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Abstract

Aims: Angiotensin I‐converting enzyme type 2 (ACE2), a pivotal SARS‐CoV‐2 re-

ceptor, has been shown to be expressed in multiple cells, including human

pancreatic beta‐cells. A putative bidirectional relationship between SARS‐CoV‐2
infection and diabetes has been suggested, confirming the hypothesis that viral

infection in beta‐cells may lead to new‐onset diabetes or worse glycometabolic

control in diabetic patients. However, whether ACE2 expression levels are altered

in beta‐cells of diabetic patients has not yet been investigated. Here, we aimed to

elucidate the in situ expression pattern of ACE2 in Type 2 diabetes (T2D) with

respect to non‐diabetic donors which may account for a higher susceptibility to

SARS‐CoV‐2 infection in beta‐cells.
Material and Methods: Angiotensin I‐converting enzyme type 2 immunofluores-

cence analysis using two antibodies alongside insulin staining was performed on

formalin‐fixed paraffin embedded pancreatic sections obtained from n = 20 T2D

and n = 20 non‐diabetic (ND) multiorgan donors. Intensity and colocalisation ana-

lyses were performed on a total of 1082 pancreatic islets. Macrophage detection

was performed using anti‐CD68 immunohistochemistry on serial sections from the

same donors.

Results: Using two different antibodies, ACE2 expression was confirmed in beta‐
cells and in pancreas microvasculature. Angiotensin I‐converting enzyme type 2

expression was increased in pancreatic islets of T2D donors in comparison to ND

controls alongside with a higher colocalisation rate between ACE2 and insulin using

both anti‐ACE2 antibodies. CD68+ cells tended to be increased in T2D pancreata, in

line with higher ACE2 expression observed in serial sections.

Conclusions: Higher ACE2 expression in T2D islets might increase their suscepti-

bility to SARS‐CoV‐2 infection during COVID‐19 in T2D patients, thus worsening

glycometabolic outcomes and disease severity.
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1 | INTRODUCTION

Previous studies have shown that patients with COVID‐19 and pre‐
existing diabetes are at increased risk of being admitted to Intensive

Care Unit (ICU), are more likely to have multi‐organ damage, and

have a higher mortality rate than non‐diabetic (ND) patients.1–4 In

addition, abnormalities in glycaemic control, insulin resistance and

pancreatic islet function have been observed in patients with COVID‐
19 without a pre‐existing history of diabetes, thus increasing the risk
of developing Type 1 Diabetes (T1D), Type 2 Diabetes (T2D) or

dysglycaemia.5–16 Therefore, it is conceivable to hypothesise a bidi-

rectional relationship between COVID‐19 and diabetes.17,18

Angiotensin I‐converting enzyme type 2 (ACE2) is the canonical

receptor for SARS‐CoV‐2. The entry of SARS‐CoV‐2 into cells de-

pends on binding of the spike protein to ACE2. Hence, the presence

of ACE2 dictates SARS‐CoV‐2 infectivity in multiple tissues [i.e.,

airway respiratory tract19] and is indispensable for SARS‐CoV‐2
infection.20 Additional cofactors, such as TMPRSS2 and Neuropilin‐
1 (NRP‐1) can facilitate and potentiate SARS‐CoV‐2 infection even

in the presence of low levels of ACE2.21

The presence of the SARS‐CoV‐2 receptor ACE2 in pancreatic

beta‐cells was initially highly debated, with observed discrepancies

among studies.22–24 At present, ACE2 expression in beta‐cells is

supported by multiple reports which clearly showed the expression

of ACE2 and other co‐factors (i.e. TMPRSS2, NRP1) in beta‐cells.24–29

As a consequence, pancreatic islets are susceptible to SARS‐CoV‐2
infection mainly due to the expression of ACE2 and its co‐factors,
as demonstrated in several studies showing that beta‐cells can be

infected in vitro and in vivo in patients who died as a consequence of

COVID‐19.25,26,28–30

Angiotensin I‐converting enzyme type 2 expression has been

shown to be modulated by pro‐inflammatory stress with multiple

studies showing increased expression of ACE2 upon exposure to

several cytokines and/or pro‐inflammatory molecules.24,31–34

Notably, chronic inflammation is a well‐described feature of obesity

and T2D.35–37 Inflammatory processes are also activated in pancre-

atic islets, as demonstrated by multiple evidence from animal models

and humans with obesity and/or T2D (reviewed in38). In this context,

low‐grade inflammation of pancreatic islets has been shown to be

associated with progressive beta‐cell failure.39–41

In T2D, ACE2 expression has been shown to be increased in

several organs exposed to a diabetic milieu.42–44 However, a sys-

tematic assessment of ACE2 expression in human pancreatic islets of

T2D patients is still missing.

