
UNIVERSITÀ DEGLI STUDI DI SIENA

Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche

DI

Temporal Graph Processing and Pooling in Graph
Neural Networks

Veronica Lachi

PhD in Information Engineering and Science

Supervisors

Prof. Monica Bianchini, Prof. Chiara Mocenni

Examination Commitee

Prof. Fabrizio Costa

Prof. Barbara Hammer

Prof. Stefano Melacci

Thesis reviewers

Prof. Fabrizio Costa

Prof. Josephine Maria Thomas

Siena, 16/07/2024

Ringraziamenti

Desidero esprimere i miei più profondi ringraziamenti alla mia Advisor, Prof.ssa Monica Bianchini,
per avermi permesso di intraprendere questo percorso, per avermi seguita e supportata cost-
antemente e per avermi concesso la libertà di esplorare gli argomenti di ricerca di mio interesse.
La ringrazio inoltre per aver sempre promosso un ambiente di lavoro sereno e disteso, privo
di competizioni o stress. Un sincero ringraziamento va anche alla mia Co-Advisor, Prof.ssa
Chiara Mocenni, per la guida, i preziosi consigli e il costante supporto. Ringrazio di cuore il Prof.
Franco Scarselli che, pur non essendo ufficialmente mio advisor, mi ha dedicato molto tempo
ed energia, seguendomi con pazienza e trasmettendomi la passione per le sue GNN. Un sentito
ringraziamento va al Prof. Filippo Maria Bianchi, che durante il mio periodo di visita all’UiT, e
anche successivamente, è stato una guida fondamentale per il mio percorso. Lo ringrazio per
avermi seguita scrupolosamente, per avermi incoraggiata ed aiutata a credere maggiormente in
me stessa, e per tutti i consigli sul mondo della ricerca che mi ha dispensato.
I primi e più grandi ringraziamenti non istituzionali vanno a Caterina, con la quale ho condiviso
ogni momento ed ogni emozione di questo percorso. La ringrazio per avermi insegnato come
studiare e fare la matematica, la ringrazio per tutto l’inchiostro che abbiamo versato insieme per
scrivere definizioni e dimostrare teoremi, la ringrazio per la sincerità e la serietà con cui mi ha
consigliato in ogni lavoro. Ma questo è solo una parte infinitesimale di quello che ci lega. Non ho
contezza di quanto bene mi abbiano fatto al cuore le risate, le chiacchiere sul futuro, i viaggi in
macchina, le esperienze in giro per il mondo. Non avrei mai pensato che lo studio potesse farmi
il dono così grande di incontrare una persona così simile a me e un’amica così speciale. Non la
ringrazierò mai abbastanza per aver occupato nel mio cuore uno spazio così importante.
Grazie a tutti i colleghi e amici del Lab202, attori protagonisti di questo bellissimo e divertentis-
simo film durato tre anni. Sono certa non esista al mondo un laboratorio di ricercatori altrettanto
belli e simpatici. Gli anni passati con loro sono stati anni di leggerezza e gioia. Sono grata di
essere capitata in mezzo a loro. Un grazie speciale a Paolo che per primo mi ha supportata ad
inizio dottorato, quando era tutto difficile, e che da allora è una presenza costante nella mia vita.
Grazie anche ad Alessio che mi ha fatto passare al lato oscuro della teoria delle GNN e con cui
ho trascorso dei momenti indimenticabili.
Un grande grazie ai colleghi e amici incontrati durante il periodo di ricerca a Tromsø. In
particolare, grazie a Michele, Giulia, Ettore e Robin con i quali ho condiviso l’esperienza più bella

i

della mia vita in Norvegia, il mio sogno da sempre, e che anche adesso a 3929 km di distanza
sono sempre presenti.
Un sentito ringraziamento alle mie colleghe da Kassel, Alice e Silvia. Grazie ad Alice per essere
la mia pazza sorella tedesca e a Silvia per la sua dolcezza e per le sue focacce.
Vorrei ringraziare tutte le persone a me care fuori dal mondo accademico che, nonostante in
questi anni abbia passato la maggioranza del tempo china su paper o davanti al mio computer,
sono pazientemente rimaste al mio fianco.
Ringrazio le mie amiche del liceo Arianna, Ilaria e Laura, che, nonostante credessero studiassi
Statistics in Economics, mi hanno sempre supportato e consigliato con curiosità e amore, e che
sono sempre state con me, oltre qualsiasi distanza.
Grazie alle mie amiche di sempre Eleonora, Giulia, Maira, Silvia, Sofia e Rebecca per il loro
costante sostegno e per avermi regalato i migliori momenti di spensieratezza.
Grazie a Sara, che nonostante gli impegni, il lavoro e la distanza ha sempre trovato tempo ed
energie da dedicarmi e che è diventata in breve tempo un’amica insostituibile.
La mia più profonda gratitudine va alla mia famiglia, il punto saldo di tutta la mia vita. Grazie
alla mamma e al babbo per avermi dato i mezzi morali e materiali per arrivare al gradino più
alto degli studi. Grazie per tutto l’impegno che hanno messo nel cercare di avvicinarsi a questo
mondo così distante dal loro. Grazie di cuore alla mia Tata, che è stata la prima ad iniziarmi
allo studio insegnandomi a leggere e a scrivere. Grazie per essere da sempre un modello per me,
spronandomi a puntare sempre più in alto, e grazie per essere la persona che meglio mi conosce
al mondo. Grazie alla mia Livia, che mi ha reso zia e che mi ricorda ogni giorno l’importanza di
essere curiosi.
Il dottorato è stato il periodo più bello della mia vita. Ho viaggiato, vissuto lontano da casa e
conosciuto tanto altro rispetto a quello che era in me. Spero che questa non sia una fine, ma
l’inizio di un lungo percorso per aprire sempre di più la mia mente e conoscere me stessa e il
mondo.

ii

Abstract

Graph Neural Networks (GNNs) have emerged as a superior technique for handling graph-
based data, outperforming traditional methods in a multitude of domains. Indeed, the unique,
non-Euclidean structure of graph data introduces specific challenges that complicate the use
of standard neural network methodologies. This thesis tackles two important issues: the
integration of temporal dynamics into graph structures and the reduction of dimensionality
necessary for developing truly deep neural architectures. The first part of this thesis presents
a thorough review and taxonomy of existing Graph Neural Network models that handle
temporal graphs, detailing their applications in various real-world scenarios. Additionally,
it presents a universal approximation theorem for a specific class of temporal GNNs. The
second part delves into strategies for graph dimensionality reduction via hierarchical pooling
methods. This exploration includes an analysis of how these pooling operators affect the
overall expressive power of GNNs. In particular, sufficient conditions for the pooling operator
to maintain and even enhance the expressive power of GNNs are presented. By addressing
these advanced concepts, the thesis aims to deepen the understanding of GNN optimization
for dynamic and complex graph-based applications, setting a foundation for future research
and application improvements in the field.

iii

Contents

1 Introduction 1
1.1 Contributions . 3
1.2 Outline . 4
1.3 List of Publications . 4

2 Preliminaries 7
2.1 Graph Neural Networks . 7

2.1.1 WL test . 8
2.1.2 Expressive Power of Graph Neural Networks 9

3 Temporal Graph Neural Networks 11
3.1 Temporal Graphs: Basic Concepts and Definitions 11

3.1.1 Representation of temporal graphs . 12
3.2 Learning Settings . 13
3.3 Supervised Learning Tasks . 15

3.3.1 Classification . 15
3.3.2 Regression . 16
3.3.3 Link Prediction . 17

3.4 Unsupervised Learning Tasks . 17
3.4.1 Clustering . 17
3.4.2 Anomaly detection . 18
3.4.3 Low-dimensional embedding (LDE) . 19

3.5 Taxonomy of Temporal Graph Neural Networks 19
3.5.1 Snapshot-based models . 20
3.5.2 Event-based models . 22
3.5.3 Category comparison . 24

3.6 Open Challenges . 24
3.7 The Expressive Power of Temporal Graph Neural Networks 26

3.7.1 Dynamic WL test . 26
3.7.2 Universal Approximation Theorem for Temporal Graph Neural Networks 28
3.7.3 Experimental Results . 29

v

Contents

3.8 Other approaches to model temporal graphs . 32
3.9 Conclusions . 33

4 The Expressive Power of Pooling in Graph Neural Networks 35
4.1 Pooling in Graph Neural Networks: Basic Concepts and Definitions 36

4.1.1 Select, Reduce, Connect . 37
4.1.2 Taxonomy of Graph Pooling . 37
4.1.3 Existing Pooling Operators . 39
4.1.4 Evaluation of a Pooling Operator . 42

4.2 Pooling Operators can Preserve the Expressive Power of GNNs 42
4.2.1 Conditions for Preserving the Expressive Power 43
4.2.2 Expressiveness of Existing Pooling Operators 45
4.2.3 Criticism on Pooling . 48
4.2.4 Experimental Results . 48

4.3 Pooling Operators can Increase the Expressive Power of GNNs 54
4.3.1 Conditions for Increasing the Expressive Power 56
4.3.2 XPool: An Expressive Pooling Operator 58
4.3.3 Experimental Results . 59

4.4 Conclusions . 61

5 Conclusion 63

A Appendix 65

Bibliography 71

vi

List of Figures

2.1 Two non-isomorphic but WL equivalent graphs. 9

3.1 Learning settings. Schematic representation of the learning settings on TGs
formalized in Section 3.2. The temporal graphs are represented as sequences of
snapshots, with training (red) and inference (green) nodes connected by edges (solid
lines), and where a dotted line connects instances of the same node (with possibly
different features and/or labels) in successive snapshots. The four categories are
obtained from the different combinations of a temporal and a topological dimension.
The temporal dimension distinguishes the future setting, where the training
nodes are all observed before the inference nodes (first row), from the past setting
where inference is performed also on nodes appearing before the observation of
the last training node (second row). The topological dimension comprises a
transductive setting, where each inference node is observed (unlabelled) also during
training (left column), and an inductive setting, where inference is performed on
nodes that are unknown at training time (right column). 14

3.2 The proposed TGNN taxonomy with an analysis of the surveyed meth-
ods. The top panel shows the categories with the corresponding model instances
(Section 3.5), where the colored bullets additionally indicate the main technology
that they employ. The bottom table maps these methods to the task (Sec-
tions 3.3,3.4) to which they have been applied in the respective original paper,
with an additional indication of their use in the future (F), past (P), inductive (I),
or transductive (T) settings (Section 3.2). Note that no method has been applied
yet to clustering and visualization, for neither graphs nor nodes. Moreover, only
four out of ten models have been tested in the past mode (three in PT, one in PI). 20

3.3 Two STGs that are WL equivalent in each snapshots but DWL not equivalent. . 27
3.4 The four static graphs are used as components to generate the synthetic dataset.

Graphs a) and b) are equivalent under the static WL test; the same holds for c)
and d). 30

3.5 Experimental Framework E1. Training accuracy over the epochs for an STGNN
trained on the dataset containing STGs up to time length T = 4 (a) and T = 5 (b). 31

vii

List of Figures

3.6 Experimental framework E2. Training accuracy a) and training loss b) over the
epochs for several STGNNs trained on the dataset containing STGs up to time
length T = 5. Figure b) is in logarithmic scale. 31

4.1 A schematic representation of a graph pooling operator. 36
4.2 A schematic representation of the SRC framework. Adapted from [1]. 37
4.3 Taxonomy of pooling operators based on the SRC framework. Adapted from [1]. 39
4.4 A flat GNN is at most as powerful as the WL test, while no results have been

proven so far for hierarchical GNNs. 43
4.5 A GNN with expressive MP layers (condition 1) computes different features

for two graphs G1, G2 that are WL-distinguishable. A pooling layer satisfying
the conditions 2 and 3 generates coarsened graphs G1P and G2P that are still
WL-distinguishable. 45

4.6 Example of failure of Top-k pooling. Given two WL-distinguishable graphs with
node features x1 ≤ x2 ≤ x3 ≤ x4, two scoring vectors s1 and s2 are computed
using a projector p. Then, the two nodes associated with the highest scores are
selected. If p ≤ 0, nodes 1 and 2 are chosen in both graphs. Conversely, if p > 0,
nodes 3 and 4 are selected. Therefore, regardless of the value learned for the
projector p, the two input graphs will be mapped into the same pooled graph. . . 47

4.7 Three pairs of graphs from the EXPWL1 dataset. Each pair consists of two graphs
with different classes that are WL distinguishable. 50

4.8 Average accuracy (and std.) v.s. average runtime on the benchmark datasets. . . 53
4.9 Two WL-indistinguishable graphs G1, G2 which can be distinguished after using a

powerful SEL. Clustering cycles maps G1 to a two supernode graph, while it maps
G2 to a single supernode graph. 57

4.10 Two WL-indistinguishable graphs G1, G2 which can be distinguished after pooling.
Contracting edges and adding a single superedge between supernodes iff any
original nodes were connected results in a disconnected graph for G1 and a
connected graph for G2. 58

A.1 The ATTACH operator on trees. 70

viii

List of Tables

4.1 Performance of baseline architectures on EXPWL1. 49
4.2 Details of the graph classification datasets. 51
4.3 Classification results on EXPWL1. 52
4.4 Graph classification test accuracy on benchmark datasets. 54
4.5 Graph classification test run-time in s/epoch. 55
4.6 Number of graph pairs correctly distinguished by each GNN using different pooling

operators. Mean and standard deviation over three runs are shown. 61

ix

Chapter 1

Introduction

Recent advances in Deep Learning techniques, particularly through the use of deep neural
networks, have made them applicable to a wide range of complex and varied tasks. These models
have shown exceptional performance in processing speech [2, 3], images [4, 5, 6, 7], and videos [8],
which all share a Euclidean structure.

However, there is an increasing interest in exploring these techniques on non-Euclidean data,
such as graphs. Graphs are data structures composed of collections of nodes and edges, which
can be used to represent objects, or patterns, along with their relationships. This type of data is
prevalent in several application domains, including social network [9, 10], sensor network [11]
analysis, genetic research [12] and so on.

The inherent non-Euclidean nature of graphs presents unique challenges, such as the absence
of global parameterization and shift invariance, making operations like convolution, common
in Euclidean spaces, not directly applicable. Despite these challenges, the complexity of graph
structures, especially evident in large-scale networks, makes them ideal candidates for machine
learning applications.

Graph Neural Networks (GNNs) [13] have emerged as powerful tools for handling graph-
structured data, enabling direct processing of relational information and facilitating computations
on nodes or edges with minimal information loss. GNNs conceptualize the input as entities and
their relationships, evolving through innovations in model architecture, towards Graph Convo-
lution Networks (GCNs) [14], GraphSAGE [15], and Graph Attention Networks (GATs) [16].
These models have been used effectively in various fields, from computer vision [17], recommend-
ation systems [18] and software engineering [19, 20], up to biomedicine [21, 22] and new drug
discovery [23, 24].

GNNs address three primary types of tasks: node-focused, edge-focused, and graph-focused
challenges. In node-focused tasks, the model outputs a value for each node or a subset of
nodes for purposes like classification or clustering. Edge-focused tasks involve understanding
relationships between nodes, predicting connections, or classifying patterns. Graph-focused tasks
aim at deducing properties or clustering the entire graph representation. The versatility and
adaptability of GNNs make them highly effective for a wide spectrum of applications, whether it
be regression or classification [25], both in inductive and transductive learning contexts [26, 27].

GNNs have been extensively studied not only for their practical applications but also for
their theoretical properties, including approximation and generalization capabilities as well as
their expressive power. In [28], a landmark study on the expressive power of GNNs is presented,
leveraging the concept of the Weisfeiler-Lehman (WL) test for graph isomorphism as a benchmark
for GNNs’ ability to distinguish graph structures. This study emphasizes that, while GNNs are
highly expressive, their power is fundamentally limited to that of the WL test. On the other

2 1. Introduction

hand, [29] suggests that, with sufficient depth and width, GNNs can approximate any function
that is invariant or equivariant to graph isomorphism. Regarding generalization, [30] introduced
generalization bounds on VC dimension. Finally, in [31], further bounds VC dimension are
derived and related to the number of colors produced by the WL test.

As far as now, most of the theoretical studies have been dedicated to the general case, where
a basic GNN is employed and simple static graphs are processed. On the other hand, research
on GNNs has rapidly evolved giving rise to models often specialized in specific tasks and graph
domains. This thesis focuses on two classes of models that are particularly relevant for current
applications, namely the GNN models for dynamic graphs and large graphs.

In fact, it is essential to acknowledge that, in real-world applications, graph-structured data
exhibits a temporally varying structure. Indeed, the connections between entities change over
time, with some entities appearing or disappearing and the attributes associated with entities also
undergoing changes. The ability to process temporal graphs is becoming increasingly important
in a variety of fields such as recommendation systems [32, 33], social network analysis [34, 35],
transportation systems [36, 37, 38], modeling of face-to-face interactions [39], human mobility
[40, 41, 42], epidemic modeling and contact tracing [43, 44], and many others. Traditional
graph-based models are not well suited for analyzing temporal graphs as they assume a fixed
structure and are unable to capture its temporal evolution.

Therefore, in the last few years, several models capable to directly encode temporal graphs
have been developed, such as matrix factorization-based approaches [45] and temporal motif-based
methods [46]. Recently, also GNNs have been successfully applied to temporal graphs. Indeed,
their success in various static graph tasks, including node classification [15, 47, 14, 48, 49, 50, 51]
and link prediction [52, 53, 54], has not only established them as the leading paradigm in static
graph processing, but has also indicated the importance of exploring their potential in other graph
domains, such as temporal graphs. With approaches ranging from attention-based methods [55]
to Variational Graph-Autoencoders (VGAEs) [56], Temporal Graph Neural Networks (TGNNs)
have achieved state-of-the-art results on tasks such as temporal link prediction [57], node
classification [58] and edge classification [59].

The first objective of this thesis is to provide a systematization of existing GNN-based methods
for temporal graphs and a formalization of the tasks addressed. In particular, we provide a
comprehensive overview of learning settings and tasks that can be performed on temporal graphs,
classify existing work on TGNNs into a detailed taxonomy, discuss limitations of current TGNN
methods, propose new research challenges, and identify potential ad high impact applications for
TGNNs. Finally, we present new versions of the WL test appropriate for temporal graphs and
we show that some TGNNs are capable of approximating, in probability and up to any precision,
any measurable function on graphs that respects the WL equivalence. We further validate our
theoretical findings through empirical experiments.

Similarly to temporal graphs, large graphs are widely diffused in modern applications and
require specialized GNN models. The second part of the thesis focuses on graph dimensionality
reduction through pooling, which is a main mechanism by which GNNs face large graph. Actually,
reducing input data size has been a staple in machine learning to cut down on complexity and
to cluster vital information effectively. Inspired by the conventional pooling methods used in
Convolutional Neural Networks (CNNs) [60, 61], pooling has been adapted for GNNs, especially
for graph-level tasks.

1.1. Contributions 3

However, the transition from image to graph data introduces significant challenges. Unlike
images, which have a regular, tabular structure allowing for straightforward dimensionality
reduction through techniques like mean or max pooling, graphs represent a more complex
scenario. Their irregular structure complicates the process, demanding more sophisticated
approaches to reduce dimensions without losing essential information.

Addressing this challenge, extensive research has delved into developing various pooling
methods, evolving from basic strategies that consider just the topolgy of the graph, like Graclus
[62], to more sophisticated models that can be learned end-to-end along with the other components
of the GNN architecture, like MinCut [63] and DiffPool [64]. By creating layers of increasingly
abstract representations, pooling allows GNNs to capture both local and global graph structures.
GNNs equipped with adequate pooling layers have been shown to outperform those without
them, highlighting the critical role of effective dimensionality reduction [63].

The importance of pooling in GNNs underscores the need for ongoing investigation into its
theoretical properties. As such, we present some findings related to the relationship between
pooling and the expressive power of GNNs. While all the studies about expressiveness of GNNs
have focused on flat GNNs, which consist solely of sequential message-passing (MP) layers, our
discussion extends to hierarchical GNNs, i.e., composed by MP layers interleaved with pooling
ones. We examine critical research questions, such as the conditions under which pooling can be
implemented without decreasing the GNNs’ expressive power and whether it is feasible to design
pooling layers that not only preserve but enhance GNNs’ expressiveness.

1.1 Contributions

The main contributions of this thesis are the following. The letter placed at the end of each
contribution refers to the article in which that contribution was proposed. A list of these articles,
along with their corresponding letters, can be found at the end of this chapter.

• We propose a coherent formalization of the different learning settings and of the tasks that
can be performed on temporal graphs. Thus, we unify existing formalism and informal
definitions that are scattered in the literature, and highlight substantial gaps in what is
currently being tackled; (D)

• We organize existing TGNN works into a comprehensive taxonomy that groups methods
according to the way in which time is represented and the mechanism with which it is
taken into account; (D)

• We highlight the limitations of current TGNN methods, discuss open challenges that
deserve further investigation and present critical real-world applications where TGNNs
could provide substantial gains; (D)

• We present a new version of the WL test for temporal graphs (DWL) and we show that a
specific class of TGNN models is capable of approximating, in probability and up to any
precision, any measurable function on temporal graphs that respects the DWL equivalence;
the proof is based on space partitioning, which allows us to deduce information about the
TGNN architecture that can achieve the desired approximation; (B)

4 1. Introduction

• We show that, when certain conditions are met in the MP layers and in the pooling
operator, their combination produces an injective function between graphs. This implies
that the GNN can effectively coarsen the graph to learn high-level data descriptors, without
compromising its expressive power; (A)

• Based on our theoretical analysis, we identify commonly used pooling operators that do
not satisfy these conditions and may lead to failures in certain scenarios;

• We introduce a simple yet effective experimental setup for measuring, empirically, the
expressive power of any GNN in terms of its capability to perform a graph isomorphism
test; (A)

• We define sufficient conditions for a pooling operator to increase expressiveness; (C)

• We develop a new hierarchical pooling method called XPool, specifically designed to satisfy
conditions sufficient to enhance the expressiveness of the GNN in which it is integrated;
experiments on synthetic datasets, purposely crafted to test GNN expressiveness, show
that XPool increases the expressiveness of a GNN, even when it includes not-powerful
message passing layers. (C)

1.2 Outline

The thesis is organized as follows. In Chapter 2, we lay the groundwork for the understanding
of the rest of the manuscript, by providing essential preliminary definitions. This includes the
notation used throughout the thesis and the foundational concepts necessary for its comprehension.
Chapter 3 shifts the focus to the analysis of models based on GNNs for the study of temporal
graphs. After defining the fundamental concepts specific to temporal graphs, we present a
taxonomy of a class of these models, followed by an exploration of their expressiveness. In
Chapter 4, we delve into the concept of pooling within GNNs; we start by defining what pooling
entails in the context of GNNs, then review the most significant pooling models identified in the
literature, and conclude with theoretical and empirical findings on the expressiveness of GNNs
incorporating pooling operations. Finally, in Chapter 4, some conclusions are drawn, and further
developments are suggested.

1.3 List of Publications

My doctoral program has brought to the publication of the following papers, inherent to this
thesis.

A. Filippo Maria Bianchi and Veronica Lachi, The Expressive Power of Pooling in Graph
Neural Networks, Advances in Neural Information Processing Systems 36 (2024), [65];

B. Silvia Beddar-Wiesing, Giuseppe Alessio D’Inverno, Caterina Graziani, Veronica Lachi,
Alice Moallemy-Oureh, Franco Scarselli and Josephine Maria Thomas, Weisfeiler–Lehman
goes dynamic: An analysis of the expressive power of Graph Neural Networks for attributed
and dynamic graphs, Neural Networks (2024), [66];

1.3. List of Publications 5

C. Veronica Lachi, Alice Moallemy-Oureh, Andreas Roth and Pascal Welke, Graph Pooling
Provably Improves Expressivity, NeurIPS 2023 Workshop: New Frontiers in Graph Learning
(2023), [67];

D. Antonio Longa, Veronica Lachi, Gabriele Santin, Monica Bianchini, Bruno Lepri, Pietro
Liò, Franco Scarselli and Andrea Passerini, Graph Neural Networks for Temporal Graphs:
State of the Art, Open Challenges, and Opportunities, Transactions on Machine Learning
Research (2023), [68].

The program was instrumental to study other topics, which are not included to include in this
thesis, and have produced the following publications:

• Veronica Lachi, Francesco Ferrini, Antonio Longa, Bruno Lepri and Andrea Passer-
ini, A Simple and Expressive Graph Neural Network Based Method for Structural Link
Representation, ICML 2024 GRaM Workshop, [69].

• Pietro Bongini, Niccolò Pancino, Veronica Lachi, Caterina Graziani, Giorgia Giacomini,
Paolo Andreini and Monica Bianchini, Point-Wise Ribosome Translation Speed Prediction
with Recurrent Neural Networks, Mathematics (2024), [22];

• Silvia Beddar-Wiesing, Giuseppe Alessio D’Inverno, Caterina Graziani, Veronica Lachi
and Alice Moallemy-Oureh, On the Extension of the Weisfeiler-Lehman Hierarchy by WL
Tests for Arbitrary Graphs, 18th International Workshop on Mining and Learning with
Graphs (2022), [70];

• Paolo Andreini, Simone Bonechi, Giorgio Ciano, Caterina Graziani, Veronica Lachi,
Natalia Nikoloulopoulou, Monica Bianchini and Franco Scarselli, Multi-stage Synthetic
Image Generation for the Semantic Segmentation of Medical Images, Artificial Intelligence
and Machine Learning for Healthcare (2022), [71];

• Giorgia Giacomini, Caterina Graziani, Veronica Lachi, Pietro Bongini, Niccolò Pancino,
Monica Bianchini, Davide Chiarugi, Angelo Valleriani and Paolo Andreini, A neural network
approach for the analysis of reproducible Ribo–Seq profiles, Mathematics (2022), [21];

• Paolo Andreini, Giorgio Ciano, Simone Bonechi, Giuseppe Alessio D’Inverno, Cateri-na
Graziani, Veronica Lachi, Alessandro Mecocci, Andrea Sodi, Franco Scarselli and Monica
Bianchini, A two-stage GAN for high-resolution retinal image generation and segmentation,
Electronics, (2021), [6];

• Niccolò Pancino, Caterina Graziani, Veronica Lachi, Maria Lucia Sampoli, Emanuel
S, tefǎnescu, Monica Bianchini and Giovanna Maria Dimitri, A mixed statistical and machine
learning approach for the analysis of multimodal trail making test data, Mathematics (2021),
[7].

