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A B S T R A C T   

Viticulture is one of the most important agricultural sectors in the Mediterranean area but also one with sub-
stantial impact on the soil ecosystem. Some of the most common practices in viticulture, such as tillage, inter-row 
management, fertilization and use of pesticides, can have important effects on soil communities. The latter 
significantly contribute to several fundamental soil processes such as decomposition, nutrient and carbon 
cycling, and microbiota regulation. In perspective, it is therefore necessary to assess the effects of agronomical 
practices on soil biological communities. The increasing shift towards organic viticulture is seen as a promising 
management model to maintain soil functionality and preserve soil biodiversity. Below, we present an appraisal 
of the main practices in conventional and organic viticulture and their possible effects on soil mesofauna. Un-
derstanding the extent to which organic practices contribute to maintaining/altering soil functionality and 
biodiversity is a fundamental step towards the development of an environmentally sustainable viticulture.   

1. Introduction 

Sustainable soil management became part of the United Nations 
Global Agenda for the mitigation of climate change effects and for the 
fight against desertification and soil depletion (Amelung et al., 2020; 
Baronti et al., 2021; FAO. Food and Agriculture Organization of the 
United Nations, 2022). Overconsumption of land, intensive agriculture 
and soil erosion are the main threats, and are currently worsened by the 
increase in the frequency of extreme weather events (Montanarella, 
2007). To date, it is considered of utmost importance to safeguard the 
soil and its functions with a view to sustaining productivity, achieving 
an efficient agriculture, and ensuring water availability (Aspetti et al., 
2010; Simoni et al., 2018). In this context, awareness has increased that 
soil biota significantly contributes to aboveground functioning of 
terrestrial ecosystems and their capacity to resist and react to environ-
mental changes (Bardgett and van der Putten, 2014). Soil micro-
arthropods play a pivotal role in many fundamental soil processes such 
as decomposition, nutrient and carbon cycling, microflora regulation 
and bioturbation (Nielsen et al., 2011; Lakshmi et al., 2020; Menta and 
Remelli, 2020). Microarthropod biomass reflects the amount of organic 
matter in the soil, and species community composition indicates the 
rates of nutrient turnover (Maienza et al., 2023). In turn, soil 

communities can be influenced and shaped by several above- and 
belowground factors, such as soil porosity and compaction (Cambi et al., 
2017), moisture (Tsiafouli et al., 2005; Platen and Glemnitz, 2016; 
Ghiglieno et al., 2020), carbon and nutrient availability (McCormack 
et al., 2013; Ghiglieno et al., 2020), soil Ph (Ghiglieno et al., 2020; 
Viketoft et al., 2021), presence of toxic substances (Migliorini et al., 
2004; Singh and Tripathi, 2009). Moreover, given their limited dispersal 
capabilities, the community structure of soil microarthropods can be 
strongly influenced by habitat fragmentation (Åström and Bengtsson, 
2011). A highly diversified soil fauna is generally related to low biocide 
applications, high amounts of organic matter, and low mechanical 
perturbance (Miyazawa et al., 2002; Menta and Remelli, 2020). 