We took advantage of the availability of a cohort of T2D and ND

multiorgan donors to measure pancreatic islet ACE2 expression

levels employing confocal immunofluorescence analysis and multiple

antibodies directed against different ACE2 epitopes.

2 | MATERIAL AND METHODS

2.1 | Ethics statement and multiorgan donors’
pancreata

Studies involving human participants were reviewed and approved

by the local ethics committee at the University of Pisa (Pisa, Italy).

Pancreata not suitable for organ transplantation were obtained

with informed written consent from organ donors’ next‐of‐kin and

processed following standardized procedures. Human pancreatic

tissue sections were obtained from the pancreata of brain‐dead
adult ND and T2D multiorgan donors, COVID‐19 negative. Mu-

ltiple formalin‐fixed paraffin embedded (FFPE) tissue sec-

tions were obtained from n = 20 ND controls (CTR) [9F, 11M;

age: 70.6 � 7.0 years (mean � Standard Deviation (S.D.));

BMI: 26.2 � 4.1 kg/m2) and from n = 20 T2D pancreata (6F, 14M;

age: 71.7 � 7.6 years (mean � S.D.); BMI: 27.1 � 2.7 kg/m2

(mean � S.D.)] whose clinical characteristics are described in ESM

Table 1.

2.2 | Immunofluorescence and
immunohistochemical analysis of human pancreatic
sections

2.2.1 | Triple immunofluorescence for Angiotensin
I‐converting enzyme type 2 (MAB933)‐ACE2
(AB15348)‐Insulin

Formalin‐fixed paraffin embedded tissue sections (7 μm thick) were

obtained from pancreata of ND or T2D multiorgan donors. Formalin‐
fixed paraffin embedded sections were analysed using quadruple

immunofluorescence for insulin (INS) and ACE2 (two different anti-

bodies) and 40 ,6‐Diamidino‐2‐phenylindoledihydrochloride (DAPI) for
nuclei counterstain.

After deparaffinisation and rehydration (xylene‐I and xylene II,

20 min/each; ethanol 100%, 95%, 80%, 75%, all vol./vol., 5 min/each),

pancreatic sections were subjected to antigen retrieval through in-

cubation in 10 mM citrate buffer [0.1 M Citric Acid Monohydrate

(Cat. C1909 ‐ Sigma Aldrich, St. Louis, MO, USA) and 0.1 M Tribasic

Sodium Citrate Dihydrate (cat. S4641 ‐Sigma Aldrich, St. Louis, MO,

USA)] pH 6.0 in microwave (600 W) for 10 min, maintaining boiling

conditions. After cooling and 3 washes in Phosphate Buffered

Saline 1X (PBS 1X) (Cat. 14040‐091 ‐ Gibco, ThermoFisher Scienti-
fic, Waltham, MA, USA), sections were incubated with PBS 1X sup-

plemented with 3% Bovine Serum Albumin (BSA) (cat. A1470‐25G ‐
Sigma Aldrich, St. Louis, MO, USA) for 40 min at room temperature

(RT) to avoid non‐specific reactions.
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Then, sections were incubated with primary antibody mono-

clonal mouse anti‐human ACE2 (cat. MAB933 ‐ R&D System,

Minneapolis, MS, USA) (final concentration: 15 μg/mL) in PBS 1X

supplemented with 3% BSA and primary antibody polyclonal rabbit

anti‐human ACE2 (cat. ab15348 ‐ Abcam, Cambridge, UK) (final

concentration: 0.5 μg/mL) in PBS 1X supplemented with 3% BSA,

overnight at +4°C. After 3 washes in PBS 1X, the sections were

incubated for 1h at RT with ready to use polyclonal guinea pig

anti‐human insulin (cat. IR002 ‐Agilent Technologies, Santa Clara,

CA, USA) further diluted 1:5 in PBS 1X supplemented with 3%

BSA. Then, the sections were incubated for 1 h with related sec-

ondary antibodies, all diluted 1:500 (final concentration: 4 μg/mL)
in PBS 1X: goat anti‐guinea pig Alexa‐Fluor 555 conjugate (cat.

