

disease‐modifying clinical trials. Integrative analyses of baseline multi‐omics data

obtained after the diagnosis of type 1 diabetes may provide mechanistic insight into

the diverse rates of disease progression after type 1 diabetes diagnosis.

Methods: We collected samples in a pan‐European consortium that enabled the

concerted analysis of five different omics modalities in data from 97 newly diag-

nosed patients. In this study, we used Multi‐Omics Factor Analysis to identify mo-

lecular signatures correlating with post‐diagnosis decline in β‐cell mass measured as

fasting C‐peptide.

Results: Two molecular signatures were significantly correlated with fasting C‐
peptide levels. One signature showed a correlation to neutrophil degranulation,

cytokine signalling, lymphoid and non‐lymphoid cell interactions and G‐protein

coupled receptor signalling events that were inversely associated with a rapid

decline in β‐cell function. The second signature was related to translation and viral
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infection was inversely associated with change in β‐cell function. In addition, the

immunomics data revealed a Natural Killer cell signature associated with rapid β‐cell

decline.

Conclusions: Features that differ between individuals with slow and rapid decline in

β‐cell mass could be valuable in staging and prediction of the rate of disease pro-

gression and thus enable smarter (shorter and smaller) trial designs for disease

modifying therapies as well as offering biomarkers of therapeutic effect.

K E Y W O R D S

disease progression, multi‐omics, type 1 diabetes

1 | INTRODUCTION

Type 1 diabetes is an autoimmune disease involving environmental and

genetic factors that trigger immune‐mediated pancreatic β‐cell

dysfunction and destruction that results in insulin loss and symptom-

atic hyperglycemia requiring lifelong insulin therapy.1 Globally, around

1.2 million people below the age of 20 years have type 1 diabetes, with

an annual increase in incidence of 3% strongly influenced by geogra-

phy.2 Insulin replacement therapy is unable to fully mimic physiological

control of blood glucose and therefore, many people living with type 1

diabetes develop severe disease complications that are directly

attributable to prolonged glycaemic exposure,3 with markedly reduced

life expectancy.4 In the face of the disease burden and unmet need,

international consortia are mobilising to develop disease‐modifying

therapies. For example, therapies that maintain even minimal resid-

ual C‐peptide secretion capacity have been found to have demon-

strable clinical benefit.5

An emerging barrier to this effort is disease heterogeneity. In

particular, the rate of decline of β‐cell capacity is highly variable for

reasons that remain unclear. As a result, clinical trial designs for

disease‐modifying therapies are necessarily cumbersome, requiring

large sample sizes and prolonged observation. In addition, opportu-

nities for tailored disease‐modifying therapies are limited by an un-

clear understanding of the factors that drive diabetes progression

after diagnosis. Type 1 diabetes endotypes have previously been

proposed to describe the disease heterogeneity.6,7 Additionally,

multi‐omics strategies have already demonstrated promising results

in modelling the heterogeneity of diabetic kidney disease onset.8

Applying multi‐omics analyses could therefore help explain aspects of

the heterogeneity in progression after diagnosis and identify endo-

types in a data driven manner. This knowledge could provide the

attainment of improved participant inclusion in the focused designed

trials to foster their success and participant benefit.

Studies with this goal conducted to date have typically been con-

strained by limitations to cohort size and the number of different data

dimensions available for analysis.9,10 Thus, it has not been possible to

conduct studies with an emphasis on hypothesis‐generating, unbiased

approaches, and integration of data across pathophysiological systems.

These require large‐scale, inter‐disciplinary research efforts in which

carefully curated longitudinal clinical cohorts are aligned with multi‐

parametric technology platforms. Such a systems‐based approach

can address key questions with less bias and generate novel hypoth-

eses on disease drivers. We used this strategy in the setting of a pan‐
European research consortium in which people with newly diagnosed

type 1 diabetes as well as people at risk of developing type 1 diabetes

(antibody positive) were enrolled into a master protocol11 to conduct a

prospective study in search of factors that associate with the rate of

decline in β‐cell mass/function. This endeavour was supported by the

Innovative Medicines Initiative‐2 Joint Undertaking, where INNODIA

was created, a private‐public partnership of 40 partners in 16 coun-

tries. In the natural history study, people with newly diagnosed type 1

diabetes and unaffected family members are in follow up, allowing

deep clinical characterisation as well as multi‐omics analysis of samples

(blood, urine, stool) collected and analysed using standardized oper-

ating procedures (www.innodia.eu). Here we report the multi‐omics

analysis of the ‘first 100’ people with newly diagnosed disease. We

report the existence of latent factors integrated from transcriptomic,

small RNA, genomic, targeted proteomic, lipidomic, metabolomic, and

immunomic‐level data that show a relationship to subsequent rates of

disease progression and have potential value as stratification and

therapeutic target identification tools.

2 | METHODS

Here we present the methods for analysing the clinical data, inte-

gration of the multi‐omics data and further analyzes of the integrated

results. The materials and methods used to generate the different

omics types can be found in the supplementary material.

2.1 | Subjects with type 1 diabetes

For this in depth analysis, we included the first 100 subjects with

newly diagnosed (<6 weeks) type 1 diabetes enrolled in the INNO-

DIA natural history study. Using a consecutive recruitment approach,

subjects were included based on baseline omics data availability, an

even gender distribution and biosample availability, positivity for at

least one diabetes‐related autoantibody (GADA, IA‐2A, IAA, ZnT8A),

and age between one and 45 years. Two subjects were excluded due

2 of 15 - ARMENTEROS ET AL.

 15207560, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dm

rr.3833 by C
ochraneItalia, W

iley O
nline L

ibrary on [11/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.innodia.eu/


to incomplete ‘omics datasets and one following the detection of a

MODY gene mutation. The final analysis cohort comprised 49 male

and 48 female study participants (Table 1), the average age at dia-

betes diagnosis of 13.2 years (SD 8.5; two‐ten years n = 38; ten‐
18 years n = 41, 18–39 years n = 18), mean disease duration of

3.9 weeks (SD 1.5) and at baseline an average total daily insulin dose

of 0.51 IU/kg (SD 0.27), HbA1c of 75 mmol/mol (SD 21.3), fasting C‐
peptide level of 269 pmol/L (IQR 25.7), fasting glucose level of

7.78 mmol/L (IQR 2.8) and BMI SDS of 0.327 units (SD 1.1)’.

C‐peptide measurements were made at four visits (Figure 1A).

Fasted C‐peptide was calculated from measurements made prior to

the mixed meal tolerance test (MMTT) at each visit. This measure

was preferred to Area under the curve (AUC) C‐peptide and fasted

C‐peptide/glucose ratio due to missingness in these variables. Fasted

C‐peptide was available for a total of 354 visits, while AUC C‐peptide

and fasted C‐peptide/glucose ratio were available for 232 and 328

visits, respectively. Fasted C‐peptide has also previously been sug-

gested as a reliable substitute for AUC C‐peptide.12

Comparison of log‐transformed fasted C‐peptide to log‐
transformed AUC C‐peptide and log‐transformed fasted C‐peptide/

glucose ratio for non‐missing measurements showed a high Pearson

correlation of 0.92 and 0.94, respectively (Figure S1).

C‐peptide is widely accepted as a measure of endogenous insulin

secretion.13 To define the rate of C‐peptide decline over time, we

utilized linear mixed‐effect models to fit the log‐transformed fasted

C‐peptide from day of diagnosis to 12 months (Figure 1B). The model

was fitted using subject‐level random effects and the rate of C‐
peptide change over time. Mixed‐effect models were fit using the

lme4 R package14 with an unstructured random effects variance‐
covariance matrix.

A total of 69 individuals completed all four visits (baseline, three,

six, and 12 months), 21 individuals completed three visits, five in-

dividuals completed two visits, and two individuals completed only

the baseline visit (not necessarily consecutive visits).

At each visit, HbA1c was measured and the stimulated C‐peptide

response was determined by MMTT from individuals of at least five

years of age. The islet autoantibodies GADA, IA‐2A, IAA, and ZnT8A

were quantified with the use of specific radiobinding assays as

described earlier.15

2.2 | Multi‐omics data pre‐processing, integration,
and analysis

We normalised the counts for transcriptomics and miRNA data by

variance stabilising transformation from the DESeq 2 package.16 The

transcriptomics and miRNA data sets were filtered for low counts

(features with less than 10 counts in total or features with zero

counts in more than 90% of the samples). The proteomics, metab-

olomics, lipidomics and immunomics data sets were log2 trans-

formed. The transcriptomics, proteomics, and immunomics data were

corrected for batch effects associated with dataset‐specific factors

(sequencing at different days or different handling of the samples)

using the limma package in R. Finally, all the data sets were corrected

for age. Age was log‐transformed to account for the growth effect in

children (one year difference in adults is not equivalent to one year

difference in children). This was necessary due to the high degree of

age heterogeneity present in the cohort and the association of the

fasted C‐Peptide slopes with age.