Viticulture is one of the most important agricultural sector, with 
about 7.5 million ha of global production and more than 3 million ha in 
Europe (Karimi et al., 2020; Ghiglieno et al., 2021; Giffard et al., 2022). 
Amongst agricultural activities, viticulture is not immune to soil biodi-
versity decline, since widespread viticultural practices, such as pesti-
cides and tillage, profoundly affect soil biodiversity and may have a 
detrimental effect on microarthropods populations, in terms of abun-
dance, diversity and community structure (Paiola et al., 2020). Many of 
the most common viticultural practices can lead to soil degradation and 
loss of soil functions, with consequent impact on production itself. For 
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these reasons, a major shift is necessary leading towards an agroeco-
logical approach for a sustainable viticulture, boosting those techniques 
that can ensure quality production and a low impact on biodiversity 
(Karimi et al., 2020). From this perspective, organic viticulture is seen as 
a promising option in the development of an environmental-friendly 
agriculture (Ostandie et al., 2021). In general, organic managed fields 
host a greater diversity and density of soil arthropods than 
conventionally-managed ones (Bengtsson et al., 2005; Hole et al., 2005; 
Bavec and Bavec, 2015). However, although organic farming is generi-
cally seen as beneficial, the comparative analysis organic vs. conven-
tional does not always clarify which aspects have a stronger influence in 
shaping the biodiversity of soil arthropods (Hole et al., 2005; Tuck et al., 
2014). Conversion to organic farming may positively affect soil biota, 
but it is often complex to determine which is the main driver of the 
observable changes in soil microarthropod communities (Werner and 
Dindal, 1990). Observed changes in abundance or composition in soil 
arthropod communities are the result of the concerted action of multiple 
factors, combined with management practices (Viketoft et al., 2021). 
Furthermore, it cannot be ruled out that some organic practices may 
have a negative effect on some components of soil biodiversity (Tuck 
et al., 2014; Buchholz et al., 2017). As far as it is known, soil quality is 
generally higher in organic vineyards than in Integrated Pest Manage-
ment (IPM) and conventionally-managed ones (Peverieri et al., 2009; 
Gagnarli et al., 2015; Menta et al., 2015; Simoni et al., 2019; Ghiglieno 
et al., 2020, 2021). However, as already mentioned, results are not al-
ways straightforward and, in some cases, organic practices, such as 
tillage, can impact much more than others on the community structure 
of soil arthropods (Seniczak et al., 2018). 

In the following, we will evaluate the studies carried out on the soil 
mesofauna - with particular reference to the most abundant groups such 
as springtails (Collembola) and mites (Acari) - in organic and conven-
tional vineyards, attempting to appraise how individual management 
practices impact on the diversity and composition of the soil biota. 
Althought not all of the variables – and their interactions – impacting 
soil arthropod diversity in the viticultural agroecosystem can be 
exhaustively examined, significant features from the literature are re-
ported and the major points highlighted. 

2. Microarthropods as bioindicators of soil quality 

The development of standardized methods for soil quality evaluation 
is crucial to assess and monitor soil changes in composition and func-
tionality over time in response to natural and anthropogenic factors. Soil 
quality depends on multiple and interactive physical, chemical, and 
biological properties as well as historical land use (Knoepp et al., 2000; 
Gagnarli et al., 2015). The multitude of factors involved makes an 
exhaustive analysis of the soil complex, just as it makes it reductive to 
use a single parameter to assess its health. Over the course of time, 
various indices - chemical, physical, and biological - have been devel-
oped for the assessment of soil quality, depending on the scopes and 
scale of application (Aspetti et al., 2010). In this context, biological 
indices provide a good representation of the state of the soil, as the 
biological elements reflect the simultaneous action of its chemical and 
physical characteristics. The functionality of the soil and, consequently, 
the ecosystem services it provides, largely depends on the biological 
activity within it, therefore measuring this biodiversity can reflect the 
capacity of the soil to deliver ecosystem services (Menta et al., 2018b). 
Classical ecological indices – i.e., Shannon-Wiener, evenness, Margalef, 
equitability, Berger-Parker – can be an effective tool in mirroring 
changes in soil communities due to heavy disturbance related to agri-
cultural practices (Caruso et al., 2007; Gagnarli et al., 2015), but they 
sometimes fail to highlight differences in community structure and 
ecological differentiation of species (Menta and Remelli, 2020). Alter-
natively, in the past two decades, several authors proposed methods to 
define soil quality based on a single taxon (see Menta and Remelli, 
2020). 

