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Abstract: This comprehensive review explores the role of exercise stress echocardiography (ESE) in
assessing cardiovascular health in athletes. Athletes often exhibit cardiovascular adaptations because
of rigorous physical training, making the differentiation between physiological changes and potential
pathological conditions challenging. ESE is a crucial diagnostic tool, offering detailed insights into an
athlete’s cardiac function, reserve, and possible arrhythmias. This review highlights the methodology
of ESE, emphasizing its significance in detecting exercise-induced anomalies and its application in
distinguishing between athlete’s heart and other cardiovascular diseases. Recent advancements, such
as LV global longitudinal strain (GLS) and myocardial work (MW), are introduced as innovative
tools for the early detection of latent cardiac dysfunctions. However, the use of ESE also subsumes
limitations and possible pitfalls, particularly in interpretation and potential false results, as explained
in this article.

Keywords: exercise stress echocardiography; sports cardiology; athletes; athlete’s heart

1. Introduction

Athletes put their cardiovascular systems under huge and repetitive effort, resulting
in a heightened risk of developing cardiovascular diseases [1]. Additionally, their hearts
undergo significant morphological, functional, and regulatory adaptations due to regular
physical activity [1], leading to increased mass, cavity dimensions, and wall thickness with
preserved systolic and diastolic function [2]. Despite preserved cardiac function, some of
the mentioned physiological adaptations can overlap with pathological conditions, making
a differential diagnosis quite challenging [3,4]. This similar phenotype, often referred to
as the “grey zone”, requires a careful and precise diagnostic approach to ensure accurate
identification and proper management, as proposed in Figure 1 [2].
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Figure 1. The step-by-step approach to diagnosing athlete’s heart [2]. ECG: electrocardiography;
CV: cardiovascular; EST: exercise stress test; CPET: cardiopulmonary exercise test; ESE: exercise
stress echocardiography; CMR: cardiac magnetic resonance; CCT: computed coronary tomography;
SPECT: single photon emission computed tomography; PET: positron emission tomography.

When first- and second-line diagnostic evaluations yield unclear, abnormal, or debat-
able results, alternative cardiovascular (CV) diagnostic techniques can be instrumental in
discriminating between normal adaptations and pathological conditions. However, owing
to their significant expense and restricted accessibility, these methods are not commonly
advised for routine use and should be employed based on specific clinical indications [2,5].
Stress imaging serves as a valuable method for revealing abnormal cardiac functional
reserves or hidden pathologies that remain undetected during rest. This is particularly
pertinent for athletes where there is a suspicion of arrhythmias and/or incipient cardiomy-
opathies [6]. Among stress imaging tests, exercise stress echocardiography (ESE) plays an
important role in this diagnostic process.

ESE is a reliable, safe, and noninvasive diagnostic tool that combines exercise stress
tests with echocardiographic imaging to evaluate athletes’ CV responses during physical
activity [7,8]. It has gained relevance in the evaluation of athletes, enabling the identifica-
tion of CV abnormalities elicited only by exercise. It is advisable to perform ESE rather than
pharmacological stress testing for any patient who can physically exercise, as it maintains
the physiological CV response to exercise as well as the accuracy of the electrocardiogram
(ECG) response and offers critical insights into functional status. Combining echocardiog-
raphy with an exercise stress test facilitates the correlation of symptoms with CV stress and
wall motion irregularities. The expanding evidence base advocating ESE’s utility beyond
ischemia evaluation, its growing adoption in sports cardiology echocardiography labs, and
its established diagnostic and prognostic significance underscore the necessity to develop
specific guidelines for its application and execution [9].

In this review, we aim to explore the unique benefits and applications of ESE in the
sports cardiology discipline, shedding light on its pivotal role in differentiating between
athlete’s heart and other cardiovascular pathologies.