Chapter 2
Preliminaries

This chapter introduces and defines the basic concepts that are crucial for the rest of the thesis.
We start with the definition of graphs; next, we introduce Graph Neural Networks, the primary
machine learning model used in this work for handling data structured as graphs. Lastly, we will
provide a brief overview of the literature concerning the expressiveness of GNNs. This includes
discussing the capabilities and limitations of GNNs as highlighted in existing research. This
foundation will support the novel contributions and discussions presented in later chapters.

2.1 Graph Neural Networks

Definition 2.1.1 (Graph). A graph is a tuple G = (V,E), where V is the set of nodes with
|V | = N and E ⊆ V × V is the set of edges with |E| = M . To each graph G is associated a
matrix of node features, X ∈ RN×F , where the v-th row is the feature vector xv ∈ RF of node v.
Analogously, XE ∈ RM×F is the edge feature matrix. The adjacency matrix A ∈ RN×N is such
that Auv = 1, if (u, v) ∈ E, and Aij = 0, otherwise.

We assume that all graphs are directed, i.e., (u, v) ∈ E does not imply that (v, u) ∈ E.
Moreover, given v ∈ V , the set

N [v] := {u ∈ V : (u, v) ∈ E}

denotes the neighborhood of v in G.
In the remainder of the document, we will use the notation {·} to represent a multiset. A multiset
is a generalization of the concept of set, allowing for multiple instances of its elements. Unlike
a traditional set, where each element is unique and appears only once, a multiset can contain
several occurrences of the same element.

GNNs have emerged as a powerful class of neural network models specifically designed to
tackle data structured in the form of graphs. The first theorization of GNNs dates back to 2005
[72] — with the full mathematical formulation proposed in 2009 [13] — and describes them
as networks which replicate the topology of the input graph, and exchange messages between
neighbor nodes to produce an output on selected nodes (or edges or for the whole graph).

GNNs rely on the so called message passing (MP) mechanism, which implements a local
computational scheme to process graphs. Formally, the information related to a node v is stored
into a feature vector xl

v that is iteratively updated by aggregating the features of its neighboring
nodes. The representation of each node is initialized with its feature, i.e., x0

v := xv and after l
iterations, the vector xl

v contains both the structural information and the node content of the

8 2. Preliminaries

l–hop neighborhood of v. Given a sufficient number of iterations, the node feature vectors can
be used to classify the nodes or the entire graph. Specifically, the output of the l-th layer of a
message passing GNN is:

xl
v = COMBINE(l)(xl−1

v , AGGREGATE(l)({xl−1
u , u ∈ N [v]})) (2.1)

where AGGREGATE(l) is a function that aggregates the node features from the neighborhood
N [v] at the (l − 1)-th iteration, and COMBINE(l) is a function that combines the features of the
node v with those of its neighbors. The aggregation step often involves employing permutation
invariant operations such as mean, max-pooling, and sum. These operations ensure that the final
aggregated representation is insensitive to the ordering of the nodes. Instead, typical choices for
the COMBINE function are concatenation and summation. In node level tasks, a READOUT function
is used to produce an output for each node, based on its features at the final layer L:

hv = READOUT(xL
v)

whereas, in graph level tasks, a READOUT function produces the final output given the feature
vectors from the last layer L:

h = READOUT({xL
v , v ∈ V }).

Based on the various implementations of the COMBINE and AGGREGATE functions, several
distinct GNN models have been developed, including GCN [14], GAT [47], and GIN [28]. In the
following, we will explore models that specifically tackle temporal graphs employing this kind of
message passing scheme, which we refer to as Temporal Graph Neural Networks (TGNNs).

When evaluating the expressive power of GNNs, the focus is on their ability to produce
distinct outputs for different graphs or nodes. In this context, the study of GNNs’ expressive
power is intimately linked to the graph isomorphism problem, which assesses whether two
graphs are structurally identical. Ideally, GNNs should be able to differentiate between non-
isomorphic graphs by producing different outputs. However, graph isomorphism presents a
significant challenge, as it is a complex problem for which no polynomial-time algorithms have
yet been identified. The Weisfeiler-Lehman (WL) [73] tests stand out as a series of effective and
computationally feasible solutions for distinguishing between a wide class of graphs. Particularly,
the WL test, resembling the process of neighborhood aggregation in GNNs, offers a theoretical
foundation for understanding and improving GNNs’ capabilities in graph structure differentiation.

2.1.1 WL test

The WL test is a method that tests whether two graphs are isomorphic, based on a graph coloring
refinement procedure. The WL test iteratively updates colors assigned to each node based on
the colors of its neighboring nodes. The coloring algorithm is applied in parallel on the two input
graphs. At the end, the multisets of node colors of the two graphs are compared: if they are
equal, then the graphs are possibly isomorphic, whereas if they are not equal, then the graphs are
certainly non-isomorphic. Note that the test is not conclusive in the case of a positive response,
as the graphs may still be non-isomorphic. Node colors are initialized based on the node features
and then updated using the previous iteration coloring.

2.1. Graph Neural Networks 9

Figure 2.1: Two non-isomorphic but WL equivalent graphs.

1. At iteration 0, the node colors are initialized as:

c0v = HASH0(xv)

where HASH0 is a function that injectively codes every possible feature with a color.

2. For any iteration l > 0, the color is refined in the following way:

clv = HASH(cl−1
v , {cl−1

u |u ∈ N [v]})

where HASH is an injective map.

The algorithm terminates when the multiset of colors does not change between two successive
iterations.

2.1.2 Expressive Power of Graph Neural Networks

There is a strong analogy between an iteration of the WL-test and the aggregation scheme
implemented by message passing in GNNs. In fact, it has been proven that GNNs are at most as
powerful as the WL test in distinguishing different graph-structured data [28, 74]. Moreover, if
the message passing operation is injective, the resulting GNN is as powerful as the WL test [28].
The Graph Isomorphism Network (GIN) implements such an injective multiset function as:

xl
v = MLP(l)

(1 + ϵl)xl−1
v +

∑
u∈N [v]

xl−1
u

 . (2.2)

Under the condition that the nodes’ features are from a countable multiset, the representational
power of GIN equals that of the WL test.
However, the WL test, a heuristic for graph isomorphism, has known limitations in distinguishing
certain graph structures, meaning cases where the graphs are non-isomorphic but the test
produces the same multiset of colors as their output. Consequently, GNNs will also produce
equal outputs on these graphs. An example of such a failure is presented in Figure 2.1.

This poses a significant challenge in terms of expressiveness, particularly in domains demanding
high-precision recognition of complex patterns, such as chemistry. The WL test’s inability to
differentiate between molecules with similar but non-identical structures can lead to inaccuracies
in predicting molecular properties, which is detrimental to drug discovery and materials science
where such predictions play a foundational role.
In response to these limitations, researchers have proposed several strategies to enhance the

10 2. Preliminaries

expressiveness of GNNs beyond that of the WL test. One approach involves incorporating
higher-order interactions among graph elements, enabling the network to capture more complex
structural details [74]. In alternative, it is possible to increase the expressiveness of GNNs
by aggregating multisets of subgraphs [75] or path of nodes [76] instead of multisets of node
features. Another strategy is the augmentation of node features with structural roles or positions
within the graph, providing a richer context for each node [77]. However, these approaches can
lead to high computational cost or generalization problems. In chapter 4, we will present a
new method for enhancing the expressive power of GNNs reducing the complexity and amount
of computations and maintaining the standard message passing scheme, through the use of a
suitable hierarchical pooling layer.

Chapter 3
Temporal Graph Neural Networks

Traditionally, machine learning models for graphs have been mostly designed for static graphs
[78, 79]. However, many applications involve temporal graphs [80, 81, 82]. This introduces
important challenges for learning and inference since nodes, attributes, and edges change over
time.

This chapter delves into the analysis of Temporal Graph Neural Networks (TGNNs), a
field that extends traditional graph neural networks to meet the dimension of time. The main
presented results are based on the papers [68, 66].

Our discussion begins by providing fundamental definitions that lay the groundwork for
understanding temporal graphs. Following the foundational groundwork, we will focus on
strategies that leverage the message passing scheme presented in 2.1 for dealing with temporal
graphs, namely TGNNs. A central section of this chapter is dedicated to a theoretical analysis
of the expressive power of TGNNs. We will analyse the capabilities and limitations of TGNNs,
providing insights into how they model temporal relationships and what makes them uniquely
suited for time-sensitive data.

By weaving together fundamental concepts, advanced methodologies, theoretical insights,
and practical applications, this chapter aims to provide a comprehensive overview of temporal
graph processing through TGNNs.

3.1 Temporal Graphs: Basic Concepts and Definitions

In this section, a formal definition of temporal graphs is provided by structuring different existing
notions in a common framework.

Definition 3.1.1 (Temporal Graph - TG). A Temporal Graph is a tuple GT = (V,E, VT , ET),
where V and E are, respectively, the set of all possible nodes and edges appearing in GT at any
time, while

VT := {(v,xv, ts, te) : v ∈ V,xv ∈ RF , ts ≤ te},
ET := {(e,xe, ts, te) : e ∈ E,xe ∈ RF , ts ≤ te},

are the temporal nodes and edges, with time-dependent features and initial and final timestamps.
A set of temporal graphs is denoted as GT .

Observe that we implicitly assume that the existence of a temporal edge in ET requires the sim-
ultaneous existence of the corresponding temporal nodes in VT . Moreover, the definition implies
that node and edge features are constant inside each interval [ts, te], but may otherwise change

12 3. Temporal Graph Neural Networks

over time. Since the same node or edge may be listed multiple times, with different timestamps,
we denote with t̄s(v) = min{ts : (v,xv, ts, te) ∈ VT } and t̄e(v) = max{te : (v,xv, ts, te) ∈ VT } the
time of first and last appearance of a node, and similarly for t̄s(e), t̄e(e), e ∈ E. Moreover, we set
Ts(GT) := min{t̄s(v) : v ∈ V }, Te(GT) := max{t̄e(v) : v ∈ V } as the initial and final timestamps
in a TG GT . For two TGs, Gi

T := (V i, Ei, V i
T , E

i
T), i = 1, 2, we write G1

T ⊆V G2
T to indicate

the topological inclusion V 1 ⊆ V 2, while no relation between the corresponding timestamps is
required.

Given v ∈ V , the set

Nt[v] := {u ∈ V : ∃ (e,xe, ts, te) ∈ ET with e = (u, v), ts ≤ t}

is the temporal neighborhood of v at time t. i.e., the set of nodes that have been connected to v
until time t.

General TGs have no restriction on their timestamps, which can take any value (for simplicity,
we just assume that they are non-negative). However, in some applications, it makes sense to
force these values to be multiples of a fixed time-step. This leads to the notion of Discrete Time
Temporal Graphs, which are defined as follows.

Definition 3.1.2 (Discrete Time Temporal Graph - DTTG). Let ∆t > 0 be a fixed time-step
and let t1 < t2 < · · · < tn be timestamps with tk+1 = tk +∆t. A Discrete Time Temporal Graph
GDT is a TG where for each (v,xv, ts, te) ∈ VT or (e,xe, ts, te) ∈ ET , the timestamps ts, te are
taken from the set of fixed timestamps (i.e., ts, te ∈ {t1, t2, . . . , tn}, with ts < te).

3.1.1 Representation of temporal graphs

In the existing literature, dynamic graphs are often divided into DTTG (as in Definition 3.1.2)
and continuous-time temporal graphs (CTTG) (or time sequence graphs), which are defined,
e.g., in [83, 84, 85, 86]. However, we find that this separation does not capture well the central
difference between various graph characterizations, which is rather based on the fact that the
data are represented as a stream of static graphs, or as a stream of single node and edge
addition and deletion events. We thus formalize the following two categories for the description
of time-varying graphs, based on snapshots or on events. These different representations lead to
different algorithmic approaches and become particularly useful when organizing the methods in
a taxonomy.

The snapshot-based strategy focuses on the temporal evolution of the whole graph. Snapshot-
based Temporal Graphs can be defined as follows.

Definition 3.1.3 (Snapshot-based Temporal Graph - STG). Let t1 < t2 < · · · < tn be the
ordered set of all timestamps ts, te occurring in a TG GT . Set

Vi := {(v,xv) : (v,xv, ts, te) ∈ VT , ts ≤ ti ≤ te},
Ei := {(e,xe) : (e,xe, ts, te) ∈ ET , ts ≤ ti ≤ te},

and define the snapshots Gi := (Vi, Ei), i = 1, . . . , n. Then a Snapshot-based Temporal Graph
representation of GT is the sequence

GS
T := {Gi : i = 1, . . . , n}

of time-stamped static graphs.

3.2. Learning Settings 13

This representation is mostly used to describe DTTGs, where the snapshots represent the
TG captured at periodic intervals (e.g., hours, days, etc.).

The event-based strategy is instead more appropriate when the focus is on the temporal
evolution of individual nodes or edges. This leads to the following definition.

Definition 3.1.4 (Event-based Temporal Graph - ETG). Let GT be a TG, and let ε denote one
of the following events:

• Node insertion ε+V := (v, t): the node v is added to GT at time t, i.e., there exists
(v,xv, ts, te) ∈ VT with ts = t.

• Node deletion ε−V := (v, t): the node v is removed from GT at time t, i.e., there exists
(v,xv, ts, te) ∈ VT with te = t.

• Edge insertion ε+E := (e, t): the edge e is added to GT at time t, i.e., there exists
(e,xe, ts, te) ∈ ET with ts = t.

• Edge deletion ε−E := (e, t): the edge e is removed from GT at time t, i.e., there exists
(e,xe, ts, te) ∈ ET with te = t.

An Event-based Temporal Graph representation of TG is a sequence of events

GE
T := {ε : ε ∈ {ε+V , ε

−
V , ε

+
E , ε

−
E}}.

Here it is implicitly assumed that node and edge events are consistent (e.g., a node deletion
event implies the existence of an edge deletion event for each incident edge). In the case of an
ETG, the TG structure can be recovered by coupling an insertion and deletion event for each
temporal edge and node. ETGs are better suited than STGs to represent TGs with arbitrary
timestamps.

We will use the general notion of TG, which comprises both STG and ETG, in formalizing
learning tasks in the next section. On the other hand, we will revert to the STG and ETG
notions when introducing the taxonomy of TGNN methods in Section 3.5, since TGNNs use one
or the other representation strategy in their algorithmic approaches.

3.2 Learning Settings

Thanks to their learning capabilities, TGNNs are extremely flexible and can be adapted to a
wide range of tasks on TGs. Some of these tasks are straightforward temporal extensions of
their static counterparts. However, the temporal dimension has some non-trivial consequences in
the definition of learning settings and tasks, some of which are often only loosely formalized in
the literature. We start by formalizing the notions of transductive and inductive learning for
TGNNs, and then describe the different tasks that can be addressed.

The machine learning literature distinguishes between inductive learning, in which a model is
learned on training data and later applied to unseen test instances, and transductive learning, in
which the input data of both training and test instances are assumed to be available, and learning
is equivalent to leveraging the training inputs and labels to infer the labels of test instances given
their inputs. This distinction becomes extremely relevant for graph-structured data, where the

3.3. Supervised Learning Tasks 15

graphs GT := {Gi
T := (Vi, Ei, VTi

, ETi
), i = 1, . . . , p}. Moreover, let

T all
e := max

i=1,...,p
Te(G

i
T), V

all := ∪p
i=1Vi, E

all := ∪p
i=1Ei,

be the final timestamp and the set of all nodes and edges in the training set. Then, we have the
following settings:

• Transductive learning: inference can only be performed on v ∈ V all, e ∈ Eall, or GT ⊆V Gi
T

with Gi
T ∈ GT .

• Inductive learning: inference can be performed also on v /∈ V all, e /∈ Eall, or GT ̸⊆V Gi
T ,

for all i = 1, . . . , p.

• Past prediction: inference is performed for t ≤ T all
e .

• Future prediction: inference is performed for t > T all
e .

We remark that all combinations of topological and temporal settings are meaningful, except
for the case of inductive graph-based tasks. Indeed, the measure of time used in TGs is relative
to each single graph. Moving to an unobserved graph would thus make the distinction between
past and future pointless. Moreover, let us observe that, in all other cases, the two temporal
settings are defined based on the final time of the entire training set, and not of the specific
instances (nodes or edges), since their embedding may change also as an effect of the change of
their neighbors in the training set.

We will use this categorization to describe supervised and unsupervised learning tasks in
Sections 3.3-3.4, and to present existing models in Section 3.5.

3.3 Supervised Learning Tasks

Supervised learning tasks are based on a dataset where each object is annotated with its label
(or class), from a finite set of possible choices C := {C1, C2, . . . , Ck}.

3.3.1 Classification

Definition 3.3.1 (Temporal Node Classification). Given a TG GT = (V,E, VT , ET), the node
classification task consists in learning the function

fNC : V × R+ → C

which maps each node to a class C ∈ C, at a time t ∈ R+.

This is one of the most common tasks in the TGNN literature. For instance, [87, 55, 59, 88, 58]
focus on a future-transductive (FT) setting, i.e., predicting the label of a node in future timestamps.
TGAT [55] performs future-inductive (FI) learning, i.e., it predicts the label of an unseen node
in the future. Finally, DGNN [89] is the only method that has been tested on a past-inductive
(PI) setting, i.e., predicting labels of past nodes that are unavailable (or masked) during training,
while no approach has been applied to the past-transductive (PT) one. A significant application

16 3. Temporal Graph Neural Networks

may be in epidemic surveillance, where contact tracing is used to produce a TG of past human
interactions, and sample testing reveals the labels (infection status) of a set of individuals.
Identifying the past infection status of the untested nodes is a PT task.

Definition 3.3.2 (Temporal Edge Classification). Given a TG GT = (V,E, VT , ET), the temporal
edge classification task consists in learning a function

fEC : E × R+ → C

which assigns each edge to a class at a given time t ∈ R+.

Temporal edge classification has been less explored in the literature. Existing methods have
focused on FT learning [87, 59], while FI, PI and PT have not been tackled so far. An example of
PT learning consists in predicting the unknown past relationship between two acquaintances in
a social network given their subsequent behavior. For FI, one may predict if a future transaction
between new users is a fraud or not.

In the next definition we use the set of real and positive intervals I+ := {[ts, te] ⊂ R+}.

Definition 3.3.3 (Temporal Graph Classification). Let GT be a domain of TGs. The graph
classification task requires to learn a function

fGC : GT × I+ → C

that maps a temporal graph, restricted to a time interval [ts, te] ∈ I+, into a class.

The definition includes the classification of a single snapshot (i.e., ts = te). As mentioned
above, in the inductive setting the distinction between past and future predictions is pointless.
In the transductive setting, instead, a graph GT ∈ GT may be classified in a past mode if
[Ts(GT), Te(GT)] ⊆ [ts, te], or in the future mode, otherwise.

The only existing method addressing the classification of temporal graphs is found in [90],
where the discrimination between STGs characterized by different dissemination processes is
formalized as a PT classification task.

The temporal graph classification task can have numerous relevant applications. For instance,
an example of inductive temporal graph classification is predicting mental disorders from the
analysis of the brain connectome [91]. On the other hand, detecting critical stages during
disease progression from gene expression profiles [92] can be framed as a past transductive graph
classification task.

3.3.2 Regression

The tasks introduced for classification can all be turned into corresponding regression tasks,
simply by replacing the categorical target C with the set R. We omit the formal definitions for
the sake of brevity. Static GNNs have already shown outstanding results in this setting, e.g., in
weather forecasting [93] and earthquake location and estimation [94]. However, limited research
has been conducted on the application of TGNNs to regression tasks. Notable exceptions are the
use of TGNNs in two FT regression tasks, the traffic prediction [95] and the prediction of the
incidence of chicken pox cases in neighboring countries [90].

3.4. Unsupervised Learning Tasks 17

3.3.3 Link Prediction

Link prediction requires the model to predict the relation between two given nodes, and can
be formulated by taking as input any possible pair of nodes. Thus, we consider the setting to
be transductive when both node instances are known at training time, and inductive otherwise.
Instead, [96] adopts a different approach and identifies Level-1 (the set of nodes is fixed) and
Level-2 (nodes may be added and removed over time) temporal link prediction tasks.

Definition 3.3.4 (Temporal Link Prediction). Let GT = (V,E, VT , ET) be a TG. The temporal
link prediction task consists in learning a function

fLP : V × V × R+ → [0, 1]

which predicts the probability that, at a certain time, there exists an edge between two given nodes.

The domain of the function fLP is the set of all feasible pairs of nodes, since it is possible to
predict the probability of future interactions between nodes that have been connected in the
past or not, as well as the probability of missing edges in a past time. Most TGNN approaches
for temporal link prediction focus on future predictions, forecasting the existence of an edge
in a future timestamp between existing nodes (FT is the most common setting) [87, 57, 56,
97, 55, 85, 59, 89, 58, 88], or unseen nodes (FI) [56, 55, 58]. The only model that investigates
past temporal link prediction is [85], which devises a PI setting by masking some nodes and
predicting the existence of a past edge between them. Note that predicting past temporal links
can be extremely useful for predicting, for instance, missing interactions in contact tracing for
epidemiological studies.

Definition 3.3.5 (Event Time Prediction). Let GT = (V,E, VT , ET) be a TG. The aim of the
event time prediction task consists in learning a function

fEP : V × V → R+

that predicts the time of the first appearance of an edge.

None of the existing methods address this task. Potential FT applications of event time
prediction include predicting when a customer will pay an invoice to its supplier, or how long it
takes to connect two similar users in a social network.

3.4 Unsupervised Learning Tasks

In this section, we formalize unsupervised learning tasks on temporal graphs, an area that has
received little to no attention in the TGNN literature so far.

3.4.1 Clustering

Temporal graphs can be clustered at the node or graph level, with edge-level clustering being
a minor variation of the node-level one. Some relevant applications can be defined in terms of
temporal clustering.

18 3. Temporal Graph Neural Networks

Definition 3.4.1 (Temporal Node Clustering). Given a TG GT = (V,E, VT , ET), the temporal
node clustering task consists in learning a time-dependent cluster assignment map

fNCl : V × R+ → P(V),

where P(V) := {p1, p2, . . . , pk} is a partition of the node set V , i.e., pi ⊂ VT , pi ∩ pj = ∅, if
i ̸= j, ∪N

i=1pi = VT .

While node clustering in standard graphs is a very common task, its temporal counterpart
has not been explored yet for TGNNs, despite its potential relevance in application domains
like epidemic modelling — e.g., identifying groups of exposed individuals, in both inductive and
transductive settings [98, 99, 100, 101, 102] —, trend detection in customer profiling — mostly in
transductive settings [103, 104] —, or disease clustering — mostly in future transductive settings
[105, 106, 107, 108].

Definition 3.4.2 (Temporal Graph Clustering). Given a set of temporal graphs GT , the temporal
graph clustering task consists in learning a cluster-assignment function

fGCl : GT × I+ → P(GT),

where P(GT) := {p1, . . . , pk} is a partition of the set of temporal graphs in the given time interval.

Relevant examples of tasks of inductive temporal graph clustering are grouping social interac-
tion networks (e.g., hospitals, workplaces, schools) according to their interaction patterns [39, 46],
or grouping diseases in terms of similarity between their spreading processes [109, 110].

3.4.2 Anomaly detection

Anomaly detection in TGs refers to the process of identifying any significant deviations from the
expected or normal patterns of connectivity, behavior, or structural properties within the TG.
These anomalies may indicate critical events, emerging trends, unusual behaviors, or potential
threats. The basic idea is to model the behavior of the data using density estimation methods
and then identify instances, which deviate significantly from this behavior, as anomalies. In the
following, we identify and formalize three types of anomalies.

Definition 3.4.3 (Anomalous node detection). Given a TG GT = (V,E, VT , ET), a TGNN and
an application dependent threshold C ∈ (0, 1), a node v ∈ V is detected as anomalous if

fDE(TGNN(v,GT ; θ)) < C,

where fDE is a procedure for density estimation like a variational autoencoder [111], a generative
adversarial network [112] or a kernel density estimation function [113].

For example, detecting anomalous nodes within a TG can be applied to identify the origin
nodes of a virus in a network. By comparing the activity of each node on the days surrounding a
known virus attack to their activity on the day of the attack, the nodes that exhibit higher-than-
usual activity at the time of the attack can be detected as the potential source of the virus [114].
Other applications include discovering anomalies in communication networks [115] and observing
the shifts in community involvement [116, 117, 118].

3.5. Taxonomy of Temporal Graph Neural Networks 19

Definition 3.4.4 (Anomalous edge detection). Given a TG GT = (V,E, VT , ET), a TGNN, an
application dependent threshold C ∈ (0, 1) and a procedure for density estimation fDE, an edge
e ∈ E is detected as anomalous if

fDE(TGNN(e,GT ; θ)) < C.

Edge anomaly detection finds extensive applications in various fields, such as the analysis
of vehicle traffic patterns [119, 120] and the identification of improbable social interactions
[121, 122].

Definition 3.4.5 (Anomalous graph detection). Given a domain of TGs GT , a TGNN, an
application dependent threshold C ∈ (0, 1) and a procedure for density estimation fDE, a TG
GT ∈ GT is detected as anomalous if

fDE(TGNN(GT ; θ)) < C.

Possible application of anomalous graph detection are identifying accidents in TGs representing
vehicle traffic [123, 124] as well as detecting whether a molecule is mutagenic [125].

3.4.3 Low-dimensional embedding (LDE)

LDEs are especially useful in the temporal setting, e.g., to visually inspect temporal dynamics
of individual nodes or entire graphs, and identify relevant trends and patterns. No GNN-based
models have been applied to these tasks, neither at the node nor at the graph level. We formally
define the tasks of temporal node and graph LDE as follows.

Definition 3.4.6 (Low-dimensional temporal node embedding). Given a TG GT = (V,E, VT , ET),
the low-dimensional temporal node embedding task consists in learning a map

fNEm : V × R+ → Rd

to map a node, at a given time, into a low dimensional space.

Definition 3.4.7 (Low-dimensional temporal graph embedding). Given a domain of TGs GT ,
the low-dimensional temporal graph embedding task aims to learn a map

fGEm : GT × I+ → Rd,

which represents each graph as a low dimensional vector in a given time interval.

