
EPJ Appl. Metamat. 9, 17 (2022)
© C. Yepes et al., Published by EDP Sciences, 2022
https://doi.org/10.1051/epjam/2022015

Available online at:
epjam.edp-open.org
Metamaterials for Novel Wave Phenomena in Microwav
es,
Optics, and Mechanics
RESEARCH ARTICLE
On the role of spatial dispersion in boundary conditions
for perfect non-specular reflection
Cristina Yepes1,* , Stefano Maci1 , Sergei A. Tretyakov2, and Enrica Martini1

1 Department of Information Engineering and Mathematics, University of Siena, Siena, Italy
2 Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland
* e-mail: c

This is anO
Received: 31 October 2021 / Accepted: 8 May 2022

Abstract. Exact solutions for perfect anomalous reflection throughmetasurfaces have been recently developed in
termsofboth idealnondispersive impenetrableboundaryconditions (BCs)andpenetrableBCsontopofagrounded
slab.Thesecondmodel ismoreaccurate for thedescriptionofmetasurfaces realized inPCBtechnology.Focusingon
this particular class ofmetasurfaces, this paper investigates the connection between the two solutions,with the aim
to clarify the role of spatial dispersion. It is shown that the two solutions can be related through an equivalent
transmission network where transmission lines with different wavenumbers are associated to the incident and
reflectedwaves.Finally, numerical analyses are carriedout toassess the impact ofneglectingspatialdispersion,as it
is done in designs based on a linear phase gradient of the local reflection coefficient.

Keywords: Metasurface / anomalous reflection / modulated surface impedance /
penetrable impedance boundary condition
1 Introduction

Sixth-generation (6G) wireless communication systems are
expected to be revolutionary, including applications like
data driven, instantaneous, ultra-massive, and ubiquitous
wireless connectivity, as well as connected intelligence. In
this context, reconfigurable intelligent surfaces (RISs) [1,2]
are in the spotlight, due to their potential to enhance the
capacity and coverage of wireless networks through a smart
reconfiguration of the wireless propagation environment.
These surfaces are attractive not only for their potential,
but also for their ability to be deployed on various
structures such as building facades, indoor walls, aerial
platforms, etc.

Metasurfaces (MTSs) are widely used to shape the
refracted and reflected wavefronts to effectively control the
phase, amplitude, and polarization of the field [3–5], and
therefore represent a key component for the design of RISs.
In particular, in order to control the propagation environ-
ment, it is crucial to haveMTSs able to reflect an impinging
wave in a non-specular direction, or, in other words,
capable to achieve an “anomalous reflection”. The possi-
bility to achieve this effect was first illustrated introducing
the reflectarray technique and, later, the generalized
reflection law [6], which provided guidelines to
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design passive phase-gradient metasurfaces for anomalous
reflection. According to this approach, theMTS is designed
so as to offer to the impinging wave a local reflection
coefficient whose phase is linearly varied to create the
desired reflected wavefront. This means that only the
transverse wavenumber of the impinging wave is consid-
ered in the definition of the reflection coefficient, even if the
desired reflected wave has a different normal wavenumber,
and, hence, a different transverse impedance. This design
approach fails to properly account for spatial dispersion,
and it is therefore inherently inaccurate. This can be seen
from the fact that it does not guarantee power conservation
via impedance matching with the surrounding medium. In
practice, this translates in the appearance of spurious
reflected lobes in the scattering pattern. The only case in
which the local design based on the generalized reflection
law leads to an exact solution is the case of retroreflection,
where the incident and the reflected wave are characterized
by the same transverse impedance.

Efforts to reduce the power lost in spurious reflected
beams have been proposed in the literature, using
homogenized impedance layers [7,8] or properly designed
individual scatterers distributions [9]. These solutions
achieve better results than the ones obtained using the
phase-gradient principle by suppressing the undesired
diffraction orders in the visible region, while allowing the
presence of surface waves.
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Fig. 1. Equivalent transmission line representation of a scalar
metasurface using an impenetrable IBC (left) and using a
penetrable IBC (right). Only the TM transmission line case is
shown for the sake of simplicity.
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An exact solution for perfect anomalous reflection with
polarization conversion where not only the undesired
diffraction orders in the visible region, but also the slow
waves outside the visible regionare suppressedwasproposed
in [10] for a nondispersive impenetrable impedance BC
(IIBC).This solution rigorously satisfies power conservation
byproviding the right relationship between the amplitude of
the incident field and the amplitude of the reflected field as a
function of the incidence and reflection angles.