2. Indications for ESE in Athletes

Although there is ongoing debate in the literature about the optimal approach for mass
preparticipation screening (PPS) [10], ESE is not recommended for this purpose. This is due
to the rare occurrence of atherosclerotic coronary disease in young athletes and the limited
diagnostic effectiveness of ESE in detecting anomalous coronary anatomy [4]. However,
ESE is mainly indicated for the evaluation of a wide range of CV conditions in athletes since
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it gives information about cardiac function, reserve, exercise capacity, and arrhythmias [11]
(Table 1). Indeed, wide availability, low cost, and the absence of radiation exposure make it
the ideal third-line method [2,6]. The current European guidelines for sports cardiology
identify ESE as an important test in cases where uninterpretable exercise stress results in
the evaluation of coronary artery disease and to assess the severity and the hemodynamic
response to exercise of a heart valve disease and possible complications of left ventricle (LV)
hypertrabeculation [12]. A wide knowledge of athletes’ physiological echocardiographic
features at rest is essential for discerning which individuals might benefit most from ESE.
Echocardiographic adaptations to physical activity encompass several changes, such as a
proportional enlargement of both left and right cardiac cavities, increased LV wall thickness
and mass, and above-normal indices of both systolic and diastolic function [2].

Table 1. Main indications of ESE in athletes.

Detection of exercise-induced ischemia

Differential diagnosis in grey zones: LV wall thickening, LV/RV dilatation, LV hypertrabeculation

Diagnosis and prognosis of HCM

Diagnosis and prognosis of heart valve diseases

Lung B line screening
LV: left ventricle; RV: right ventricle; HCM: hypertrophic cardiomyopathy.

2.1. Exercise-Induced Ischemia

A primary use of ESE is to identify exercise-induced ischemia in athletes experiencing
chest pain or showing ECG anomalies. In such cases, it is crucial to rule out coronary artery
disease (CAD) or congenital anomalies of the coronary arteries, both in terms of their origin
and course [13]. For instance, CAD is diagnosed using ESE with moderate sensitivity and
specificity (about 76 and 88%, respectively), comparing favorably with other stress-testing
methods [14]. The choice between ESE and other third-line diagnostic modalities for the
assessment of CAD in athletes is still a debated point in the literature (Table 2) [2].

Table 2. Details of third-line diagnostic modalities for the diagnosis of CAD in athletes [2].

Pros Cons

ESE

- Physiological activation of the CV system
- Non-radiation imaging modalities
- Low cost

- Requires specific and expensive equipment
- Motion artifacts
- Limited skeletal muscle fatigue in individuals

accustomed to cycling

CCT

- High spatial resolution
- High-quality multiplanar reconstruction in

any orientation
- Short examination time

- Costs
- Limited access
- Radiation dose
- Low temporal resolution

Nuclear imaging - Excellence accuracy
- Costs
- Radiation dose
- Low specificity in competitive athletes

ESE: exercise stress echocardiography; CV: cardiovascular; CCT: cardiac computed tomography.

2.2. Athlete’s Heart Grey Zone

In endurance athletes presenting with LV and/or right ventricular (RV) dilation and
mildly reduced ejection fraction (EF) at rest, ESE can be employed to evaluate contractile
reserve during exercise [3]. A marked increase in contractility with physical exertion (e.g.,
∆ LV EF > 5%) indicates physiological cardiac remodeling. In contrast, the absence or
insufficient increase in contractility suggests a pathological condition (e.g., hypertrophic
cardiomyopathy—HCM, dilated cardiomyopathy—DCM, LV noncompaction—LVNC,
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and arrhythmogenic cardiomyopathy—AC) (Table 3) [13,15]. A considerable EF increase
suggests low EF at rest to be related to low preload and not to LV systolic dysfunction [11].
Abernethy et al. [16], involving 156 professional football players, demonstrated an increase
in left ventricular ejection fraction (LV EF) during ESE across all subjects, regardless of
their rest values. Tissue velocity imaging becomes a crucial tool when assessing cardiac
function during exercise. Notably, elite rowers exhibited increased LV torsion but a decline
in diastolic function and apical RV tissue Doppler-derived strain after high-intensity, short-
duration exercises. In contrast, athletes engaged in mixed endurance and strength training
showed improved diastolic function, as per tissue Doppler analysis, compared to non-
athletes. Additionally, while weightlifters displayed a slight reduction in resting RV
function measured by 2D and strain parameters, they showed significant improvement
under stress conditions compared to inactive individuals. RV strain, measured using
speckle-tracking echocardiography (STE), along with RV ejection fraction (fractional area
change) and RV annular peak systolic velocity, demonstrate moderate to high accuracy
in differentiating patients with AC from healthy adults [17,18]. During isometric exercise,
highly trained resistance athletes have shown a greater increase in stroke volume and
enhanced diastolic function compared to sedentary individuals, as reported in studies [19].
Millar et al. [20] explored the application of ESE in differentiating between athlete’s heart
and DCM. Their findings revealed that during ESE, 96% of athletes in the grey zone
demonstrated a rise in LV ejection fraction by more than 11% from baseline to peak exercise,
in contrast to only 23% of DCM patients (p < 0.0001). Furthermore, a reduction in LV
end-systolic volume during exercise was observed in both athletes and healthy subjects, but
not in those with DCM or HCM. These results suggest that analyzing LV function during
exercise could be a promising method for distinguishing between athlete’s heart and other
pathological conditions [21].