3.5 Taxonomy of Temporal Graph Neural Networks

This section describes the taxonomy with which we categorize existing TGNN approaches (see
Figure 3.2). All these methods learn a time-dependent embedding hv(t) = TGNN(v,GT ; θ) of
each node v ∈ VT of a TG GT , where θ represents a set of trainable parameters. Following the
representation strategies outlined in Section 3.1, the first level groups methods into Snapshot-based
and Event-based. The second level of the taxonomy further divides these two macro-categories

3.5. Taxonomy of Temporal Graph Neural Networks 21

More formally, these methods learn an embedding

xL
v (ti) = GNN(v,Gi; θ(ti)),

θ(ti) = REC(θ(ti−j) : 1 ≤ j ≤ imax)
(3.1)

where xL
v (ti) is the representation of node v produced after L layers of a GNN at time ti,

θ(ti) is a parameter-evolution network, imax is the memory length and REC is a recursive
function.

To the best of our knowledge, the only existing method belonging to this category is
EvolveGCN [87]. This model utilizes a Recurrent Neural Network (RNN) to update the
Graph Convolutional Network (GCN) [14] parameters at each time-step, allowing for model
adaptation that is not constrained by the presence or absence of nodes. The method can
effectively handle new nodes without prior historical information. A key advantage of this
approach is that the GCN parameters are no longer trained directly, but rather they are
computed from the trained RNN, resulting in a more manageable model size that does not
increase with the number of time-steps. The paper presents two versions of this method:
EvolveGCN-O uses a Long Short-Term Memory (LSTM) to simply evolve the weights in
time, while EvolveGCN-H represents the weights as hidden states of a Gated Recurrent
Unit (GRU), whose input is the previous node embedding.

Embedding Evolution methods Rather than evolving the parameters of a static GNN model,
Embedding Evolution methods focus on evolving the embeddings produced by a static
model. Methods that belong to this category can be expressed as:

xL
v (ti) = GNN(v,Gi; θ) ∀i ≥ 0

qv(ti) = REC(qv(ti−1),x
L
v (ti)) ∀i > 0

qv(t0) := xL
v (t0).

(3.2)

Due to their simplicity, they rank among the most frequently employed methods for STGs,
yielding substantial practical and theoretical outcomes. In the next section, we will illustrate
an approximation theorem for this class of models, henceforth referred to as STGNNs.
There are several different STGNN models in literature. These networks differ from one
another in the techniques used for processing both the structural information and the
temporal dynamics of the STGs.

DySAT [57] introduces a generalization of Graph Attention Network (GAT) [47] for
STGs. First, it uses a self-attention mechanism to generate static node embeddings at each
timestamp. Then, it uses a second self-attention block to process past temporal embeddings
for a node to generate its novel embedding. Decoupling graph evolution into two modular
blocks allows for efficient computations of temporal node representations. The structural
and temporal self-attention layers, combined and stacked, enable flexibility and scalability.

The VGRNN model [56] uses VGAE [126] on each snapshot, where the latent representa-
tions are conditioned on a state variable modelled by Semi-Implicit Variational Inference
(SIVI) [127] to handle the variation of the graph over time. The learned latent representation

22 3. Temporal Graph Neural Networks

is then evolved through an LSTM conditioned on the previous time’s latent representation,
allowing the model to predict the future evolution of the graph.

ROLAND [97] is a general framework for extending state-of-the-art GNN techniques to
STGs. The key insight is that node embeddings at different GNN layers can be viewed as
hierarchical node states. To generalize a static GNN for dynamic settings, hierarchical node
states are updated based on newly observed nodes and edges through a Gated Recurrent
Unit (GRU) update module [128]. The paper presents two versions of the model: ROLAND-
MLP, which uses a 2-layer MLP to update node embeddings, and ROLAND-moving average,
which updates the node embeddings through the moving average among previous node
embeddings. Finally, reservoir computing techniques have also been proposed.

DynGESN [90] presents a method where each node embedding is updated by a recurrent
mechanism using its temporal neighborhood and previous embedding, with fixed and
randomly initialized recurrent weights.

SSGNN [95] follows a similar approach but introduces trainable parameters in the de-
coder and combines randomized components in the encoder: initially, the encoder creates
representations of the time series data observed at each node, by utilizing a reservoir that
captures dynamics at various time scales; these representations are then further processed
to incorporate spatial dynamics dictated by the graph structure.

3.5.2 Event-based models

Models belonging to the Event-based macro category are designed to process ETGs (see Def. 3.1.4).
These models are able to process streams of events by incorporating techniques that update
the representation of a node whenever an event involving that node occurs, and represent an
extension of message passing to TGs, since they combine and aggregate node representations over
temporal neighborhoods. The models that lie in this macro category can be further classified
in Temporal Embedding and Temporal Neighborhood methods, based on the technology used to
learn the time dependencies. In particular, the Temporal Embedding models use recurrent or
self-attention mechanisms to model sequential information from streams of events, while also
incorporating a time encoding. This allows for temporal signals to be modeled by the interaction
between time embedding, node features and the topology of the graph. Temporal Neighborhood
models, instead, use a module that stores functions of events involving a specific node at a given
time. These values are then aggregated and used to update the node representation as time
progresses.

Temporal Embedding methods Temporal embedding methods model TGs by combining time
embedding, node features, and graph topology. These models use an explicit functional
time encoding, i.e., a vector embedding gt of time based on Random Fourier Features
(RFF) [129], which is translation-invariant (i.e., it depends only on the elapsed and not the
absolute time).

They extend the message passing architecture to temporal neighborhoods, where the time
is encoded by gt, i.e., at the l-th layer,

xl
v(ti) = COMBINE(l)((xl−1

v (ti),g0), AGGREGATE
(l)(
{
(xl−1

u (tj),gti−tj), u ∈ Nti [v]
}
)),

3.5. Taxonomy of Temporal Graph Neural Networks 23

where tj is the time of the connection event between u and v. Thus, gti−tj encodes the
time elapsed between the current time t and the time of connection between u and v.

TGAT [55], for example, introduces a graph-temporal attention mechanism which works
on the embeddings of the temporal neighbors of a node, where the positional encoding is
replaced by a temporal encoding based on RFFs. In addition, [55] implements a version of
TGAT with all temporal attention weights set to an equal value (Const-TGAT). On the
other hand, NAT [85] collects the temporal neighbors of each node into dictionaries, and
then it learns the node representation with a recurrent mechanism, using the historical
neighborhood of the current node and a RFF based time embedding. Note that [85]
proposes a dedicated data structure to support parallel access and update of the dictionary
on GPUs.

Temporal Neighborhood methods The Temporal Neighborhood class includes all TGNN
models that make use of a special mailbox module to update node embeddings based on
events. When an event ε occurs, a function is evaluated on the details of the event to
compute a mail or a message mε. For example, when a new edge appears between two
nodes, a message is produced, taking into account the time of occurrence of the event, the
node features, and the features of the new edge. The node representation is then updated
at each time by aggregating all the generated messages. In more details, these methods
extend message passing by learning at the l-th layer an embedding

xl
v(ti) = COMBINE(l)(xl−1

v (ti), AGGREGATE
(l)({mε, ε = (u, tj) with u ∈ Nti [v]})),

where ε, with u ∈ Nti [v], is the addition or deletion of a temporal neighbor of v.

Several existing TGNN methods belong to this category. APAN [59] introduces the
concept of asynchronous algorithm, which decouples graph query and model inference.
An attention-based encoder maps the content of the mailbox to a latent representation
of each node, which is decoded by an MLP adapted to the downstream task. After each
node update following an event, mails containing the current node embedding are sent
to the mailboxes of its neighbors using a propagator. DGNN [89] combines an interact
module — which generates an encoding of each event based on the current embedding of
the interacting nodes and their history of past interactions — and a propagate module —
which transmits the updated encoding to each neighbors of the interacting nodes. The
aggregation of the current node encoding with those of its temporal neighbors uses a
modified LSTM, which permits to work on non-constant time-steps, and implements a
discount factor to downweight the importance of remote interactions. TGN [58] provides
a generic framework for representation learning in ETGs, and makes an effort to integrate
the concepts put forward in earlier techniques. This inductive framework is made up of
separate and interchangeable modules. Each node the model has seen so far is characterized
by a memory vector, which is a compressed representation of all its past interactions.

Given a new event, a mailbox module computes a mail for every node involved. Mails will
then be used to update the memory vector. To overcome the so-called staleness problem
[83], an embedding module computes, at each timestamp, the node embeddings using their
neighborhood and their memory states. Finally, TGL [88] is a general framework for

24 3. Temporal Graph Neural Networks

training TGNNs on graphs with billions of nodes and edges by using a distributed training
approach. In TGL, a mailbox module is used to store a limited number of the most recent
interactions, called mails. When a new event occurs, the node memory of the relevant
nodes is updated using the cached messages in the mailbox. The mailbox is then updated
after the node embeddings are calculated. This process is also used during inference to
ensure consistency in the node memory, even though updating the memory is not required
during this phase.

3.5.3 Category comparison

The categories of models identified in our taxonomy exhibit various strengths, weaknesses, or
suitability for specific scenarios. First and foremost, the comparison between the macro categories
of Snapshot-based and Event-based methods is straightforward, hinging on the choice of temporal
graph representation, namely STGs or ETGs. Within each macro category, sub-categories exhibit
their own set of advantages and disadvantages. For instance, in the Model Evolution category,
learning the evolution of GNN parameters becomes complex when the GNN has a large number
of parameters. On the other hand, the Embedding Evolution category has a limitation in that
temporal learning exclusively relies on recurrent mechanisms, which may not fully guarantee the
preservation of temporal correlations among substructures. Despite this drawback, the approach
offers simplicity and intuitiveness, allowing for the exploration and evaluation of various recurrent
mechanisms.

In Temporal Embedding methods, defining the time encoding function is not trivial because
it should capture different aspects of the graph, such as the temporal periodicity of interactions,
recurrent interactions over time, and more. One advantage of this category, though, is that
ad-hoc time encoding functions can be defined, depending on the application domain.

Finally, for the Temporal Neighborhood category, constructing the mailbox can be complex.
For example, dense graphs have large mailboxes, which necessitate managing scalability issues. A
specific mechanism to decide which nodes to include in the mailbox needs to be carefully designed,
and this mechanism may also be domain-dependent. Similarly to the Temporal Embedding
category, a benefit of the Temporal Neighborhood models is their ability to define domain-specific
mailbox mechanisms.

In summary, each category of models for temporal graph learning has its own set of advantages
and disadvantages. Choosing a category depends on the representation of the input graph, the
complexity of learning the temporal dynamics, the need for domain-specific encoding or mailbox
mechanisms, and scalability considerations.

3.6 Open Challenges

Building on existing libraries of GNN methods, two major TGNN libraries have been developed,
namely PyTorch Geometric Temporal (PyGT) [130], based on PyTorch Geometric1, and Dyna-
Graph [131], based on Deep Graph Library2. While these are substantial contributions to the
development and practical application of TGNN models, several open challenges still need to be

1https://pytorch-geometric.readthedocs.io
2https://docs.dgl.ai/

3.6. Open Challenges 25

faced to fully exploit the potential of this technology. We discuss the ones we believe are the
most relevant in the following.

Evaluation The evaluation of GNN models has been greatly enhanced by the Open Graph
Benchmark (OGB) [132], which provides a standardized evaluation protocol and a collection
of graph datasets enabling a fair and consistent comparison between GNN models. An
equally well-founded standardized benchmark for evaluating TGNNs does not currently
exist, even if a promising first step in this direction is the recently published Temporal
Graph Benchmark (TGB)3. As a result, each model has been tested on its own selection of
datasets, making it challenging to compare and rank different TGNNs on a fair basis. For
instance, [88] introduced two real-world datasets with 0.2 billion and 1.3 billion temporal
edges which allow to evaluate the scalability of TGNNs to large scale real-world scenarios,
but only the TGL model was tested [88]. The variety and the complexity of learning settings
and tasks described in Sections 3.2,3.3, 3.4 makes a standardization of tasks, datasets and
processing pipelines especially crucial to allow a fair assessment of the different approaches
and foster innovation in the field.

Another crucial aspect of evaluating GNN models is explainability, which is the ability
to interpret and understand their decision process. While explainability has been largely
explored for standard GNNs [133, 134, 135, 136], only few works focused on explaining
TGNNs [137, 138, 139].

Learnability Training standard GNNs over large and complex graph data is highly non-trivial,
often resulting in problems such as over-smoothing and over-squashing. A theoretical
explanation for this difficulty has been given using algebraic topology and Sheaf theory [140,
141, 142]. More intuitively, we yet do not know how to reproduce the breakthrough obtained
in training very deep architectures over vector data when training deep GNNs. Such a
difficulty is even more challenging with TGNNs, because the typical long-term dependency
of TGs poses additional problems to those due to over-smoothing and over-squashing.

Modern static GNN models face the problems arising from the complexity of the data using
techniques such as dropout, virtual nodes, neighbor sampling, but a general solution is far
from being reached. The extension of the above mentioned techniques to TGNNs, and the
corresponding theoretical studies, are open challenges and we are aware of only one work
towards this goal [143]. Moreover, the goal of proposing general very deep TGNNs is even
more challenging, due to the difficulty in designing the graph dynamics in a hierarchical
fashion.

Real-world applications The analysis of the tasks in Sections 3.3,3.4 revealed several oppor-
tunities for the use of TGNNs far beyond their current scope of application. We would
like to outline here some promising directions of application. A challenging and potentially
disruptive direction for the application of TGNNs is the learning of dynamical systems
through the combination of machine learning and physical knowledge [144]. Physic In-
formed Neural Networks (PINNs) [145] are already revolutionizing the field of scientific
computing [146], and static GNNs have been employed in this framework with great suc-
cess [147, 148]. Adapting TGNNs to this field may enable to carry over these results to the

3https://tgb.complexdatalab.com/

26 3. Temporal Graph Neural Networks

treatment of time-dependent problems. Climate science [149] is a particularly attractive
field of application, both for its critical impact in our societies and for the promising results
achieved by GNNs in climate modelling tasks [93]. We believe that TGNNs may rise to be
a prominent technology in this field, thanks to their unique capability to capture spatio-
temporal correlations at multiple scales. Epidemics studies are another topic of enormous
everyday impact that may be explored through the lens of TGNNs, since a proper modelling
of the spreading dynamics needs to be tightly coupled to the underlying TG structure [109].
Both fields require a better development of TGNNs for regression problems, a task that
is still underdeveloped (see Section 3.3). Another promising application for TGNNs is in
relational databases [150], particularly those that incorporate temporal information [151].

Expressiveness Driven by the popularity of (static) GNNs, the study of their expressive power
has received a lot of attention in the last few years [152]. Conversely, the expressive power
of TGNNs is still far from being fully explored [153]. In the following section, we will show
some findings regarding the expressiveness of TGNNs, as proposed in [66].

3.7 The Expressive Power of Temporal Graph Neural Net-
works

The expressiveness of TGNNs has yet to be fully exploited, and the design of new WL tests,
suitable for TGNNs, is a crucial step towards this aim. This is a challenging task since the
definition of a node neighborhood in temporal graphs is not as trivial as for static graphs, due to
the appearing/disappearing of nodes and edges.

In the following, we will introduce an extension of the WL test for STGs, namely the DWL,
and present a universal approximation theorem for embedding evolution STGNNs as defined in
3.2.

3.7.1 Dynamic WL test

Definition 3.7.1 (DWL). Let GS
T = {Gi : i = 1, . . . , n} as defined in Def. 3.1.3, with V the set

of all nodes that appear at least in one timestamp. The DWL is defined as follows:

• Let HASH 0
ti be an injective time dependent function; in the first iteration l = 0 and for each

time ti, the color of node v ∈ V is set to the hashed node feature or, whether v does not
exist in that timestamp, to a fixed color c⊥:

c0v(ti) =

{
HASH 0

ti (xv) if (v,xv) ∈ Vi,

c⊥ otherwise.

• In each iteration l ≥ 0, the node color is updated using an injective function HASHti :

clv(ti) = HASHti
(
cl−1
v (ti), {cl−1

u (ti)}u∈Nti
[v]

)
.

At the end of the DWL, to each node v ∈ V is associated a vector cv of colors, one for each ti
with i = 1, ..., n, i.e., cv := [cLi

v (ti)]i=1,...,n, being Li the iteration in which the test converges at
time ti.

3.7. The Expressive Power of Temporal Graph Neural Networks 27

Figure 3.3: Two STGs that are WL equivalent in each snapshots but DWL not equivalent.

Note that, if a node does not exist at time ti, its color is clv(ti) = c⊥ for every l ≥ 0 because its
neighborhood is empty. This implies that non-existent nodes cannot influence the neighborhood
aggregation of other nodes, or equivalently, that they cannot propagate through the graph.

Definition 3.7.2 (DWL equivalence). Two nodes u, v ∈ V are said to be DWL equivalent,
u =DWL v, if cv = cu, that is, if their colors are equal in any timestamps. Analogously, let GS

T

and G
′S
T be STGs with nodes sets V and W respectively. Then GS

T =DWL G
′S
T , if and only if

{cu | u ∈ V } = {cv | v ∈W}.

Note that the DWL test is stronger than just stucking the outputs of the WL on the static
graph snapshots. Indeed, the graph snapshots are not independent from each others, because
nodes in different snapshots represent different instances of the same entity. When comparing
each snapshots with the standard static WL test, the node entity does not affect the coloring
process. When using the DWL, instead, for each node a vector of colors is produced, where each
component represents the color of that particular node at a particular timestamp. As an example,
consider the two STGs GS

T = {G1, G2, G3} and G
′S
T = {G′

1, G
′

2, G
′

3} in Figure 3.3. Gi =WL G
′

i

∀i, whereas GS
T ̸=DWL G

′S
T . Indeed, node v′ ∈ V ′ has one neighbour in every timestamp while

no nodes in V exhibit the same pattern of number of neighbours, meaning the two multisets of
node colors of the two graphs cannot be equal.

28 3. Temporal Graph Neural Networks

3.7.2 Universal Approximation Theorem for Temporal Graph Neural
Networks

Definition 3.7.3 (Dynamic systems on STGs). Let GT be a domain of STGs and V all be
the set of all their nodes, as defined in 3.2.1. A dynamic system on STGs is a function
dyn : {t1, ..., tn} × GT × V all → Rm defined as:

dyn(ti, G
S
T , v) =

{
a(ti, G

S
T , v) if ti = 0

f(dyn(ti−1, G
S
T , v), a(ti, G

S
T , v)) if ti > 0

where a : {t1, ..., tn} × GT × V all → Rm is a function that processes the graph snapshot at
time ti and provides an m-dimensional internal state representation for each node v. Finally,
f : Rm × Rm → Rm is the state update function.

Definition 3.7.4 (Preserving DWL equivalence). A dynamic system dyn(·, ·, ·) preserves DWL
equivalence on GT if and only if, for any GS

T , G
′S
T ∈ GT and for any two nodes v ∈ V, u ∈ V

′
, it

holds:

v =DWL u =⇒ dyn(ti, GS
T , v) = dyn(ti, G

′S
T , u) ∀i.

The class of dynamic systems that preserves the DWL equivalence on GT will be denoted with
F(GT).

Theorem 1 (Universal Approximation Theorem). Given

• GS
T ∈ GT , with N = maxGS

T∈GT |GS
T |,

• dyn(ti, GS
T , v) ∈ F(GT) measurable dynamical system preserving the DWL equivalence,

• P probability measure on GT ,

• ϵ, λ ≥ 0,

then, there exists a STGNN composed by a GNN with 2N − 1 layers and hidden dimension r = 1,
and with a state dimension m = 1, such that:

P (∥dyn(ti, GS
T , v)− STGNN(ti, G

S
T , v)∥ ≤ ε) ≥ 1− λ, ∀ ti.

The proof can be found in Appendix A
Theorem 1 intuitively states that, given a dynamical system that preserves the DWL equivalence,
there is a STGNN that approximates it.
The functions which the STGNN is a composition of (such as the recursive function REC,
COMBINE(l), AGGREGATE(l), etc.) are supposed to be continuously differentiable, but still generic
and completely unconstrained. This situation does not correspond to practical cases where
the STGNN adopts particular architectures, and those functions are parametric models — for
example, made of layers of sum, max, average, etc. However, as proved in [154], if the STGNN
incorporates neural networks whose universality has been established, specifically MLP [155] and
RNN [156], then Thm. 1 holds.
The following remarks may further help to understand the results proven in this section.

3.7. The Expressive Power of Temporal Graph Neural Networks 29

• The proof of Thm. 1 is based on a rationale founded on space partitioning. Differently
from the technique based on the Stone–Weierstrass theorem [157], which is existential in
nature, such an approach allows us to deduce information about the characteristics of
networks that reach the desired approximation. Actually, the theorem points out that
the approximation can be obtained with minimal hidden and state dimensions, r = 1 and
m = 1.

• Moreover, Thm. 1 specifies that GNNs can obtain the approximation with 2N − 1 layers.
We could incorrectly presume that the maximum number of layers required to reach a
desired approximation depends on the diameter, diam(G), of the graph, which can be
smaller than the number of nodes N , since the information in a GNN can flow from one
node to another in diam(G) iterations. However, diam(G) layers are not always sufficient
to distinguish all the nodes of a graph. In fact, it has been proven that N − 1 is a lower
bound on the number of iterations that the WL algorithm has to carry out to be able to
distinguish any pairs of WL distinguishable graphs [158], and 2N − 1 is a lower bound for
WL algorithm to distinguish pairs of nodes in two different graphs [159]. Therefore, 2N − 1

is also the lower bound for the GNN computation time to approximate any function for
either graph-focused or node-focused tasks (see [154] for a detailed discussion).

3.7.3 Experimental Results

In order to validate our theoretical findings, we carried out two sets of experiments, described
below.

E1. We show that an STGNN with universal components can approximate a function FDWL :

GT → N that models the DWL test. The function FDWL assigns a target label to the input
graph that represents the class of DWL equivalence.

E2. In the same approximation task, we compare STGNNs with different GNN modules from
the literature to show how the universality of the components affects the approximation
capability.

We focus on the ability of the STGNN to approximate FDWL, so that only the training per-
formance is considered, i.e., we do not investigate the generalization capabilities over a test
set.

Dataset The dataset chosen consists of STGs with maximum timestamp n = T . Each static
snapshot is one of the graphs in Fig. 3.4. Since the dataset is composed of all the possible
combinations of the four graphs, it contains 4T STGs. The graphs in Fig. 3.4 are pairwise WL
equivalent, i.e., a) is WL equivalent to b) and c) is WL equivalent to d). Thus, the number of
classes is 2T , with 4T

2T
= 2T graphs in each class. For each STG, the target is the corresponding

DWL output, represented as a natural number. For training purposes, the targets are normalized
between 0 and 1 and uniformly spaced in the interval [0, 1]. Therefore, the distance between
each class label is d = 1/2T . An STG GS

T with target yGS
T

will be said to be correctly classified
if, given out = STGNN(GS

T), we have |out− yGS
T
| < d/2.

3.7. The Expressive Power of Temporal Graph Neural Networks 31

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

tra
in

 a
cc

ur
ac

y

hidden feature size
1
4
8

(a)

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

tra
in

 a
cc

ur
ac

y

hidden feature size
1
4
8

(b)

Figure 3.5: Experimental Framework E1. Training accuracy over the epochs for an STGNN
trained on the dataset containing STGs up to time length T = 4 (a) and T = 5 (b).

Results The results of the experiments confirm our theoretical statements. More precisely, the
STGNNs performed as follows during training.

0 100 200 300 400 500
Epoch

0

20

40

60

80

100

tra
in

 a
cc

ur
ac

y gat
gin
gconv_add
gcn
gconv_mean

(a)

0 100 200 300 400 500
Epoch

10 6

10 5

10 4

10 3

10 2

10 1

Tr
ai

n
lo

ss

Architecture
gat
gin
gconv_add
gcn
gconv_mean

(b)

Figure 3.6: Experimental framework E2. Training accuracy a) and training loss b) over the
epochs for several STGNNs trained on the dataset containing STGs up to time length T = 5.
Figure b) is in logarithmic scale.

E1. In Fig. 3.5, the evolution of the training accuracy over the epochs is presented for different
GIN hidden layer sizes hgin and for STGs up to time lengths T = 4 (Fig. 3.5a) and T = 5

(Fig. 3.5b). All the architectures reach 100% accuracy for the experiments on both time
lengths. Even setting hgin = 1 leads to a perfect classification at a slower rate. It may
appear surprising that, even with a hidden representation of size 1, the STGNN can
precisely approximate the function FDWL.

E2. The STGNN with the GIN module achieves the best performance in terms of learning
accuracy and speed of decreasing of the loss function, as illustrated in Fig. 3.6. The
STGNN with the gconv_add module is able to learn the task, although learning is unstable

32 3. Temporal Graph Neural Networks

(see Fig. 3.6 b)). This is not surprising since this module has been proven to match
the expressive power of the WL test [74]. The other STGNNs are incapable to learn
the objective function. This is a consequence of their weaker expressive power, widely
investigated in literature [28, 154].

3.8 Other approaches to model temporal graphs

Many different representation techniques for temporal graphs, different from GNNs, have been
proposed.

A popular class of approaches for learning an embedding function for temporal graphs is
constituted by random walk-based methods. For example, in [162], temporal random walks
are exploited to efficiently and automatically sample temporal network motifs, i.e., connected
subgraphs with links that appear within a restricted time range. Similarly, in [163], a time-
reinforced random walk is proposed to effectively sample the structural and temporal contexts
over graph evolution. Also, [164] employs spatiotemporal-biased random walks to identify a
collection of representative motifs, enabling the effective characterization of temporal nodes.
With DyANE [165], temporal graphs are transformed into a static graph representation, called a
supra-adjacency representation. In this approach, nodes are defined as (node, time) pairs from
the original temporal graph. This static graph representation retains the temporal paths of the
original network, which are crucial for comprehending and constraining the underlying dynamical
processes. Afterwards, standard embedding techniques for static graphs, utilizing random walks,
are employed.

Temporal graph learning has leveraged the use of temporal point processes as well. Temporal
point processes are stochastic processes employed for modeling sequential asynchronous discrete
events occurring in continuous time [166]. DyRep [167] is capable of learning a set of functions
that can effectively generate evolving, low-dimensional node embeddings. By using the obtained
node embeddings, a temporal point process is employed to estimate the likelihood of an edge
connecting two nodes at a certain timestamp. In [168], instead, the occurrence of an edge
in a temporal graph is modeled as a multivariate point process, where the intensity function
is influenced by the score assigned to that edge, which is computed using the learned entity
embeddings. The entity embeddings, which evolve over time, are acquired through a recurrent
architecture.