The omics data sets were integrated using the general frame-

work in the Multi‐Omics Factor Analysis (MOFA) package from

2018.17 MOFA performs a dimensionality reduction of the omics

data into a lower‐dimensional latent space (Figure 1C). The latent

factors generated by MOFA capture sources of global variability

across the different omics data sets. Each factor has an underlying

weight for every feature, which can be used to annotate the factors

in terms of omics features, yielding a specific molecular signature for

each factor. MOFA was run with default parameters and 20 latent

factors. The model was initialised with different random seeds

yielding similar results, generally only altering the number assigned

to each factor associated with the C‐peptide slopes.

Latent factors were associated with the estimated C‐peptide

slopes using the Spearman correlation. Other covariates were also

analysed such as age at baseline and C‐peptide at baseline. The as-

sociation of the latent factors with the progression groups was

calculated using the Kruskal‐Wallis test and each group was

compared using a Mann‐Whitney U test.

Gene Set Enrichment Analysis (GSEA)18 was performed to

characterise the genes with the largest weight in the latent factors.

This analysis was performed using the MOFA GSEA function, which

utilises a modified version of the principal component gene set

enrichment scheme (PCGSE).19 The Reactome database was used as

the gene set annotation for this analysis. The GSEA was performed

separately for genes with a positive and negative weight in each

latent factor. This was done to avoid combining genes that are

upregulated (positive weight) and downregulated (negative weight) in

the latent factor as these two groups of genes might be involved in

different biological pathways. The top 15 significant pathways for

each latent factor (positive and negative weights) were selected and

grouped by biological pathway.

Differential gene expression of individual genes was determined

by the DESeq 2 package.16 Covariates for the batch variable

(different runs) and age were included in the model. Age was encoded

as a categorical variable defined in three groups: less than ten years,

between ten and 18 years, and more than 18 years. Differential gene

expression was assessed between the rapid and slow groups, rapid

and increasing and slow and increasing, respectively.

For biological network analysis, two types of interaction networks

were constructed. One was compiled from the STRING20 database to

study protein‐protein interactions or associations only. Another

network was compiled from the mirTarBase21 (miRNA‐gene), which

was combined with the STRING network to study protein‐protein‐
miRNA interactions or associations. The STRING database was

filtered for high‐confidence interactions (combined score above 0.7)

and miRNA‐gene interactions had to be reported by at least two

publications and two non‐high‐throughput methods. We decided to
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T A B L E 1 Clinical and demographic data for the type 1 diabetes cohort across progression groups.

Rapid (N = 32) Slow (N = 31) Increasing (N = 32) p‐value Overall (N = 95)

Sex

Female 20 (62.5%) 15 (48.3%) 13 (40.6%) 0.211 48 (49.5%)

Male 12 (37.5%) 16 (51.6%) 19 (59.4%) (0.159) 49 (50.5%)

Age (years)

Mean (SD) 11.2 (9.17) 12.9 (7.94) 15.6 (7.94) 0.0125 13.2 (8.49)

Median (IQR)

[min, max]

9.60 (8.97) [2.01, 38.1] 10.9 (8.68) [2.08, 36.4] 13.4 (5.23) [7.57, 38.8] (<0.001) 11.8 (8.08) [2.01, 38.8]

Age intervals

<10 16 (50.0%) 13 (41.9%) 7 (21.9%) 0.13 38 (39.2%)

>10–18 11 (34.4%) 12 (38.7%) 18 (56.3%) (0.021) 41 (42.3%)

>18 5 (15.6%) 6 (19.4%) 7 (21.9%) 18 (18.6%)

Ketoacidosis at diagnosis

Yes 10 (31.3%) 11 (35.5%) 10 (31.2%) 0.981 32 (33.0%))

No 22 (68.7%) 19 (61.3%) 22 (68.8%) (0.991) 64 (66.0%)

Missing 0 (0%) 1 (3.2%) 0 (0%) 1 (1.0%)

diagnosis To baseline (weeks)

Mean (SD) 3.88 (1.52) 3.80 (1.66) 4.10 (1.43) 0.843 3.93 (1.53)

Median (IQR).

[Min, max]

4.40 (2.50) [0.900, 6.40] 4.35 (2.35) [0.900, 6.30] 4.40 (1.70) [0.700, 6.10] (0.639) 4.40 (2.20) [0.700, 6.40]

BMI SDS at baseline

Mean (SD) 0.0719 (1.05) 0.397 (1.02) 0.511 (1.20) 0.153 0.327 (1.10)

Median (IQR)

[min, max]

0.0800 (1.19). [−2.32, 2.47] 0.350 (1.60) [−1.56, 2.72] 0.610 (1.35) [−2.00, 2.28] (0.105) 0.260 (1.57). [−2.32, 2.72]

Missing 1 (3.1%) 0 (0%) 0 (0%) 1 (1.0%)

BMI SDS at 12 months

Mean (SD) 0.234 (0.923) 0.309 (0.991) 0.549 (1.20) 0.416 0.366 (1.04)

Median (IQR)

[min, max]

0.165 (0.937) [−1.79, 2.33] 0.49 (1.44) [−1.57, 2.03] 0.505 (1.162) [−1.98, 2.56] (0.242) 0.4 (1.43) [−1.98, 2.56]

Missing 3 (9.4%) 4 (12.9%) 2 (6.3%) 10 (10.3%)

Glucose at baseline (mmol/L)

Mean (SD) 8.43 (5.57) 8.42 (5.33) 6.45 (2.20) 0.22 7.78 (4.69)

Median (IQR)

[min, max]

7.10 (2.70) [3.70, 31.5] 6.70 (2.93) [3.60, 26.9] 6.10 (2.25) [3.70, 13.8] (0.085) 6.40 (2.80) [3.60, 31.5]

Glucose at 12 months (mmol/L)

Mean (SD) 7.56 (2.27) 7.57 (2.97) 8.15 (1.75) 0.655 7.79 (2.33)

Median (IQR)

[min, max]

7.35 (4.15). [4.2, 11.4] 6.90 (3.40) [4.10, 18.6] 8.24 (2.90) [4.90, 11.0] (0.261) 7.80 (3.30) [4.10, 18.6]

Missing 8 (25.0%) 6 (19.4%) 2 (6.25%) 18 (18.6%)

Daily insulin dose pr kg at baseline (IU/kg)

Mean (SD) 0.544 (0.279) 0.498 (0.247) 0.498 (0.281) 0.819 0.514 (0.268)

Median (IQR).

[Min, max]

0.545 (0.291) [0.136, 1.46] 0.468 (0.243) [0.108, 1.20] 0.500 (0.429)

[0.0359, 1.01]

(0.616) 0.500 (0.354) [0.0359, 1.46]

Missing 1 (3.1%) 1 (3.2%) 0 (0%) 2 (2.1%)
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T A B L E 1 (Continued)

Rapid (N = 32) Slow (N = 31) Increasing (N = 32) p‐value Overall (N = 95)

Daily insulin dose per kg at 12 months (IU/kg)

Mean (SD) 0.700 (0.320) 0.517 (0.249) 0.486 (0.211) 0.005 0.567 (0.277)

Median (IQR)

[min, max]

0.640 (0.320) [0.024, 1.41] 0.466 (0.280) [0.125, 1.41] 0.48 (0.255) [0.067, 0.91] (<0.001) 0.561 (0.312) [0.024, 1.41]

Missing 6 (18.8%) 6 (19.4%) 3 (9.4%) 16 (16.5%)

HbA1c at baseline (mmol/mol)

Mean (SD) 72.2 (21.4) 74.9 (24.2) 78.0 (18.1) 0.699 75.0 (21.3)

Median (IQR)

[min, max]

75.0 (27.3) [8.70, 119] 73.0 (29.5) [13.4, 130] 80.3 (22.4) [50.0, 130] (0.332) 77.5 (25.7) [8.70, 130]

Missing 1 (3.1%) 1 (3.2%) 1 (3.1%) 3 (3.1%)

HbA1c at 12 months (mmol/mol)

Mean (SD) 55.7 (15.9) 53.2 (12.7) 50.6 (8.89) 0.427 53.3 (12.96)

Median (IQR)

[min, max]

51.9 (9.75) [40.0, 130] 52.0 (13.3) [37.0, 99.0] 50.0 (10.6) [34.0, 71.0] (0.110) 51.0 (12.1) [34.0, 130]

Missing 2 (6.3%) 5 (16.1%) 4 (12.5%) 13 (13.4%)