Table 3. The use of ESE in the differential diagnosis of grey zones in athlete’s heart: LV wall thickening,
LV/RV dilatation, LV hypertrabeculation [2].

Parameters during Effort Findings Suggestive of
Normal Heart

Finding Suggestive of
CV Pathologies

Contractile reserve Significant improvement Absent or subnormal
improvement

Dynamic obstruction No dynamic intraventricular
obstruction

LVOTO or mid-cavity
obstruction

Diastolic function Normal/supranormal diastolic
function indexes Diastolic dysfunction

Heart valve diseases Absent Dynamic/functional new
onset/worsening valve diseases

Ischemia Absent Inducible ischemia

Lung echocardiography Normal Pulmonary congestion
ESE: exercise stress echocardiography; LV: left ventricle; LVOTO: left ventricle output tract obstruction;
RV: right ventricle.

In terms of systolic function, young endurance-trained athletes often exhibit a normal
diastolic response during ESE. For instance, marathon runners display an increase in mitral
E and e’ lateral upon exercising, which is linked to a modest rise in both E/e’ septal and E/e’
lateral while remaining within normal limits [22,23]. Elevated systolic pulmonary artery
pressure (sPAP) may be induced by strenuous endurance exercise. Mirea et al. [24] found
that 12.9% of the athletes they studied exhibited higher sPAP, which was further enhanced
by bicycle ergometric stress effort and correlated with significant RV enlargement. Despite
this, both conventional methods and STE indicated preserved RV function in these athletes.
Indeed, a recent article [25] highlighted the utility of exercise stress echocardiography (ESE)
in examining the pulmonary circulation and the right ventricle. This method has revealed
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prognostically important differences among healthy individuals, athletes, high-altitude
dwellers, and patients with various cardiorespiratory conditions.

2.3. Hypertrophic Cardiomyopathy

ESE has been shown to have an important role in the diagnosis of HCM, an impor-
tant cause of SCD in athletes [26]. In patients who do not exhibit outflow gradients at
rest, ESE is the preferred method to induce obstruction. This technique not only has the
potential to predict the future onset of progressive heart failure symptoms but also helps in
distinguishing between patients with provocable obstruction and those without it. These
distinctions have significant implications for guiding treatment options [27]. Furthermore,
an LV outflow tract gradient exceeding 50 mmHg during or immediately after exercise
in athletes with LV hypertrophy and symptoms like syncope or shortness of breath may
indicate HCM [13,28]. Figure 2 shows the case of an athlete with LV hypertrophy and
dyspnea. Indeed, Gaitonde et al. [29] showed how, compared with athletes, HCM patients
had significantly higher LVOT peak gradients at rest and during ESE. Usually, there is no
dynamic intraventricular obstruction with aerobic exercise in subjects with a structurally
normal heart [30].

Figure 2. Exercise stress echocardiography in a 51-year-old master athlete, symptomatic for dyspnea
during effort and with a family history of hypertrophic cardiomyopathy with a suspicious left
ventricular hypertrophy; during effort, is it possible to observe an increase in mitral regurgitation
and a significant left ventricle outflow tract obstruction that could explain the dyspnea. LVOTG: left
ventricle outflow tract gradient.