Non-negative matrix factorization (NMF) has been employed for link prediction in temporal
graphs. In [45], novel iterative rules for NMF are proposed to construct the matrix factors that
capture crucial features of the temporal graph, enhancing the accuracy of the link prediction
process.

Moreover, statistical approaches have been applied to TGs; for example, [169] introduces a
novel whiteness hypothesis test specifically designed for spatio-temporal graphs. The test extends
traditional methods used for system identification within graph signals to detect dependencies
among temporal observations and spatial dependencies among graph neighborhoods. The test
can also be used to assess the optimality of forecasting models.

Lastly, the majority of recently proposed methods employ deep learning techniques. For
example, DynGem [170] is a dynamical autoencoder for growing graphs that construct the
embedding of a snapshot based on the embedding of the previous snapshot. TRRN [171], instead,

3.9. Conclusions 33

uses multi-head self-attention to process a set of memories, enabling efficient information flow
from past observations to current latent representations through shortcut paths. It incorporates
policy networks with differentiable binary routers to estimate the activation probability of each
memory and dynamically update them at the most relevant time-steps. In [172], a spatio-
temporal attentive recurrent network model, called STAR, is proposed for interpretable temporal
node classification. In [173], a node-level regression task is achieved by training embeddings to
maximize the mutual information between patches of the graph, at any given time-step, and
between features of the central nodes of patches, in the future. In [174], a spectral-based solution
for learning representations of long-range interactions is proposed. Efficient spectral transforms
and graph convolutions are employed to capture temporal features and interactions. The approach
addresses challenges in ETG learning and achieves well-conditioned embeddings with minimal
information loss. TSNet [175] is a comprehensive framework for node classification in temporal
graphs, consisting of two key steps. Firstly, the graph snapshots undergo a sparsification process
using edge sampling, guided by a learned distribution derived from the supervised classification
task. This step effectively reduces the density of the snapshots. Subsequently, the sparsified
snapshots are aggregated and processed through a convolutional network to extract meaningful
features for node classification. In [176], a novel class of attention-based architectures, called
Spatiotemporal Point Inference Network (SPIN), is introduced for addressing the challenge of
reconstructing multivariate time-series on sparse graphs with missing data. SPIN exploits a
spatiotemporal propagation process to learn predictive representations of unobserved samples,
taking into account the data missingness. By incorporating a hierarchical attention mechanism,
the proposed method reduces the space and time complexities involved.

3.9 Conclusions

In conclusion, GNNs have demonstrated their power and effectiveness as tools for processing
different types of temporal graphs. However, they still remain partially unexplored in various
settings and significant tasks where their full potential has yet to be tapped. This underexplored
territory presents a rich field for future research, suggesting that much remains to be discovered
about the capabilities and applications of GNNs in complex graph-based data environments.

Chapter 4
The Expressive Power of Pooling in Graph Neural
Networks

Significant effort has been devoted to characterizing the expressive power of GNNs in terms of
their capabilities for testing graph isomorphism [177]. This has led to a better understanding
of the strengths and weaknesses of GNNs and opened up new avenues for developing advanced
GNN models that go beyond the limitations of the current approaches [152]. The more powerful
a GNN, the larger the set of non-isomorphic graphs that it can distinguish by generating distinct
representations for them.

Despite the progress made in understanding the expressive power of GNNs, the results are
still limited to flat GNNs, consisting of a stack of message-passing (MP) layers followed by a final
readout [28, 178]. Inspired by pooling in convolutional neural networks, recent works introduced
hierarchical pooling operators that enable GNNs to learn increasingly abstract and coarser
representations of input graphs [64, 179]. By interleaving MP with pooling layers that gradually
distill global graph properties through the computation of local summaries, it is possible to build
deep GNNs that improve the accuracy in graph classification [63, 180] and node classification
tasks [181, 182].

It is not straightforward to evaluate the power of a graph pooling operator and the quality
of the coarsened graphs it produces. The most common approach is to simply measure the
performance of a GNN with pooling layers on a downstream task, such as graph classification.
However, such an approach is highly empirical and provides an indirect evaluation, affected by
external factors. One issue consists in the overall GNN architecture: pooling is combined with
different MP layers, activation functions, normalization or dropout layers, and optimization
algorithms, which makes it difficult to disentangle the contribution of the individual components.
Another factor is the dataset at hand: some classification tasks only require isolating a specific
motif in the graph [183, 75], while others require considering global properties that depend
on the whole graph structure [184]. Recently, two criteria were proposed to evaluate a graph
pooling operator in terms of i) the spectral similarity between the original and the coarsened
graph topology and ii) its capability of reconstructing the features of the original graph from the
coarsened one [1]. While providing valuable insights, these criteria give results that are, to some
extent, contrasting and in disagreement with the traditional evaluation based on the performance
of the downstream task.

To address this issue, we introduce a universal and principled criterion that quantifies the
power of a pooling operator as its capability to retain the information in the graph from an
expressiveness perspective. In particular, we investigate how graph pooling affects the expressive
power of GNNs and derive sufficient conditions under which the pooling operator preserves the
highest degree of expressiveness.

36 4. The Expressive Power of Pooling in Graph Neural Networks

This chapter will first establish the fundamental definitions and concepts of pooling. Following
that, we show that, when certain conditions are met in the MP layers and in the pooling operator,
their combination produces an injective function between graphs. This implies that the GNN
can effectively coarsen the graph to learn high-level data descriptors, without compromising
its expressive power. Moreover, based on our theoretical analysis, we identify commonly used
pooling operators that do not satisfy these conditions and may lead to failures in certain scenarios.
We introduce a simple yet effective experimental setup for measuring, empirically, the expressive
power of any GNN in terms of its capability to perform a graph isomorphism test. Finally, we
identify conditions under which expressiveness is not only maintained but also enhanced. We
introduce a novel hierarchical pooling technique, named XPool, specifically designed to meet
the necessary criteria for enhancing the expressive power of GNNs. Through rigorous testing on
synthetic datasets aimed at evaluating the GNN expressiveness, our findings indicate that the
XPool method significantly increases the expressive power of GNNs.

The results presented in this chapter are mainly based on the papers [65, 67].

4.1 Pooling in Graph Neural Networks: Basic Concepts and
Definitions

A graph pooling operator implements a function POOL : G 7→ GP = (VP , EP) such that |VP | = K,
with K ≤ N . Let XP ∈ RK×F be the pooled node features, i.e., the features of the nodes
VP in the pooled graph (Figure 4.1). To formally describe the POOL function, we adopt the
Select-Reduce-Connect (SRC) framework [1].

𝐺 = (𝑉, 𝐸) 𝐺(= (𝑉(, 𝐸()

𝐺 ↦ 𝐺(

Figure 4.1: A schematic representation of a graph pooling operator.

4.1. Pooling in Graph Neural Networks: Basic Concepts and Definitions 37

4.1.1 Select, Reduce, Connect

A graph pooling operator ca be expressed through the combination of three functions: selection,
reduction, and connection (Figure 4.2).

• The selection function (SEL) clusters the nodes of the input graph into subsets called

supernodes, namely SEL : G 7→ S = {S1, . . . ,SK} with Sj =
{
sji

}N

i=1
, where sji is the

membership score of node i to supernode j. The memberships are conveniently represented
by a cluster assignment matrix S, with entries [S]ij = sji . Typically, a node can be assigned
to zero, one, or several supernodes, each with different scores.

• The reduction function (RED) creates the pooled node features by aggregating the features
of the nodes assigned to the same supernode, that is, RED : (G,S) 7→ XP .

• The connect function (CON) generates the edges and edge features, if applicable, by con-
necting the supernodes, i.e., CON : (G,S) 7→ EP .

𝑋" = [𝐸" =
]

Figure 4.2: A schematic representation of the SRC framework. Adapted from [1].

4.1.2 Taxonomy of Graph Pooling

Based on the SRC framework, it is possible to categorize all the existing pooling operators. In
particular, in [1], a taxonomy of pooling operators based on four distinguishing characteristics is
proposed. A schematic representation of the branches of the taxonomy is proposed in Figure 4.3.

38 4. The Expressive Power of Pooling in Graph Neural Networks

Trainability The first criterion in classifying pooling operators revolves around whether the
SEL, RED and CON functions are integrated and learned together with the overall structure of the
GNN. When these components are part of the end-to-end learning process in a GNN, the method
is considered trainable. This implies that the operator’s parameters are fine-tuned through a
process that optimizes a task-specific loss function. In contrast, methods that do not follow
this learning model are categorized as not-trainable. This distinction holds critical importance:
not-trainable methods are commonly used as independent algorithms for the purpose of graph
coarsening, while trainable methods were developed specifically for use in GNNs, marking them
as an innovative area of research.

Typically, not-trainable methods are preferred when there is definitive prior knowledge
regarding the aim of pooling, such as maintaining connectivity or selectively filtering certain
graph frequencies. These methods are often built upon graph-theoretical properties and are
especially useful in scenarios with limited data, as they do not contribute to increase the overall
parameter count of the GNN and do not add extra objectives in the training process. A classic
example of this situation is the standard grid pooling in CNNs. Trainable methods, in contrast,
offer more adaptability and operate with fewer expectations about the outcome. This makes
them particularly valuable in situations where the most effective pooling strategy is not known.
However, it is also possible to incorporate predetermined assumptions about pooling in trainable
methods. For instance, the MinCutPool [63] operator not only adapts to the GNN but also
works towards a normalized cut objective to ensure that supernodes represent distinct clusters of
nodes of comparable size. Such assumption serves as a regulatory mechanism in the optimization
process of GNNs.

Density of Supernodes The taxonomy second dimension focuses on the size of supernodes
and the associated computational cost for determining the SEL function. We quantify a pooling
operator’s density by the expected ratio E(|Sk|

N), where |Sk| denotes the size of a supernode Sk,
and N represents the total node count in graph G.

A method is considered dense if the SEL function creates supernodes Sk with a size proportional
to N , and it is deemed sparse when the supernode size remains constant at O(1). This
differentiation is crucial as sparse methods demand significantly fewer computational resources,
notably in terms of memory, which remains a critical limitation in contemporary GPUs. This
allows sparse methods to more effectively scale to larger graphs.

Adaptability Pooling methods can also be differentiated based on the number of nodes K
of the pooled graph. When K is a constant value, independent of the size of the input graph,
the pooling method is called fixed. In this scenario, K is a hyperparameter of the pooling
operator, resulting in an output graph that consistently contains K nodes. For instance, K
might be equivalent to the number of output features of a neural network that determines cluster
assignments.

Alternatively, if the number of supernodes is determined by a function K(G) of the input
graph, the method is called adaptive. Often, K(G) is related to the number of nodes N of
the original graph, but it can be also dependent on the input graph in more complex ways. If
maintaining relative graph size is critical for a specific task, adaptive methods are more suitable.

4.1. Pooling in Graph Neural Networks: Basic Concepts and Definitions 39

Hierarchy Another common distinction is the one between hierarchical pooling and global
pooling, with the latter often referred to as a separate process known as readout. Specifically,
global pooling refers to methods that coarse a graph into a single node, effectively deleting all
the topological information. A method is categorized as global pooling if it is fixed with K = 1,
meaning it outputs a singular-node graph characterized solely by its attributes. Additionally, in
global pooling, the connection function consistently maps to an empty set.

Conversely, all other methods are classified as hierarchical pooling operators. Hierarchical
and global pooling operators can be both integrated within the same GNN architecture for
graph-level tasks. Hierarchical pooling offers a multi-resolution view of the graph, enabling the
GNN to progressively extract high-level properties. Global pooling, on the other hand, is used
for generating graph embeddings that can be used as input of traditional layers designed for
vector operations.

Trainable
vs

Not-Trainable

Dense
vs

Sparse

Fixed
vs

Adaptive

Hierarchical
vs

Global

H
ie
ra
rc
hi
ca
l

G
lo
ba
l

D
ense

Sparse

M
P-
la
ye
r

Pr
ed
ic
tio
n

BP

M
P-
la
ye
r

M
P-
la
ye
r

Pr
ed
ic
tio
n

BP

M
P-
la
ye
r

N
ot-Trainable

Trainable

Figure 4.3: Taxonomy of pooling operators based on the SRC framework. Adapted from [1].

4.1.3 Existing Pooling Operators

In recent years, a variety of hierarchical pooling layers have been devised. Below, we delve into
some of the most renowned.

Graclus The Graclus method [62], building on the principles of Metis [185], employs a greedy
algorithm for graph coarsening, effectively minimizing spectral clustering objectives. It matches
vertices based on a rule that maximizes the local normalized cut, leading to successive graph

40 4. The Expressive Power of Pooling in Graph Neural Networks

reductions. In its pooling phase, Graclus halves the node count by clustering nodes based on
edge weights or randomly, if no unclustered neighbors exist. During inference, max-pooling and
fake vertices aid in maintaining a consistent reduction ratio, albeit introducing some noise into
the graph representation. Graclus is not-trainable, sparse and adaptive.

DiffPool DiffPool, introduced in [64], represents the first effort in the development of end-
to-end trainable pooling operators within GNNs. Unlike traditional pooling methods, DiffPool
operates by training a GNN to derive a soft clustering matrix from the node features, enabling
the aggregation of nodes into clusters. To ensure the creation of balanced clusters, DiffPool
incorporates additional loss terms into its training, specifically targeting link prediction and
entropy reduction. The regularization through entropy minimization facilitates the refinement of
the cluster assignment, enhancing the overall robustness of the pooling process. By providing
a differentiable framework for generating hierarchical representations of graphs, DiffPool offers
versatility in its integration with various GNN architectures, enabling end-to-end learning.
DiffPool is trainable, fixed and dense.

MinCut By approximating the minimum K-cut of the graph, MinCut [63] ensures balanced
clustering while simultaneously optimizing task-specific objectives. At its core, a multi-layer
perceptron (MLP) assigns nodes to clusters. This mechanism not only promotes the grouping of
nodes with similar features — especially after message-passing layers that make the features of
connected nodes similar — but also incorporates an unsupervised regularization loss. This loss
function explicitly makes the MLP cluster together nodes that are strongly interconnected. The
integration of this auxiliary loss enables MinCut to explicitly consider graph connectivity during
the pooling process. Besides being trainable, MinCut is fixed and dense.

DMoN The DMoN pooling [186] aims to divide the graph into communities by maximizing
the modularity. In the context of GNNs, DMoN employs a differentiable modularity score,
allowing the network to learn how to assign nodes to communities directly as part of the training
process. In particular, this is typically done by applying a softmax over predicted community
affiliations for each node, resulting from the modularity optimization step. After assigning nodes
to communities, DMoN aggregates the features of nodes within the same community summing
or averaging them. During training, the network parameters are updated not just to perform
well on the primary task (e.g., classification, regression) but also to improve the modularity of
the learned community partitions. This joint optimization helps the network to learn meaningful
community structures that are beneficial for the primary task. DMoN is trainable, fixed and
dense.

Top-k The Top-k pooling approach, introduced in [181], learns a projection vector that is then
applied to each node feature, resulting in the computation of a score for each node. Subsequently,
the K nodes with the highest scores are retained, while the remaining nodes are discarded. This
process facilitates memory efficiency by avoiding the need for generating cluster assignments.
To address the non-differentiable nature of Top-k selection, the computed scores are used as a
gate or attention mechanism for the node features, enabling the training of the projection vector
through back-propagation. To ensure graph connectivity post-node removal, Top-k pooling

4.1. Pooling in Graph Neural Networks: Basic Concepts and Definitions 41

adjusts the adjacency matrix by dropping the corresponding rows and columns from A2, albeit
at a computational cost of O(N2). Top-k is trainable, adaptive and sparse.

SAGPool SAGPool [187] employs a self-attention mechanism with graph convolution to
effectively discern which nodes should be retained or dropped, allowing for the learning of
hierarchical representations in graphs in an end-to-end fashion. Unlike Top-k, the self-attention
mechanism based on graph convolution enables SAGPool to consider both node features and
graph topology, leading to a reduction in graph size that takes into account not only the node
representations but also the graph structure. SAGPool is trainable, adaptive and sparse.

ASAPool ASAPool [188] operates by first identifying all potential local clusters within a given
graph, utilizing a predefined receptive field. It then determines the nodes’ cluster memberships
through an attention mechanism. Specifically, a self-attention mechanism is employed to learn
a cluster assignment matrix for each cluster, focusing on selecting relevant nodes to represent
the cluster effectively. To do so, a new self-attention variant, named Master2Token (M2T), is
introduced. The clusters are evaluated using a GNN, and a selection of the highest-scoring
clusters is made to create the nodes of the pooled graph. In the final step, new edge weights are
calculated for neighboring clusters, integrating both the cluster assignment matrix information
and the original graph adjacency matrix. ASAPool is trainable, adaptive and sparse.

PANPool The PANpool strategy, as outlined in [182], leverages the Maximal Entropy Trans-
ition (MET) matrix, which reflects node importance through subgraph centrality metrics. This
strategy does not require additional computations beyond those needed for convolution and
adaptively identifies local motifs within the graph. By utilizing the MET matrix, PANPool effect-
ively ranks nodes by their importance, facilitating adaptive graph coarsening without the need
for predetermined centrality measures. This approach allows for data-driven, structure-aware
graph reduction, maintaining the balance between local and global graph features. This pooling
method is trainable, adaptive and sparse.

k-MIS The k-MIS pooling [180] works by coarsening the graph based on the concept of Maximal
k-Independent Sets (k-MIS). In this method, the graph is reduced by selecting a set of nodes that
are evenly spaced apart, ensuring no two selected nodes are within k hops of each other in the
graph. This selection maintains the graph’s structural integrity and reduces the size efficiently.
The k-MIS forms the nodes of the reduced graph, and its edges are determined based on the
original graph connectivity. This approach allows the preservation of topological properties
and the graph’s overall structure, making it suitable for tasks like graph classification and data
compression while being implementable in parallel, optimizing for GPU acceleration. k-MIS is
trainable, adaptive and sparse.

EdgePool The EdgePool method involves a distinctive edge contraction approach for pooling
nodes. It starts by assigning scores to each edge using a trainable scoring function, i.e., rij =
f(xi, xj ; Θ). The algorithm then sequentially contracts edges, prioritizing those with higher
scores. When two nodes i and j are connected by a high-scoring edge and are not already part of
a contraction, EdgePool merges them into a new node. This process iteratively continues, with

42 4. The Expressive Power of Pooling in Graph Neural Networks

the new node connecting to the original neighbors of the merged nodes. The EdgePool strategy
of using edge-based pooling instead of node-based pooling is designed to retain essential graph
structures and prevent the loss of any nodes. EdgePool is trainable, adaptive and sparse.

4.1.4 Evaluation of a Pooling Operator

Assessing the effectiveness of graph pooling methods involves multiple dimensions, as there is
no universal metric. According to research outlined in [1], three distinct criteria are established
to evaluate such operators, namely preserving the information content of the node attributes,
preserving the topological structure and preserving the information required to solve various
classification tasks. Specifically, for the first criterion, the ability to reconstruct the original
coordinates of a geometric point cloud from its pooled version was evaluated. For the second
criterion, the structural similarity between the original and coarsened graphs was analyzed by
comparing the quadratic forms of their combinatorial Laplacian matrices. Lastly, for the third
criterion, various graph classification benchmarks were considered; high classification accuracy
suggests that a pooling operator can effectively preserve essential information tailored to the
requirements of specific tasks. Experiments reveal that while no approach is universally superior,
some methods excel under specific conditions. Not-trainable sparse strategies are preferred for
preserving node characteristics while dense trainable solutions are more suitable for structural
adherence. In terms of task-specific information, often central in machine learning, trainable
methods are preferred, though no single approach is ideal for all scenarios. While not-trainable
sparse methods, like Graclus, generally perform well, trainable dense methods, such as MinCut
and DiffPool, provide greater adaptability and integration into GNN frameworks.

An unexplored avenue involves evaluating pooling operators in GNNs based on their ability
to support graph information from a WL equivalence perspective. Given that pooling naturally
incurs information loss, it becomes crucial to determine which operators can efficiently reduce
the dimension of graphs without sacrificing the information essential for WL differentiation.

Upcoming sections will delve into both theoretical and empirical evaluations of pooling
effectiveness in preserving or even enhancing the expressiveness of GNNs.

4.2 Pooling Operators can Preserve the Expressive Power
of GNNs

Significant effort has been devoted to characterizing the expressive power of GNNs by comparing
their capabilities with those of traditional algorithms for testing graph isomorphism. Despite
the progress made in this direction, obtained results are still limited to flat GNNs consisting
of a stack of MP layers followed by a final readout (Fig 4.4). While flat GNNs can at most
match the computational power of the WL test, it is plausible that the graph coarsening process
could lead to a loss of critical information, lowering this level of expressive power. Therefore,
it is important to explore the specific conditions under which the pooling operation can be
performed without causing graphs to lose necessary discriminating information. Additionally,
despite the recent advances in the design of pooling operators, there is not a principled criterion
to compare them. In the following subsections, we will present sufficient conditions for a pooling

4.2. Pooling Operators can Preserve the Expressive Power of GNNs 43

Figure 4.4: A flat GNN is at most as powerful as the WL test, while no results have been proven
so far for hierarchical GNNs.

operator to fully preserve the expressive power of the MP layers before it. These conditions
serve as a universal and theoretically grounded criterion for choosing among existing pooling
operators or designing new ones. Based on our theoretical findings, we analyze several existing
pooling operators and identify those that fail to satisfy the expressiveness conditions. Finally, we
introduce an experimental setup to verify empirically the expressive power of a GNN equipped
with pooling layers, in terms of its capability to perform a graph isomorphism test.

4.2.1 Conditions for Preserving the Expressive Power

The following theorem identifies three sufficient conditions that guarantee that a hierarchical
GNN is as powerful as the WL test.

Theorem 2. Let G1 = (V1, E1) with |V1| = N and G2 = (V2, E2) with |V2| = M with node
features X and Y respectively, such that G1 ≠WL G2. Let GL

1 and GL
2 be the graph obtained

after applying a block of L MP layers such that XL ∈ RN×F and YL ∈ RM×F are the new node
features. Let POOL be a pooling operator expressed by the functions SEL, RED, CON, which is placed
after the MP layers. Let G1P = POOL(GL

1) and G2P = POOL(GL
2) with |V1P | = |V2P | = K. Let

XP ∈ RK×F and YP ∈ RK×F be the node features of the pooled graphs so that the rows xPj and
yPj represent the features of supernode j in graphs G1P and G2P , respectively. If the following
conditions hold:

1.
∑N

i xL
i ̸=

∑M
i yL

i ;

44 4. The Expressive Power of Pooling in Graph Neural Networks

2. The memberships generated by SEL satisfy
∑K

j=1 sij = λ, with λ > 0 for each node i, i.e.,
the cluster assignment matrix S is a right stochastic matrix up to the global constant λ;

3. The function RED is such that RED : (XL,S) 7→ XP = STXL;

then G1P and G2P will have different node features, i.e., for all permutations of row indices
π : {1, . . .K} → {1, . . .K}, XP ̸= Π(YP), where [Π(YP)]ij = yPπ(i)j

.

Proof. Let S ∈ RN×K and T ∈ RM×K be the matrices representing the cluster assignments
generated by SEL(GL

1) and SEL(GL
2), respectively. When condition 2 holds, we have that the

entries of matrices S and T satisfy
∑k

j=1 sij = λ, ∀i = 1, . . . , N , and
∑K

j=1 tij = λ,∀i = 1, . . . ,M .
If condition 3 holds, then the j-th row of XP is xPj

=
∑N

i=1 x
L
i · sij . The same holds for the

j-th row of YP , which is yPj
=
∑M

i=1 y
L
i · tij . Suppose that there exists a rows’ permutation

π : {1, . . . ,K} → {1, . . . ,K} such that xPj
= yPπ(j)

∀i = 1, . . . ,M , that is:

N∑
i=1

xL
i · sij =

M∑
i=1

yL
i · tiπ(j), ∀j = 1, . . . ,K,

which implies

K∑
j=1

N∑
i=1

xL
i · sij =

K∑
j=1

M∑
i=1

yL
i · tiπ(j) ⇔

N∑
i=1

xL
i ·

K∑
j=1

sij =

M∑
i=1

yL
i ·

K∑
j=1

tiπ(j)
2⇔

2⇔
N∑
i=1

xL
i · λ =

M∑
i=1

yL
i · λ⇔

N∑
i=1

xL
i =

M∑
i=1

yL
i

contradicting condition 1.

Note that there are no restrictions on the cardinality of the original sets of nodes, |V1| = N

and |V2| =M . Indeed, since the proof does not depend on the number of nodes in the original
graphs, N can either be equal to M or not. Additionally, we only focus on pooled graphs with
the same number of nodes, i.e., |V1P | = |V2P | = K. The case where |V1P | ≠ |V2P | is trivial since
two graphs with different numbers of nodes are inherently not WL equivalent. A schematic
summary of Theorem 2 can be found in Fig. 4.5.
Condition 1 is strictly related to the theory of multisets. Indeed, a major breakthrough in
designing highly expressive MP layers was achieved by building upon the findings of Deep
Sets [189]. Under the assumption that the node features originate from a countable universe, it
has been formally proven that there exists a function that, when applied to the node features,
makes the sum over a multiset of node features injective [28]. The universal approximation
theorem guarantees that such a function can be implemented by an MLP. Moreover, if the pooling
operator satisfies conditions 2 and 3, it will produce different sets of node features. Due to the
injectiveness of the coloring function of the WL algorithm, two graphs with different multisets of
node features will be classified as non-isomorphic by the WL test and, therefore, G1P ≠WL G2P .
This implies that the pooling operator effectively coarsens the graphs while retaining all the
information necessary to distinguish them. Therefore, Theorem 2 guarantees that there is a
specific choice of parameters for the MP layer which, when combined with a pooling operator
that satisfies the conditions of the theorem, makes the resulting GNN architecture injective.

4.2. Pooling Operators can Preserve the Expressive Power of GNNs 45

Cond. 1

Cond. 2

Cond. 3

Figure 4.5: A GNN with expressive MP layers (condition 1) computes different features for two
graphs G1, G2 that are WL-distinguishable. A pooling layer satisfying the conditions 2 and 3
generates coarsened graphs G1P and G2P that are still WL-distinguishable.