A21435, Molecular Probes, ThermoFisher Scientific, Waltham, MA,

USA); goat anti‐mouse Alexa‐Fluor 488 conjugate (cat. A11029,

Molecular Probes, ThermoFisher Scientific, Waltham, MA, USA)

and goat anti‐rabbit 647 conjugate (cat. A21245—Molecular

Probes, ThermoFisher Scientific, Waltham, MA, USA). Sections

were counterstained with DAPI (cat. D8517, Sigma‐Aldrich) diluted
1:3000 in PBS 1X and then mounted with Dako Fluorescence

Mounting Medium (cat. S3023—Agilent Technologies, Santa Clara,

CA, USA). The sections were stored overnight at +4°C until image

analysis.

To confirm the validity of the staining 1 μg of polyclonal rabbit

anti‐human ACE2 (cat. ab15348 ‐Abcam, Cambridge, UK) was com-
bined with or without 10 μg of the immunising human ACE2 peptide

(cat. Ab15325—Abcam, Cambridge, UK) and the staining was per-

formed as described above.

2.2.2 | Double immunofluorescence for Angiotensin
I‐converting enzyme type 2 (MAB933)‐CD31

After deparaffinisation and rehydration, FFPE pancreatic sections

were subjected to antigen retrieval as described above.

After cooling and 3 washes in PBS 1X (Cat. 14040‐091 ‐ Gibco,
ThermoFisher Scientific, Waltham, MA, USA), sections were incu-

bated with PBS 1X supplemented with 3%

Bovine Serum Albumin (cat. A1470‐25G ‐ Sigma Aldrich, St.

Louis, MO, USA) for 40 min at RT to avoid non‐specific reactions and
then incubated overnight at +4°C with primary antibody monoclonal

rabbit anti‐human CD31 (cat. Ab76533 ‐ Abcam, Cambridge, UK)

(final concentration: 3.5 μg/ml). After 3 washes in PBS 1X, the sec-

tions were incubated with monoclonal mouse anti‐human ACE2 (cat.

MAB933 ‐ R&D System, Minneapolis, MS, USA) (final concentration:

15 μg/ml) for 1 h at RT.

After 3 washes in PBS 1X, the sections were incubated for 1 h

at RT with ready to use polyclonal guinea pig anti‐human insulin

(cat. IR002 ‐ Agilent Technologies, Santa Clara, CA, USA) further

diluted 1:5 in PBS 1X supplemented with 3% BSA. Then, sections

were incubated for 1 h with related secondary antibodies, all

diluted 1:500 (final concentration: 4 μg/mL) in PBS 1X: goat anti‐

guinea pig Alexa‐Fluor 594 conjugate (cat. A11037, Molecular

Probes, ThermoFisher Scientific, Waltham, MA, USA); goat anti‐
mouse Alexa‐Fluor 488 conjugate (cat. A11029, Molecular Probes,

ThermoFisher Scientific, Waltham, MA, USA) and goat anti‐rabbit
647 conjugate (cat. A21245 –Molecular Probes, ThermoFisher

Scientific, Waltham, MA, USA). Sections were counterstained with

DAPI (cat. D8517, Sigma Aldrich, St. Louis, MO, USA) diluted

1:3000 in PBS 1X and then mounted with Dako Fluorescence

Mounting Medium (cat. S3023—Agilent Technologies, Santa Clara,

CA, USA). The sections were stored overnight at +4°C until image

analysis.