C‐peptide estimated slopes

Mean (SD) −0.425 (0.173) −0.125 (0.050) 0.046 (0.062) <0.001 −0.171 (0.225)

Median (IQR)

[min, max]

−0.412 (0.273) [−0.866,

−0.209]

−0.134 (0.083) [−0.205,

−0.0481]

0.047 (0.101) [−0.047,

0.185]

(<0.001) −0.135 (0.264) [−0.866,

0.185]

C‐peptide at baseline (pmol/L)

Mean (SD) 235 (183) 248 (185) 324 (263) 0.296 269 (215)

Median (IQR)

[min, max]

165 (228) [26.1, 809] 240 (204) [15.0, 986] 264 (268) [25.8, 1290] (0.07) 224 (239) [15.0, 1290]

C‐peptide at 12 months (pmol/L)

Mean (SD) 64.7 (59.8) 194 (137) 432 (206) <0.001 234 (214)

Median (IQR)

[min, max]

41.6 (83.5) [11.7, 222] 161 (136) [45.8, 635] 433 (246) [96.7, 896] (<0.001) 163 (283) [11.7, 896]

Missing 6 (18.8%) 8 (25.8%) 5 (15.6%) 21 (21.6%)

GADA at baseline

Negative 5 (15.2%) 11 (34.4%) 8 (25.0%) 0.199 24 (24.7%)

Positive 28 (84.8%) 21 (65.6%) 24 (75.0%) (0.204) 73 (75.3%)

IA‐2A at baseline

Negative 9 (27.3%) 12 (37.5%) 9 (28.1%) 0.615 30 (30.9%)

Positive 24 (72.7%) 20 (62.5%) 23 (71.9%) (0.495) 67 (69.1%)

IAA at baseline

Negative 4 (12.1%) 10 (31.3%) 10 (31.3%) 0.118 24 (24.7%)

Positive 29 (87.9%) 22 (68.8%) 22 (68.8%) (0.490) 73 (75.3%)

ZnT8A at baseline

Negative 12 (36.4%) 10 (31.3%) 14 (43.8%) 0.582 36 (37.1%)

Positive 21 (63.6%) 22 (68.8%) 18 (56.3%) (0.481) 61 (62.9%)

Detectable autoantibodies at baseline

Mean (SD) 3.09 (0.947) 2.66 (0.902) 2.72 (0.851) 0.0961 2.82 (0.913)

Median (IQR)

[min, max]

3.00 (2.00) [1.00, 4.00] 3.00 (1.00) [1.00, 4.00] 3.00 (1.00) [1.00, 4.00] (0.014) 3.00 (2.00) [1.00, 4.00]

Note: p‐values were calculated using the Kruskal‐Wallis test for associations with progression groups. p‐values for associations with estimated

C‐peptide slopes were calculated with Kruskal‐Wallis and Spearman's rank correlation coefficient for categorical and continuous data, respectively.
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focus on genes and miRNAs only because these omics types generally

have greater weights in the most relevant latent factors.

The association between the biological networks and the latent

factors was performed using the PCSF graph optimization approach.

This method allows us to interpret the biological landscape of the

interaction network based on the importance/weight of each gene/

miRNA in the latent factor. The output is a subnetwork that cap-

tures interactions between the genes/miRNAs with a higher

importance in the latent factor. In order to select a subset of genes

and miRNAs to construct the network, only genes with normalised

absolute weights three‐fold higher than expected by chance and

miRNAs with normalised absolute weights two‐fold higher than

expected by chance were selected. Grid‐search was performed to

select the best parameters based on the network that had a high

number of genes/miRNA from the latent factor while keeping the

number of genes/miRNA not observed in the latent factor low

(μ = 0.005, ω = 1, β = 5000). The final network was constructed

using 20 runs with noise to edge costs (r = 0.1) that were combined

and clustered using the edge‐betweenness algorithm. Gene Set

Enrichment Analysis was performed on the clusters obtained from

the network.

3 | RESULTS

3.1 | C‐peptide decline over time

The individual rates of C‐peptide decline were calculated as the slope

of fasted C‐peptide change over 12 months as described in Methods

(Supplementary Figure S2).

F I G U R E 1 Cohort data and analysis overview. (A) The cohort consists of 97 people with newly diagnosed type 1 diabetes. Multi‐omics
data were collected at baseline (within six weeks after diagnosis of type 1 diabetes) and clinical data were collected at baseline and at three,

six, and 12 months (B) Participants were divided into three groups based on their change of insulin secretion levels (fasted C‐peptide
measurements) from baseline to 12 months (C) Multi‐Omics Factor Analysis was performed to obtain an integrated signature across omics
data types followed by differential expression analysis for each omics data type independently.
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An overall trend of C‐peptide decline over time was observed

for the entire cohort (p‐value 0.0001) (Supplementary Figure S3A,

Supplementary Figure S4A). C‐peptide slopes were used to divide

patients into terciles (equal‐sized), classified as rapid, slow, and

increasing progression groups, yielding three groups with distinct

C‐peptide progression patterns (Supplementary Figure S3B, Sup-

plementary Figure S4B). Two individuals had only one available C‐
peptide measurement and were not assigned a group as C‐peptide

decline could not be determined. These patients were included in

the MOFA model as their omics data are still valuable for con-

straining the integration of the omics data into factors. All three

progression groups had a similar estimated baseline C‐peptide

(intersect) (p‐value 0.296), while C‐peptide slopes differed signifi-

cantly (p‐value <0.0001). Time from diagnosis to baseline and fre-

quency of ketoacidosis at diagnosis showed no significant

differences (p‐value 0.843 and 0.98). Furthermore, there was a

significant association between C‐peptide slopes and the number of

autoimmune antibodies at baseline (p‐value 0.014). Estimated

baseline C‐peptide and glucose levels were borderline significant

(p‐value 0.07 and 0.085). For clinical features 12 months after

baseline, only C‐peptide and average insulin dose proved to be

significantly associated. BMI, HbA1c and glucose and insulin dose

showed no differences between the progression groups. These

findings were consistent for both associations with patient groups

and C‐peptide slopes. The clinical features for each of the pro-

gression groups are shown in Table 1.

We further analysed the relationship between age, divided into

children (<10), adolescents (10–18) and adults (>18), and C‐
peptide levels (Supplementary Figure S3C, Supplementary

Figure S4C). Having three intervals coincides with shifts in the

general incidence of diabetes, although other thresholds could

have been used. The analysis showed that the participants in the

<10 years group had a significantly lower baseline C‐peptide level

compared to both 10–18 years and >18 years groups (p‐values

<0.0001). In addition, the 10–18 years group had reduced but

non‐significant baseline C‐peptide levels compared to >18 years

age groups (p‐value 0.27).

Changes in C‐peptide over time showed no significant differ-

ences in the interactions between time and the age groups. The

10–18 years group had a non‐significant, yet more negative trend

compared to the <10 years and >18 years groups (p‐values: 0.25

and 0.40, respectively), while the <10 years and >18 years groups

were similar (p‐value: 0.90). These findings indicate a degree of

association between C‐peptide levels and age among children, and

as a result, age was included after log transformation as a covariate

in our models to correct for potential effects on the relationship

between C‐peptide slopes and omics.

Evaluating the association of sex with the C‐peptide change over

time (Supplementary Figure S3D, Supplementary Figure S4D), we

found no significant association with baseline C‐peptide (p‐value

0.64) or slope (p‐value 0.16).

3.2 | Multi‐omics integration analysis

The multi‐omics data set overview is shown in Figure 2A. Missing

values, which are seen predominantly in the immunomics data set,

are disregarded by MOFA and do not affect the decomposition of the

data into latent factors. After training MOFA on the multi‐omics data

set (Figure 2B), the latent factors that capture most of the variance

across participants were represented by the mRNA and miRNA data.

MOFA captures latent factors with common variance across the

different omics types, even though certain data types appear to be

responsible of most of the captured variance (Factors 1 to 7). This

indicates that a certain degree of heterogeneity exists across omics

types, making the integration more challenging.

Importantly, however, latent factors 15 and 18 were significantly

associated (p‐values <0.1 adjusted by Benjamini‐Hochberg) with C‐
peptide slopes (Figure 2D) but not with age or baseline C‐peptide.

The amount of variance captured by latent factors 15 and 18 is 2.62%

and 1.84%, respectively, indicating that the decline of C‐peptide over

time is not among the major sources of variance across the participants

but is sufficiently strong to be captured by this method. The differences

in the strength of associations for latent factors 15 and 18 with the

progression groups and C‐peptide slopes indicated that latent factor

15 captures a non‐linear association with the progression groups

(Figure 2C), and for latent factor 18 a linear association with the rate of

C‐peptide decline (Figure 2E). As the two factors correlate with C‐
peptide decline, they may contain molecular signatures useful for

explaining the differences in disease progression between patients.