Condition 2 implies that all nodes in the original graph must contribute to the supernodes.
Moreover, letting the sum of the memberships sij to be a constant λ (usually, λ = 1) places a
restriction on the formation of the supernodes. Condition 3 requires that the features of the
supernodes XP are a convex combination of the node features XL. It is important to note
that the conditions for the expressiveness only involve SEL and RED, but not the CON function.
Indeed, both the graph topology and the node features are embedded in the features of the
supernodes by MP and pooling layers satisfying the conditions of Th. 2. Nevertheless, even if a
badly-behaved CON function does not affect the expressiveness of the pooling operator, it can
still compromise the effectiveness of the MP layers that come afterward. This will be discussed
further in Sections 4.2.3 and 4.2.4.

4.2.2 Expressiveness of Existing Pooling Operators

We claim that the expressiveness of existing pooling operators is closely related to whether they
are dense or sparse. Specifically, all dense methods adhere to the conditions of Theorem 2,
thereby maintaining expressiveness; sparse methods, on the other hand, can only be expressive if
no graph nodes are discarded.

Dense pooling operators DiffPool, MinCutPool, and DMoN compute a cluster assignment
matrix S ∈ RN×K either with an MLP or an MP-layer, which is fed with the node features
XL and ends with a softmax. The main difference among these methods is in how they define
unsupervised auxiliary loss functions, which are used to inject a bias in how the clusters are
formed. Thanks to the softmax normalization, the cluster assignments sum up to one, ensuring
condition 2 of Th. 2 to be satisfied. Moreover, the pooled node features are computed as
Xp = STXL, making also condition 3 satisfied.

46 4. The Expressive Power of Pooling in Graph Neural Networks

There are dense pooling operators that use algorithms such as non-negative matrix fac-
torization [190] to obtain a cluster assignment matrix S, which may not satisfy condition 2.
Nonetheless, it is always possible to apply a suitable normalization to ensure that the rows in S

sum up to a constant. Therefore, we claim that all dense methods preserve the expressive power
of the preceding MP layers.

Non-expressive sparse pooling operators Top-k, ASAPool, SAGPool and PANPool reduce
the graph by selecting a subset of its nodes based on a ranking score and mainly differ in how
their SEL function computes such a score. Specifically, the Top-k method ranks nodes based on
a score obtained by multiplying the node features with a trainable projection vector. A node
i is kept (si = 1) if is among the Top-K in the ranking and is discarded (si = 0), otherwise.
SAGPool simply replaces the projection vector with an MP layer to account for the graph
structure when scoring the nodes. ASAPool, instead, examines all potential local clusters in
the input graph given a fixed receptive field and employs an attention mechanism to compute
the cluster membership of the nodes. The clusters are subsequently scored using a particular
MP operator. Finally, in PANPool, cores are obtained from the diagonal entries of the maximal
entropy transition matrix, which is a generalization of the graph Laplacian.

Regardless of how the score is computed, all these methods generate a cluster assignment
matrix S where not all the rows sum to a constant. Indeed, if a node is not selected, it is
not assigned to any supernode in the coarsened graph. Therefore, these methods fail to meet
condition 2 of Theorem 2. Additionally, in the RED function of all these methods the features of
each selected node are multiplied by its ranking score, making condition 3 also unsatisfied.

Intuitively, these operators produce a pooled graph that is a subgraph of the original graph
and discard the content of the remaining parts. This hinders the ability to retain all the necessary
information for preserving the expressiveness of the preceding MP layers. The limitation of Top-k
is exemplified in Fig. 4.6: regardless of the projector p, Top-k maps two WL-distinguishable
graphs into two isomorphic graphs, meaning that it cannot preserve the partition on graphs
induced by the WL test.

Expressive sparse pooling operators Not all sparse pooling operators coarsen the graph by
selecting a subgraph. In fact, some of them assign each node in the original graph to exactly one
supernode and, thus, satisfy condition 2 of Th. 2. In matrix form and letting λ = 1, the cluster
assignment would be represented by a sparse matrix S that satisfies S1K = 1N and where every
row has one entry equal to one and the others equal to zero. Within this category of sparse
pooling operators, notable examples include Graclus, ECPool, and k-MISPool.

Graclus is a not-trainable, greedy bottom-up spectral clustering algorithm, which matches
each vertex with the neighbor that is closest according to the graph connectivity [62]. When
Graclus is used to perform graph pooling, the RED function is usually implemented as a max_pool
operation between the vertices assigned to the same cluster [191]. To ensure condition 3 of
Th. 2 to be satisfied, we use a sum_pool operation instead. Contrarily from Graclus, ECPool,
and k-MISPool are trainable. ECPool first assigns to each edge ei→j a score rij = f(xi,xj ;Θ).
Then, iterates over each edge ei→j , starting from those with higher scores, and contracts it if
neither nodes i and j are attached to an already contracted edge. The endpoints of a contracted
edge are merged into a new supernode Sk = rij(xi + xj), while the remaining nodes become

4.2. Pooling Operators can Preserve the Expressive Power of GNNs 47

Figure 4.6: Example of failure of Top-k pooling. Given two WL-distinguishable graphs with node
features x1 ≤ x2 ≤ x3 ≤ x4, two scoring vectors s1 and s2 are computed using a projector p.
Then, the two nodes associated with the highest scores are selected. If p ≤ 0, nodes 1 and 2 are
chosen in both graphs. Conversely, if p > 0, nodes 3 and 4 are selected. Therefore, regardless of
the value learned for the projector p, the two input graphs will be mapped into the same pooled
graph.

supernodes themselves. Since each supernode either contains the nodes of a contracted edge
or is a node from the original graph, all columns of S have either one or two entries equal to
one, while each row sums up to one. The RED function can be expressed as r⊙ STXL, where
r[k] = rij if k is the contraction of two nodes i j, otherwise r[k] = 1. Consequently, ECPool
satisfies the expressiveness conditions of Th. 2. Finally, k-MISPool identifies the supernodes with
the centroids of the maximal k-independent sets of a graph [192]. To speed up computation,
the centroids are selected with a greedy approach based on a ranking vector π. Since π can be
obtained from a trainable projector p applied to the vertex features, π = XLpT , k-MISPool is a
trainable pooling operator. k-MISPool assigns each vertex to one of the centroids and aggregates
the features of the vertex assigned to the same centroid with a sum_pool operation to create the
features of the supernodes. Therefore, k-MISPool satisfies the expressiveness conditions of Th. 2.

A common characteristic of these methods is that the number of supernodes K cannot be
directly specified. Graclus and ECPool achieve a pooling ratio of approximately 0.5 by roughly
reducing each time the graph size by 50%. On the other hand, k-MISPool can control the
coarsening level by computing the maximal independent set from Gk, which is the graph where

48 4. The Expressive Power of Pooling in Graph Neural Networks

each node of G is connected to its k-hop neighbors. As the value of k increases, the pooling ratio
decreases.

4.2.3 Criticism on Pooling

Recently, the effectiveness of graph pooling has been questioned using as an argument a set
of empirical results aimed at exposing the weaknesses of certain pooling operators [193]. The
experiments showed that using a randomized cluster assignment matrix S (followed by a softmax
normalization) gives comparable results to using the assignment matrices learned by Diffpool [64]
and MinCutPool [63]. Similarly, applying Graclus [62] on the complementary graph would give a
performance similar to using the original graph.

We identify potential pitfalls in the proposed evaluation, which considered only pooling
operators that are expressive and that, even after being modified, retain their expressive power.
Clearly, even if expressiveness ensures that all the information is preserved in the pooled graph,
its structure is corrupted when using a randomized S or a complementary graph. This hinders
the effectiveness of the MP layers that come after pooling, as their inductive biases no longer
match the data structure they receive. Notably, this might not affect certain classification tasks
where the goal is to detect small structures, such as a motif in a molecule graph [133, 194], that
are already captured by the MP layers before pooling.

To address these limitations, first, we propose to corrupt a pooling operator that is not
expressive. In particular, we design a Top-k pooling operator where the nodes are ranked based
on a score that is sampled from a normal distribution rather than being produced by a trainable
function of the vertex features. Second, we evaluate all the modified pooling operators in a setting
where the MP layers after pooling are essential for the task and show that the performance drop
is significant.

4.2.4 Experimental Results

To empirically confirm the theoretical results presented in Section 4.2.1, we design a synthetic
dataset that is specifically tailored to evaluate the expressive power of a GNN. We consider a GNN
with MP layers interleaved with 10 different pooling operators: DiffPool [64], DMoN [186], Min-
Cut [63], ECPool [195], Graclus, k-MISPool [180], Top-k [181], PANPool [182], ASAPool [188],
and SAGPool [187]. For each pooling method, we use the implementation in Pytorch Geomet-
ric [196] with the default configuration. In addition, following the setup used to criticize the
effectiveness of graph pooling [193], we consider the following pooling operators: Rand-Dense,
a dense pooling operator where the cluster assignment is a normalized random matrix; Rand-
Sparse, a sparse operator that ranks nodes based on a score sampled from a normal distribution;
Cmp-Graclus, an operator that applies the Graclus algorithm on the complement graph.

The EXPWL1 dataset Our experiments aim at evaluating the expressive power of MP
layers when combined with pooling layers. However, existing real-world and synthetic benchmark
datasets are unsuitable for this purpose as they are not specifically designed to relate the power of
GNNs to that of the WL test. Recently, the EXPool dataset was proposed to test the capability
of special GNNs to achieve higher expressive power than the WL test [77], which, however, goes
beyond the scope of our evaluation. Therefore, we introduce a modified version of EXPool,

4.2. Pooling Operators can Preserve the Expressive Power of GNNs 49

called EXPWL1, which comprises a collection of graphs {G1, . . . , GN , H1, . . . ,HN} representing
propositional formulas that can be satisfiable or unsatisfiable. Each pair (Gi, Hi) in EXPWL1
consists of two non-isomorphic graphs distinguishable by a WL test, which encode formulas with
opposite SAT outcomes. Therefore, any GNN that has an expressive power equal to the WL
test can distinguish them and achieve approximately 100% classification accuracy on the dataset.
Compared to the original EXPool dataset, we increase the size of the dataset to a total of 3000
graphs and we also increase the size of each graph from an average of 55 nodes to 76 nodes. This
was done to make it possible to apply an aggressive pooling without being left with a trivial
graph structure. The EXPWL1 dataset and the code to reproduce the experimental results are
publicly available1.

In Figure 4.7, we report three graph pairs from the EXPWL1 dataset. In the figure, we use a
different color map for each pair but the node features always assume a binary value in {0, 1} in
each graph.

Experimental procedure To empirically evaluate which pooling operator maintains the
expressive power of the MP layers preceding it, we first identify a GNN architecture without
pooling layers, which achieves approximately 100% accuracy on the EXPWL1 dataset. We tried
configurations with a different number of GIN [28] layers followed by a global_max_pool or
global_sum_pool. For the sake of comparison, we also consider a GNN with GCN layers [14],
which are not expressive. The results are shown in Table 4.1.

Table 4.1: Performance of baseline architectures on EXPWL1.

MP layers Global Pool Test Acc

2 GIN global_max_pool 66.5±1.8

2 GIN global_sum_pool 92.1±1.0

2 GCN global_max_pool 62.3±2.4

2 GCN global_sum_pool 76.7±2.4

3 GIN global_max_pool 98.3±0.6

3 GIN global_sum_pool 99.3±0.3

3 GCN global_max_pool 97.4±0.5

3 GCN global_sum_pool 98.7±0.6

As expected, the architectures with GIN layers outperform those with GCN layers, especially
when the layers are two. This is due to the fact that GCN implements mean pooling as an
aggregator, which is a well-defined multiset function due to its permutation invariance, but it
lacks injectiveness, leading to a loss of expressiveness. Similarly, GNNs with global_sum_pool
perform better than those with global_max_pool, since the former is more expressive than the
latter. An architecture with 3 GIN layers followed by global_sum_pool achieves approximately
100% accuracy on EXPWL1, making it the ideal baseline for our experimental evaluation.
Perhaps more importantly, there is a significant difference in the performance of a 2-layer GNN
followed by a global pooling layer that is more or less expressive. For this reason, the node
embeddings generated by 2 GIN layers are a good candidate to test the expressiveness of the

1https://github.com/FilippoMB/The-expressive-power-of-pooling-in-GNNs

https://github.com/FilippoMB/The-expressive-power-of-pooling-in-GNNs

50 4. The Expressive Power of Pooling in Graph Neural Networks

Class 0 Class 1

Class 0 Class 1

Class 0 Class 1

Figure 4.7: Three pairs of graphs from the EXPWL1 dataset. Each pair consists of two graphs
with different classes that are WL distinguishable.

pooling operators considered in our analysis.
Then, we insert a pooling layer between the 2nd and 3rd GIN layer, which performs an aggressive
pooling by using a pooling ratio of 0.1 that reduces the graph size by 90%. Each GIN layer is
configured with an MLP with 2 hidden layers of 64 units and ELU activation functions. The
readout is a 3-layer MLP with units [64, 64, 32], ELU activations, and dropout 0.5. The GNN
is trained with Adam optimizer with an initial learning rate of 1e-4 using batches with size 32.

4.2. Pooling Operators can Preserve the Expressive Power of GNNs 51

For SAGPool or ASAPool we us only one GIN layer before pooling. For PANPool we use 2
PanConv layers with filter size 2 instead of the first 2 GIN layers. The auxiliary losses in DiffPool,
MinCutPool, and DMoN are added to the cross-entropy loss with weights [0.1,0.1], [0.5, 1.0],
[0.3, 0.3, 0.3], respectively. For k-MIS we use k = 5 and we aggregate the features with the sum.
Also for Graclus, we aggregate the node features with the sum.
To ensure a fair comparison, when testing each method, we shuffled the datasets and created 10
different training/validation/test splits using the same random seed. We trained each model on all
splits for 500 epochs and reported the average training time and the average test accuracy obtained
by the models that achieved the lowest loss on the validation set. To validate our experimental
approach, we also measured the performance of the proposed GNN architecture equipped with
the different pooling layers on popular benchmark datasets for graph classification [197, 198].
Table 4.2 reports the information about the datasets used in the experimental evaluation. Since
the COLLAB and REDDIT-BINARY datasets lack vertex features, we assign a constant feature
value of 1 to all vertices.

Table 4.2: Details of the graph classification datasets.

Dataset #Samples #Classes Avg. #vertices

EXPWL1 3,000 2 76.96
NCI1 4,110 2 29.87
Proteins 1,113 2 39.06
COLORS-3 10,500 11 61.31
Mutagenicity 4,337 2 30.32
COLLAB 5,000 3 74.49
REDDIT-B 2,000 2 429.63
B-hard 1,800 3 148.32
MUTAG 188 2 17.93
PTC_MR 344 2 14.29
IMDB-B 1,000 2 19.77
IMDB-MULTI 1,500 3 13.00
ENZYMES 600 6 32.63
REDDIT-5K 4,999 5 508.52

Dataset Avg. #edges Vertex attr. Vertex labels

EXPWL1 186.46 – yes
NCI1 64.60 – yes
Proteins 72.82 1 yes
COLORS-3 91.03 4 no
Mutagenicity 61.54 – yes
COLLAB 4,914.43 – no
REDDIT-B 995.51 – no
B-hard 572.32 – yes
MUTAG 19.79 – yes
PTC_MR 14.69 – yes
IMDB-B 96.53 – no
IMDB-MULTI 65.94 – no
ENZYMES 62.14 18 yes
REDDIT-5K 594.87 – no

52 4. The Expressive Power of Pooling in Graph Neural Networks

Results Table 4.3 reports the performance of different pooling operators on EXPWL1. These
results are consistent with our theoretical findings: pooling operators that satisfy the conditions
of Th. 2 achieve the highest average accuracy and, despite the aggressive pooling, they retain all
the necessary information to achieve the same performance of a GNN without a pooling layer.
On the other hand, non-expressive pooling operators achieve a significantly lower accuracy as
they are not able to correctly distinguish all graphs.

Table 4.3: Classification results on EXPWL1.

Pooling s/epoch GIN layers Pool Ratio Test Acc Expressive

No-pool 0.33s 3 – 99.3±0.3 ✓
DiffPool 0.69s 2+1 0.1 97.0±2.4 ✓
DMoN 0.75s 2+1 0.1 99.0±0.7 ✓
MinCut 0.72s 2+1 0.1 98.8±0.4 ✓
ECPool 20.71s 2+1 0.2 100.0±0.0 ✓
Graclus 1.00s 2+1 0.1 99.9±0.1 ✓
k-MIS 1.17s 2+1 0.1 99.9±0.1 ✓
Top-k 0.47s 2+1 0.1 67.9±13.9 ✗
PanPool 3.82s 2+1 0.1 63.2±7.7 ✗
ASAPool 1.11s 1+1 0.1 83.5±2.5 ✗
SAGPool 0.59s 1+1 0.1 79.5±9.6 ✗

Rand-dense 0.41s 2+1 0.1 91.7±1.3 ✓
Cmp-Graclus 8.08s 2+1 0.1 91.9±1.2 ✓
Rand-sparse 0.47s 2+1 0.1 62.8±1.8 ✗

Table 4.3 also shows that employing a pooling operator based on a normalized random
cluster assignment matrix (Rand-dense) or the complement graph (Cmp-Graclus) gives a lower
performance. First of all, this result disproves the argument that such operators are comparable
to the regular ones [193]. Additionally, we notice that the reduction in performance is less
significant for Rand-Dense and Cmp-Graclus than for Rand-sparse. This outcome is expected
because, in terms of expressiveness, Rand-dense and Cmp-Graclus still satisfy the conditions of
Th. 2. Nevertheless, their performance is still lower than their regular counterparts. The reason
is that, even if a badly-behaved CON function does not compromise the expressiveness of the
pooling operator, the structure of the pooled graph is corrupted when utilizing a randomized S

or a complementary graph. This, in turn, reduces the effectiveness of the last GIN layer, which
is essential to correctly classify the graphs in EXPWL1.

There are two remarks about the experimental evaluation. As discussed in Section 4.1.3, it
is not possible to explicitly specify the pooling ratio in Graclus, ECPool, and k-MISPool. For
k-MISPool, setting k = 5 gives a pooling ratio of approximately 0.09 on EXPWL1. However, for
Graclus, Cmp-Graclus, and ECPool, the only option is to apply the pooling operator recursively
until the desired pooling ratio of 0.1 is reached. Unfortunately, this approach is demanding, both
in terms of computing time and memory usage. While in EXPWL1 it was possible to do this for
Graclus and Cmp-Graclus, we encounter an out-of-memory error after a few epochs when running
ECPool on an RTX A6000 with 48GB of VRAM. Thus, the results for ECPool are obtained with
a recursion that gives a pooling ratio of approximately 0.2. While this simplifies the training
in ECPool we argue that, due to its expressiveness, ECPool would have reached approximately
100% accuracy on EXPWL1 if implementing a more aggressive pooling was feasible. The second

4.2. Pooling Operators can Preserve the Expressive Power of GNNs 53

remark is that in EXPWL1 when using too many MP layers, at least one node ends up containing
enough information to accurately classify the graphs. This is proved by the fact that a model
with 3 GIN layers followed by global_max_pool achieves an accuracy of 98.3±0.6 (Tab. 4.1).
Note that the baseline model in Tab. 4.3 with 3 GIN layers equipped with the more expressive
global_sum_pool achieves a slightly higher accuracy of 99.3±0.3. In contrast, a model with only
2 GIN layers and global_max_pool gives a significantly lower accuracy of 66.5±1.8. Therefore,
to ensure that the evaluation is meaningful, no more than 2 MP layers should precede the pooling
operator. Since ASAPool and SAGPool implement an additional MP operation internally, we use
only 1 GIN layer before pooling, rather than 2 as for the other pooling methods. Finally, Fig. 4.8

60
65
70
75

ac
cu

ra
cy

PanPool SAGPool ASAPool Top-k DiffPool Graclus k-MIS DMoN ECPool MinCut

2.5
5.0
7.5

10.0
12.5
15.0
17.5s/

ep
oc

h

Figure 4.8: Average accuracy (and std.) v.s. average runtime on the benchmark datasets.

shows the average accuracy and the average run-time obtained on several benchmark datasets by
a GNN equipped with the different pooling methods (the detailed results are in reported in Tabs.
4.4, 4.5). These benchmarks are not designed to test the expressive power and, thus, a GNN
equipped with a non-expressive pooling operator could achieve good performance. Specifically,
this happens in those datasets where all the necessary information is captured by the first two
GIN layers that come before pooling or in datasets where only a small part of the graph is
needed to determine the class. Nevertheless, this second experiment serves two purposes. First, it
demonstrates the soundness of the GNN architecture used in the first experiment, which achieves
results comparable to those of GNNs carefully optimized on the benchmark datasets [25]. Second,
and most importantly, it shows that performance on the benchmark datasets and EXPWL1 are
aligned; this underlines the relevance of our theoretical result on the expressiveness in practical
applications. It is worth noting that on the benchmark datasets, it was not possible to obtain a
pooling ratio of 0.1 for both Graclus and ECPool. Using a pooling ratio of 0.5 gives Graclus and
ECPool an advantage over other methods, which makes the comparison not completely fair and
shows an important limitation of these two methods.
As a concluding remark, we comment on the training time of the dense and sparse pooling
methods. A popular argument in favor of sparse pooling methods is their computational advantage
compared to the dense ones. Our results show that this is not the case in modern deep-learning
pipelines. In fact, ECPool, Graclus, PANPool, and even ASAPool are slower than dense pooling
methods, while the only sparse method with training times lower than the dense ones is k-MIS.
Even if it is true that the sparse methods save memory by avoiding computing intermediate
dense matrices, this is relevant only for very large graphs that are rarely encountered in most
applications.

54 4. The Expressive Power of Pooling in Graph Neural Networks

Table 4.4: Graph classification test accuracy on benchmark datasets.

Pooling NCI1 PROTEINS COLORS-3 Mutagenity COLLAB

DiffPool 77.8±3.9 72.8±3.3 87.6±1.0 80.0±1.9 76.6±2.5

DMoN 78.5±1.4 73.1±4.6 88.4±1.4 81.3±0.3 80.9±0.7

MinCut 80.1±2.6 76.0±3.6 88.7±1.6 81.2±1.9 79.2±1.5

ECPool 79.8±3.3 69.5±5.9 81.4±3.3 82.0±1.6 80.9±1.4

Graclus 81.2±3.4 73.0±5.9 77.6±1.2 81.9±1.6 80.4±1.5

k-MIS 77.6±3.0 75.9±2.9 82.9±1.7 82.6±1.2 73.7±1.4

Top-k 72.6±3.1 73.2±2.7 57.4±2.5 74.4±4.7 77.9±2.1

PanPool 66.1±2.3 75.2±6.2 40.7±11.5 67.2±2.0 78.2±1.5

ASAPool 73.1±2.5 75.5±3.2 43.0±4.7 76.5±2.8 78.4±1.6

SAGPool 79.1±3.0 75.2±2.7 43.1±11.1 77.9±2.8 78.1±1.8

Rand-dense 78.2±2.0 75.3±1.3 83.3±0.9 81.4±1.8 69.3±1.6

Cmp-Graclus 77.8±1.8 73.6±4.7 84.7±0.9 80.7±1.8 OOM
Rand-sparse 69.1±3.3 74.6±4.2 35.5±1.1 69.8±1.0 68.8±1.6

Pooling MUTAG PTC_MR IMDB-B IMDB-MULTI

DiffPool 86.8±9.7 54.7±6.1 71.3±3.1 45.2±3.4

DMoN 86.3±7.1 55.5±7.3 71.9±3.3 47.0±5.5

MinCut 83.1±9.6 57.9±7.7 71.9±5.7 46.6±4.0

ECPool 90.0±7.2 54.7±8.4 71.3±3.4 49.2±2.9

Graclus 85.2±8.0 55.2±6.4 72.3±5.8 46.2±4.4

k-MIS 85.7±6.2 59.7±5.7 73.1±4.2 46.8±4.6

Top-k 78.4±11.8 58.2±8.9 70.9±3.3 44.8±2.9

PanPool 83.1±13.2 53.5±7.7 73.9±3.5 48.3±3.7

ASAPool 74.2±6.8 50.5±12.1 71.4±2.8 46.1±4.2

SAGPool 73.7±6.6 58.8±8.0 71.0±4.0 44.0±3.4

Rand-dense 88.9±4.3 56.1±9.7 70.5±3.4 45.2±5.6

Cmp-Graclus 83.2±9.1 55.9±4.6 OOM OOM
Rand-sparse 68.9±17.3 56.4±5.9 71.6±3.6 45.8±3.7

Pooling ENZYMES REDDIT-5K REDDIT-B B-hard

DiffPool 62.3±7.3 53.7±1.8 89.9±2.8 70.2±1.5

DMoN 61.0±5.0 56.6±2.3 91.3±1.4 71.1±1.0

MinCut 62.3±3.8 56.2±2.8 91.9±1.8 71.2±1.1

ECPool 59.6±3.7 53.6±2.2 90.7±1.7 74.5±1.6

Graclus 61.0±6.6 52.3±1.4 92.9±1.7 72.3±1.3

k-MIS 63.5±7.1 56.4±2.3 90.6±1.4 71.7±0.9

Top-k 45.5±10.5 50.4±3.7 87.4±3.5 68.1±7.7

PanPool 40.5±5.0 46.5±2.4 83.6±1.9 44.2±8.5

ASAPool 44.8±7.6 48.8±1.6 88.0±5.6 67.5±6.1

SAGPool 41.6±5.2 49.9±2.9 84.5±4.4 54.0±6.6

Rand-dense 62.1±5.0 54.5±2.1 89.3±2.1 71.0±2.2

Cmp-Graclus 63.5±5.0 OOM OOM OOM
Rand-sparse 62.1±5.0 50.6±2.4 84.5±1.9 50.1±4.0

4.3 Pooling Operators can Increase the Expressive Power
of GNNs

The results obtained so far suggest that a hierarchical GNN can be as expressive as the WL
despite the information loss induced by pooling. A pertinent question that emerges is whether it

4.3. Pooling Operators can Increase the Expressive Power of GNNs 55

Table 4.5: Graph classification test run-time in s/epoch.