2.2.3 | Immunohistochemical staining CD68‐positive
cells

Pancreatic CD68‐positive cells were detected using enzymatic‐
colorimetric immunohistochemical staining. After deparaffinisation

and rehydration (see above), pancreatic sections were subjected to

blocking of peroxidase with 3% hydrogen peroxide in PBS 1X for

20 min. Then, the sections were subjected to heat‐induced antigen

retrieval using Tris‐EDTA buffer (10 mmol/L Tris, 1 mmol/L EDTA,

0.05% Tween‐20, pH 9.0) for 20 min at 100°C. After cooling and

incubation in 3% BSA in PBS 1X for 30 min at RT to reduce non‐
specific reactions, sections were stained in 3% BSA in PBS 1X for

1h at RT with mouse monoclonal anti‐human CD68 (cat. M0876 ‐
Agilent Technologies, Santa Clara, CA, USA) (final concentration:

0.4 mg/mL). After three washes in PBS 1X, sections were incubated

with secondary antibody polyclonal goat anti‐mouse HRP‐conjugate
(cat.115‐036‐003 ‐ Jackson ImmunoResearch, Philadelphia, PA,

USA) diluted 1:500 in PBS 1X for 1h at RT. Subsequently, the

sections were incubated with one drop of 3,3‐Diaminobenzidine
(DAB) chromogen solution (cat. RE7270‐K, Novolink MAX DAB,

Leica Microsystems, Wetzlar, Germany) for 5 min, to trigger the

colorimetric reaction. After 10 min of incubation in water, the

sections were incubated for 1 h at RT with ready to use polyclonal

guinea pig anti‐human insulin (cat. IR002 ‐ Agilent Technologies,

Santa Clara, CA, USA) further diluted 1:5 in PBS 1X supplemented

with 3% BSA. After three washes in PBS 1X, sections were incu-

bated with secondary polyclonal antibody goat anti‐Guinea Pig

conjugated with Alkaline Phosphatase (cat. A18772‐ ThermoFisher
Scientific, Waltham, MA, USA) (final concentration: 0.3 μg/ml).
Subsequently, the sections were incubated with one drop of Liquid

Fast Red (LFR) (cat. K0640—Agilent Technologies, Santa Clara, CA,

USA) (a drop of chromogen in 3 mL of substrate Levamisole (cat.

X3021—Agilent Technologies, Santa Clara, CA, USA) one drop per

ml of LFR of Levamisole) for 5 min.

Stained sections were then counterstained with haematoxylin

(cat. MHS31 ‐ Sigma Aldrich, St. Louis, MO, USA) for 4 min. After 1 h

of air drying, the sections were covered with a drop of Faramount,

Aqueous Mounting Medium, Ready‐to‐Use (cat. S302580‐2 ‐ Agilent
Technologies, Santa Clara, CA, USA).

FIGNANI ET AL. - 3 of 9

 15207560, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/dm

rr.3696 by U
niversity O

f Siena Sist B
ibliot D

i A
teneo, W

iley O
nline L

ibrary on [09/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.3 | Image analysis

Images were acquired, as a single stack focal plane, employing a Leica

TCS SP5 confocal laser scanning microscope system (Leica Micro-

systems, Wetzlar, Germany).

For the confocal laser scanning microscope system sections were

scanned and images acquired at 40X magnification. The same

confocal microscope setting parameters (laser power, gain, offset,

pinhole aperture) were applied to all stained sections before image

acquisition in order to uniformly collect the detected signal related to

each channel.

Colocalisation analysis between ACE2 and insulin was performed

using LasAF software (Leica Microsystems, Wetzlar, Germany). The

region of interest (ROI) was drawn to calculate the colocalisation rate

(which indicates the extent of colocalisation between two different

channels and reported as a percentage) as a ratio between the

colocalisation area and the image foreground. Evaluation of ACE2

expression intensity in human pancreatic islets was performed using

LasAF software (www.leica‐microsystem.com). This software calcu-

lates the ratio between intensity sum ROI (which indicates the sum

ROI of the grey‐scale value of pixels within a ROI) of the ACE2 channel
and Area ROI (μm2) of human pancreatic islets. In both colocalisation

and intensity measurement analysis, a specific threshold was assigned

based on the fluorescence background. The same threshold was

maintained for all the images in all the cases analysed.