Among soil microarthropods, Acari and Collembola have been 
largely employed as bioindicators since they are by far the most abun-
dant groups of soil biota (van Straalen, 1998; Coleman and Wall, 2015; 
Vaj et al., 2014; Gruss et al., 2019). As biological regulators in several 
soil functionalities, they have been regarded as the most sensitive 
components to soil degradation and land use (Chauvat et al., 2007; 
Buchholz et al., 2017; Costantini et al., 2018). The ratio between the 
abundances of these two major groups has been used as soil indicator in 
several studies, based on the assumption that, under good soil quality 
conditions, the abundance of mites is greater than that of springtails 
(Menta et al., 2008; Vaj et al., 2014; Menta and Remelli, 2020). How-
ever, since the identification at the genus or species level of soil in-
vertebrates often requires expertise, several authors have proposed 
indices based on higher taxonomic levels and a multitaxon approach (e. 
g., Cortet et al., 2002; Parisi et al., 2005; Ruiz et al., 2011). Indeed, 
information obtained at the macro-taxonomic level is usually sufficient 
to detect the effects of anthropogenic disturbances on the soil ecosystem, 
without resulting in a significative loss of information (Caruso and 
Migliorini, 2006). In Italy, QBS-ar (Soil Biological Quality-arthropod) 
has been widely adopted for assessing soil quality in different environ-
mental contexts, as it is relatively easy to apply and does not require 
taxonomic identification to the species-level (Aspetti et al., 2010; Menta 
et al., 2018a, 2018b). Since its introduction, this method has caught on 
and found application in various environmental contexts (Menta et al., 
2018a, 2018b). In this integrated approach, all collected micro-
arthropods are determined at a macro-taxonomic level (Class or Order) 
and an ecomorphological index based on their degree of adaptation to 
the edaphic environment (EMI, ranging from 1 to 20 depending on the 
degree of adaptation) is attributed to each taxon (here defined as a 
biological form); the resulting QBS-ar value will be given by the sum of 
the EMI values attributed to the biological forms collected in each soil 
sample (Parisi, 2001; Parisi et al., 2005). The principle underlying this 
index is that the greater the presence of taxa strongly adapted to the soil 
microenvironment (hemi- or euedaphic forms), the higher the quality of 
the soil itself (higher EMI values) (Parisi, 2001; Parisi et al., 2005). 
Euedaphic forms are the most sensitive to changes caused by human 
activities and can be relevant for monitoring purposes (Parisi et al., 
2005; Menta et al., 2018b). These forms often require a long time to 
recover after an external disturbance (Costantini et al., 2015). Few 
versions of this index have been proposed: some extended to taxa other 
than arthropods (i.e., Menta et al., 2015; Bigiotti et al., 2023), others 
restricted to considering a subset of taxa (Parisi and Menta, 2008). 
Overall, QBS-ar has proven to be a valid method to assess the quality of 
soil, reproducible at different scales and applicable over both short and 
long periods of time (Menta et al., 2018a, 2018b). 

3. Use of agrochemicals and impact on soil microarthropods 

Synthetic pesticides and fertilizers are among the biggest threats to 
soil invertebrates, such as mites and springtails (Gunstone et al., 2021). 
Albeit designed for protecting plants from specific pests, their impact on 
harmless soil fauna can be serious, and their action can drift to 
non-target areas (Vaj et al., 2014). In addition, most data available on 
the effects of these chemicals on soil organisms come from laboratory 
tests on model species, and only a limited data are available on 
non-model taxa in field experiments (Gunstone et al., 2021). In con-
ventional agriculture, the use of synthetic agrochemicals to protect 
plants against pests (insecticides or acaricides) or to control diseases 
(fungicides) and weeds (herbicides) may exert a clear impact on soil 
biodiversity, at least during the period of greatest chemical load (Vaj 
et al., 2014). Additive effects may also arise as a consequence of the 
accumulation of agrochemical residue mixtures in treated fields (Panico 
et al., 2022). Conversely, the absence or reduction of pesticide appli-
cation in organic farming translates in a drop of their negative effects on 
soil organisms (Karimi et al., 2020; Bosco et al., 2022). However, the 
response to biocides may vary amongst different taxa according to 
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organism absorption, biotransformation, and detoxification routes as 
well as to pesticide avoidance behavior (Vaj et al., 2014; Joimel et al., 
2022). In general, most of the effects of pesticides on soil fauna are 
negative, with insecticides and broad-spectrum chemicals having by far 
the greatest negative impact on soil biodiversity compared to herbicides 
and fungicides (Gunstone et al., 2021; Beaumelle et al., 2023). In 
addition, the accumulation of high residue concentrations in the soil can 
persist over time, slowing down the recovery of microarthropod com-
munities after the physiological seasonal decline (Vaj et al., 2014; 
Beaumelle et al., 2023). Pesticides can affect soil arthropod populations 
directly or indirectly (Lins et al., 2007; Zaller et al., 2016). Indirect ef-
fects are mainly caused by pesticide-induced changes in ground cover 
vegetation (Edwards and Thompson, 1973) or by a cascading effect 
related to changes in fungal communities that represent the main tro-
phic resource for several species (Mandl et al., 2018). Furthermore, 
surface species are more likely to be affected by pesticides than 
soil-dwelling ones (Fiera et al., 2020). At the same time, pesticides may 
have a bigger impact on species with low dispersal ability, since they 
cannot avoid sprayed areas by moving to undisturbed nearby zones 
(Zaller et al., 2016; Buchholz et al., 2017; Maderthaner et al., 2020). 