Pooling NCI1 PROTEINS COLORS-3 Mutagenity COLLAB

DiffPool 0.83s 0.23s 1.67s 0.90s 1.68s
DMoN 1.01s 0.28s 1.94s 1.06s 1.83s
MinCut 0.95s 0.28s 1.82s 1.10s 1.82s
ECPool 4.39s 1.97s 10.30s 4.22s 44.11s
Graclus 0.95s 0.27s 2.47s 0.98s 3.01s
k-MISPool 0.88s 0.25s 2.48s 0.95s 1.38s
Top-k 1.04s 0.29s 2.78s 1.04s 2.79s
PanPool 2.81s 0.81s 7.16s 5.48s 7.67s
ASAPool 1.83s 0.52s 4.48s 1.80s 3.97s
SAGPool 1.09s 0.30s 2.52s 1.07s 2.81s
Rand-dense 0.54s 0.14s 1.44s 0.55s 0.88s
Cmp-Graclus 7.94s 3.27s 34.05s 1.94s –
Rand-sparse 0.64s 0.18s 1.72s 0.68s 1.00s

Pooling MUTAG PTC_MR IMDB-B IMDB-MULTI

DiffPool 0.04s 0.07s 0.14s 0.28s
DMoN 0.05s 0.09s 0.17s 0.37s
MinCut 0.04s 0.08s 0.16s 0.35s
ECPool 0.08s 0.12s 1.66s 1.01s
Graclus 0.09s 0.14s 0.24s 0.33s
k-MIS 0.06s 0.10s 0.28s 0.21s
Top-k 0.04s 0.08s 0.24s 0.32s
PanPool 0.26s 0.49s 1.30s 1.92s
ASAPool 0.14s 0.10s 0.43s 0.40s
SAGPool 0.04s 0.05s 0.23s 0.27s
Rand-dense 0.04s 0.06s 0.13s 0.19s
Cmp-Graclus 0.17s 0.47s – –
Rand-sparse 0.04s 0.08s 0.15s 0.23

Pooling ENZYMES REDDIT-5K REDDIT-B B-hard

DiffPool 0.12s 4.52s 1.74s 0.29s
DMoN 0.15s 3.21s 1.04s 0.33s
MinCut 0.14s 4.45s 1.78s 0.35s
ECPool 0.54s 37.13s 3.17s 6.90s
Graclus 0.14s 74.02s 0.75s 0.31s
k-MIS 0.12s 2.02s 0.48s 0.43s
Top-k 0.13s 1.75s 0.47s 0.30s
PanPool 0.98s 34.3s 46.15s 6.27s
ASAPool 0.16s 1.89s 0.79s 0.52s
SAGPool 0.08s 1.09s 0.43s 0.28s
Rand-dense 0.12s 3.48s 1.44s 0.26s
Cmp-Graclus 1.38s – – –
Rand-sparse 0.14s 1.67s 0.47s 0.31s

is feasible not only to preserve but also to enhance this expressive power through an appropriate
pooling layer. Indeed, increasing the expressive power of GNNs to go beyond the limitations of
WL is a significant and current research interest.

In recent years, significant efforts have been made to enhance the expressive power of GNNs.
Several alternative GNN architectures have been proposed, such as k-GNN [199], which draws
inspiration from the extension of the WL algorithm to k-tuples of nodes, or ESAN [75], which

56 4. The Expressive Power of Pooling in Graph Neural Networks

encodes multisets of subgraphs instead of multisets of node features. Such expressive GNNs,
however, usually result in a combinatorial explosion of the input data size.

In [67], we explore the potential of increasing the expressive power of GNNs while reducing the
complexity and amount of computations and maintaining the standard message passing scheme. In
particular, we show that pooling operators can produce coarsened graphs that are distinguishable
by the WL test when applied to two non-isomorphic graphs that are indistinguishable by WL.

Guided by this theoretical framework, we develop a new hierarchical pooling method called
XPool, specifically designed to meet sufficient conditions for enhancing the expressiveness of the
GNN it is integrated into. Experiments on synthetic datasets, purposely crafted to test GNN
expressiveness, show that our XPool pooling method can indeed increase the expressiveness of a
GNN, even when it includes not-powerful message passing layers.

4.3.1 Conditions for Increasing the Expressive Power

A pooling operator increases expressive power if it ensures that any pair of non-isomorphic,
WL-distinguishable graphs remain distinguishable after pooling and if there exists a pair of
non-isomorphic WL-indistinguishable graphs that after the pooling become distinguishable. In
the following theorems we will show that it is possible to construct a pooling operator that
increases the expressive power.

Theorem 3. Let POOL be a pooling operator expressed by the functions SEL, RED, CON, which is
placed after the MP layers. If the following conditions hold:

1. The RED function is injective;

2. The SEL function is incomparable to or more expressive than WL test,

then POOL increases the expressive power.

Proof. First of all, the injectivity of RED ensures that any pair of non-isomorphic, WL-distinguishable
graphs remain distinguishable after pooling. Since SEL is incomparable to or more expressive than
WL, by definition there exists a pair of graphs G1 and G2 that are not distinguishable by WL but
can be distinguished by SEL. For these two graphs, SEL(G1) = {S1

1 , . . . , S
1
k} ≠ {S2

1 , . . . , S
2
l } =

SEL(G2). Since RED is injective, independently of the CON function, the resulting coarsened graphs
will be WL-distinguishable, i.e., POOL(G1) ̸=WL POOL(G2).

As an example of powerful SEL, consider a function that clusters together nodes that lie on the
same cycle. This SEL function is incomparable to WL, as it cannot distinguish non-isomorphic
trees of the same size. Figure 4.9 shows that a pooling operator with such a SEL function
produces WL-distinguishable pooled graphs starting from two triangles from a cycle of length six
which indeed are WL-indistinguishable. We point out that several existing methods benefit from
this theoretical foundation, including CliquePool [200], CurvPool [201], and many others [202].
However, these methods utilize additional time-consuming graph algorithms to select nodes while
also not being able to take node representations into account. For instance, CliquePool [200]
relies on identifying cliques in a given graph, which has a non-polynomial worst-case runtime of
O(3N/3) for N nodes [203].

In the following, we will thus show the possibility of constructing pooling operator that do
not require expensive operations to increase the expressiveness of a GNN.

4.3. Pooling Operators can Increase the Expressive Power of GNNs 57

A
B

C
A

B

C

G1

A
B

C
A

B

C

G2

{A,B,C}

{A,B,C}

POOL(G1)

{A,B,C,A,B,C}

POOL(G2)

Figure 4.9: Two WL-indistinguishable graphs G1, G2 which can be distinguished after using a
powerful SEL. Clustering cycles maps G1 to a two supernode graph, while it maps G2 to a single
supernode graph.

Theorem 4. Let POOL be a pooling operator expressed by the functions SEL, RED, CON, which is
placed after the MP layers. If the following conditions hold:

1. The RED function is injective;

2. The CON function connects two supernodes if and only if they contain nodes that were
connected in the original graph, i.e., CON(G,S) = {(m,n) | ∃smi , snj > 0, (i, j) ∈ E},

then, there exists a function SEL such that, even though SEL(G1) =WL SEL(G2) for G1 ̸=WL G2,
the resulting POOL increases the expressive power.

Proof. First of all, the injectivity of RED ensures that any pair of non-isomorphic, WL-distinguishable
graphs remain distinguishable after pooling. Then, we just need to find a pair of non-isomorphic
but WL-indistinguishable graphs and a SEL function such that after pooling, the two graphs
became distinguishable. First, let G1 be composed of two disconnected triangles with the same
set of node features but such that nodes within each triangle have distinct features. Let G2, be a
hexagon for which the nodes have the same three features of G1 and the neighboring colors are
the same for G1 and G2. This scenario is visualized in Figure 4.10. WL cannot distinguish these
graphs. Now, let SEL be constructed such that we choose any pair of node features and contract all
edges corresponding to that pair. For example, consider a boolean function f : RF × RF → {0, 1}
that decides whether a connected pair of nodes, given their F -dimensional features, get pooled
together, as in their edge gets contracted or not. After this, we can define a MERGE function
that repeatedly merges all overlapping node pairs {i, j}, {j, k} to one single supernode {i, j, k},
while other nodes that do not get selected for a merge stay in their own supernode. Using the
aforementioned construction of SEL and assuming CON to be as in Condition 2, we can observe
that SEL(G1) = SEL(G2) while POOL(G1) ̸=WL POOL(G2). Indeed, for the triangle, this results in
two disconnected edges. Conversely, for the hexagon, this results in a cycle of four nodes.

Instead of relying on a complex additional algorithm, this insight provides the foundation
for efficient and provably expressiveness-increasing pooling operators. The proof highlights the
importance of including the node connectivities when forming supernodes. Transferring all edges
between nodes in different supernodes to their respective supernode can result in a multigraph.
We would not increase expressiveness by choosing CON to retain the number of individual edges
between nodes from these supernodes, i.e., if we consider multigraphs. WL would not distinguish

58 4. The Expressive Power of Pooling in Graph Neural Networks

A
B

C
A

B

C

G1

A
B

C
A

B

C

G2

{A,B}

{C}
{A,B}

{C}

POOL(G1)

{A,B}

{C}
{A,B}

{C}

POOL(G2)

Figure 4.10: Two WL-indistinguishable graphs G1, G2 which can be distinguished after pooling.
Contracting edges A B and adding a single superedge between supernodes iff any original
nodes were connected results in a disconnected graph for G1 and a connected graph for G2.

these multigraphs, and expressiveness would not be increased, as their resulting WL unfolding
trees for two graphs would still be equal. On the other hand, pruning multiple edges to a single
edge allows us to distinguish between graphs that WL could not distinguish. We attribute this to
multiple edges between two supernodes corresponding to a cycle formed by their individual nodes.
When deleting duplicate edges, we then detect that cycle. This allows us to distinguish this
graph from other structurally similar graphs, which do not have that same cycle. Consequently,
pooling methods considering the graph topology when clustering nodes have an advantage in
expressiveness against pooling methods that take as input of the SEL function just the node
features, such as DiffPool [64], DMoN [204].

4.3.2 XPool: An Expressive Pooling Operator

Guided by Theorem 3 and its constructive proof, we develop a novel pooling operator, XPool,
which is able to enhance expressiveness of GNNs. Here, we delve into the specifics of the SEL,
RED and CON functions implemented in XPool, providing a full explanation of their roles and
mechanisms.

SEL First of all, we calculate a score for each edge of the graph as:

pi,j = MLP(xi||xj),

where MLP : R2F → R, xi, xj are the features of adjacent nodes i, j and || denotes the
concatenation. Subsequently, we select edges based on their scores, starting with the highest-
scoring one. To ensure no edges are discarded, due to identical scores, we select all edges (i, j)

with a score larger than the relative threshold:

τ = min
i,j

pi,j + α · (max
i,j

pi,j −min
i,j

pi,j)− ϵ

where α ∈ [0, 1] denotes a hyperparameter. Here, ϵ > 0 is a small constant, proportional to the
machine precision, used to compare floating point representations. We then perform a merge
operation on the selected node pairs. Below, we propose three levels of retaining the original
graph structure.

4.3. Pooling Operators can Increase the Expressive Power of GNNs 59

• MERGE – We merge all pairs with overlapping nodes until the remaining pairs do not
overlap. This results in the strongest loss of information in the graph, as any number of
nodes could get merged into a single supernode.

• SINGLE – We only allow a single edge to be selected per node by iterating through the
sorted edge scores and discard all node pairs that contain a repeated node.

• MAX – We only consider the edge with the highest score and discard all others. This
corresponds to a minimal loss of information on the graph structure.

After performing one of these merge operations, unmerged nodes form additional supernodes,
ensuring no graph nodes are excluded in the pooled graph creation. Each node contributes to
only one supernode, resulting in a sparse cluster assignment matrix where each row features a
single 1 — indicating node inclusion in a supernode — and all other entries are set to zero.

RED Following [28], we choose a sufficiently powerful RED consisting of two learnable functions
ϕ : RF → RF and ψ : RF → RF that make sum aggregation injective:

RED : (S,X)j = ψ

(
n∑

i=1

sji · ϕ(xi)

)
.

In pratice, ϕ and ψ can be approximated through two MLPs.

CON Following condition 2 of Theorem 4, we set CON to connect two supernodes if and only if
they contain nodes that were connected in the original graph, i.e.,

CON(G,S) = {(m,n) | ∃smi , snj > 0, (i, j) ∈ E}.

4.3.3 Experimental Results

To validate our theoretical findings and evaluate the capabilities of XPool operator, we conduct
a series of experiments. We integrate the XPool operator into three different GNNs and compare
their empirical expressiveness against existing pooling operators.

Experimental Setup We evaluate the empirical expressiveness using the Brec framework [205].
The framework takes pairs of WL indistinguishable graphs, creates multiple permutations of both
graphs, and is optimized to map non-isomorphic graphs to different embeddings using contrastive
training. The framework computes a distance score between embeddings and counts each pair
as distinguished if the score is larger than a predefined threshold. If a pair is distinguished,
the framework also requires embeddings of additional permutations of the same graph to be
sufficiently close. Otherwise, the sample is considered to be unreliable and the total score is not
increased. For each considered method and dataset, we present the total number of distinguished
and stable graph pairs.

All models use a uniform GNN structure to ensure consistency across different implementations.
The initial feature of each node is determined by its degree. We then employ a linear layer
followed by a ReLU activation function as a feature encoder. The core of the GNN consists of

60 4. The Expressive Power of Pooling in Graph Neural Networks

a sequence of four message passing layers and one pooling layer repeated twice plus four other
message passing layers. We use three different message passing layers, namely GCN [14], GAT
[16] and GIN [28]. After the convolutional and pooling stages, a global sum pooling aggregates
the node features, followed by a two-layer MLP. We use two datasets explicitly tailored to
evaluate the expressiveness of GNNs, namely the BREC [205] and the RIGID [206] datasets.

BREC comprises 400 pairs of non-isomorphic graphs divided into four main categories: Basic,
Regular, Extension, and CFI graphs. Basic Graphs include 60 pairs of 10-node graphs, Regular
Graphs consist of 140 pairs, including simple and strongly regular graphs, Extension Graphs are
made up of 100 pairs inspired by GNN extensions, and CFI Graphs, the most complex category,
includes 100 pairs based on the Cai-Fürer-Immerman method [207]. BREC stands out for its
range of graph difficulties, different assessments of GNNs, and large scale, making it a significant
benchmark for studies in GNN expressiveness.

RIGID consists of 1086 pairs of graphs and was originally devised as a benchmark set of
difficult instances for graph isomorphism algorithms that are WL-indistinguishable. The graphs,
called shrunken multipedes, are unlikely to have nontrivial automorphisms and are constructed
by transformations of a rigid bipartite multipede base graph [208] using the gadgets of Cai et
al.[207]. There are six subsets of cfi-rigid pairs generated for different parameters. To evaluate
many different pooling operators and graph convolutions, we consider all pairs for which each
graph has at most 2000 nodes. This leads to a total amount of 598 graph pairs divided into 108

(r2), 190 (t2), 88 (z2), 124 (s2), 44 (z3), and 44 (d3) graph pairs.

Results The mean number of distinguished graph pairs and the standard deviation over
three runs are displayed in Table 4.6. The GNN without pooling layer achieve zero correctly
distinguished graphs for the BREC dataset and three correctly distinguished graphs for the
RIGID dataset. This is due to numerical instabilities with floating points, which also initially
motivated the construction of the BREC dataset [205]. For both the BREC and the RIGID
dataset, our XPool significantly increases expressiveness in all the considered GNN models.
Improvements are up to ten times over the second best-performing pooling method. For the
BREC dataset, EdgePool and ASAPool are the only two baseline methods to achieve a non-zero
number of distinguished graphs. For the RIGID dataset, all pooling methods improve slightly
over the models without pooling.

We also observe large differences between our three proposed versions for merging selected
edges. XPool (MERGE) achieves the lowest scores in all cases, highlighting that the potential
gains in expressiveness are strongly reduced when combining many nodes simultaneously. In
contrast, XPool (MAX) only pools a single edge per graph, leading to significantly improved
results on the BREC dataset as the largest graphs contain only 198 nodes. Our considered
graphs in the RIGID dataset contain up to 2000 nodes, for which pooling a single edge is less
crucial. Going forward, we thus argue that XPool (SINGLE) serves as a desirable trade-off.

4.4. Conclusions 61

Table 4.6: Number of graph pairs correctly distinguished by each GNN using different pooling
operators. Mean and standard deviation over three runs are shown.

Pooling Methods GCN GAT GIN

BREC dataset (400 pairs)

No Pooling 0± 0 0± 0 0± 0

EdgePool 15± 4 10± 2 17± 0

DiffPool 0± 0 0± 0 0± 0

Top-k 0± 0 0± 0 0± 0

SAGPool 0± 0 0± 0 0± 0

ASAPool 6± 0 6± 0 8± 2

XPool (MERGE) 22± 1 20± 1 22± 1

XPool (SINGLE) 52± 4 21± 1 62± 2

XPool (MAX) 101± 1 97± 1 112± 5

RIGID dataset (598 pairs)

No Pooling 3± 0 3± 0 3± 0

EdgePool 25± 2 36± 2 30± 4

DiffPool 3± 0 4± 1 3± 0

Top-k 23± 2 21± 8 36± 9

SAGPool 67± 3 71± 6 36± 4

XPool (MERGE) 8± 2 7± 1 2± 0

XPool (SINGLE) 267± 1 213± 8 386± 5

XPool (MAX) 18± 2 15± 1 43± 2

4.4 Conclusions

In conclusion, both theoretical analysis and experimental evidence have demonstrated that
the pooling layer is crucial for the expressiveness of the graph neural network in which it is
incorporated. This thesis has outlined the sufficient conditions for preserving the expressiveness
of message passing before pooling, as well as those for enhancing it; this opens up avenues for
further research in this area to identify additional sufficient conditions and, more broadly, to
design efficient pooling layers that aim not only at dimensionality reduction but also at enhancing
expressive power.

Chapter 5

Conclusion

In this thesis, we presented and analyzed both theoretical and experimental findings related to
GNNs, focusing on two main aspects: (i) the analysis of GNN-based models designed to handle
temporal graphs, and (ii) the study of pooling layers for dimensionality reduction within GNN
architectures.

Regarding (i), we proposed a systematic formalization of tasks and learning settings for TGNNs
and a comprehensive taxonomy categorizing existing methods and highlighting unaddressed tasks.
Building on this systematization of the current state-of-the-art, we discussed open challenges that
needed to be addressed to unleash the full potential of TGNNs. We stressed the fact that the
issues open to date were very challenging, since they presupposed considering both the temporal
and relational dimensions of data, suggesting that forthcoming new computational models must
go beyond the GNN framework to provide substantially better solutions. We concluded by
tackling one of the identified open challenges: analyzing the expressive power of TGNNs. We
focused on a specific category within our taxonomy, the STGNNs, which were among the most
utilized and intuitive GNN-based models for temporal graphs. We proved that STGNNs were
able to approximate, in probability and up to any degree of precision, any functions that preserve
the equivalence induced by a specific dynamic version of the WL test, which we defined. Finally,
we validated our approximation theorem through a carefully designed experimental setup.

Concerning (ii), we first identified sufficient conditions that a pooling operator must satisfy
to fully preserve the expressive power of the original GNN model. Based on our theoretical
results, we proposed a principled approach to evaluate the expressive power of existing graph
pooling operators by verifying whether they met the conditions for expressiveness. To empirically
test the expressive power of a GNN, we introduced a new dataset that allowed understanding
whether a GNN architecture achieved the same discriminative power as the WL test. We used
such a dataset to evaluate the expressiveness of a GNN equipped with different pooling operators
and found that the experimental results were consistent with our theoretical findings. In our
experimental evaluation, we also considered popular benchmark datasets for graph classification
and found that the expressive pooling operators achieved higher performance. This confirmed the
relevance in practical applications of our principled criterion to select a pooling operator based
on its expressiveness. Finally, we showed that it was possible to go further, i.e., to construct
hierarchical pooling operators that increased the expressiveness of GNNs while reducing the size
of the computational graph. While all the popular proposed architectures capable of going beyond
the limit imposed by WL were based on modifications of message passing—typically incurring
substantial computational costs—we presented the first attempt to increase the expressive power
of GNNs by acting on the hierarchical pooling mechanism. In particular, we identified sufficient
conditions on pooling operators that allowed a hierarchical GNN to distinguish non-isomorphic

64 5. Conclusion

graphs that were indistinguishable by the WL test. Since no currently existing pooling method
was specifically designed to meet the identified conditions, we designed a practical pooling
operator that increased expressiveness. Our empirical evaluation confirmed theoretical findings,
demonstrating that computationally light pooling functions could lead to more expressive GNNs.

Several potential directions for future research emerge from this thesis. A primary avenue is
the further comparison of existing models for temporal graphs by testing them against a unified
benchmark, such as the promising TGB framework. A more comprehensive understanding could
also be achieved by considering models specifically designed for particular types of temporal
graphs, such as spatio-temporal graphs [95, 209, 176] or strictly evolving graphs [210]. Moreover,
addressing additional open challenges outlined in this thesis would be of interest, especially the
development of tailored TGNN models for high-interest problems like weather forecasting or
climate modeling, where the application of GNN-based models could yield precise and valuable
solutions.

Concerning the study of pooling in GNNs, an interesting future research direction involves
exploring the relationship between pooling layers and other GNN learning challenges, such as
oversmoothing [211] and oversquashing [212]. Specially designed pooling techniques could offer a
solution to these issues [201]. Additionally, the potential of using pooling to achieve structural
embedding [213] offers an opportunity to address expressiveness challenges in link prediction
tasks [214]. Finally, another promising research path could involve merging the two main themes
of this thesis: exploring the construction of temporal-specific pooling designed explicitly for
GNNs operating on temporal graphs.

Appendix A
Appendix

In this chapter, we present the formal proof of Thm 1. Prior to this, it is necessary to introduce
some preliminary definitions and lemmas.

Definition A.0.1 (Unfolding Tree). The unfolding tree Td
v in graph G1 = (V1, E1,X

V
1 ,X

E
1) of

node v ∈ V up to depth d ∈ N0 is defined as

Td
v :=

{
Tree(xv), if d = 0

Tree
(
xv, {Td−1

u }u∈N [v]

)
if d > 0,

where Tree(xv) is a tree constituted of node v with attribute xv. Tree
(
xv, {Td−1

u))}u∈N[v]

)
is

the tree of depth d consisting of the root node v connected to trees of depth d− 1 rooted at each
neighbor u of v, namely Td−1

u . We call unfolding tree of v Tv := lim
d→∞

Td
v.

Definition A.0.2 (Unfolding Equivalence). Let G1 = (V1, E1,X
V
1 ,X

E
1) and G2 = G2 =

(V2, E2,X
V
2 ,X

E
2) be two graphs. G1 and G2 are unfolding tree equivalent, noted by G1 =UT G2,

iff {Tu | u ∈ V1} = {Tv | v ∈ V2}. Analogously, two nodes u ∈ V1, v ∈ V2 are unfolding tree
equivalent, noted by u =UT v iff Tu = Tv.

Definition A.0.3 (Dynamic Unfolding Tree). Let GS
T = {Gi : i = 1, . . . , n} be an STG as

defined in Def. 3.1.3, with V the set of all nodes that appear at least in one timestamp. The
dynamic unfolding tree DTd

v of node v ∈ V up to depth d ∈ N0 is a sequence of unfolding trees
DTd

v := [Td
v(ti)]i=1,...,n. If v ∈ V , then Td

v(ti) is defined in the following:

Td
v(ti) :=

{
Tree(xv), if d = 0

Tree
(
xv, {Td−1

u (ti))}u∈Nti
[v]

)
if d > 0,

where Tree(xv) is a tree constituted of node v with attribute xv. Tree
(
xv, {Td−1

u (ti))}u∈Nti
[v]

)
is the tree of depth d consisting of the root node v connected to trees of depth d− 1 rooted at each
neighbor u of v, namely Td−1

u (ti).
If (v,xv) /∈ Vi, then Td

v(ti) := T⊥ for every d. We call dynamic unfolding tree of v DTv :=

lim
d→∞

DTd
v.

Definition A.0.4 (Dynamic Unfolding Equivalence). Two nodes u, v ∈ V are said to be dynamic
unfolding equivalent u =DUT v iff DTu = DTv, that is Tu(ti) = Tv(ti) for every timestep ti.
Analogously, two STGs G1, G2 are said to be dynamic unfolding equivalent G1 =DUT G2, iff
{DTu | u ∈ V1} = {DTv | v ∈ V2}.

Theorem 5. Let GS
T be an STG with V the total set of nodes. Then, it holds

∀ u, v ∈ V, u =DUT v ⇐⇒ u =DWL v.

66 A. Appendix

Proof. By Definition 3.7.2 , two nodes u, v ∈ V are DWL equivalent iff they are WL equivalent
at each timestamp, i.e.,

u =DWL v ⇐⇒ u =WL v ∀ti.

The same holds for the DUT equivalence A.0.4, i.e.,

u =DUT v ⇐⇒ u =UT v ∀ti.

Thus, in order to prove that u =DUT v ⇐⇒ u =DWL v, it is sufficient to prove

u =UT v ⇐⇒ u =WL v,

or, analogously, that

∀ d ∈ N0 : Td
u = Td

v ⇐⇒ cdu = cdv. (A.1)

The proof is carried out by induction on d, which represents both the depth of the unfolding
trees and the iteration step in the WL coloring.

d = 0: It holds
T0

u = Tree(xu) = Tree(xv) = T0
v

⇐⇒ xu = xv ⇐⇒ c0u = HASH(xu) = HASH(xv) = c0v.

d > 0: Suppose that Eq. A.1 holds for d− 1, and prove that it holds also for d.

- By definition, Td
u = Td

v is equivalent to{
Td−1

u = Td−1
v and

Tree
(
xu, {Td−1

n }n∈N (u)

)
= Tree

(
xv, {Td−1

m }m∈N (v)

)
.

(A.2)

- Applying the induction hypothesis, it holds that

Td−1
u = Td−1

v ⇐⇒ cd−1
u = cd−1

v . (A.3)

- From Eq. (A.2)
{Td−1

n }n∈N (u) = {Td−1
m }m∈N (v) (A.4)

By the induction hypothesis, Eq. (A.4) is equivalent to

{cd−1
n }n∈N (u) = {cd−1

m }m∈N (v) (A.5)

- Putting together Eq. (A.3), (A.5), and the fact that the HASH function is injective, we obtain:

cdu = HASH(cd−1
u , {cd−1

n |n ∈ N [u]}) = HASH(cd−1
v , {cd−1

m |m ∈ N [v]}) = cdv

Thanks to Thm. 5, we can interchangeably use the DWL equivalence and the DUT equivalence.
Specifically, a dynamic system dyn(·, ·, ·) ∈ F(GT) if and only if it preserves the DUT equivalence.
Henceforth, in all subsequent theorems and proofs, we will use the DUT equivalence.