Insulin‐positive area was measured using Volocity 6.3 software

(PerkinElmer,Waltham,MA,USA). Relative insulin signal‐positive area
was calculated as a ratio between Area Intensity sum ROI (μm2) of

insulin channel and Area ROI (μm2) of each human pancreatic islet.

For CD68‐positive cell detection and quantification, images of

the entire section were acquired using a NanoZoomer S60 Digital

slide scanner (cat. C13210‐01 ‐ Hamamatsu Photonics, Hamamatsu

City, Japan) and were displayed using the proprietary NDP.view2

software. Manual count of CD68+ cells on the entire section area was

performed.

2.4 | Statistical analysis

Results were expressed as mean � Standard Deviation (S.D.). Com-

parisons between two groups were carried out usingMann‐WhitneyU

test for non‐parametric data (normality checked using Kolmogorov‐
Smirnov test). Differences were considered significant with p values

less than 0.05. Clinical variable associations with ACE2 expression

were checked using multiple least square regression analysis. Statis-

tical analyses were performed using Graph Pad Prism 8 software.

3 | RESULTS

To detect pancreatic ACE2 protein expression and distribution, and

to evaluate differences between ND and type 2 diabetic (T2D) do-

nors, we performed a quadruple immunofluorescence analysis on

FFPE pancreatic sections obtained from n = 20 ND and n = 20 T2D

multiorgan donors (Table 1 and ESM Table 1). To cross‐validate the

ACE2 staining results, we used two different anti‐ACE2 antibodies: (i)
a monoclonal mouse IgG2a anti‐human ACE2 (R&D, MAB933),

whose specificity was confirmed through an isotype primary antibody

staining (ESM Figure 1A) and (ii) a rabbit polyclonal anti‐ACE2
(Abcam, Ab15348), whose specificity was tested through a peptide

competition assay and subsequent staining in ND donors pancreatic

sections (ESM Figure 1A).

In the ND and T2D donor pancreata, both antibodies showed

signals indicating that ACE2 is expressed in pancreatic islets where it

is mostly colocalised with insulin signal (ESM Figure 2A). Triple

staining on ND FFPE pancreatic sections using ACE2‐MAB933, in-

sulin and glucagon antibodies confirmed the prevalent colocalisation

of ACE2 with insulin in comparison to ACE2 with glucagon (ESM

Figure 2A), in line with our previous data.24

The present results confirm that ACE2, in pancreatic islets, is

prevalent in beta‐cells as expected.
Outside pancreatic islets, ACE2‐positive cells showed a

vasculature‐like morphology and distribution; such results were

confirmed by using two different anti‐ACE2 antibodies (ESM

Figure 3A); a subsequent immunofluorescence co‐staining with ACE2
and vascular‐endothelial marker CD31 antibodies showed the

juxtaposition of the two signals (ESM Figure 3A), thus confirming our

previous observations,24 in line also with other reports,23 which

demonstrated the localization of ACE2 in pancreatic vascular cells.

Next, we focused on ACE2 expression in pancreatic islets. To

evaluate putative ACE2 expression differences between ND and

T2D, we performed an analysis of the intensity of ACE2 signals

including a total of n = 1082 islets. Both antibodies revealed a higher

intensity of ACE2 in T2D compared with ND pancreatic islets

(Figure 1A). Analysis of ACE2 intensity confirmed the significantly

increased expression of ACE2 in T2D pancreatic islets compared

to ND donors as measured by R&D and Abcam antibodies (greyscale

values of ACE2‐MAB933 in T2D = 52.5 � 34.6 and in

ND = 37.1 � 28.1, p < 0.001; greyscale values of ACE2‐ab15348 in

T2D = 53.2 � 63.5 and in ND = 27.3 � 22.3, p < 0.001) (Figures 1C

and D).

TAB L E 1 Main clinical characteristics of non‐diabetic (ND)
and type 2 diabetic (T2D) subjects included in the study.