Therefore, we continued a thorough scrutiny of these factors.

3.3 | Differential gene expression analysis

Differentially expressed genes (DEGs) were identified between the

different progression groups, with batch and age groups used as

covariates (Figure 3). p‐values were adjusted for multiple testing

using the Benjamini‐Hochberg procedure and genes with an adjusted

p‐value <0.1 were reported as differentially expressed genes (DEG).

Figure 3 shows the volcano plots of the different comparisons

together with the genes belonging to latent factors 15 and 18. A total

of 339 DEGs were observed comparing the rapid decline group and

the increasing group (Figure 3A, Supplementary Table S1), 33 DEGs

between the rapid and slow decline groups (Figure 3B, Supplemen-

tary Table S2), and 1205 DEGs between the slow decline group and

the increasing group (Figure 3C, Supplementary Table S3). Addi-

tionally, differential gene expression was performed for the C‐
peptide slopes, hence studying the linear change in gene expression

with respect to the rate of decline of C‐peptide over time. Here we

found 484 DEGs (Figure 3D, Supplementary Table S4).

More DEGs were observed when comparing the slow and

increasing progression groups than when comparing the rapid and

increasing progression groups, with little overlap between the
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significant top‐ranking genes. Additionally, very few genes were

differentially expressed between the rapid and slow progression

groups. Altogether, these results might indicate that even though the

rapid and slow progression groups are more similar, the set of DEGs

between these two groups and the increasing group are not the same.

To further confirm this, two additional differential expression analyses

were performed. One between the rapid‐slow groups combined versus

the increasing group and another between the slow‐increasing groups

combined versus the rapid. The analyses showed that the rapid‐slow

versus increasing comparison produced 1804 DEGs (Supplementary

Table S5), while the slow‐increasing versus rapid comparison produced

18 DEGs (Supplementary Table S6). This indicates that the increasing

progression group is much more dissimilar in its blood sample

expression profile compared to the other two groups at the early stage

of type 1 diabetes manifestation. Therefore, the underlying biological

processes involved in the developing disease progression may vary

already early in the disease manifestation when comparing individuals

experiencing loss of β‐cell function and those experiencing an

improvement in β‐cell function.

The similarity between DEGs found by the continuous change in C‐
peptide levels (n = 484) and DEGs between the rapid and increasing

group (n= 339) showed an overlap of 209 genes. The rapid‐slow versus

increasingDEGs (n= 1804) hada bigger overlap with the continuousC‐
peptide levels where 313 of the same DEGs were found. In all cases, the

DEGs had the same sign of their log2 fold changes for both analyses.

Therefore, most DEGs were observed for the continuous change were

also found when investigating progression groups.

Nonetheless, we believe that the linear association of blood gene

expression at baseline with the C‐peptide slopes is more informative

regarding the disease progression. We observe that change in β‐
cell function follows a gradient; therefore, by categorising partici-

pants into groups, we lose the resolution that the C‐peptide slopes

provide.

With respect to the C‐peptide slopes, the significant DEGs

(Figure 3D) also found among latent factor 15 or 18 were mostly

associated with the immune system. These genes included, FOXP1, a

transcription factor associated with LPS exposure to neutrophils22 and

hepatic homoeostasis of glucose in mice,23 Notch1, associated with a

decrease in insulin secretion and β‐cell mass, and FADS1, associated

with fasting glucose in non‐diabetics.24 Lastly, we found that some T‐
cell receptor genes (TRAV29DV5, TRAC) and immunoglobulin‐like

receptors (LILRB1 and SIRPG) were also differentially expressed.

F I G U R E 2 (A) Overview of the multi‐omics data sets, describing the number of features per data set and the level of missing data (white).
(B) Latent factors obtained from MOFA, the colour scale represents the variance captured by each of the latent factors indicating the level of
integration of the data types for each factor. (C) Association of latent factors 15 and 18 values with the different progression groups.

(D) Spearman correlation of latent factors with the fasted C‐peptide slopes, baseline fasted C‐Peptide, Age (log scale), and BMI‐SDS. p‐values
were adjusted by Benjamini‐Hochberg. E, Spearman correlation of fasted C‐peptide slopes against latent factor values (15 and 18).
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3.4 | Annotation of latent factors

To examine the biological pathways of the integrated representation

in the two most relevant latent factors, we used GSEA. This analysis

was divided into genes positively correlated with the factor score

(positive weights) and genes negatively correlated with the factor

value (negative weights). Figure 4 displays the top 15 significant

pathways in each of the two associated latent factors (p‐values <0.1

adjusted by Benjamini‐Hochberg). Negatively regulated genes in

latent factor 15 are enriched in the immune system and signalling by

G protein‐coupled receptors (GPCR) pathways. Of specific interest

are pathways associated with innate immunity, such as neutrophil

degranulation, with high expression of granule proteins (e.g. CTSs,

MPO) pointing to the presence of activated or degranulated neu-

trophils; and platelet activation, signalling and aggregation (the latter

not shown). Also, several pathways pointing to cytokine signalling

and interleukin (e.g. IL‐1β) signalling emerge. Regarding the role of

GPCRs, several pathways are associated with latent factor 15, such

as signalling by GPCRs, downstream signalling and GPCR ligand

binding. Positively regulated genes in latent factor 15 are also

enriched in immune system pathways, with again an important

contribution of the innate immune system. Although here it seems

that the increase is mainly attributed to resting neutrophils, with for

instance high LY96 expression. Collectively, these data show that

GSEA pathways in innate immunity are mainly associated with the

activation status of the neutrophils, with a shift in the balance of

resting neutrophils versus activated or degranulated neutrophils.

Negatively regulated genes in latent factor 18 are enriched in

influenza infection pathways and mRNA translation pathways, sug-

gesting that viral mRNA replication and translation by host cell

F I G U R E 3 Volcano plot of differential gene expression between progression groups. The colour indicates gene membership to either or
both associated latent factors. (A) DGE between rapid and increasing progression groups (339 genes are differentially expressed). (B) DGE
between rapid and slow progression groups (33 genes are differentially expressed). (C) DGE between slow and increasing progression groups
(1206 genes are differentially expressed). (D) DGE for C‐peptide slopes (484 genes are differentially expressed).
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machinery are major pathological features of this association. Posi-

tively regulated genes in latent factor 18 did not show a particular

pattern of enrichment.

Furthermore, the relation of the latent factors’ genes to previous

type 1 diabetes publications was studied. Using the Open Targets

database,25 a total of 174 genes out of the 668 top genes (three‐fold

higher than expected by chance) in the latent factor 15 have been

previously associated with type 1 diabetes (p‐value 0.03). On the

other hand, the overlap between the top genes in the latent factor 18

and associated disease genes was not significant. These results

indicate that latent factor 15 captures a set of genes composed of

known disease targets (e.g. INSR, NDUFA4, CTSH) as well as po-

tential new candidate genes already detectable in blood in the early

phase of type 1 diabetes.

3.5 | Interpretation of biological networks

Biological networks were constructed for latent factors 15 and 18

separately, based on protein‐protein or protein‐protein‐miRNA in-

teractions (Supplementary Figures S5–S8). As the two network types

yielded similar results, we selected the protein‐protein‐miRNA net-

works as the focus of our interpretations. The latent factor 15

network revealed a diverse set of biological functions (Supplemen-

tary Figure S7), some of which overlapped with the pathways shown

in Figure 4. Immune system responses, signalling by different re-

ceptors and lipid metabolism are (widely) represented in these clus-

ters. Notably there is an enrichment of lipid metabolism pathways as

the lipidomic data is also influenced latent factor 15. Some of the

genes that were significantly associated with the C‐peptide slopes

also appeared in several of the clusters, which further validated the

biological processes captured by the latent factor. The latent factor

18 network was smaller and had more loosely defined clusters

(Supplementary Figure S8). Nonetheless, it captured a similar set of

biological functions compared to the latent factor 15 network.

Eukaryotic/viral mRNA translation is the main difference between

the two networks, which appear as the biggest and more inter-

connected cluster of the latent factor 18 network. In this case, only

one of the genes in this network was significantly associated with the

C‐peptide slopes.