67

Theorem 6 (Functions of dynamic unfolding trees). A dynamic system dyn belongs to F(GT)

iff there exists a function κ defined on trees such that for all the triplets (tj , G
S
T , v), it holds:

dyn(tj , G
S
T , v) = κ

(
[Tv(ti)]i=1,...,j

)
,

where [Tv(ti)]i=1,...,j is the sequence of unfolding threes up to time tj in which the dynamical
system is calculated.

Proof. We show the proposition by proving both directions of the equivalence relation:

⇐: This direction is trivial. Indeed, if dyn(tj , GS
T , v) = dyn(tj , G

S
T , u) for u =DUT v then

κ
(
[Tv(ti)]i=1,...,j

)
:= dyn(tj , G

S
T , v)

is well defined.

⇒: Suppose there exists κ such that dyn(tj , GS
T , v) = κ

(
[Tv(ti)]i=1,...,j

)
. Then, for any pair of

nodes u, v ∈ V with u =DUT v it holds:

dyn(tj , G
S
T , v) = κ

(
[Tv(ti)]i=1,...,j

)
= κ

(
[Tu(ti)]i=1,...,j

)
= dyn(tj , G

S
T , u).

Now we are ready to prove Thm. 1. Because of [215, Lem. 1], [215, Lem. 2],[216] and Thm 5,
Thm. 1 is equivalent to the following theorem, where the domain contains a finite number of
elements in GT and the attributes are integers. Hence, proving this theorem is sufficient to prove
Thm. 1.

Theorem 7. Given

• GT = {(tpi , G
Sp
T , vp), p = 1, ..., P}, with N = maxGS

T∈GT |GS
T | and with integer features;

• dyn(·, ·, ·) ∈ F(GT) measurable;

• ϵ > 0;

then, there exists an STGNN with 2N − 1 layers such that:

||dyn(tpi , G
Sp
T , vp)− STGNN(tpi , G

Sp
T , vp)|| ≤ ϵ ∀p = 1, ..., P ∀ti. (A.6)

Proof. The proof involves assuming that the output dimension is m = 1, but the result can be
extended to the general case with m ∈ N by concatenating the corresponding results. As a result
of Thm. 6, there exists a function κ, s.t. dyn(tpi , G

Sp
T , vp) = κ

(
[Tv(ti)]i=1,...,j

)
, ∀p = 1, ..., P

and ∀ti. For Theorem 4.1.3 in [217], in order to store the information of a snapshot graph at
time ti with Nti nodes, an unfolding tree of depth 2Nti − 1 is sufficient, i.e., there is no need
of an infinite depth since [Tv(ti)]i=1,...,j = [T

2Nti
−1

v (ti)]i=1,...,j . Considering the finite domain
GT with N = maxGS

T∈GT |GS
T |, using a depth of 2N − 1, we are sure that every unfolding three

contains all the necessary information. Thus, from now on, we will assume that the depth of the
unfolding trees is 2N − 1. For sake of simplicity of notation, we will continue to use the notation
[Tv(ti)]i=1,...,j .

68 A. Appendix

The main idea behind the proof is to design an STGNN that can encode the sequence of
unfolding trees [Tv(ti)]i=1,...,j into the node attributes at tj , i.e., qv(tj) = #tj ([Tv(ti)]i=1,...,j).
To implement the encoding that could fit the definition of the STGNN, two coding functions are
needed: the ∇ function, which takes as input an unfolding tree, and #tj which takes as input
a sequence of unfolding trees up to time tj (notice that the ∇ and #t0 are the same function
since at time t0 the dynamic unfolding three is composed by just one unfolding three). The
composition of these functions is used to define the node’s attributes, and the STGNN can
produce the desired output by using this encoded information as follows:

qv(0) = xL
v (0) = #t0

(
∇−1(xL

v (0))
)

qv(tj) = #tj

(
APPENDtj

(
#−1

tj−1
(qv(tj−1)),∇−1(xL

v (tj))
)) (A.7)

where xL
v (tj) is the final representation produced by L layers of GNN.The auxiliar function

APPENDtj and the ∇, #tj coding functions are defined in the following.

The APPENDtj function
Let T (v) be the domain of the unfolding trees with root v. The function
APPENDtj : {Tv(ti), i = 1, ..., j − 1} ∪ ∅ × T (v) → {Tv(ti), i = 1, ..., j} is defined as follows:

APPENDt0

(
∅,Tv(0)

)
:= Tv(0)

APPENDtj

((
Tv(0), . . . ,Tv(tj − 1)

)
,Tv(tj)

)
:=
(
Tv(0), . . . ,Tv(tj − 1),Tv(tj)

)
Intuitively, this function appends the unfolding tree snapshot of the node v at time tj to the
sequence of the unfolding trees of that node at the previous timestamps.
In the following, the coding functions are defined; their existence and injectiveness are provided
by construction.

The ∇ Coding Function
Let ∇ := µ∇ ◦ ν∇ be a composition of any two injective functions µ∇ and ν∇ with the following
properties:

- µ∇ is an injective function from the domain of static unfolding trees, calculated on the nodes in
the STG, to the Cartesian product N× NP × ZA, where P is the maximum number of nodes a
tree could have.

Intuitively, in the Cartesian product, N represents the tree structure, NP denotes the node
numbering, while, for each node, an integer vector in ZA is used to encode the node attributes.
Notice that µ∇ exists and is injective since the maximal information contained in an unfolding
tree is given by the union of all its node attributes and all its structural information, which just
equals the dimension of the codomain of µ∇.

- ν∇ is an injective function from NP+1×ZA to R, whose existence is guaranteed by the cardinality
theory. Since µ∇t and ν∇t are injective, also the existence and the injectiveness of ∇t is ensured.

The #t Coding Functions

69

Similarly to ∇, the functions #tj := µ#tj
◦ ν#tj

are composed by two functions µ#tj
and ν#tj

with the following properties:

- µ#tj
is an injective function from the domain of the dynamic unfolding trees to the Cartesian

product Ntj × NtjPtj × ZtjA = Ntj(Ptj
+1) × ZtjA, where Ptj is the maximum number of nodes a

tree could have at time tj .

- ν#tj
is an injective function from Ntj(P+1) × ZtjA to R, whose existence is guaranteed by the

cardinality theory. Since µ#tj
and ν#tj

are injective, also the existence and the injectiveness of
#tj are ensured.

The REC, AGGREGATE(l)tj , COMBINE
(l)
tj functions

Following the STGNN structure 3.2, the recursive function REC has to satisfy:

REC
(
qv(tj−1),x

L
v (tj)

)
= #tj ([Tv(ti)]i=1,...,j) = qv(tj),

where the xL
v (tj) is the representation of node v at time tj produced by the final layer of the

GNN. Further, the functions AGGREGATE(l)tj and COMBINE(l)tj – following the proof in [217] – must
satisfy

▽(Tl
v(tj)) = xl

v(tj) =

COMBINE(l)tj

(
xl−1
v (tj), AGGREGATE

(l)
tj

(
{xl−1

u (tj) }u∈Ntj
[v]

))
= COMBINE(l)tj

(
▽(Tl−1

v (tj)), AGGREGATE
(l)
tj ({▽(T

l−1
u (tj)) }u∈Ntj

[v])
)

∀ l ≤ 2N − 1 and ∀ tj , where xl
v(tj) is the representation produced by the l-th intermediate layer

of the GNN.
For example, the trees can be collected into the coding of a new tree, i.e.,

AGGREGATE(l)tj (▽(T
l−1
u (tj)), u ∈ Ntj [v]) = ▽(∪u∈Ntj

[v]▽
−1(▽(Tl−1

u (tj)))),

where ∪u∈Ntj
[v] denotes an operator that constructs a tree with a root having void attributes

from a set of subtrees (see Fig. A.1). Then, COMBINE(l)tj assigns the correct attributes to the root
by extracting them from Tl−1

v (tj), i.e.,

COMBINE(l)tj (▽(T
l−1
v (tj)), b) = ▽(ATTACH(▽−1(▽(Tl−1

v (tj))),▽
−1(b))),

where ATTACH is an operator that returns a tree constructed by replacing the attributes of the
root in the latter tree with those of the former tree and b is the result of the AGGREGATE(l)tj function.

The READOUT function
Eventually, READOUT must satisfy:

κ(·) := READOUT(#tj (·))
so that, ultimately,

dyn(tj , GS
T , v) =

READOUT
(
#tj

(
APPENDtj

(
#−1

tj−1
(qv(tj−1)),∇−1(xL

v (tj))
)))

.

Bibliography

[1] D. Grattarola, D. Zambon, F. M. Bianchi, and C. Alippi, “Understanding pooling in graph neural
networks,” IEEE Transactions on Neural Networks and Learning Systems, 2022.

[2] A. Mehrish, N. Majumder, R. Bharadwaj, R. Mihalcea, and S. Poria, “A review of deep learning
techniques for speech processing,” Information Fusion, p. 101869, 2023.

[3] R. Prabhavalkar, T. Hori, T. N. Sainath, R. Schlüter, and S. Watanabe, “End-to-end speech
recognition: A survey,” IEEE/ACM Transactions on Audio, Speech, and Language Processing,
2023.

[4] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learning for computer
vision: A brief review,” Computational intelligence and neuroscience, vol. 2018, 2018.

[5] J. Chai, H. Zeng, A. Li, and E. W. Ngai, “Deep learning in computer vision: A critical review of
emerging techniques and application scenarios,” Machine Learning with Applications, vol. 6, p.
100134, 2021.

[6] P. Andreini, G. Ciano, S. Bonechi, C. Graziani, V. Lachi, A. Mecocci, A. Sodi, F. Scarselli, and
M. Bianchini, “A two-stage gan for high-resolution retinal image generation and segmentation,”
Electronics, vol. 11, no. 1, p. 60, 2021.

[7] N. Pancino, C. Graziani, V. Lachi, M. L. Sampoli, E. S, tefǎnescu, M. Bianchini, and G. M. Dimitri,
“A mixed statistical and machine learning approach for the analysis of multimodal trail making
test data,” Mathematics, vol. 9, no. 24, p. 3159, 2021.

[8] M. Gao, F. Zheng, J. J. Yu, C. Shan, G. Ding, and J. Han, “Deep learning for video object
segmentation: a review,” Artificial Intelligence Review, vol. 56, no. 1, pp. 457–531, 2023.

[9] P. Veličković, “Everything is connected: Graph neural networks,” Current Opinion in Structural
Biology, vol. 79, p. 102538, 2023.

[10] B. Arregui-García, A. Longa, Q. F. Lotito, S. Meloni, and G. Cencetti, “Patterns in temporal
networks with higher-order egocentric structures,” Entropy, vol. 26, no. 3, p. 256, 2024.

[11] M. Tubaishat and S. Madria, “Sensor networks: an overview,” IEEE potentials, vol. 22, no. 2, pp.
20–23, 2003.

[12] P. Badia-i Mompel, L. Wessels, S. Müller-Dott, R. Trimbour, R. O. Ramirez Flores, R. Argelaguet,
and J. Saez-Rodriguez, “Gene regulatory network inference in the era of single-cell multi-omics,”
Nature Reviews Genetics, vol. 24, no. 11, pp. 739–754, 2023.

[13] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network
model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.

72 BIBLIOGRAPHY

[14] T. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” in
ICLR 2016, 2016.

[15] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”
Advances in neural information processing systems, vol. 30, 2017.

[16] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio et al., “Graph attention
networks,” stat, vol. 1050, no. 20, pp. 10–48 550, 2017.

[17] P. Pradhyumna, G. Shreya et al., “Graph neural network (gnn) in image and video understanding
using deep learning for computer vision applications,” in 2021 Second International Conference on
Electronics and Sustainable Communication Systems (ICESC). IEEE, 2021, pp. 1183–1189.

[18] C. Gao, Y. Zheng, N. Li, Y. Li, Y. Qin, J. Piao, Y. Quan, J. Chang, D. Jin, X. He et al., “A survey
of graph neural networks for recommender systems: Challenges, methods, and directions,” ACM
Transactions on Recommender Systems, vol. 1, no. 1, pp. 1–51, 2023.

[19] H. P. Samoaa, A. Longa, M. Mohamad, M. H. Chehreghani, and P. Leitner, “Tep-gnn: Accurate
execution time prediction of functional tests using graph neural networks,” in International
Conference on Product-Focused Software Process Improvement. Springer, 2022, pp. 464–479.

[20] P. Samoaa, L. Aronsson, A. Longa, P. Leitner, and M. H. Chehreghani, “A unified active learning
framework for annotating graph data with application to software source code performance
prediction,” arXiv preprint arXiv:2304.13032, 2023.

[21] G. Giacomini, C. Graziani, V. Lachi, P. Bongini, N. Pancino, M. Bianchini, D. Chiarugi, A. Val-
leriani, and P. Andreini, “A neural network approach for the analysis of reproducible ribo–seq
profiles,” Algorithms, vol. 15, no. 8, p. 274, 2022.

[22] P. Bongini, N. Pancino, V. Lachi, C. Graziani, G. Giacomini, P. Andreini, and M. Bianchini,
“Point-wise ribosome translation speed prediction with recurrent neural networks,” Mathematics,
vol. 12, no. 3, p. 465, 2024.

[23] P. Bongini, M. Bianchini, and F. Scarselli, “Molecular generative graph neural networks for drug
discovery,” Neurocomputing, vol. 450, pp. 242–252, 2021.

[24] P. Bongini, E. Messori, N. Pancino, and M. Bianchini, “A deep learning approach to the prediction
of drug side–effects on molecular graphs,” IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 2023.

[25] F. Errica, M. Podda, D. Bacciu, and A. Micheli, “A fair comparison of graph neural networks for
graph classification,” in International Conference on Learning Representations, 2020.

[26] G. Ciano, A. Rossi, M. Bianchini, and F. Scarselli, “On inductive–transductive learning with graph
neural networks,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 2,
pp. 758–769, 2021.

[27] A. Rossi, M. Tiezzi, G. M. Dimitri, M. Bianchini, M. Maggini, and F. Scarselli, “Inductive–
transductive learning with graph neural networks,” in Artificial Neural Networks in Pattern
Recognition: 8th IAPR TC3 Workshop, ANNPR 2018, Siena, Italy, September 19–21, 2018,
Proceedings 8. Springer, 2018, pp. 201–212.

[28] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?” in International Conference on Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=ryGs6iA5Km

[29] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman, “Provably powerful graph networks,”
Advances in neural information processing systems, vol. 32, 2019.

https://openreview.net/forum?id=ryGs6iA5Km

BIBLIOGRAPHY 73

[30] F. Scarselli, A. C. Tsoi, and M. Hagenbuchner, “The vapnik–chervonenkis dimension of graph and
recursive neural networks,” Neural Networks, vol. 108, pp. 248–259, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608018302363

[31] C. Morris, F. Geerts, J. Tönshoff, and M. Grohe, “Wl meet vc,” in International Conference on
Machine Learning. PMLR, 2023, pp. 25 275–25 302.

[32] C. Gao, X. Wang, X. He, and Y. Li, “Graph neural networks for recommender system,” in
Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, ser.
WSDM ’22. New York, NY, USA: Association for Computing Machinery, 2022, p. 1623–1625.

[33] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks in recommender systems: a
survey,” ACM CSUR, 2022.

[34] S. Deng, H. Rangwala, and Y. Ning, “Learning dynamic context graphs for predicting social events,”
in ACM SIGKDD, 2019.

[35] W. Fan, Y. Ma, Q. Li, Y. He, E. Zhao, J. Tang, and D. Yin, “Graph neural networks for social
recommendation,” in The World Wide Web Conference, ser. WWW ’19. New York, NY, USA:
Association for Computing Machinery, 2019, p. 417–426.

[36] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A survey,” Expert Systems
with Applications, vol. 207, p. 117921, 2022.

[37] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional networks: A deep learning
framework for traffic forecasting,” arXiv preprint arXiv:1709.04875, 2017.

[38] M. Cardia, M. Luca, and L. Pappalardo, “Enhancing crowd flow prediction in various spatial
and temporal granularities,” in Companion Proceedings of the Web Conference 2022, 2022, pp.
1251–1259.

[39] A. Longa, G. Cencetti, B. Lepri, and A. Passerini, “An efficient procedure for mining egocentric
temporal motifs,” Data Mining and Knowledge Discovery, 2022.

[40] G. Mauro, M. Luca, A. Longa, B. Lepri, and L. Pappalardo, “Generating mobility networks with
generative adversarial networks,” EPJ Data Science, vol. 11, no. 1, p. 58, 2022.

[41] S. Gao, “Spatio-temporal analytics for exploring human mobility patterns and urban dynamics in
the mobile age,” Spatial Cognition & Computation, vol. 15, no. 2, pp. 86–114, 2015.

[42] M. Luca, G. Barlacchi, B. Lepri, and L. Pappalardo, “A survey on deep learning for human
mobility,” ACM Computing Surveys (CSUR), vol. 55, no. 1, pp. 1–44, 2021.

[43] G. Cencetti, G. Santin, A. Longa, E. Pigani, A. Barrat, C. Cattuto, S. Lehmann, M. Salathe, and
B. Lepri, “Digital proximity tracing on empirical contact networks for pandemic control,” Nature
Communications, 2021.

[44] M. K. So, A. Tiwari, A. M. Chu, J. T. Tsang, and J. N. Chan, “Visualizing covid-19 pandemic risk
through network connectedness,” International Journal of Infectious Diseases, vol. 96, pp. 558–561,
Jul 2020.

[45] N. Ahmed, L. Chen, Y. Wang, B. Li, Y. Li, and W. Li, “DeepEye: Link prediction in dynamic
networks based on non-negative matrix factorization,” Big Data Mining and Analytics, 2018.

[46] A. Longa, G. Cencetti, S. Lehmann, A. Passerini, and B. Lepri, “Generating fine-grained surrogate
temporal networks,” Communications Physics, vol. 7, no. 1, p. 22, 2024.

[47] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention
networks,” arXiv preprint arXiv:1710.10903, 2017.

https://www.sciencedirect.com/science/article/pii/S0893608018302363

74 BIBLIOGRAPHY

[48] H. Gao, Z. Wang, and S. Ji, “Large-scale learnable graph convolutional networks,” in Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018,
pp. 1416–1424.

[49] J. Gasteiger, A. Bojchevski, and S. Günnemann, “Predict then propagate: Graph neural networks
meet personalized pagerank,” arXiv preprint arXiv:1810.05997, 2018.

[50] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, and M. M. Bronstein, “Geometric deep
learning on graphs and manifolds using mixture model cnns,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2017, pp. 5115–5124.

[51] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger, “Simplifying graph convolutional
networks,” in International conference on machine learning. PMLR, 2019, pp. 6861–6871.

[52] M. Zhang and Y. Chen, “Link prediction based on graph neural networks,” NeurIPS, 2018.

[53] L. Cai and S. Ji, “A multi-scale approach for graph link prediction,” in Proceedings of the AAAI
conference on artificial intelligence, vol. 34, no. 04, 2020, pp. 3308–3315.

[54] M. Zhang and Y. Chen, “Weisfeiler-lehman neural machine for link prediction,” in Proceedings of
the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017,
pp. 575–583.

[55] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Inductive representation learning on
temporal graphs,” arXiv preprint arXiv:2002.07962, 2020.

[56] E. Hajiramezanali, A. Hasanzadeh, K. Narayanan, N. Duffield, M. Zhou, and X. Qian, “Variational
graph recurrent neural networks,” NeurIPS, vol. 32, 2019.

[57] A. Sankar, Y. Wu, L. Gou, W. Zhang, and H. Yang, “Dysat: Deep neural representation learning
on dynamic graphs via self-attention networks,” in WSDM, 2020.

[58] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein, “Temporal graph
networks for deep learning on dynamic graphs,” arXiv preprint arXiv:2006.10637, 2020.

[59] X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang, P. Cui, Y. Yang, B. Sun et al.,
“APAN: Asynchronous propagation attention network for real-time temporal graph embedding,” in
SIGMOD, 2021.

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” Advances in neural information processing systems, vol. 25, 2012.

[62] I. S. Dhillon, Y. Guan, and B. Kulis, “Weighted graph cuts without eigenvectors a multilevel
approach,” IEEE transactions on pattern analysis and machine intelligence, vol. 29, no. 11, pp.
1944–1957, 2007.

[63] F. M. Bianchi, D. Grattarola, and C. Alippi, “Spectral clustering with graph neural networks for
graph pooling,” in International conference on machine learning. PMLR, 2020, pp. 874–883.

[64] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierarchical graph repres-
entation learning with differentiable pooling,” Advances in neural information processing systems,
vol. 31, 2018.

[65] F. M. Bianchi and V. Lachi, “The expressive power of pooling in graph neural networks,” Advances
in Neural Information Processing Systems, vol. 36, 2024.

[66] S. Beddar-Wiesing, G. A. D’Inverno, C. Graziani, V. Lachi, A. Moallemy-Oureh, F. Scarselli, and
J. M. Thomas, “Weisfeiler–lehman goes dynamic: An analysis of the expressive power of graph
neural networks for attributed and dynamic graphs,” Neural Networks, p. 106213, 2024.

BIBLIOGRAPHY 75

[67] V. Lachi, A. Moallemy-Oureh, A. Roth, and P. Welke, “Graph pooling provably improves expressiv-
ity,” in NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023.

[68] A. Longa, V. Lachi, G. Santin, M. Bianchini, B. Lepri, P. Lio, F. Scarselli, and A. Passerini,
“Graph neural networks for temporal graphs: State of the art, open challenges, and opportunities,”
arXiv preprint arXiv:2302.01018, 2023.

[69] V. Lachi, F. Ferrini, A. Longa, B. Lepri, and A. Passerini, “A simple and expressive graph
neural network based method for structural link representation,” in ICML 2024 Workshop on
Geometry-grounded Representation Learning and Generative Modeling, 2024.

[70] S. Beddar-Wiesing, G. A. D’Inverno, C. Graziani, V. Lachi, A. Moallemy-Oureh et al., “On the
extension of the weisfeiler-lehman hierarchy by wl tests for arbitrary graphs,” in 18th International
Workshop on Mining and Learning with Graphs, 2022.

[71] P. Andreini, S. Bonechi, G. Ciano, C. Graziani, V. Lachi, N. Nikoloulopoulou, M. Bianchini, and
F. Scarselli, “Multi-stage synthetic image generation for the semantic segmentation of medical
images,” in Artificial Intelligence and Machine Learning for Healthcare: Vol. 1: Image and Data
Analytics. Springer, 2022, pp. 79–104.

[72] F. Scarselli, S. L. Yong, M. Gori, M. Hagenbuchner, A. C. Tsoi, and M. Maggini, “Graph neural
networks for ranking web pages,” in The 2005 IEEE/WIC/ACM International Conference on Web
Intelligence (WI’05). IEEE, 2005, pp. 666–672.

[73] A. Leman and B. Weisfeiler, “A reduction of a graph to a canonical form and an algebra arising
during this reduction,” Nauchno-Technicheskaya Informatsiya, vol. 2, no. 9, pp. 12–16, 1968.

[74] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe, “Weisfeiler
and leman go neural: Higher-order graph neural networks,” in Proceedings of the AAAI conference
on artificial intelligence, vol. 33, no. 01, 2019, pp. 4602–4609.

[75] B. Bevilacqua, F. Frasca, D. Lim, B. Srinivasan, C. Cai, G. Balamurugan, M. M. Bronstein, and
H. Maron, “Equivariant subgraph aggregation networks,” in International Conference on Learning
Representations, 2022. [Online]. Available: https://openreview.net/forum?id=dFbKQaRk15w

[76] C. Graziani, T. Drucks, M. Bianchini, F. Scarselli, T. Gärtner et al., “No pain no gain: More
expressive gnns with paths,” in NeurIPS 2023 Workshop: New Frontiers in Graph Learning, 2023.

[77] R. Abboud, İ. İ. Ceylan, M. Grohe, and T. Lukasiewicz, “The surprising power of graph neural
networks with random node initialization,” in Proceedings of the Thirtieth International Joint
Conference on Artifical Intelligence (IJCAI), 2021.

[78] F. Xia, K. Sun, S. Yu, A. Aziz, L. Wan, S. Pan, and H. Liu, “Graph learning: A survey,” IEEE
Transactions on Artificial Intelligence, vol. 2, no. 2, pp. 109–127, 2021.

[79] Z. Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE Transactions on
Knowledge and Data Engineering, vol. 34, no. 1, pp. 249–270, 2020.

[80] S. Kumar, X. Zhang, and J. Leskovec, “Learning dynamic embeddings from temporal interactions,”
arXiv preprint arXiv:1812.02289, 2018.

[81] S. S. Dasgupta, S. N. Ray, and P. Talukdar, “Hyte: Hyperplane-based temporally aware knowledge
graph embedding,” in Proceedings of the 2018 conference on empirical methods in natural language
processing, 2018, pp. 2001–2011.

[82] A. Taheri, K. Gimpel, and T. Berger-Wolf, “Learning to represent the evolution of dynamic graphs
with recurrent models,” in Companion proceedings of the 2019 world wide web conference, 2019,
pp. 301–307.

https://openreview.net/forum?id=dFbKQaRk15w

76 BIBLIOGRAPHY

[83] S. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart, “Representation
learning for dynamic graphs: A survey.” Journal of Machine Learning Research, 2020.

[84] C. Barros, M. Mendonça, A. Vieira, and A. Ziviani, “A survey on embedding dynamic graphs,”
ACM CSUR, 2021.

[85] Y. Luo and P. Li, “Neighborhood-aware scalable temporal network representation learning,” arXiv
preprint arXiv:2209.01084, 2022.

[86] S. Gupta and S. Bedathur, “A survey on temporal graph representation learning and generative
modeling,” arXiv preprint arXiv:2208.12126, 2022.

[87] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, H. Kanezashi, T. Kaler, T. Schardl, and
C. Leiserson, “EvolveGCN: Evolving graph convolutional networks for dynamic graphs,” in AAAI,
2020.

[88] H. Zhou, D. Zheng, I. Nisa, V. Ioannidis, X. Song, and G. Karypis, “TGL: A general framework
for temporal GNN training on billion-scale graphs,” arXiv preprint arXiv:2203.14883, 2022.

[89] Y. Ma, Z. Guo, Z. Ren, J. Tang, and D. Yin, “Streaming graph neural networks,” in ACM SIGIR,
2020.

[90] A. Micheli and D. Tortorella, “Discrete-time dynamic graph echo state networks,” Neurocomputing,
vol. 496, pp. 85–95, 2022.