Clinical parameters ND (n = 20) T2D (n = 20) p value

Age 70.6 � 7.05 71.6 � 7.7 ns

Sex (M:F) 11:9 14:6 ns

BMI (kg/m2) 26.2 � 4.2 27.1 � 2.7 ns

Abdominal

circumference (cm)

103.0 � 20.7 100 � 10.3 ns

ICU stay (days) 3.9 � 5.0 3.4 � 1.9 ns

Cold Ischaemia time (hours) 16.0 � 5.29 15.76 � 9.29 ns

Mean glycaemia (mmol/L) 8.03 � 2.0 11.6 � 3.7 p < 0.05

Diabetes duration (years) ‐ 10.9 � 8.8 n/a
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F I GUR E 1 Upregulation of Angiotensin I‐converting enzyme type 2 (ACE2) in pancreatic islet beta‐cells of type 2 diabetic (T2D) donors.

(A) Representative confocal images of formalin‐fixed paraffin embedded (FFPE) pancreatic section from non‐diabetic (ND) (case 13) and T2D
donors (case 38). Pancreatic sections were stained with anti‐ACE2‐MAB933 (green, panels a and e) and the merge with 40,6‐Diamidino‐2‐
phenylindoledihydrochloride (DAPI) (white, nuclei) (panels b and f) showing the expression of ACE2‐MAB933 in a pancreatic islet; pancreatic

sections were stained with anti‐ACE2‐ab15348 (blue, panels c and g) and the merge with DAPI (white, nuclei) (panel d and h) showed the
expression of ACE2‐ab15348 in a pancreatic islet. (B) Representative confocal images of FFPE pancreatic sections derived from a nondiabetic
(ND) (case 2) and a T2D donor (case 32). Pancreatic sections were stained for insulin (INS, red, panels a and f), ACE2‐MAB933 (green, panels b

and g) and ACE2‐ab15348 (blue, panels c and h). Colocalisation between ACE2‐MAB933 and insulin is shown in yellow (panels d and i), while
colocalisation between ACE2‐ab15348 and insulin is reported in magenta (panels e and j). Signal intensity analysis measured with anti‐ACE2‐
MAB933 (C) and with anti‐ACE2‐ab15348 (D) antibody in ND and T2D pancreatic sections; values are shown as fluorescence intensity of each
islet detected (ND = 556 islets; T2D = 526 islets) reported as the sum of grey‐scale values for each pixel normalised for the islet area (region
of interest (ROI), mm2). (E–F) Colocalisation rate analysis between ACE2‐MAB933‐Insulin (E) and ACE2‐ab15348‐insulin (F). Values are
reported as the colocalisation rate between ACE2 (MAB933 or Ab15348) and insulin. *p < 0.05, **p < 0.01, ***p < 0.001, non‐parametric
Mann‐Whitney U test, performed after checking normality with the Kolmogorov‐Smirnov normality test.
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Since ACE2 expression in pancreatic islets is mostly prevalent in

beta‐cells, we performed a colocalisation rate analysis (reported as

the percentage of the overlap of INS and ACE2 signals) of ACE2

MAB933/INS and ACE2 Ab15348/INS in T2D and ND pancreatic

islets. We observed a significantly increased colocalisation rate be-

tween ACE2 and INS in T2D subjects compared with ND subjects

(Figure 1B). The ACE2 colocalisation rate analysis of n = 1082 islets

across all ND and T2D donors confirmed the increased colocalisation

rate between ACE2‐MAB933/INS [T2D: 12.5 � 7.6% (mean � S.D.)

versus ND 9.23 � 7.0% (mean � S.D.), p < 0.001] and of ACE2‐
ab15348/INS [T2D: 11.45 � 13.7% (mean � S.D.) versus ND

5.3% � 5.3%; p < 0.001] in T2D compared to ND (Figures 1E and F).

No differences in insulin‐positive area and signals were observed

between T2D and ND donors (ESM Figure 4).

In the multiple linear regression analysis (ESM Table 2), ACE2

expression (reported as staining intensity) was not associated with

age, BMI, gender, ICU stay, or duration of cold ischaemia time, thus

excluding the influence of these putative confounding variables on

ACE2 levels. Of note, ACE2 expression was not associated with

gender or blood glucose levels (ESM Table 2).