2.4. Valvular Heart Disease

The evaluation of athletes with valvular heart disease (VHD) deserves a special men-
tion: in these cases, ESE may give complementary information on functional status and
exercise tolerance, biventricular contractile reserve, and changes in hemodynamic and
valvular functional parameters, including transvalvular gradients, regurgitation quantifica-
tion, sPAP, and diastolic function [28]. Consequently, athletes with mild to moderate VHD
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should undergo ESE following a protocol that closely mirrors the level of physical exertion
expected in their chosen sport [31] (Table 4).

Table 4. The use of ESE in the evaluation of athletes with valvular heart disease [31].

MVP MR MS TR/TS

ESE parameters to
be evaluated

Evaluation of sPAP
increase during
exercise

Evaluation of
hemodynamic
consequences and
arrhythmias during
exercise

Symptoms, sPAP, and
MV dynamic gradient
evaluation during
exercise

Symptoms, sPAP, and
TV dynamic gradient
evaluation during
exercise

MR: mitral regurgitation; MS: mitral stenosis; MV: mitral valve; MVP: mitral valve prolapse; sPAP: systolic
pulmonary artery pressure; TR: tricuspid regurgitation; TS: tricuspid stenosis; TV: tricuspid valve; ESE: exercise
stress test.

2.5. Lung Screening

B-lines assessed using lung ultrasound, commonly referred to as ultrasound lung
comets, offer a straightforward and effective method to directly visualize extravascular
lung water. A correct evaluation of the patient includes accurate scanning of the anterior
and posterior chest and quantifying the number of B-line artifacts at each intercostal
space. Stress lung ultrasound, which involves detecting B-lines during or immediately
after exercise, is particularly valuable in two distinct scenarios: heart failure and extreme
physiological conditions. In environments such as high-altitude trekking or among healthy
elite apnea divers, scuba divers, underwater fishermen, and extreme athletes participating
in triathlons or marathons, B-lines may be present even in the absence of pulmonary
edema symptoms [32,33]. Therefore, during the ESE protocol for athletes, B lines should
always be incorporated (Figure 3). Moreover, B-line evaluation during ESE was used to
differentiate athletes and anabolic androgenic steroid users in a recent study by D’Andrea
and colleagues [34], suggesting their potential use in the anti-doping evaluation of athletes.

Figure 3. Exercise stress echocardiography in an endurance athlete: note the normal increase in
tricuspid annular plane systolic excursion (TAPSE) and the mild increase in B-lines at peak effort.
TAPSE: tricuspid annular plane systolic excursion.
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3. Methodology of ESE

ESE should be preferentially performed as a supine bicycle exercise test or, in cases
of unavailability, by using a standard treadmill or a cycle ergometer. Echocardiographic
imaging must be performed at rest, during early and peak exercise, and recovery. As a
general rule, patients who can engage in physical exercise should undergo testing with
an exercise modality. This approach maintains the integrity of the electromechanical re-
sponse and yields valuable insights into its functional status. Importantly, it accurately
reflects an athlete’s physiological response to stress [28]. While ESE offers a dynamic
assessment of cardiac function under physical stress, pharmacological stress tests may
be preferred in athletes with limited exercise capacity or specific medical conditions [35].
Indeed, pharmacological stress is mostly used to exclude inducible myocardial ischemia
(with dobutamine or dipyridamole), in the presence of a severe compromise of LV function,
to determine myocardial viability (dobutamine), or when patients cannot exercise ade-
quately [7]. An important advancement in cardiac imaging, especially relevant for athletes
with suboptimal echocardiographic windows, is myocardial contrast stress echocardiog-
raphy (MCSE). MCSE enhances the diagnostic clarity of ESE by improving endocardial
border delineation, making it particularly valuable in cases where conventional ESE may
be limited. The enhanced imaging provided by MCSE is particularly crucial in accurately
assessing myocardial perfusion under stress conditions, offering a more detailed view of
cardiac function [36].

During exercise, the athlete’s heart rate, blood pressure, and ECG have to be monitored
continuously.