3.6 | Immunomics signature

Immune cell populations were identified based on standard markers

and analysed for their association with the C‐peptide slopes. Natural

Killer (NK) cells were found to be significantly associated after p‐
value adjustment (Figure 5A), with higher levels of NK cells observed

in people with slow disease progression (Figure 5B). Examination of

the relationship between C‐peptide slope and NK cell frequency in

individual progression groups indicated that the strongest correlation

was observed among rapid progressors (Figure 5C). Unsupervised

analysis of the immunomics data revealed distinct clusters among the

progression groups. Figure 5D shows a FlowSOM colour‐density map

of CD16 expression levels with node sizes representing the fre-

quency of cells in each cluster. Meta‐cluster 19 (MC‐19) was

assigned as the primary NK (CD56loCD16þ) subset based on lineage

marker expression and was significantly more abundant in the

F I G U R E 4 GSEA was performed separately for genes with positive weights in the latent factor (correlating negatively with C‐peptide
slopes) and genes with negative weights in the latent factor (correlating positively with C‐peptide slopes). Pathways are coloured depending on

the main pathway they belong to according to Reactome. p‐values were adjusted using Benjamini‐Hochberg.
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increasing versus rapid progression groups (8.8 vs. 6.3% p‐
value = 0.013). Examination of markers of NK cell activation and

differentiation (KLRG1, TIGIT, CD38, and CD57) in the different

progression groups showed higher expression of KLRG1 in the

increasing group but lower levels of CD38.

Comparison of the genes associated with latent factor 15 and the

leucocyte gene signature matrix LM2226 revealed an overlap of 52

genes and enrichment in immune cell‐specific genes (p‐value 0.0001).

The genes were representative of the following five main groups: T‐
cell specific, macrophage M1 specific, monocyte specific, neutrophil

specific, and eosinophil specific (Supplementary Figure S9). In this

way, in addition to capturing immune‐related pathways, the latent

factor 15 broadly represented immune cell‐specific genes.

3.7 | Other 'omics associations with disease
progression

The association of factors derived from running MOFA without the

transcriptomics data did not yield any significant associations with the

progression groups or the C‐peptide slopes. The variance of the miRNA

and lipidomics captured by latent factor 15 might indicate that these

two omics data sets are only informative of the disease progression in

combination with transcriptomics. This shows how the integration of

both lipidomics and transcriptomics data may aid in discovering

enrichment in specific pathways. Similarly, the incorporation of tran-

scriptomics and miRNA data allowed the discovery of enrichment in

viral infection pathways.

4 | DISCUSSION

In this study, we identified two latent factors associated with β‐cell

decline. These factors were predominantly influenced by tran-

scriptomics with secondary contributions of miRNA and lipidomics,

respectively. Latent factor 15 revealed an enrichment of immune

system pathways, the most significant being associated with

neutrophil degranulation, cytokine signalling, and immunoregulatory

interactions between lymphoid and non‐lymphoid cells. Moreover,

there were multiple pathways associated with GPCR signalling

events. More detailed GSEA revealed that disease progression (C‐
peptide slopes) was associated with an altered balance between

resting and activated/degranulated neutrophils. This is in keeping

with previous studies that showed a temporary decline in the number

of circulating neutrophils in people with newly diagnosed type 1

diabetes compared with healthy controls, as well as high circulating

F I G U R E 5 Immunomics association with C‐peptide slopes. (A) Benjamini‐Hochberg adjusted p‐value for the linear association of immune
cells abundances with the C‐peptide slopes (correcting for batch effects and age groups). (B) NK cell levels for the different progression groups

(as a frequency of total live mononuclear cells). (C) Spearman correlation of fasted C‐peptide slopes vs. NK cell frequency for the different
progression groups. (D) FlowSOM unbiased cluster analysis on live CD45þ PBMCs of Donor D07 (Increasing, left) and K40 (Rapid, right)
highlighting Metacluster‐19 (red‐circle) as a primary NK (CD56loCD16þ) subset. Colour‐density and circle size were overlaid as CD16

intensity and number of events, respectively. (E) Bar charts representing NK marker expression on the selected clusters in each progression
group.
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levels of neutrophil extracellular traps (NETs).27–29 The previous

detection of neutrophils and NETs in the pancreas of deceased

subjects affected by type 1 diabetes, and a correlation between

circulating neutrophil numbers and C‐peptide levels in pre‐
symptomatic subjects (non‐diabetic, at‐risk) has implicated that

activated neutrophils play a pathogenic role in type 1 diabetes.30 Our

data add significantly to this hypothesis since we showed in longi-

tudinal follow‐up that the neutrophil profile at diagnosis is associated

with the rate of disease progression.

Of further interest, GSEA shows platelet activation to be a

feature of latent factor 15, linking our findings to the recent

demonstration of a role for activated platelets in the formation of

platelet‐neutrophil aggregates, which are increased in the circulation

of subjects during the development of type 1 diabetes.31 It is

tempting to speculate that activation of GPCR pathways (also asso-

ciated with latent factor 15) may play a role in these events since it is

a response to a variety of stimuli (chemokines, cytokines, comple-

ment fragments) and can trigger neutrophil degranulation.32

In contrast, latent factor 18, which was also associated with β‐
cell decline, is characterised by features of enrichment of viral mRNA

translation and subsequent translation by the host cell machinery.

There is a considerable body of literature that associates viral in-

fections with early events in type 1 diabetes development as well as

peri‐diagnosis events.33 As a result, virus infection has often been

cited as an autoimmunity‐triggering event as well as a disease‐
precipitating event. Our findings in the context of the present

study design are entirely consistent with the latter hypothesis, which

could be addressed in follow‐up viromic studies targeted to samples

in which both the relevant viral mRNA translation signals and

negative slope of C‐peptide decline are prominent.

Two recent single‐omics papers have been published on the

INNODIA cohort34,35 with a considerable overlap of patients to our

study. There are small differences in the inclusion criteria of patients.

There are substantial differences in methodology that complicate a

direct comparison. We use gene expression levels at baseline that do

most often not carry the same information as changes in gene tran-

scription over time (which is used in the single‐omics studies). The

temporal expression data can be strongly influenced by for example,

treatment. We focus on signatures available already at the baseline

level, as this would have a great impact on treatment strategies and is

easier to incorporate in trial designs and stratification of patients.

The proteomics study34 found 12 significant associations between

peptide expression changes in the initial 12 months after diagnosis

and C‐peptide glucose ratio slopes, with expression changes in GPX3

being indicative of future C‐peptide changes. Because of the cohort

and methodological differences, a direct comparison is not possible.

Instead, we ranked peptides from the proteomics study by their

maximum importance in factor 15 or 18 and saw an enrichment of

signature genes in the most important genes with GPX3 having the

6th highest loading (Supplementary Fig. 10). The transcriptomics

study35 also investigated changes in gene expression in the

12 months after diagnosis and associations to C‐peptide glucose ratio

slopes and identified 392 significant genes and of those we had 360

included in the multi‐omics model. We only found a small overlap of 8

genes between DEGs in the multi‐omics and transcriptomics studies.

The lack of overlap could be explained by the different temporal and

non‐temporal data. Genes that are significantly different at baseline

are not necessarily the same as those found significant in a temporal

single‐omics analysis, and vice versa. However, both the tran-

scriptomics study and the multi‐omics analysis highlight pathways

from the immune system and especially neutrophils as a driving signal

for C‐peptide loss. Since the untargeted transcriptomics data may

have identified different but correlated gene expressions, looking at

the pathways involved may be a more relevant and mechanistic

comparison of the single‐omics and multi‐omics results.

The main difference between transcriptomics and the other

omics data was that it was determined from whole blood. The

remaining omics were collected either from serum, plasma, or

PBMCs. Even though some analytes may give similar results, samples

obtained from the same medium are more easily comparable.

Therefore, the disparity between omics that we observe in the latent

factors and in the linear association of each omics data set might be

caused by the source medium. This could be considered both a

drawback and an advantage. On one hand, it is undesirable that this

disparity exists because correlated analytes across omics cannot be

studied. This makes the data integration challenging as we cannot

observe the joint effect of multiple omics nor validate whether the

analytes associated with the disease progression in one data type can

also be observed in a different one. On the other hand, the hetero-

geneity across omics can be seen as complementary information.

Each omics data set captures a different source of variation, thus

providing additional information not captured by the other omics

types. Based on the current data, we cannot conclude whether the

plasma and serum omics were not associated with the disease pro-

gression due to the medium or the analytes themselves.