In principle, nondispersive anisotropic IIBCs can be
realized as arrays of infinitesimal anisotropic particles.
However, in practice, it is convenient to realize the MTS as
a finite-thickness structure, that will inevitably exhibit some
spatial dispersion. In order to account for this, in [11] a
different model was proposed, based on a nondispersive
penetrable IBC(PIBC)over a groundeddielectric slab,which
represents a more accurate model for MTSs realized in PCB
technology (the most common realization in the microwave
range) [12]. This model correctly describes the spatial
dispersion of the MTS, which is due to the presence of the
grounded slab. Also, for this model, a solution providing
perfect anomalous reflectionwithpolarizationconversionwas
found for any given couple of incidence and reflection angles.

This paper investigates the connection between the
IIBC solution proposed in [10] and the PIBC one found in
[11]. The paper is organized as follows. Section 2 introduces
the impedance BCs and the relevant equivalent trans-
mission line models. Section 3 presents the two exact
solutions and discusses the connection between them.
Section 4 reports some numerical results. Finally, con-
clusions are drawn in Section 5.

2 Impedance models for MTS description

MTSs are artificial surfaces realized by arranging small
inclusions in a periodic or pseudo-periodic lattice. Their
analysis can be conveniently performed by using isotropic or
anisotropic impedance BCs. These conditions relate the
tangential components of the average electric and magnetic
fields and are obtained through a homogenization process,
justified by the sub-wavelength size of the constituent unit
cells.

For a modulated MTS, the definition of the effective
BCs at each unit cell relies on a local periodicity
assumption, i.e. it is derived by assuming the unit cell
immersed in a periodic environment. For a generic MTS
backed by a ground plane the BCs can be expressed in
terms of an “impenetrable” equivalent tensor impedance ̲Z̲
which relates the average tangential electric and magnetic
fields on the top interface of the MTS (z=0):

Et z ¼ 0þð Þ ¼ ̲Z̲ ·bz � Ht z ¼ 0þð Þ: ð1Þ
Fromhereon,boldcharacterswill denotevectorsandbold

characters underlined by double bars will indicate tensors.
The tensor nature of the equivalent impedance accounts for
possible coupling between different polarizations.

In the common case in which the MTS is realized
through the PCB technology, amore accurate model can be
obtained by introducing a penetrable impedance BC,
which relates the tangential electric field to the disconti-
nuity of the average tangential magnetic field across the
metallization as follows:

Et z ¼ 0ð Þ ¼ Z
S·ẑ � Ht z ¼ 0þð Þ �Ht z ¼ 0�ð Þ½ �: ð2Þ

When the MTS consists of a single metallic cladding
printed over a grounded slab, the relationship between the
impenetrable impedance tensor ̲̲Z and the penetrable one,
̲̲ZS, expressed in the TM/TE reference system of the

interacting wave, can be easily understood looking at the
equivalent transmission-line networks in Figure 1:
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where Ze=h
sc is the TM/TE impedance of the grounded slab.

It is noted that the impenetrable impedance model in
equation (1) is more general than the PIBC one, since it can
be applied to different metasurface implementations,
including beds of nails and mushrooms. However, the
penetrable impedance, which only represents the contribu-
tionof thepatternedmetallic layer, is onlyweaklydependent
on the transverse wavenumber of the interacting fields, as
opposed to the impenetrable impedance, which models the
whole,finite-thickness,MTS. For this reason, thefirstmodel
offers a significantly higher accuracy whenever the same BC
has to be used for different transverse wavenumbers [13].
This is the case also for MTSs performing anomalous
reflection, where at least two transverse wavenumbers are
involved: the one of the incident wave and the one of the
reflected wave.

3 Solutions for perfect anomalous reflection

It has been shown in the literature that perfect anomalous
reflection without polarization conversion can only be
obtained in the case of retroreflection (i.e., the impinging
wave is reflected toward the same angle that it came from).
On the other hand, it is possible to achieve perfect
anomalous reflection in combination with polarization
conversion for any given couple of incidence and reflection
angles. This conclusion has been reached both for IIBC



Fig. 2. Geometry for the problem of anomalous reflection. Left:
impenetrable reactance. Right: penetrable reactance on a
grounded dielectric slab.