[91] M. V. D. Heuvel, R. Mandl, C. Stam., R. Kahn, P. Hulshoff, and E. Hilleke, “Aberrant frontal and
temporal complex network structure in schizophrenia: A graph theoretical analysis,” Journal of
Neuroscience, 2010.

[92] R. Gao, J. Yan, P. Li, and L. Chen, “Detecting the critical states during disease development based
on temporal network flow entropy,” Briefings in Bioinformatics, 2022.

[93] R. Keisler, “Forecasting global weather with graph neural networks,” arXiv preprint
arXiv:2202.07575, 2022.

[94] I. McBrearty and G. Beroza, “Earthquake location and magnitude estimation with graph neural
networks,” in IEEE ICIP, 2022.

[95] A. Cini, I. Marisca, F. Bianchi, and C. Alippi, “Scalable spatiotemporal graph neural networks,”
arXiv preprint arXiv:2209.06520, 2022.

[96] M. Qin and D. Yeung, “Temporal link prediction: A unified framework, taxonomy, and review,”
arXiv preprint arXiv:2210.08765, 2022.

[97] J. You, T. Du, and J. Leskovec, “ROLAND: graph learning framework for dynamic graphs,” in
ACM SIGKDD, 2022.

[98] X. Ru, J. M. Moore, X.-Y. Zhang, Y. Zeng, and G. Yan, “Inferring patient zero on temporal networks
via graph neural networks,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 37, no. 8, 2023, pp. 9632–9640.

[99] P. Hiram Guzzi, F. Petrizzelli, and T. Mazza, “Disease spreading modeling and analysis: A survey,”
Briefings in Bioinformatics, vol. 23, no. 4, p. bbac230, 2022.

[100] A. Koher, H. H. Lentz, J. P. Gleeson, and P. Hövel, “Contact-based model for epidemic spreading
on temporal networks,” Physical Review X, vol. 9, no. 3, p. 031017, 2019.

[101] A. Darbon, D. Colombi, E. Valdano, L. Savini, A. Giovannini, and V. Colizza, “Disease persistence
on temporal contact networks accounting for heterogeneous infectious periods,” Royal Society open
science, vol. 6, no. 1, p. 181404, 2019.

BIBLIOGRAPHY 77

[102] A. Darbon, E. Valdano, C. Poletto, A. Giovannini, L. Savini, L. Candeloro, and V. Colizza,
“Network-based assessment of the vulnerability of italian regions to bovine brucellosis,” Preventive
veterinary medicine, vol. 158, pp. 25–34, 2018.

[103] K. Ljubičić, A. Merćep, and Z. Kostanjčar, “Analysis of complex customer networks: A real-world
banking example,” in 2022 45th Jubilee International Convention on Information, Communication
and Electronic Technology (MIPRO). IEEE, 2022, pp. 321–326.

[104] A. Rosyidah, I. Surjandari et al., “Exploring customer data using spatio-temporal analysis: Case
study of fixed broadband provider,” International Journal of Applied Science and Engineering,
vol. 16, no. 2, pp. 133–147, 2019.

[105] G. Jacquez, J. Meliker, R. Rommel, and P. Goovaerts, “Exposure reconstruction using space-time
information technology,” Encyclopedia of Environmental Health, pp. 793–804, 2019.

[106] J. R. Meliker, G. M. Jacquez, P. Goovaerts, G. Copeland, and M. Yassine, “Spatial cluster analysis
of early stage breast cancer: a method for public health practice using cancer registry data,”
Cancer Causes & Control, vol. 20, pp. 1061–1069, 2009.

[107] D. C. Wheeler, “A comparison of spatial clustering and cluster detection techniques for childhood
leukemia incidence in ohio, 1996–2003,” International journal of health geographics, vol. 6, no. 1,
pp. 1–16, 2007.

[108] A. Ozonoff, T. Webster, V. Vieira, J. Weinberg, D. Ozonoff, and A. Aschengrau, “Cluster detection
methods applied to the upper cape cod cancer data,” Environmental Health, vol. 4, pp. 1–9, 2005.

[109] J. Enright and R. Rowland, “Epidemics on dynamic networks,” Epidemics, 2018.

[110] A. Myers, D. Muñoz, F. A. Khasawneh, and E. Munch, “Temporal network analysis using zigzag
persistence,” EPJ Data Science, vol. 12, no. 1, p. 6, 2023.

[111] J. An and S. Cho, “Variational autoencoder based anomaly detection using reconstruction probab-
ility,” Special lecture on IE, vol. 2, no. 1, pp. 1–18, 2015.

[112] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised
anomaly detection with generative adversarial networks to guide marker discovery,” in International
conference on information processing in medical imaging. Springer, 2017, pp. 146–157.

[113] J. Kim and C. D. Scott, “Robust kernel density estimation,” The Journal of Machine Learning
Research, vol. 13, no. 1, pp. 2529–2565, 2012.

[114] S. Ranshous, S. Shen, D. Koutra, S. Harenberg, C. Faloutsos, and N. F. Samatova, “Anomaly de-
tection in dynamic networks: a survey,” Wiley Interdisciplinary Reviews: Computational Statistics,
vol. 7, no. 3, pp. 223–247, 2015.

[115] L. Akoglu and C. Faloutsos, “Event detection in time series of mobile communication graphs,” in
Army science conference, vol. 1, 2010, p. 141.

[116] W. Khan and M. Haroon, “A pilot study and survey on methods for anomaly detection in online
social networks,” in Human-Centric Smart Computing: Proceedings of ICHCSC 2022. Springer,
2022, pp. 119–128.

[117] J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han, “On community outliers and their efficient
detection in information networks,” in Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, 2010, pp. 813–822.

[118] T. Ji, D. Yang, and J. Gao, “Incremental local evolutionary outlier detection for dynamic social
networks,” in Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2013, Prague, Czech Republic, September 23-27, 2013, Proceedings, Part II 13.
Springer, 2013, pp. 1–15.

78 BIBLIOGRAPHY

[119] H. Zhang, Y. Zheng, and Y. Yu, “Detecting urban anomalies using multiple spatio-temporal data
sources,” Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies,
vol. 2, no. 1, pp. 1–18, 2018.

[120] L. Deng, D. Lian, Z. Huang, and E. Chen, “Graph convolutional adversarial networks for spati-
otemporal anomaly detection,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 33, no. 6, pp. 2416–2428, 2022.

[121] D. Savage, X. Zhang, X. Yu, P. Chou, and Q. Wang, “Anomaly detection in online social networks,”
Social networks, vol. 39, pp. 62–70, 2014.

[122] N. A. Heard, D. J. Weston, K. Platanioti, and D. J. Hand, “Bayesian anomaly detection methods
for social networks,” The Annals of Applied Statistics, vol. 4, no. 2, pp. 645 – 662, 2010.

[123] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu, “A comprehensive
survey on graph anomaly detection with deep learning,” IEEE Transactions on Knowledge and
Data Engineering, 2021.

[124] M. Mongiovi, P. Bogdanov, R. Ranca, E. E. Papalexakis, C. Faloutsos, and A. K. Singh, “Netspot:
Spotting significant anomalous regions on dynamic networks,” in Proceedings of the 2013 Siam
international conference on data mining. SIAM, 2013, pp. 28–36.

[125] D. Zambon, C. Alippi, and L. Livi, “Concept drift and anomaly detection in graph streams,” IEEE
transactions on neural networks and learning systems, vol. 29, no. 11, pp. 5592–5605, 2018.

[126] T. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308, 2016.

[127] M. Yin and M. Zhou, “Semi-implicit variational inference,” in ICML, 2018.

[128] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural
networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[129] A. Rahimi and B. Recht, “Random features for large-scale kernel machines,” in NeurIPS, 2008.

[130] B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel, M. Astefanoaei, O. Kiss, F. Beres,
G. López, N. Collignon et al., “Pytorch Geometric Temporal: Spatiotemporal signal processing
with neural machine learning models,” in ACM CIKM, 2021.

[131] M. Guan, A. Iyer, and T. Kim, “DynaGraph: dynamic graph neural networks at scale,” in ACM
SIGMOD22 GRADES-NDA, 2022.

[132] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec, “Open Graph
Benchmark: Datasets for machine learning on graphs,” NeurIPS, vol. 33, pp. 22 118–22 133, 2020.

[133] D. Luo, W. Cheng, D. Xu, W. Yu, B. Zong, H. Chen, and X. Zhang, “Parameterized explainer
for graph neural network,” Advances in neural information processing systems, vol. 33, pp. 19 620–
19 631, 2020.

[134] Z. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer: Generating explanations
for graph neural networks,” Advances in Neural Information Processing Systems, vol. 32, 2019.

[135] A. Longa, S. Azzolin, G. Santin, G. Cencetti, P. Liò, B. Lepri, and A. Passerini, “Explaining the
explainers in graph neural networks: a comparative study,” arXiv preprint arXiv:2210.15304, 2022.

[136] S. Azzolin, A. Longa, P. Barbiero, P. Lio, and A. Passerini, “Global explainability of gnns via
logic combination of learned concepts,” in The Eleventh International Conference on Learning
Representations.

[137] W. Xia, M. Lai, C. Shan, Y. Zhang, X. Dai, X. Li, and D. Li, “Explaining temporal graph models
through an explorer-navigator framework,” in The Eleventh International Conference on Learning
Representations, 2022.

BIBLIOGRAPHY 79

[138] M. N. Vu and M. T. Thai, “On the limit of explaining black-box temporal graph neural networks,”
arXiv preprint arXiv:2212.00952, 2022.

[139] W. He, M. N. Vu, Z. Jiang, and M. T. Thai, “An explainer for temporal graph neural networks,”
in GLOBECOM - IEEE Global Communications Conference 2022. IEEE, 2022, pp. 6384–6389.

[140] C. Bodnar, F. D. Giovanni, B. Chamberlain, P. Liò, and M. Bronstein, “Neural sheaf diffusion: A
topological perspective on heterophily and oversmoothing in GNNs,” in ICLR, 2022.

[141] J. Topping, F. D. Giovanni, B. Chamberlain, X. Dong, and M. Bronstein, “Understanding over-
squashing and bottlenecks on graphs via curvature,” arXiv preprint arXiv:2111.14522, 2021.

[142] O. Zaghen, A. Longa, S. Azzolin, L. Telyatnikov, P. Lio, and A. Passerini, “Sheaf diffusion
goes nonlinear: Enhancing gnns with adaptive sheaf laplacians,” in ICML 2024 Workshop on
Geometry-grounded Representation Learning and Generative Modeling, 2024.

[143] M. Yang, Z. Meng, and I. King, “Featurenorm: L2 feature normalization for dynamic graph
embedding,” in ICDM, 2020.

[144] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar, “Integrating scientific knowledge with
machine learning for engineering and environmental systems,” ACM Computing Surveys, vol. 55,
no. 4, 2022.

[145] M. Raissi, P. Perdikaris, and G. Karniadakis, “Physics informed deep learning (part i): Data-driven
solutions of nonlinear partial differential equations,” arXiv preprint arXiv:1711.10561, 2017.

[146] S. Cuomo, V. D. Cola, F. Giampaolo, G. Rozza, M. Raissi, and F. Piccialli, “Scientific machine
learning through physics–informed neural networks: where we are and what’s next,” Journal of
Scientific Computing, 2022.

[147] T. Pfaff, M. Fortunato, A. Sanchez-Gonzalez, and P. Battaglia, “Learning mesh-based simulation
with graph networks,” in ICLR, 2021.

[148] H. Gao, M. Zahr, and J. Wang, “Physics-informed graph neural Galerkin networks: A unified
framework for solving PDE-governed forward and inverse problems,” Computer Methods in Applied
Mechanics and Engineering, 2022.

[149] J. H. Faghmous and V. Kumar, “A Big Data Guide to Understanding Climate Change: The Case
for Theory-Guided Data Science,” Big Data, vol. 2, no. 3, 2014.

[150] F. Ferrini, A. Longa, A. Passerini, and M. Jaeger, “Meta-path learning for multi-relational graph
neural networks,” in Learning on Graphs Conference. PMLR, 2024, pp. 2–1.

[151] M. Fey, W. Hu, K. Huang, J. E. Lenssen, R. Ranjan, J. Robinson, R. Ying, J. You, and J. Leskovec,
“Relational deep learning: Graph representation learning on relational databases,” arXiv preprint
arXiv:2312.04615, 2023.

[152] R. Sato, “A survey on the expressive power of graph neural networks,” arXiv preprint
arXiv:2003.04078, 2020.

[153] J. Gao and B. Ribeiro, “On the equivalence between temporal and static equivariant graph
representations,” in International Conference on Machine Learning. PMLR, 2022, pp. 7052–7076.

[154] G. D’Inverno, M. Bianchini, M. Sampoli, and F. Scarselli, “A new perspective on the approximation
capability of GNNs,” arXiv preprint arXiv:2106.08992, 2021.

[155] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neural networks,
vol. 4, no. 2, pp. 251–257, 1991.

[156] B. Hammer, “On the approximation capability of recurrent neural networks,” Neurocomputing,
vol. 31, no. 1-4, pp. 107–123, 2000.

80 BIBLIOGRAPHY

[157] W. Azizian and M. Lelarge, “Expressive power of invariant and equivariant graph neural networks,”
9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria,
May 3-7, 2021, 2021. [Online]. Available: https://openreview.net/forum?id=lxHgXYN4bwl

[158] S. Kiefer and B. D. McKay, “The iteration number of colour refinement,” arXiv preprint
arXiv:2005.10182, 2020.

[159] A. Krebs and O. Verbitsky, “Universal covers, color refinement, and two-variable counting logic:
Lower bounds for the depth,” in 2015 30th Annual ACM/IEEE Symposium on Logic in Computer
Science. IEEE, 2015, pp. 689–700.

[160] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs: Methods and
applications,” arXiv preprint arXiv:1709.05584, 2017.

[161] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph Attention
Networks,” in ICLR, 2018.

[162] Y. Wang, Y. Chang, Y. Liu, J. Leskovec, and P. Li, “Inductive representation learning in temporal
networks via causal anonymous walks,” arXiv preprint arXiv:2101.05974, 2021.

[163] Z. Liu, D. Zhou, Y. Zhu, J. Gu, and J. He, “Towards fine-grained temporal network representation
via time-reinforced random walk,” in AAAI, vol. 34, 2020, pp. 4973–4980.

[164] M. Jin, Y.-F. Li, and S. Pan, “Neural temporal walks: Motif-aware representation learning on
continuous-time dynamic graphs,” Advances in Neural Information Processing Systems, vol. 35, pp.
19 874–19 886, 2022.

[165] K. Sato, M. Oka, A. Barrat, and C. Cattuto, “Dyane: dynamics-aware node embedding for temporal
networks,” arXiv preprint arXiv:1909.05976, 2019.

[166] P. Lewis, “Multivariate point processes,” in Proceedings of the Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1. University of California Press, 1972, p. 401.

[167] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning representations over dynamic
graphs,” in International Conference on Learning Representations, 2019.

[168] R. Trivedi, H. Dai, Y. Wang, and L. Song, “Know-evolve: Deep temporal reasoning for dynamic
knowledge graphs,” in international conference on machine learning. PMLR, 2017, pp. 3462–3471.

[169] Z. Daniele, C. Alippi et al., “Az-whiteness test: a test for uncorrelated noise on spatio-temporal
graphs,” in 36th Conference on Neural Information Processing Systems (NeurIPS 2022), 2022, pp.
1–17.

[170] P. Goyal, N. Kamra, X. He, and Y. Liu, “Dyngem: Deep embedding method for dynamic graphs,”
arXiv preprint arXiv:1805.11273, 2018.

[171] D. Xu, J. Liang, W. Cheng, H. Wei, H. Chen, and X. Zhang, “Transformer-style relational reasoning
with dynamic memory updating for temporal network modeling,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 5, 2021, pp. 4546–4554.

[172] D. Xu, W. Cheng, D. Luo, X. Liu, and X. Zhang, “Spatio-temporal attentive rnn for node
classification in temporal attributed graphs.” in IJCAI, 2019, pp. 3947–3953.

[173] F. L. Opolka, A. Solomon, C. Cangea, P. Veličković, P. Liò, and R. Hjelm, “Spatio-temporal deep
graph infomax,” arXiv preprint arXiv:1904.06316, 2019.

[174] B. Zhou, X. Liu, Y. Liu, Y. Huang, P. Lio, and Y. G. Wang, “Well-conditioned spectral transforms
for dynamic graph representation,” in Learning on Graphs Conference. PMLR, 2022, pp. 12–1.

https://openreview.net/forum?id=lxHgXYN4bwl

BIBLIOGRAPHY 81

[175] C. Zheng, B. Zong, W. Cheng, D. Song, J. Ni, W. Yu, H. Chen, and W. Wang, “Node classification
in temporal graphs through stochastic sparsification and temporal structural convolution,” in
Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD
2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part III. Springer, 2021, pp. 330–346.

[176] I. Marisca, A. Cini, and C. Alippi, “Learning to reconstruct missing data from spatiotemporal
graphs with sparse observations,” Advances in Neural Information Processing Systems, vol. 35, pp.
32 069–32 082, 2022.

[177] N. Shervashidze, P. Schweitzer, E. J. Van Leeuwen, K. Mehlhorn, and K. M. Borgwardt, “Weisfeiler-
lehman graph kernels.” Journal of Machine Learning Research, vol. 12, no. 9, 2011.

[178] J. Baek, M. Kang, and S. J. Hwang, “Accurate learning of graph representations with graph
multiset pooling,” in Proceedings of the 9th International Conference on Learning Representations,
2021.

[179] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, “Hierarchical representation learning in
graph neural networks with node decimation pooling,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 33, no. 5, pp. 2195–2207, 2020.

[180] D. Bacciu, A. Conte, and F. Landolfi, “Graph pooling with maximum-weight k-independent sets,”
in Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023.

[181] H. Gao and S. Ji, “Graph u-nets,” in international conference on machine learning. PMLR, 2019,
pp. 2083–2092.

[182] Z. Ma, J. Xuan, Y. G. Wang, M. Li, and P. Liò, “Path integral based convolution and pooling
for graph neural networks,” Advances in Neural Information Processing Systems, vol. 33, pp.
16 421–16 433, 2020.

[183] B. Knyazev, G. W. Taylor, and M. Amer, “Understanding attention and generalization in graph
neural networks,” Advances in neural information processing systems, vol. 32, 2019.

[184] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson, “Benchmarking graph neural
networks,” 2020.

[185] G. Karypis and V. Kumar, “A fast and high quality multilevel scheme for partitioning irregular
graphs,” SIAM Journal on scientific Computing, vol. 20, no. 1, pp. 359–392, 1998.

[186] A. Tsitsulin, J. Palowitch, B. Perozzi, and E. Müller, “Graph clustering with graph neural networks,”
J. Mach. Learn. Res., vol. 24, pp. 127:1–127:21, 2023.

[187] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in International conference on machine
learning. PMLR, 2019, pp. 3734–3743.

[188] E. Ranjan, S. Sanyal, and P. Talukdar, “Asap: Adaptive structure aware pooling for learning
hierarchical graph representations,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 34, no. 04, 2020, pp. 5470–5477.

[189] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and A. J. Smola, “Deep
sets,” Advances in neural information processing systems, vol. 30, 2017.

[190] D. Bacciu and L. Di Sotto, “A non-negative factorization approach to node pooling in graph
convolutional neural networks,” in AI* IA 2019–Advances in Artificial Intelligence: XVIIIth Inter-
national Conference of the Italian Association for Artificial Intelligence, Rende, Italy, November
19–22, 2019, Proceedings 18. Springer, 2019, pp. 294–306.

[191] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with
fast localized spectral filtering,” Advances in neural information processing systems, vol. 29, 2016.

82 BIBLIOGRAPHY

[192] S. T. Barnard and H. D. Simon, “Fast multilevel implementation of recursive spectral bisection
for partitioning unstructured problems,” Concurrency: Practice and experience, vol. 6, no. 2, pp.
101–117, 1994.

[193] D. Mesquita, A. Souza, and S. Kaski, “Rethinking pooling in graph neural networks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 2220–2231, 2020.

[194] M. Guerra, I. Spinelli, S. Scardapane, and F. M. Bianchi, “Explainability in subgraphs-enhanced
graph neural networks,” arXiv preprint arXiv:2209.07926, 2022.

[195] F. Diehl, “Edge contraction pooling for graph neural networks,” arXiv preprint arXiv:1905.10990,
2019.

[196] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” in ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

[197] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann, “Tudataset: A
collection of benchmark datasets for learning with graphs,” arXiv preprint arXiv:2007.08663, 2020.

[198] F. M. Bianchi, C. Gallicchio, and A. Micheli, “Pyramidal reservoir graph neural network,” vol. 470.
Elsevier, 2022, pp. 389–404.

[199] C. Morris, M. Ritzert, M. Fey, W. L. Hamilton, J. E. Lenssen, G. Rattan, and M. Grohe, “Weisfeiler
and leman go neural: Higher-order graph neural networks,” in AAAI Conference on Artificial
Intelligence, 2019.

[200] E. Luzhnica, B. Day, and P. Lio, “Clique pooling for graph classification,” in Representation
Learning on Graphs and Manifolds Workshop, 2019.

[201] C. Sanders, A. Roth, and T. Liebig, “Curvature-based pooling within graph neural networks,” in
Mining and Learning with Graphs Workshop, 2023.

[202] M. Fey, J.-G. Yuen, and F. Weichert, “Hierarchical inter-message passing for learning on molecular
graphs,” in Graph Representation Learning and Beyond Workshop, 2020.

[203] C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected graph,” Communica-
tions of the ACM, vol. 16, no. 9, pp. 575–577, 1973.

[204] A. Tsitsulin, J. Palowitch, B. Perozzi, and E. Müller, “Graph clustering with graph neural networks,”
Journal of Machine Learning Research, vol. 24, no. 127, pp. 1–21, 2023.

[205] Y. Wang and M. Zhang, “Towards better evaluation of GNN expressiveness with BREC dataset,”
in Submitted to The Twelfth International Conference on Learning Representations, 2023, under
review. [Online]. Available: https://openreview.net/forum?id=aqqE1yS3RY

[206] D. Neuen and P. Schweitzer, “Benchmark graphs for practical graph isomorphism,” in 25th Annual
European Symposium on Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, ser. LIPIcs,
K. Pruhs and C. Sohler, Eds., vol. 87. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017,
pp. 60:1–60:14. [Online]. Available: https://doi.org/10.4230/LIPIcs.ESA.2017.60

[207] J.-Y. Cai, M. Fürer, and N. Immerman, “An optimal lower bound on the number of variables for
graph identification,” Combinatorica, vol. 12, no. 4, pp. 389–410, 1992.

[208] Y. Gurevich and S. Shelah, “On finite rigid structures,” J. Symb. Log., vol. 61, no. 2, pp. 549–562,
1996. [Online]. Available: https://doi.org/10.2307/2275675

[209] A. Cini, I. Marisca, D. Zambon, and C. Alippi, “Graph deep learning for time series forecasting,”
arXiv preprint arXiv:2310.15978, 2023.

[210] J. Skarding, B. Gabrys, and K. Musial, “Foundations and modeling of dynamic networks using
dynamic graph neural networks: A survey,” IEEE Access, vol. 9, pp. 79 143–79 168, 2021.

https://openreview.net/forum?id=aqqE1yS3RY
https://doi.org/10.4230/LIPIcs.ESA.2017.60
https://doi.org/10.2307/2275675

BIBLIOGRAPHY 83

[211] C. Cai and Y. Wang, “A note on over-smoothing for graph neural networks,” arXiv preprint
arXiv:2006.13318, 2020.

[212] M. Black, Z. Wan, A. Nayyeri, and Y. Wang, “Understanding oversquashing in gnns through the
lens of effective resistance,” in International Conference on Machine Learning. PMLR, 2023, pp.
2528–2547.

[213] M. Zhang, P. Li, Y. Xia, K. Wang, and L. Jin, “Revisiting graph neural networks for link
prediction,” 2021. [Online]. Available: https://openreview.net/forum?id=8q_ca26L1fz

[214] B. Srinivasan and B. Ribeiro, “On the equivalence between positional node embeddings and
structural graph representations,” arXiv preprint arXiv:1910.00452, 2019.

[215] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “Computational Capabilities
of Graph Neural Networks,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 81–102,
2008.

[216] J. M. Thomas, S. Beddar-Wiesing, and A. Moallemy-Oureh, “Graph Type Expressivity and
Transformations,” arXiv:2109.10708, 09 2021.

[217] D’Inverno, Giuseppe A. and Bianchini, Monica and Sampoli, Maria L. and Scarselli, Franco, “On
the approximation capability of GNNs in node classification/regression tasks,” arXiv preprint
arXiv:2106.08992, 2021.

https://openreview.net/forum?id=8q_ca26L1fz

	Introduction
	Contributions
	Outline
	List of Publications

	Preliminaries
	Graph Neural Networks
	WL test
	Expressive Power of Graph Neural Networks

	Temporal Graph Neural Networks
	Temporal Graphs: Basic Concepts and Definitions
	Representation of temporal graphs

	Learning Settings
	Supervised Learning Tasks
	Classification
	Regression
	Link Prediction

	Unsupervised Learning Tasks
	Clustering
	Anomaly detection
	Low-dimensional embedding (LDE)

	Taxonomy of Temporal Graph Neural Networks
	Snapshot-based models
	Event-based models
	Category comparison

	Open Challenges
	The Expressive Power of Temporal Graph Neural Networks
	Dynamic WL test
	Universal Approximation Theorem for Temporal Graph Neural Networks
	Experimental Results

	Other approaches to model temporal graphs
	Conclusions

	The Expressive Power of Pooling in Graph Neural Networks
	Pooling in Graph Neural Networks: Basic Concepts and Definitions
	Select, Reduce, Connect
	Taxonomy of Graph Pooling
	Existing Pooling Operators
	Evaluation of a Pooling Operator

	Pooling Operators can Preserve the Expressive Power of GNNs
	Conditions for Preserving the Expressive Power
	Expressiveness of Existing Pooling Operators
	Criticism on Pooling
	Experimental Results

	Pooling Operators can Increase the Expressive Power of GNNs
	Conditions for Increasing the Expressive Power
	XPool: An Expressive Pooling Operator
	Experimental Results

	Conclusions

	Conclusion
	Appendix
	Bibliography

		2024-07-10T14:07:25+0200
	LACHI VERONICA