Both springtails and mites are vulnerable to the use of insecticides 
(Gunstone et al., 2021). For instance, Ostandie et al. (2021) showed that 
the intensity of insecticide use, either organic or synthetic, has negative 
effects on the abundance of springtails regardless of the adopted farming 
system. In some cases, insecticide-induced changes in soil community 
structure may favor certain species, as a consequence of the disappear-
ance of direct competitors or predators (Vaj et al., 2014; Gunstone et al., 
2021). The response of soil invertebrates to fungicides and herbicides is 
more variable than that to insecticides, (Gunstone et al., 2021), as both 
fungicides and herbicides have being conceived to target non-animal 
groups (Beaumelle et al., 2023). On the other hand, too few studies 
have been carried out to draw generalized conclusions on the direct 
effects of fungicides and herbicides on soil communities (Beaumelle 
et al., 2023). Both synthetic and non-synthetic fungicides are reported to 
directly affect non-target soil arthropods in vineyards (Pozzebon et al., 
2010; Reiff et al., 2021). Allarmingly, in their review on the contami-
nation of vineyard soils, Komárek et al. (2010) observed that Cu-based 
fungicides exceed EU legislative limits in most of European vineyards, 
posing a significant environmental and toxicological hazard. Even in 
organic vineyards, where the use of synthetic products is banned 
(Regulation (EU) 2018/848), high concentrations of copper as a fungi-
cide have been shown to have a negative effect on springtail abundance, 
suggesting that the fungicidal activity can exert a cascading negative 
effect on soil communities regardless of the type of cropping system 
(Mandl et al., 2018; Ostandie et al., 2021). In the case of herbicides, 
negative effects on soil fauna may be a consequence of weed reduction 
(Miyazawa et al., 2002). Indeed, the preservation of weed cover due to 
the suppression of the herbicide application benefits organisms in the 
more superficial layers of the soil (Renaud et al., 2004) since vegetation 
can provide shelter from high temperatures and constitutes a source of 
nourishment for various phytophagous (Gonçalves et al., 2020). Albeit 
the use of herbicides may lead to lower values in the abundance and 
diversity of microarthropods, the timing of herbicide administration 
may also have different effects on soil fauna (Renaud et al., 2004). The 
search for sustainable practices that can maintain soil fertility has led to 
an increasingly restricted use of herbicides, with their application 
limited to the post-emergence period (Renaud et al., 2004). In vineyards 
where post-emergence application of herbicides has been carried out, a 
relatively high presence of soil microarthropods was found with respect 
to vineyards where herbicide have been applied also in the 
pre-emergence phase (Reinecke et al., 2002; Renaud et al., 2004). In 
these cases, the supply of dead organic matter provided by the regrown 
plants seems to partly compensate the potential negative effects of 
herbicide application on soil fauna (Reinecke et al., 2002). In a study 
conducted in vineyards in the Valencian Community, Seniczak et al. 
(2018) showed that there was no difference in density or species 

diversity between oribatid mites from conventional and organic vine-
yards. The reasons for these apparently counterintuitive results probably 
lie in the mites’ greater tolerance to the use of herbicides used in con-
ventional agriculture paired with their sensitivity to mechanical tillage 
that was more intense in organic vineyards (Seniczak et al., 2018). 