Molecular and cellular signatures of adaptive immune responses

were by and large not observed to be associated with β‐cell decline in

our study, which might at first sight be considered a surprise, given

the strong credentials, at genomic, pathological, and mechanistic

levels, for type 1 diabetes being the archetype of an organ‐specific

autoimmune disease. However, it is entirely plausible that the

detection of such associations is challenging in whole blood or whole

mononuclear cell analyses, both because the disease‐relevant, β‐cell

antigen‐specific lymphocytes are rare, and even more importantly,

because they may be sequestered at inflammatory sites. Certainly,

smaller scale studies focused on using appropriately sensitive tech-

nologies have identified that the activation and differentiation state

of circulating antigen‐specific cytotoxic T lymphocytes, for example,

correlate with changes in β‐cell function after the diagnosis of type 1

diabetes.10 Among the lymphocyte studies presented here, our

observation of a prominent NK cell signal related to rapid β‐cell

decline is of considerable interest. NK cells have features of both

innate and adaptive immune cells and play a key role in anti‐viral

responses. Both pro‐inflammatory and regulatory functions have

been ascribed to these cells, and functional subtypes can be partially

differentiated by surface markers. Previous studies examining the
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frequency of NK cells in individuals affected by type 1 diabetes have

consistently reported lower circulating levels of both proin-

flammatory and regulatory NK cells when compared to aged‐
matched non‐diabetic subjects,36–38 potentially reflecting homing to

inflammatory sites in the pancreas. Consistent with this, we observed

lower circulating levels of NK cells (both effector and regulatory

subtypes according to surface markers) in the rapid decline group. Of

interest, reduced circulating NK cell levels are also associated with

viral infection, linking this observation to the viral signatures already

described. Future functional studies will be required to explore the

pathological implications of these findings since the immune pheno-

typing performed here was limited to the expression of CD38 (NK

cell activation) and KLRG1 (an inhibitory receptor associated with an

exhausted phenotype).

Key strengths of the study include (i) the setting of a large lon-

gitudinal natural history study conducted across multiple European

sites according to standardized clinical and laboratory protocols; (ii)

access through the INNODIA network to highly specialised, systems‐
based technology platforms for parallel multi‐parametric analysis; (iii)

leverage of new tools in integrated MOFA to discover signatures that

are significantly associated with rate of disease progression for the

year following diagnosis. This period of the disease is important since

it represents the phase during which disease‐modifying immuno-

therapies are typically trialed for their effect on arresting β‐cell

decline. Factors identifiable at baseline that are associated with

faster β‐cell decline could be used to conduct shorter and smaller

trials (e.g. by enrollment of a rapid‐decline group), an important step

towards de‐risking the investment needed to bring disease modifying

strategies into clinical use.

Our INNODIA natural history collection involves individuals from

the ages of one up to 45 years, and thus includes the whole lifespan of

people living with type 1 diabetes. Although this may render inter-

pretation of findings in this clearly heterogenic disease more complex,

it may add to the identification of common factors that drive disease,

irrespective of age. We used fasting C‐peptide as read‐out for β‐cell

function rather than stimulated C‐peptide due to missingness, but we

demonstrated similar trends in decline of function using this simple

parameter. Although collected throughout Europe, the population

studied is almost completely white Caucasian, thus limiting the gen-

eralisability of the findings to a global population, where type 1 dia-

betes is becoming more prevalent in non‐Caucasian people.

Confirmation of our observations will therefore be needed in more

diverse cohorts. Our work reports on a small cohort of just under 100

people with newly diagnosed disease, and the power to detect existing

associations could be limited, notably when the population is further

divided into progression groups. However, we demonstrate that even

in such small numbers, using deeply phenotyped individuals and

standardized operating procedures, application of systems biology

techniques can lead to significant associations with top ranking

pathways consistent with single‐omics studies. Here we believe that

the collaboration between academics, foundations, industry and

people affected by type 1 diabetes and their families within INNODIA

was a unique driver. We created strict protocols for follow up where

people could be convinced to participate with support of materials

created by the PAC (People with diabetes Advisory Committee), we

set up a highly standardized sample collection (e.g. even standardising

the pipet tips for miRNA sample collection) and applied homogeneous

laboratory procedures. Importantly, we brought all data into a GDPR‐
conforming centralised database, allowing clean data collection and

high‐quality data for input into the analysis.

In summary, the presented study addressed the drivers of dis-

ease heterogeneity in type 1 diabetes by leveraging opportunities

presented by a highly integrated clinical network featuring

embedded research platforms with the capability to generate large

systems‐level datasets. One of the two factors identified showed

correlation to neutrophil degranulation, cytokine signalling, lymphoid

and non‐lymphoid cell interactions and G‐protein coupled receptor

signalling events, while the second signature, pathways related to

translation and viral infection, were inversely associated with change

in β‐cell function. The derived latent factors were used to identify

specific signatures, which were further investigated for biomarker

opportunities and mechanistic pathways that correlate with β‐cell

decline. Further investigation and validation of these multi‐omics

signatures could aid in identifying rapid and slow progressors

around diagnosis, which can be utilised for designing better stratified

trials of future disease‐modifying therapies.

AUTHOR CONTRIBUTIONS

JJAA, CB, SFAB, DBD, PJC, MK, AMS, GS, LLE, FD, TT, RL, LO, CM, MP,

SB designed the study. JJAA, CB, CHJ, KB, RM, NA‐S, IM, CL‐Q, TS, JHL,

GEG, MKH, TS, OR, PJC, JHL, GS, TT collected data and performed

analyses. JJAA, CHJ, TT, LO, CM, MP, SB wrote the manuscript. All

authors revised the manuscript for crucial content and approved the

final version. All authors had full access to all the data and had final

responsibility for the decision to submit for publication. A complete list

of the partners of the INNODIA consortium is included separately.

AFFILIATIONS
1Novo Nordisk Foundation Center for Protein Research, Faculty of Health and

Medical Sciences, University of Copenhagen, Copenhagen, Denmark

2Turku Bioscience Centre, University of Turku and Åbo Akademi University,

Turku, Finland

3InFLAMES Research Flagship Center, University of Turku, Turku, Finland

4Department of Paediatrics, University of Cambridge, Cambridge, England

5Steno Diabetes Center Copenhagen, Systems Medicine, Herlev, Denmark

6Research Program for Clinical and Molecular Metabolism, Faculty of Medicine,

University of Helsinki, Helsinki, Finland

7Pediatric Research Center, New Children's Hospital, Helsinki University

Hospital, Helsinki, Finland

8Bayer Pharmaceuticals, Berlin, Germany

9Immunology & Inflammation Research Therapeutic Area, Sanofi,

Massachusetts, USA

10Department of Medicine, Surgery and Neuroscience, Università degli Studi di

Siena, Siena, Italy

11Fondazione Umberto di Mario, ONLUS – Toscana Life Sciences, Siena, Italy

12Institute of Biomedicine, University of Turku, Turku, Finland

ARMENTEROS ET AL. - 13 of 15

 15207560, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dm

rr.3833 by C
ochraneItalia, W

iley O
nline L

ibrary on [11/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



13Steno Diabetes Center Copenhagen, Herlev University Hospital, Herlev,

Denmark

14Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy

15Department of Immunobiology, King's College, London, UK

16Department of Chronic Diseases and Metabolism, Endocrinology, Katholieke

Universiteit Leuven, Leuven, Belgium

ACKNOWLEDGEMENTS

We gratefully acknowledge all participants of the INNODIA natural

history study, which built the basis for the work presented here.

Without the outstanding engagement of the people with type dia-

betes and their relatives and friends participating in the INNODIA

clinical efforts, this data and new knowledge gain would not have

been possible. The authors also want to thank all the clinical

personnel for their dedication in the participant recruitment, char-

acterization, sample collection and preparation that was at the basis

of this analysis. We dedicate this work to the late Professor David

Dunger, who inspired INNODIA and laid the basis of this analysis.

This work is funded by the Innovative Medicine Initiative 2 Joint

Undertaking (IMI2 JU) under grant agreement N° 115797 (INNO-

DIA) and N° 945268 (INNODIA HARVEST). This Joint Undertaking

receives support from the Union's Horizon 2020 research and

innovation program and ‘EFPIA’, ‘JDRF’ and ‘The Leona M. and Harry

B. Helmsley Charitable Trust’.

CONFLICT OF INTEREST STATEMENT

CM serves or has served on the advisory panel for Novo Nordisk,

Sanofi, Merck Sharp and Dohme Ltd., Eli Lilly and Company,

Novartis, AstraZeneca, Boehringer Ingelheim, Roche, Medtronic,

ActoBio Therapeutics, Pfizer, Imcyse, Insulet, Zealand Pharma,

Avotres, Mannkind, Sandoz and Vertex. Financial compensation for

these activities has been received by KU Leuven; KU Leuven has

received research support for CM from Medtronic, Imcyse, Novo

Nordisk, Sanofi and ActoBio Therapeutics; CM serves or has served

on the speakers bureau for Novo Nordisk, Sanofi, Eli Lilly and

Company, Boehringer Ingelheim, Astra Zeneca and Novartis.