The supine bicycle ergometer is often preferred over the treadmill or upright bicycle
for exercise testing, particularly due to its compatibility with echocardiography during
exercise. This approach is especially beneficial for athletes, who typically experience a
rapid recovery phase with quick normalization of heart rate and blood pressure. Com-
pared to upright bicycle or treadmill exercises, semisupine bicycle exercise is technically
simpler, especially when assessing multiple stress parameters at peak exercise levels [28].
Its most significant advantage lies in its ability to capture images during each exercise
phase rather than solely relying on post-exercise imaging. In the semisupine position,
it becomes relatively straightforward to record images from multiple angles throughout
various exercise intensities. Even with upright bicycle ergometer testing, acquiring apical
images is feasible for most patients by having them lean forward over the handlebars or
extend their arms [37]. Successful bicycle stress testing, however, depends on the patient’s
cooperation in maintaining the correct cadence and coordinating the pedaling action.

The stress protocol is typically designed to gradually increase the intensity of exercise,
aiming at achieving a maximal level of exercise or a symptom-limited endpoint. The
duration and intensity of exercise may be modified based on the athlete’s fitness level and
the underlying medical conditions. Standard increases of 25 W every 2 min can be replaced
by 50 W steps every 2 min in athletes to avoid a test duration over 12–15 min. Causes of test
cessation may include intolerable symptoms, muscular exhaustion, high blood pressure
(220/120 mmHg), symptomatic hypotension (>40 mmHg decrease), abnormal ventricular
repolarization, and arrhythmias (supraventricular tachycardia, atrial fibrillation, frequent
or complex ventricular arrhythmias) [28].

During ESE, various parameters can be evaluated, including biventricular function,
transvalvular gradients and regurgitant flows, left and right heart hemodynamics en-
compassing SPAP, and ventricular volumes. Given the impracticality of assessing every
possible parameter under stress, it is crucial to prioritize those most diagnostically relevant
for each patient based on their importance [28] (Figure 4 and Table 5). For example, the
chosen ESE protocol should be documented in the report. A typical response during both
exercise and inotropic stress is characterized by an enhancement in function across all
LV segments, coupled with an increase in LV EF and cardiac output [37]. The emergence
or exacerbation of wall motion abnormalities in at least two consecutive LV segments
signals ischemia, whereas an improvement by at least one grade in dysfunctional segments
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indicates recruitable viable myocardium. For patients without regional resting dysfunction,
the global contractile reserve is usually defined by an increase of 5% or more in LV EF. Flow
reserve, meanwhile, is characterized by a rise in forward stroke volume of 20% or more. It
is essential to report any changes in cardiac function, such as variations in wall motion, EF,
or global longitudinal function assessed by strain rate imaging, when available. Alterations
in hemodynamic parameters like stroke volume, sPAP, E/e′, and LVOT gradients, as well
as changes in the severity of valvular disease (including mitral regurgitation, aortic valve
area, and pressure gradients), should be detailed based on the specific diagnostic question
at hand. Additionally, blood pressure and heart rate data are critical to contextualizing
contractile and hemodynamic responses. The assessment must always encompass the
presence of viability and/or ischemia and the extent of coronary flow reserve. It is a useful
diagnostic tool for detecting left anterior descending artery disease, and it is measured with
pulsed doppler sampling of both the proximal and mid-distal tracts [28,38] (Figure 5).

Figure 4. ESE protocol and parameters can be assessed at each stage [28]. Blood pressure, ECG
recording, and clinical condition monitoring are continuously assessed. LV: left ventricle; LVOT: LV
outflow tract; MR: mitral regurgitation; E/e’: ratio of early transmitral diastolic velocity to early
TDI velocity of the mitral annulus; RWM: regional wall motion; RV: right ventricle; sPAP: systolic
pulmonary artery pressure; W: watt; BPM: beats per minute.
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Table 5. Targeted parameters to be assessed during ESE [28].