4. Response of soil microarthropods to fertilization practices 

Fertilizers are substances that provide crops with necessary nutrients 
in forms that are easy to use and handle. They can be in the form of 
solids, liquids, or gases. Applying fertilizers can be done either to the soil 
or directly to the foliage (Angus, 2012). Soil fertilization in conventional 
farming can be accomplished using synthetic minerals or a combination 
of synthetic and organic fertilizers (Christel et al., 2021), whereas in 
organic farming, fertilization is entirely based on organic matter, live-
stock or green manure, or multiannual crop rotation that includes 
leguminous crops (Regulation (EU) 2018/848). The addition of mineral 
or organic amendments can have a positive impact on the abundance of 
soil biota. However, the specific response may vary depending on the 
type of fertilizer, the regime of manuring and the functional group being 
considered (Kautz et al., 2006; Axelsen and Kristensen, 2000; Viketoft 
et al., 2021; Betancur-Corredor et al., 2023). In addition, the impact of 
fertilization is influenced by climate and soil characteristics (Betan-
cur-Corredor et al., 2023). In springtails, changes in chemical properties 
of the soil due to fertilizer addition may play a role in shaping their 
communities, as springtails are usually sensitive to pH variations 
(Viketoft et al., 2021); moreover, an increase in organic matter in 
organic fertilized fields leads to an augmentation of the bacteria and 
fungi on the surface, fostering the abundance of epiedaphic and hemi-
edaphic springtail species (Betancur-Corredor et al., 2023). A few 
studies demonstrated that abundance of mites is usually enhanced by 
organic fertilizers more than mineral ones (Platen and Glemnitz, 2016; 
Viketoft et al., 2021), but response to fertilizers may strongly vary across 
different groups, depending on their feeding habits (Cao et al., 2011; 
Gruss et al., 2018; Viketoft et al., 2021). For example, high additions of 
phosphorus may have a detrimental effect on fungi, thus exerting a 
top-down control on micophagous mites (Cao et al., 2011; Sun et al., 
2017); at the same time, an increase in predatory mites, such as Meso-
stigmata, can be a consequence of higher prey density in organic 
fertilized fields (Cao et al., 2011; Betancur-Corredor et al., 2023). More 
recently, a technique that is successfully spreading in viticulture con-
cerns the conversion of chopped and dried vine prunings into biochar, a 
high-carbon by-product resulting from the pyrolysis of feedstock in the 
absence of - or with very limited - oxygen (Wang and Wang, 2019; 
Cataldo et al., 2021). Its application in organic farming has been sug-
gested to counteract soil carbon depletion and reduce the adaptive stress 
of crops in arid or semi-arid areas (Chagas et al., 2022; Maienza et al., 
2023). In the Mediterranean vineyards, which can be frequently affected 
by summer droughts, biochar application does not alter the community 
structure of soil microarthropods (Andrés et al., 2019), and a single 
application increases the soil biological quality (Maienza et al., 2023). In 
addition, due to its ability to augment water retention, biochar may have 
a positive effect on water-dependent species of soil biota, such as 
springtails (Andrés et al., 2019), even if the repeated application may 
result in the reduction of species turnover (β-diversity), promoting the 
establishment of those species better suited to wet environments 
(Maienza et al., 2023). In general, to promote a long-term increase in 
soil fauna, the addition of organic or mineral amendments should be 
combined with agricultural practices affecting soil quality, such as 
reduced tillage or crop rotations (Kautz et al., 2006; Viketoft et al., 
2021). 