Financial compensation for these activities has been received by KU

Leuven. S.Br. reports having received funding from INNODIA (grant

agreement No 115797), having ownerships in Intomics A/S, Hoba

Therapeutics Aps, Novo Nordisk A/S, Lundbeck A/S, ALK A/S and

managing board memberships in Proscion A/S and Intomics A/S. MK

reports ownership and managing board membership in Vactech Oy.

CLQ serves on advisory boards of Fondation Alzheimer's and

Institute Pasteur, and has an affiliation with Novo Nordisk. LO re-

ports having received funding from INNODIA and INNODIA Har-

vest. CHJ reports having received funding from INNODIA (grant

agreement No 115797).

CODE AVAILABILITY

The primary software used for this work was Multi‐Omics Factor

Analysis (MOFA). The code for this software is available at https://

github.com/bioFAM/MOFA2.

ETHICS STATEMENT

The INNODIA study protocol was approved by the London –

City & East Research Ethics Committee on 28 October 2016 (REC

16/LO/1750) IRAS Project ID 210497. Subsequently, after trans-

lation of the participants’ documentation, approval was obtained

from local Ethic authorities throughout the entire INNODIA clinical

network.

DATA AVAILABILITY STATEMENT

The data generated and analysed is person‐sensitive as it can be used

to identify people based on their sequence variation and can be

accessed only in secure environments. Access to data can be pro-

vided by application to the INNODIA Data Access Committee by

emailing Professor Lut Overbergh (lutgart.overbergh@kuleuven.be).

Processed results of GSEA analysis are available as supplementary

material.

ORCID

Christian Holm Johansen https://orcid.org/0000-0001-8665-2111

Robert Moulder https://orcid.org/0000-0003-4742-0566

Karoliina Hirvonen https://orcid.org/0000-0003-1575-9725

Emile Hendricks https://orcid.org/0000-0002-0795-1832

Guido Sebastiani https://orcid.org/0000-0003-4374-8564

Søren Brunak https://orcid.org/0000-0003-0316-5866

TRANSPARENT PEER REVIEW

The peer review history for this article is available at https://www.

webofscience.com/api/gateway/wos/peer-review/10.1002/dmrr.3833.

REFERENCES

1. Warshauer JT, Bluestone JA, Anderson MS. New frontiers in the

treatment of type 1 diabetes. Cell Metab. 2020;31(1):46‐61. https://

doi.org/10.1016/j.cmet.2019.11.017

2. International Diabetes Federation. IDFDiabetes Atlas. 10thed.; 2021.

Published online.

3. Miller RG, Orchard TJ. Understanding metabolic memory: a tale of

two studies. Diabetes. 2020;69(3):291‐299. https://doi.org/10.2337/

db19‐0514

4. Rawshani A, Sattar N, Franzén S, et al. Excess mortality and car-

diovascular disease in young adults with type 1 diabetes in relation

to age at onset: a nationwide, register‐based cohort study. Lancet.
2018;392(10146):477‐486. https://doi.org/10.1016/S0140‐6736

(18)31506‐X
5. Tatovic D, Dayan CM. Replacing insulin with immunotherapy: time

for a paradigm change in Type 1 diabetes. Diabet Med J Br Diabet
Assoc. 2021;38(12):e14696. https://doi.org/10.1111/dme.14696

6. Battaglia M, Ahmed S, Anderson MS, et al. Introducing the endotype

concept to address the challenge of disease heterogeneity in type 1

diabetes. Diabetes Care. 2020;43(1):5‐12. https://doi.org/10.2337/

dc19‐0880

7. Weston CS, Boehm BO, Pozzilli P. Type 1 diabetes: a new vision of

the disease based on endotypes. Diabetes Metab Res Rev. 2024;40(2):

e3770. https://doi.org/10.1002/dmrr.3770

8. Limonte CP, Valo E, Montemayor D, et al. A targeted multiomics

approach to identify biomarkers associated with rapid eGFR decline

in type 1 diabetes. Am J Nephrol. 2020;51(10):839‐848. https://doi.

org/10.1159/000510830

14 of 15 - ARMENTEROS ET AL.

 15207560, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dm

rr.3833 by C
ochraneItalia, W

iley O
nline L

ibrary on [11/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://github.com/bioFAM/MOFA2
https://github.com/bioFAM/MOFA2
mailto:lutgart.overbergh@kuleuven.be
https://orcid.org/0000-0001-8665-2111
https://orcid.org/0000-0001-8665-2111
https://orcid.org/0000-0003-4742-0566
https://orcid.org/0000-0003-4742-0566
https://orcid.org/0000-0003-1575-9725
https://orcid.org/0000-0003-1575-9725
https://orcid.org/0000-0002-0795-1832
https://orcid.org/0000-0002-0795-1832
https://orcid.org/0000-0003-4374-8564
https://orcid.org/0000-0003-4374-8564
https://orcid.org/0000-0003-0316-5866
https://orcid.org/0000-0003-0316-5866
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/dmrr.3833
https://www.webofscience.com/api/gateway/wos/peer-review/10.1002/dmrr.3833
https://doi.org/10.1016/j.cmet.2019.11.017
https://doi.org/10.1016/j.cmet.2019.11.017
https://doi.org/10.2337/db19-0514
https://doi.org/10.2337/db19-0514
https://doi.org/10.1016/S0140-6736(18)31506-X
https://doi.org/10.1016/S0140-6736(18)31506-X
https://doi.org/10.1111/dme.14696
https://doi.org/10.2337/dc19-0880
https://doi.org/10.2337/dc19-0880
https://doi.org/10.1002/dmrr.3770
https://doi.org/10.1159/000510830
https://doi.org/10.1159/000510830
https://orcid.org/0000-0001-8665-2111
https://orcid.org/0000-0003-4742-0566
https://orcid.org/0000-0003-1575-9725
https://orcid.org/0000-0002-0795-1832
https://orcid.org/0000-0003-4374-8564
https://orcid.org/0000-0003-0316-5866


9. Speake C, Skinner SO, Berel D, et al. A composite immune signature

parallels disease progression across T1D subjects. JCI Insight. 2019;

4(23). https://doi.org/10.1172/jci.insight.126917

10. Yeo L, Woodwyk A, Sood S, et al. Autoreactive T effector memory

differentiation mirrors β cell function in type 1 diabetes. J Clin Invest.
2018;128(8):3460‐3474. https://doi.org/10.1172/JCI120555

11. Dunger DB, Bruggraber SFA, Mander AP, et al. INNODIA Master

Protocol for the evaluation of investigational medicinal products in

children, adolescents and adults with newly diagnosed type 1 dia-

betes. Trials. 2022;23(1):414. https://doi.org/10.1186/s13063‐022‐
06259‐z

12. Besser REJ, Shields BM, Casas R, Hattersley AT, Ludvigsson J. Les-

sons from the mixed‐meal tolerance test. Diabetes Care. 2013;36(2):

195‐201. https://doi.org/10.2337/dc12‐0836

13. Maddaloni E, Bolli GB, Frier BM, et al. C‐peptide determination in

the diagnosis of type of diabetes and its management: a clinical

perspective. Diabetes Obes Metab. 2022;24(10):1912‐1926. https://

doi.org/10.1111/dom.14785

14. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed‐effects

models using lme4. J Stat Softw. 2015;67:1‐48. https://doi.org/10.18

637/jss.v067.i01

15. Knip M, Virtanen SM, Seppä K, et al. Dietary intervention in infa-

ncy and later signs of beta‐cell autoimmunity. N Engl J Med. 2010;

363(20):1900‐1908. https://doi.org/10.1056/NEJMoa1004809

16. Love MI, Huber W, Anders S. Moderated estimation of fold change

and dispersion for RNA‐seq data with DESeq2. Genome Biol. 2014;

15(12):550. https://doi.org/10.1186/s13059‐014‐0550‐8
17. Multi‐Omics Factor Analysis—a framework for unsupervised inte-

gration of multi‐omics data sets Mol Syst Biol. 2023;Accessed Nov-

ember 30, 2023. https://www.embopress.org/doi/full/10.15252/

msb.20178124

18. Gene set enrichment analysis: a knowledge‐based approach for

interpreting genome‐wide expression profiles | Proc Natl Acad Sci
USA. 2023;Accessed November 30, 2023. https://www.pnas.org/doi/

full/10.1073/pnas.0506580102

19. Frost HR, Li Z, Moore JH. Principal component gene set enrichment

(PCGSE). BioData Min. 2015;8(1):25. https://doi.org/10.1186/s13

040‐015‐0059‐z
20. Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in

2021: customizable protein–protein networks, and functional char-

acterization of user‐uploaded gene/measurement sets. Nucleic Acids
Res. 2021;49(D1):D605‐D612. https://doi.org/10.1093/nar/gka

a1074

21. Huang HY, Lin YCD, Cui S, et al. miRTarBase update 2022: an

informative resource for experimentally validated miRNA–target

interactions. Nucleic Acids Res. 2022;50(D1):D222‐D230. https://

doi.org/10.1093/nar/gkab1079

22. Ismailova A, Salehi‐Tabar R, Dimitrov V, Memari B, Barbier C, White

JH. Identification of a forkhead box protein transcriptional network

induced in human neutrophils in response to inflammatory stimuli.