To investigate a possible link between ACE2 expression and

inflammation triggered by innate immune cells in the pancreas of

T2D donors, we analysed CD68+ macrophages in pancreatic tissue. In

the whole pancreatic section (Figure 2A), CD68+ macrophages

showed an abundance of about 6.2 cells per mm2 in T2D and 5.1 cells

per mm2 in ND. Interestingly, CD68+ macrophages in the peri‐islets
showed an increased abundance trend in T2D compared to ND do-

nors (0.22 vs. 0.15 CD68+ cells/islet) (Figure 2B); although not sta-

tistically significant, this result is consistent with the increased

expression of ACE2 observed in pancreatic islets of previous serial

sections.

Overall, these data show an increased expression of ACE2 in

pancreatic beta‐cells in T2D compared with ND donors. Although

such an increase is independent of available clinical variables related

to glycometabolic outcomes, we observed a tendency to increase in

peri‐islets CD68+‐macrophages, thus putatively associating ACE2

expression increase to inflammatory insults.

4 | DISCUSSION

The bidirectional relationship between SARS‐CoV‐2 infection and

diabetes mellitus has been hypothesised at the beginning of the

pandemic. As a matter of fact, evidence of hyperglycaemia, inflam-

mation and vascular dysfunction, and abnormalities in glycometabolic

control after or during SARS‐CoV‐2 infection have been demon-

strated in several studies.5–16,45 Notably, a recent meta‐analysis
showed 59% increase in the risk of developing diabetes in the

post‐acute phase of COVID‐19 infected individuals in comparison to

both healthy controls and versus matched non‐COVID‐19 respira-

tory infections.46 Moreover, diabetic patients showed a more severe

outcome, a poor prognosis and higher mortality rate after SARS‐CoV‐
2 infection.1,2,5–8 Notably, it has been demonstrated that SARS‐CoV‐
2 can infect human host cells through the binding of viral spike

protein to the extracellular N‐terminal domain of the ACE2 recep-

tor.25,26 As a matter of fact, we and others have previously shown

that beta‐cells do express ACE2, thus being susceptible to SARS‐
CoV‐2 infection.24–29

F I GUR E 2 Peri‐islets CD68+‐macrophages in Type 2 diabetes (T2D) pancreas. (A) Representative whole‐slide image of formalin‐fixed
paraffin embedded (FFPE) pancreatic section from non‐diabetic (ND) (panel a) and T2D donor pancreatic tissue sections (panel c) stained for

insulin (red) and CD68 (brown). Zoom‐in insets of the peri‐islets CD68+ macrophages are reported in panel b (ND) and in panel d (T2D).
(B) CD68 density in the whole pancreas is reported as number of cells/mm2. Peri‐islets CD68+‐macrophages (C), considered within 250 μm
from islet edge, are reported as the number of positive cells per islet.
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In this study, we analysed an extended cohort of T2D patients in

comparison to age‐ and sex‐matched ND multiorgan donors to eval-

uate ACE2 expression and distribution. We demonstrated that ACE2

is increased in pancreatic islets of T2D donors and showed a higher

colocalisation rate in beta‐cells of T2D versus ND donors. Notably, we

considered a total of n = 1082 pancreatic islets across all ND and T2D

donors, and the results were obtained using two different anti‐ACE2
antibodies (monoclonal ACE2‐MAB933 from R&D and polyclonal

ACE2 Ab1538 from Abcam) adopted in the immunofluorescence

analysis in an experimental cross‐validation approach. The higher

colocalisation rate between ACE2 and insulin in T2D suggests that, in

pancreatic islets, ACE2 hyperexpression is mainly occurring in beta‐
cells; however, at this stage, we cannot decipher whether (i) ACE2

expression is increased in beta‐cells already expressing the receptor,
(ii) it is increased due to de novo expression of ACE2 occurring in