Fig. 3. Equivalent transmission line network for a TE-polarized
incident wave and a TM-polarized reflected wave.
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[10,14] and for PIBC [11]. The two exact solutions are
summarized in the following.

The geometry for the problem is shown in Figure 2 for
the two different impedancemodels: aMTS consisting of an
impenetrable tensor reactance sheet, and a MTS made of a
penetrable tensor reactance sheet on top of a grounded slab
of thickness hd and relative permittivity er. For both cases,
the top face of the MTS lies in the xy-plane of a Cartesian
reference system, it is illuminated by a TE polarized plane
wave impinging in the xz-plane at an angle ui, and it
generates a TM-polarized reflected wave at an angle ur in
the same plane. The MTS is modulated along x, and it is
uniform along y.

The IIBC profile providing perfect anomalous reflection
is provided in [10] and reads

̲Z ̲ ¼ j

z0
cos ui

cotf
z0 cos uiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ui cos ur

p 1

sinf
z0

cos ui

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ui cos ur

p 1

sinf
z0 cos ur cotf

2664
3775
ð4Þ

where f ¼ k0x sin ui � sin urð Þ, k0 and z0 are the free space
wavenumber and impedance, respectively.

The solution for the penetrable admittance providing
perfect anomalous reflection has been derived in [11] and it
reads

̲Y̲ s ¼ j
�bTEsc þ Y TE

0 cotf �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ui cos ur

p
Y TM

0

sinf

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ui cos ur

p
Y TM

0

sinf
�bTMsc þ Y TM

0 cotf

2664
3775
ð5Þ

where

bTEsc ¼ � kizd
z0k0

cot kizdhd

� �
bTMsc ¼ � k0er

z0k
r
zd

cot krzdhd

� � ð6Þ

with kizd ¼ k0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin 2 ui

p
and krzd ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er � sin2 ur

p
.

4 Connection between IIBC and PIBC
solutions

The two solutions presented in the previous section support
the same field configuration in the half space above the
MTS since in both cases we have the same incident and
reflected fields and no other modes. This implies that the
ratio of the electric and magnetic fields at the top boundary
of the metasurface is the same in the two cases. However,
the first IBC is independent from the transverse wave-
number, while the second one is spatially dispersive due to
the presence of the grounded slab. It is therefore interesting
to investigate the connection between the two solutions.

To this end, we calculate the impenetrable admittance
corresponding to the penetrable one reported in (5). The
impenetrable impedance ̲̲Z is the parallel connection of
the penetrable impedance ̲̲Zs and the impedance of the
grounded slab, which depends on the wavenumber. In this
problem, two different wavenumbers are involved for the
incident and the reflected waves, therefore, the definition of
the impenetrable IBC appears to be non-univocal.
However, it is noted that the two transverse wavenumbers
are associated to different polarizations, and, hence, to two
different equivalent transmission lines. We can therefore
consider the equivalent transmission line represented in
Figure 3, where different wavenumbers are associated to
the different polarizations.

Indeed, the impenetrable IBC in [10] can be obtained
from (1) only if the inclusion of the grounded slab
contribution is done with two different longitudinal
wavenumbers for the TE and the TM polarizations,
namely, the one associated to the incidence angle for
the TE polarization and the one associated to the
reflection angle for the TM polarization. This leads to
the unconventional equivalent transmission line shown in
Figure 3, where the lines associated to the two polarizations
are characterized by different propagation constants.
Notice that there is no ambiguity for the cross-polar
terms, since the ground plane does not couple TE and
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TM modes, and therefore the off-diagonal terms of
the admittance tensor representing the grounded slab
contribution are zero. Hence, we can consider the tensor

load ̲Y̲ sc ¼ jbTEsc 0
0 jbTMsc

� �
in parallel to the penetrable

impedance, leading to the impenetrable admittance
̲Y̲ ¼ ̲Y̲ s þ ̲Y̲ sc:

̲Y̲ ¼ j
Y TE

0 cotf �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ui cos ur

p
Y TM

0

sinf

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos ui cos ur

p
Y TM

0

sinf
Y TM

0 cotf

2664
3775 ð7Þ

which is exactly equal to the inverse of the impedance
tensor in (4).