Indications Query Parameters to Be
Acquired

Levels of Image
Acquisition Possible Results Report

HCM

• LVOTO
• diastolic

dysfunction
• dynamic MR
• inducible

ischemia as a
reason for
symptoms, or to
plan treatment

• lifestyle advice

• CW Doppler
• LVOT velocity
• TR CW Doppler

for SPAP
• PW Doppler (E

and A)
• PW Tissue

Doppler (e′)
• color flow

Doppler for MR
• LV view
• RWMA

• Baseline
• low workload
• peak exercise
• immediately

after exercise

• LVOTO +sPAP
increase

• E/e′ increase
+sPAP increase

• MR
•

appearance/increase
• RWMA

• Exertion-
induced
LVOTO

• Diastolic
dysfunction

• Dynamic MR
• Inducible

ischemia

DCM

• Contractile
reserve

• inducible
ischemia

• diastolic reserve
• SPAP change
• dynamic MR
• pulmonary

congestion

• LV views
• PW Doppler (E

and A)
• PW tissue

Doppler (e′)
• TR CW Doppler

for SPAP
• Color flow

Doppler for MR
• lung images

• Baseline
• low workload
• peak exercise

• Contractility
increase

• No contractility
increase

• E/e′ increase
+sPAP increase

• RWMA
• Lung comets
• MR

increase/decrease

• Contractile
reserve

• No contractile
reserve

• Pulmonary
congestion

• Dynamic MR
• functional MR
• Inotropic

reserve
• No inotropic

reserve

Primary
mitral
regurgitation

• Nonsevere MR
with symptoms

• Color flow
Doppler for MR

• LV views
• TR CW Doppler

for SPAP

• Baseline
• low workload
• peak exercise

• MR increase
• No MR increase

• Severe MR with
symptoms

• Symptoms
unrelated to
MR

Aortic
regurgitation

• Nonsevere AR
with symptoms

• LV views
• Color flow

Doppler for MR
• TR CW Doppler

for SPAP

• Baseline
• low workload
• peak exercise

• RWMA
• sPAP increase
• MR appear-

ance/increase

• Inducible
ischemia

• pulmonary
hypertension

• dynamic MR

Symptomatic
athlete

• Assess response
to exercise and
symptoms

• LV views
• LVOT CW

Doppler for
LVOTO

• TR CW Doppler
for SPAP

• Color flow
Doppler for MR

• lung images

• Baseline
• low workload
• peak exercise

• RWMA
• LVOTO
• Pathologic sPAP

increase
• MR appear-

ance/increase
• Lung comets

• Induced
ischemia

• LVOTO
• Pulmonary

hypertension
• Dynamic MR
• Pulmonary

congestion

AR: aortic regurgitation; AV: aortic valve; CW: continuous wave; DCM: dilated cardiomyopathy; EF: ejection
fraction; HCM: hypertrophic cardiomyopathy; LV: left ventricle; LVOT: left ventricle output tract; LVOTO: LV
outflow tract obstruction; MR: mitral regurgitation; MV: mitral valve; PW: pulse wave; RV: right ventricle;
RWMA: regional wall motion abnormality; sPAP: systolic pulmonary artery pressure; TAPSE: tricuspid annular
systolic plane excursion; TR: tricuspid regurgitation.

The results of the ESE should be interpreted in the context of the athlete’s circumstances
and risk factors. False positive and false negative results can occur, particularly in highly fit
athletes, and the interpretation of ESE results requires expertise in both echocardiography
and sports cardiology.
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Figure 5. Exercise stress echocardiography in an endurance athlete; the global and regional left
ventricular function was within normal limits at rest and during effort, with a normal increase in
coronary flow and normal coronary flow reserve (>2). CFVR: coronary flow vascular reserve.

4. Emerging Techniques and Innovations in ESE

Over the past decade, LV global longitudinal strain (GLS)-assessed STE has gained
recognition as a reliable tool for analyzing myocardial mechanics. It provides additional
insights into cardiac performance beyond what traditional LV systolic function parameters,
like EF, offer [39]. In endurance athletes, LV GLS tends to be lower at rest compared to
healthy sedentary individuals, likely due to increased afterload, cardiac hypertrophy, and si-
nus bradycardia [40]. However, other studies have not found significant differences in GLS
among athletes or have even reported higher GLS in athletes than in controls [41]. These
variations in GLS may be attributed to several factors influencing strain measurements,
such as preload, afterload, LV mass, sinus bradycardia, and the type of sport practiced.
Gruca et al. [42] showed how GLS increased after a treadmill stress test in a cohort of
111 basketball athletes, and this could be potentially useful in the diagnostic process of
athlete’s heart and other CV diseases. Indeed, several studies have shown that a reduction
in LV GLS is uncommon in athlete’s heart, and that it cannot be regarded as a physiological
adaptation to training and may be helpful to clarify the nature of cardiovascular adaptations
in specific circumstances [43,44].