Front Immunol. 2023;14:1123344. https://doi.org/10.3389/fimmu.

2023.1123344

23. Zou Y, Gong N, Cui Y, et al. Forkhead box P1 (FOXP1) transc-

ription factor regulates hepatic glucose homeostasis. J Biol Chem.

2015;290(51):30607‐30615. https://doi.org/10.1074/jbc.M115.

681627

24. Dupuis J, Langenberg C, Prokopenko I, et al. New genetic loci

implicated in fasting glucose homeostasis and their impact on type 2

diabetes risk. Nat Genet. 2010;42(2):105‐116. https://doi.org/10.

1038/ng.520

25. Koscielny G, An P, Carvalho‐Silva D, et al. Open Targets: a platform

for therapeutic target identification and validation. Nucleic Acids Res.
2017;45(Database issue):D985‐D994. https://doi.org/10.1093/nar/

gkw1055

26. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling

tumor infiltrating immune cells with CIBERSORT. In: vonStechow L,

ed. Cancer Systems Biology: Methods and Protocols. Methods in Molec-
ular Biology. Springer; 2018:243‐259. https://doi.org/10.1007/978‐
1‐4939‐7493‐1_12

27. Harsunen MH, Puff R, D’Orlando O, et al. Reduced blood leukocyte

and neutrophil numbers in the pathogenesis of type 1 diabetes. Horm
Metab Res Horm Stoffwechselforschung Horm Metab. 2013;45(6):467‐
470. https://doi.org/10.1055/s‐0032‐1331226

28. Valle A, Giamporcaro GM, Scavini M, et al. Reduction of circulating

neutrophils precedes and accompanies type 1 diabetes. Diabetes.
2013;62(6):2072‐2077. https://doi.org/10.2337/db12‐1345

29. Wang Y, Xiao Y, Zhong L, et al. Increased neutrophil elastase and

proteinase 3 and augmented NETosis are closely associated with β‐
cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014;

63(12):4239‐4248. https://doi.org/10.2337/db14‐0480

30. Vecchio F, Buono NL, Stabilini A, et al. Abnormal neutrophil signa-

ture in the blood and pancreas of presymptomatic and symptomatic

type 1 diabetes. JCI Insight. 2018;3(18). https://doi.org/10.1172/jci.

insight.122146

31. Popp SK, Vecchio F, Brown DJ, et al. Circulating platelet‐neutrophil

aggregates characterize the development of type 1 diabetes in

humans and NOD mice. JCI Insight. 2022;7(2). https://doi.org/10.

1172/jci.insight.153993

32. Roles of Neutrophil Granule Proteins in Orchestrating Inflammation and
Immunity ‐ Othman ‐ 2022 ‐ the FEBS Journal ‐ Wiley Online Library.

Accessed November 30, 2023. https://febs.onlinelibrary.wiley.com/

doi/full/10.1111/febs.15803

33. Vehik K, Lynch KF, Wong MC, et al. Prospective virome analyses in

young children at increased genetic risk for type 1 diabetes. Nat
Med. 2019;25(12):1865‐1872. https://doi.org/10.1038/s41591‐019‐
0667‐0

34. Moulder R, Välikangas T, Hirvonen MK, et al. Targeted serum pro-

teomics of longitudinal samples from newly diagnosed youth with

type 1 diabetes distinguishes markers of disease and C‐peptide

trajectory. Diabetologia. 2023;66(11):1983‐1996. https://doi.org/10.

1007/s00125‐023‐05974‐9
35. Suomi T, Starskaia I, Kalim UU, et al. Gene expression signature

predicts rate of type 1 diabetes progression. EBioMedicine. 2023;92:

104625. https://doi.org/10.1016/j.ebiom.2023.104625

36. Wilson RG, Anderson J, Shenton BK, White MD, Taylor RM, Proud

G. Natural killer cells in insulin dependent diabetes mellitus. Br Med J
Clin Res Ed. 1986;293(6541):244. https://doi.org/10.1136/bmj.293.

6541.244

37. Fitas AL, Martins C, Borrego LM, et al. Immune cell and cytokine

patterns in children with type 1 diabetes mellitus undergoing a

remission phase: a longitudinal study. Pediatr Diabetes. 2018;19(5):

963‐971. https://doi.org/10.1111/pedi.12671

38. Oras A, Peet A, Giese T, Tillmann V, Uibo R. A study of 51 subtypes

of peripheral blood immune cells in newly diagnosed young type 1

diabetes patients. Clin Exp Immunol. 2019;198(1):57‐70. https://doi.

org/10.1111/cei.13332

SUPPORTING INFORMATION

Additional supporting information can be found online in the Sup-

porting Information section at the end of this article.

How to cite this article: Armenteros JJA, Brorsson C,

Johansen CH, et al. Multi‐omics analysis reveals drivers of

loss of β‐cell function after newly diagnosed autoimmune type

1 diabetes: An INNODIA multicenter study. Diabetes Metab

Res Rev. 2024;e3833. https://doi.org/10.1002/dmrr.3833

ARMENTEROS ET AL. - 15 of 15

 15207560, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dm

rr.3833 by C
ochraneItalia, W

iley O
nline L

ibrary on [11/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1172/jci.insight.126917
https://doi.org/10.1172/JCI120555
https://doi.org/10.1186/s13063-022-06259-z
https://doi.org/10.1186/s13063-022-06259-z
https://doi.org/10.2337/dc12-0836
https://doi.org/10.1111/dom.14785
https://doi.org/10.1111/dom.14785
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1056/NEJMoa1004809
https://doi.org/10.1186/s13059-014-0550-8
https://www.embopress.org/doi/full/10.15252/msb.20178124
https://www.embopress.org/doi/full/10.15252/msb.20178124
https://www.pnas.org/doi/full/10.1073/pnas.0506580102
https://www.pnas.org/doi/full/10.1073/pnas.0506580102
https://doi.org/10.1186/s13040-015-0059-z
https://doi.org/10.1186/s13040-015-0059-z
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1093/nar/gkaa1074
https://doi.org/10.1093/nar/gkab1079
https://doi.org/10.1093/nar/gkab1079
https://doi.org/10.3389/fimmu.2023.1123344
https://doi.org/10.3389/fimmu.2023.1123344
https://doi.org/10.1074/jbc.M115.681627
https://doi.org/10.1074/jbc.M115.681627
https://doi.org/10.1038/ng.520
https://doi.org/10.1038/ng.520
https://doi.org/10.1093/nar/gkw1055
https://doi.org/10.1093/nar/gkw1055
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1055/s-0032-1331226
https://doi.org/10.2337/db12-1345
https://doi.org/10.2337/db14-0480
https://doi.org/10.1172/jci.insight.122146
https://doi.org/10.1172/jci.insight.122146
https://doi.org/10.1172/jci.insight.153993
https://doi.org/10.1172/jci.insight.153993
https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15803
https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.15803
https://doi.org/10.1038/s41591-019-0667-0
https://doi.org/10.1038/s41591-019-0667-0
https://doi.org/10.1007/s00125-023-05974-9
https://doi.org/10.1007/s00125-023-05974-9
https://doi.org/10.1016/j.ebiom.2023.104625
https://doi.org/10.1136/bmj.293.6541.244
https://doi.org/10.1136/bmj.293.6541.244
https://doi.org/10.1111/pedi.12671
https://doi.org/10.1111/cei.13332
https://doi.org/10.1111/cei.13332
https://doi.org/10.1002/dmrr.3833

	Multi‐omics analysis reveals drivers of loss of β‐cell function after newly diagnosed autoimmune type 1 diabetes: An INNODI ...
	1 | INTRODUCTION
	2 | METHODS
	2.1 | Subjects with type 1 diabetes
	2.2 | Multi‐omics data pre‐processing, integration, and analysis

	3 | RESULTS
	3.1 | C‐peptide decline over time
	3.2 | Multi‐omics integration analysis
	3.3 | Differential gene expression analysis
	3.4 | Annotation of latent factors
	3.5 | Interpretation of biological networks
	3.6 | Immunomics signature
	3.7 | Other 'omics associations with disease progression

	4 | DISCUSSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGEMENTS
	CONFLICT OF INTEREST STATEMENT
	CODE AVAILABILITY
	ETHICS STATEMENT
	DATA AVAILABILITY STATEMENT