It is noted that this equivalence cannot be applied in
absence of cross-polarization.The reason is that,while in the
presence of cross polarization the two equivalent trans-
mission lines associatedwith the incident and reflected fields
are decoupled also in the presence of a linear phasing of
the reflection coefficient, this isnot true if the twowaveshave
the same polarization. Hence, in this second case it is not
possible to univocally define the transverse wavenumber at
which the grounded slab contribution should be evaluated.
The only exception is represented by the case of retrore-
flection, inwhich case the twowaves are characterizedby the
same transverse wavenumber, and the grounded slab
contribution only depends on the magnitude of the trans-
verse wavenumber, and not on its direction. For this reason,
the IIBCand thePIBC solutions are rigorously equivalent in
this case, and the corresponding admittance profile read:

Y TE;TM ¼ �Y TE;TM
0 ·tan k0x sin uið Þ ð8Þ

Y TE;TM
S ¼ �Y TE;TM

0 ·tan k0 x sin uið Þ � bTE;TM
sc : ð9Þ

As a difference from the case of arbitrary anomalous
reflection with polarization conversion, the previous
solutions can also be obtained by applying the generalized
reflection law.
5 Numerical results

In the previous section, it has been shown that for the
practical implementation of the IIBC solution for perfect
anomalous reflection it is necessary to properly account for
the spatial dispersion of the MTS. In order to assess the
impact of this aspect, we have performed some numerical
simulations to quantify how much performance degrade if
spatial dispersion is not considered.

This is done by setting up a numerical procedure to
analyze the scattering by a periodicMTSmodeled through a
PIBC on a grounded slab, illuminated by a plane wave. As
shown in [13], themodel based on PIBC is themost physical
approach to describe PCB-based metasurfaces since it
correctly describes spatial dispersion. According to it, the
equivalent IIBC is given by the parallel connection of the
penetrable impedance and the impedance of the grounded
slab. Accordingly, any given IIBC is simulated through the
equivalent PIBC, obtained by de-embedding the contribu-
tion of the grounded slab evaluated at the wavenumber of
interest. The key point to set an equivalence between the
IIBC solution in equation (4) and thePIBC in equation (5) is
to consider the substrate admittance with different prop-
agation constants for the TE and TM polarizations,
associated to the incidence and reflection angles, respec-
tively. This is different from the conventional way to relate
IIBC and PIBC, where the same propagation constant is
used for the two polarizations.

The procedure is based on the Method of Moments
using Floquet Waves (FWs) as basis functions, analogous
to the procedure introduced in [15] to analyze the
conversion from surface waves to leaky waves. Such a
procedure can be seen as a generalization of the procedure
proposed by Oliner and Hessel [16] for a sinusoidally
modulated scalar IIBC. A comparison between the results
provided by this kind of analysis and the full-wave
simulation of the patch implementation of the MTS can
be found in [11] for a scattering problem and in [13] for a
dispersion analysis.

The operational frequency is 10GHz, the TE-polarized
incident wave is set at ui ¼ 0° and the height of the
dielectric is hd=2mm. Two cases are compared: in the first
one, the PIBC is the one defined by equation (5), while in
the second case, it is obtained from the impenetrable IBC in
equation (4) by removing the contribution of the grounded
slab evaluated at the incidence angle for both the TE and
the TM polarization. This is the approach that is
conventionally followed for the implementation of a desired
impenetrable impedance profile.

Figures 4 and 5 show the amplitude of the Floquet wave
spectrum of the reflected electric field in the two cases for
different TM-polarized reflected wave angles: ur ¼ �20°

and ur ¼ �60°. The relative permittivity of the dielectric is
er ¼ 9:8 in Figure 4 and of er ¼ 2:5 in Figure 5. The
reflected field is obtained as combination of the field
scattered by the PIBC and the field reflected by the
grounded slab. For perfect anomalous reflection, scattered
field contains a contribution which exactly cancels out the
specular reflection. On the other hand, cancellation is not
perfect for non-exact solutions. From the results it can be
appreciated that, although both the cases show the
dominance of the anomalous reflected wave, the solution
is exact only for the penetrable IBC, with just one reflected
mode, while in the second case spurious Floquet waves are
also excited, both inside (shown in Figs. 4 and 5 in yellow
color) and outside the visible range (blue color bars shown
in Figs. 4 and 5). This is due to the fact that spatial
dispersion, intrinsic in the actual MTS implementation, is
not accounted for in the derivation of equation (4).