Recently, myocardial work (MW) has emerged as a novel noninvasive index for evalu-
ating LV myocardial deformation through LV pressure–strain loop analysis. It represents
an advancement over the GLS, offering deeper insights into LV performance under varying
effort levels by incorporating afterload and measuring myocardial efficiency [45]. MW
provides additional information beyond EF and strain under different LV-loading condi-
tions, such as in athletes. Analyzing MW in endurance athletes is particularly useful for
assessing LV myocardial deformation and contractile reserve in a manner less dependent
on loading [46].

Furthermore, integrating stress echocardiography with GLS and MW analysis shows
promise for the early detection of subclinical cardiac dysfunction not evident at rest [47].
This approach has broad applications in diagnosing athlete’s heart. Isometric effort en-
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hances strain, particularly in the mid-apical LV segments, indicating a greater regional
function reserve [48]. As suggested by the recent study of D’Andrea et al. [49], a compre-
hensive strain study, both at rest and during ESE, could play an incremental role in aiding
clinicians in managing and making decisions for the endurance of the athletes’ hearts.
Additionally, the mechanical dispersion of GLS, measured as the standard deviation of
the time to peak longitudinal strain across all LV segments, appears to be a promising
diagnostic tool for HCM in athletes [50].

Recent studies also explore the potential of combining ESE with other techniques,
such as cardiopulmonary exercise testing (CPET) [51] and the latest application of artificial
intelligence (AI)-related ESE [52,53]. In a recent study, Upton et al. [54] demonstrated the
significant role of AI-based methods in enhancing the accuracy, confidence, and repro-
ducibility of stress echocardiography interpretations.

5. Limitations of ESE in Athletes

Although ESE is a useful diagnostic tool for athletes, some limitations should be
mentioned. ESE requires specialized equipment and expertise and may not be widely
available or affordable in all settings. ESE also requires a significant time commitment, as it
typically involves a lengthy imaging protocol and monitoring of the athlete.

One of the major limitations of ESE in athletes is the potential for false positive results.
Exercise-induced changes in LV function, such as wall motion abnormalities, can occur
in healthy athletes, and these changes can be misinterpreted as evidence of underlying
cardiovascular disease. This can lead to unnecessary testing, treatment, and restrictions on
athletic participation.

Another limitation of ESE in athletes is the potential for false negative results. ESE
may fail to detect CV disease in athletes, particularly in those with early or mild forms of
the disease. This can lead to missed diagnoses, delayed treatment, and an increased risk
of complications.

Interpretation of ESE results in athletes can be challenging, particularly in those with
high levels of physical fitness. Athletes may have LV hypertrophy, LV cavity enlargement,
or LV wall motion abnormalities that are unrelated to underlying cardiovascular dis-
ease. Distinguishing between normal physiological adaptations and pathological changes
can be difficult and may require additional testing, such as cardiac magnetic resonance
imaging (MRI).

6. Conclusions

ESE plays a vital role in the cardiovascular evaluation of athletes. Combining exercise
stress testing with echocardiographic imaging, provides valuable information regarding
cardiac function, reserve, exercise capacity, and arrhythmias. ESE is a reliable, safe, and
noninvasive diagnostic tool that can unmask covert pathological features that may not be
evident at rest. Its increasing implementation in sports cardiology’s echocardiography lab-
oratories speaks to its recognized diagnostic and prognostic value. While further research
is needed to establish comprehensive guidelines for its application and performance, ESE’s
unique ability to differentiate between athlete’s heart and other cardiovascular pathologies
makes it an indispensable component of the diagnostic process.
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