previously ACE2‐negative beta‐cells, or (iii) a combination of both

mechanisms. Additional analyses using imaging machine learning ap-

proaches and single cells segmentation are required to further deci-

pher the intra‐islet expression pattern of ACE2 in T2D. Overall, our

data support an increased expression of the SARS‐CoV2 receptor in

beta‐cells of T2D donors and are in‐line with a recent report

demonstrating the upregulation of ACE2 in pancreatic islets of T2D

donors subjected to microarray and RNA sequencing47; indeed,

Taneera and colleagues showed that ACE2 is elevated in diabetic is-

lets but no correlation between its expression and HbA1c, age or BMI

was detected, similarly to what we have observed in the present

study. In contrast to these results, other previous reports did not

observe the upregulation of ACE2 in T2D islets22,23; this can be due to

the high heterogeneity of ACE2 expression or differences among T2D

cohorts and/or reagents adopted. It is worth noting that in the present

study we adopted two different antibodies after a detailed analysis of

their specificity and efficiency testing.

Previous studies showed that other organs exposed to a diabetic

milieu such as the lung, kidney and heart, showed the upregulation of

ACE2, thus corroborating our findings in a different context.42–44

Indeed, ACE2 expression was found to be increased in the bron-

chial epithelium and alveolar tissue of T2D donors and a linear

relationship was detected between blood glucose levels and ACE2

expression in alveolar tissue.42 In the heart tissue, ACE2 expression

was significantly increased in cardiomyocytes of T2D patients with

poor glycaemic control compared with ND patients and T2D patients

with good glycaemic control.43 In kidney organoids, ACE2 was

expressed in tubular‐like cells and an oscillatory glucose regimen

induced the expression of ACE2.44 Collectively, we can hypothesise

that ACE2 expression is increased upon exposure to inflammation

and/or high glucose or other stressors and that such chronic stress

stimuli also exert their deleterious effect on beta‐cells favouring the
upregulation of ACE2. However, unlike other reports, we cannot find

a significant correlation between ACE2 expression and blood glucose

levels. This can be explained by the high level of glycaemia already

observed in ND patients during the ICU stay (Table 1); alternatively,

we can hypothesise that, at least in beta‐cells, high glucose is not the
main factor leading to the hyperexpression of ACE2 and that pro‐

inflammatory molecules may play a major role in ACE2 modulation.

The latter hypothesis is also supported by Van der Heide and col-

leagues who did not find any association between ACE2 expression

and high glucose exposure in beta‐cells.27 In addition, our previous

study showed that the in vitro exposure of the beta‐cell line EndoC‐
βH1 or primary pancreatic islets to pro‐inflammatory molecules (i.e.

IFNγ+IL‐1β+TNFα or IFN α), but not metabolic stressors such as

palmitate, can significantly increase ACE2 expression,24 thus sup-

porting the hypothesis of a major inflammatory‐mediated mechanism
governing ACE2‐hyperexpression in beta‐cells.45

In line with this hypothesis, we explored the potential contri-

bution of inflammation in ACE2 upregulation in T2D pancreatic islets

by analysing pancreatic‐tissue resident CD68+‐macrophages. We

observed an increase in peri‐islet CD68+ macrophages though not

significant. However, such increase is supported by other previ-

ous observations, which showed a peri‐islet increase in CD68+‐
macrophages in T2D pancreata in comparison to ND donors.48,49

Thus, additional analyses should be considered to further explore the

inflammatory mechanisms leading to ACE2 upregulation in beta‐cells
in T2D.

It has been suggested that increased expression of ACE2 may

explain the increased infectivity or severity of COVID‐19 in patients

with diabetes.50 In this context, we can argue that increased

expression of ACE2 in beta‐cells may lead to increased susceptibility

to SARS‐CoV‐2 infection, making them more prone to virus tropism

in patients already infected with SARS‐CoV‐2. However, further
analyses are needed to explore the expression of ACE2 cofactors (i.e.

NRP1, TMPRSS2) in T2D islets and to decipher their contribution in

the putative enhancement of the susceptibility of beta‐cells to SARS‐
CoV‐2 infection during COVID‐19.

In conclusion, we observed the upregulation of ACE2 in pan-

creatic islet beta‐cells of T2D donors, putatively driven by

inflammatory‐mediated mechanisms. Higher ACE2 expression in T2D
islets might increase their susceptibility to SARS‐CoV‐2 infection

during COVID‐19 in T2D patients, thus exacerbating glycometabolic

outcomes and worsening the severity of the disease.
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