The amplitude of the spurious waves increases when ur
increases with respect to ui. The permittivity and thickness
of the dielectric material also plays an important role in the
amplitude of these spurious waves; for the considered
thickness, spurious waves have a higher amplitude (around
�8 dB) when the permittivity is smaller.

These numerical results show that the process of
extracting the impedance at the incident (driving) wave-
number (local approach) is incorrect, although leading to a



Fig. 4. Amplitude of the Floquet wave spectrum of the reflected electric field for: (top) the PIBC solution in (5) and (bottom) the
PIBC obtained by removing from the IIBC in (4) the contribution of the grounded slab evaluated at the incidence wavenumber. The
amplitude of the FWs is shown for an TE-polarized incident wave at ui ¼ 0° and a TM-polarized reflected wave at ur ¼ �20° and
ur ¼ �60°, with a permittivity of the dielectric of er ¼ 9:8.

Fig. 5. Amplitude of the Floquet wave spectrum of the reflected electric field for: (top) the PIBC solution in (5) and (bottom) the
PIBC obtained by removing from the IIBC in (4) the contribution of the grounded slab evaluated at the incidence wavenumber. The
amplitude of the FWs is shown for an TE-polarized incident wave at ui ¼ 0° and a TM-polarized reflected wave of ur ¼ �20° and
ur ¼ �60°, with a permittivity of the dielectric of er ¼ 2:5.
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Fig. 6. Amplitude of the Floquet wave spectrum of the reflected electric field for different heights of the dielectric with a permittivity
of the dielectric of er ¼ 2:5 for an TE-polarized incident wave at ui ¼ 0° and a TM-polarized reflected wave at ur ¼ �20° for: (top) the
PIBC solution in (5) and (bottom) the PIBC obtained by removing from the IIBC in (4) the contribution of the grounded slab
evaluated at the incidence wavenumber.

Fig. 7. Amplitude of the Floquet wave spectrum of the reflected electric field for different heights of the dielectric with a permittivity
of the dielectric of er ¼ 2:5 for an TE-polarized incident wave at ui ¼ 0° and a TM-polarized reflected wave at ur ¼ �60° for: (top) the
PIBC solution in (5) and (bottom) the PIBC obtained by removing from the IIBC in (4) the contribution of the grounded slab
evaluated at the incidence wavenumber.
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reasonable approximation. In fact, the exactness of the
two-wave-only solution is violated by the presence of an
infinite distribution of higher-order Floquet modes, arising
by the improper (local) extraction of the grounded slab
impedance contribution.

As mentioned before, the amplitude of the spurious
waves, for the case of the IIBC, increases when ur increases
with respect to ui. This is true also when the thickness of the
grounded dielectric slab increases, as we can see in Figures 6
and 7, where the amplitude of the Floquet wave spectrum of
the reflected electric field is calculated for the thicknesses of
4mm and 6mm, with the permittivity of er ¼ 2:5, when
ur � uij j ¼ 20° (seeFig. 6) and ur � uij j ¼ 60° (seeFig. 7).We
can appreciate that independently of the thickness of the
dielectric slab the IIBC gives almost an exact solution when
thedifference of the incidentandreflectedwavesdirections is
not big, while if the difference increases, the amplitude of the
spurious in the IIBC solution is significant, no matter what
the thickness of the dielectric slab is.

6 Conclusion

This paper has investigated the impact of spatial dispersion
on the exact solution of the anomalous reflection problem.
It has been shown that the solution found in [11] for the
penetrable impedance can be related to the solution found
in [10] for the impenetrable impedance by properly
accounting for the spatial dispersion of the grounded slab.
On the other hand, if a local approach is followed for the
practical implementation of the MTS, evaluating the
contribution of the grounded slab at the propagation
constant associated to the incident field, spurious scattered
waves are excited, whose amplitude depends on the
grounded slab and on the incidence/reflection angles.
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