5. Management practices in viticulture and soil communities 

Viticulture has witnessed a recent shift to more soil conservative 
techniques such as minimum or no tillage, living mulches, and cover- 
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crops, that can preserve soil functioning and ecological services (Conti, 
2015; Sommaggio et al., 2018; Cataldo et al., 2021). In intensive viti-
culture, tillage, mulching, and the use of herbicides are applied to 
reduce competition between the inter-row vegetation and the vine. On 
the contrary, under extensive management, the inter-rows space can be 
maintained with permanent grass cover (Bordoni et al., 2019). Inter-row 
management practices have a profound effect on the community of soil 
organisms, and mites and springtails are sensitive to the modification in 
soil structure due to management practices (Tabaglio et al., 2009; 
Simoni et al., 2018; Möth et al., 2023). In vineyards, inter-row man-
agement can be carried out in different ways, with the aim of weed 
control, water retention and soil erosion prevention. Depending on the 
management policy adopted, vineyard soils can be kept bare as a result 
of periodic and intensive tillage, show alternating tillage (i.e. a field in 
which an inter-row with vegetation is alternated with an inter-row 
where tillage is applied), or have no tillage (i.e. inter-rows left perma-
nently covered by vegetation) (Buchholz et al., 2017; Pfingstmann et al., 
2019). Tillage is a common practice that involves mechanical manipu-
lation of the soil to loosen compact soil, manage soil water retention, 
and incorporate organic matter (Dobrei et al., 2015). Soil changes due to 
tillage can make the habitat less favorable, affecting organisms ac-
cording to their susceptibility to soil compaction and disturbance 
(Schrader and Lingnau, 1997; Buchholz et al., 2017; Gonçalves et al., 
2020; Menta et al., 2020). In general, the response of soil micro- and 
mesofauna to tillage is negative, leading to a net decline in community 
complexity as result of organism exposure to desiccation, moisture 
decrease, reduction of plant cover, and change in food availability 
(Cortet et al., 2002; Menta et al., 2015, 2018b; Bordoni et al., 2019). 
Even deep tillage activities prior to vineyard plantation can have 
detrimental effects on soil biota (Costantini et al., 2015; Gagnarli et al., 
2021). Hemiedaphic and eudaphic springtails appear to be particularly 
sensitive to tillage practices, with fewer species in response to 
tillage-induced changes in moisture and more numerous populations in 
undisturbed soils (Simoni et al., 2018). An apparently bucking result 
was obtained by Pfingstmann et al. (2019), that showed how the di-
versity of springtails remains unaffected in vineyards where tillage is 
applied. Similarly, Fiera et al. (2020), in a survey carried out in Roma-
nian vineyards, found that tillage intensity may actually forster spring-
tail assemblages. However, it should be pointed out that pitfall sampling 
in both Pfingstmann et al. (2019) and Fiera et al. (2020) may have 
captured predominantly topsoil species, which can be favored by a 
greater food availability, the creation of shelters due to tillage practices, 
and the disruption of predator control mechanisms (Fiera et al., 2020; 
Ostandie et al., 2021). Mites are generally sensitive to tillage (Tabaglio 
et al., 2009), although the response may vary depending on the bio-
logical characteristics of the species. For example, tillage has been 
shown to have a greater effect on low vagile groups, such as Oribatida, 
whereas it has little or no effect on predatory Mesostigmata that are able 
to move large distances to colonize new habitats (Seniczak et al., 2018). 
Although the negative effects of tillage on soil biota are well docu-
mented, Buchholz et al. (2017) suggested that, in vineyards, the adverse 
impact of tillage on mesofauna can be partly compensated by estab-
lishing plant covers during the rest of the year. In vineyards, grass cover, 
either with spontaneous or sown plants, promotes arthropod richness 
(Winter et al., 2018; Gonçalves et al., 2020; Paiola et al., 2020; Bosco 
et al., 2022; Möth et al., 2023), increasing the presence of beneficial 
species (Burgio et al., 2016; Sommaggio et al., 2018). In general, crops 
with permanent grass cover show a higher diversity of soil micro-
arthropods (Nannelli and Simoni, 2002; Parisi et al., 2005; Gagnarli 
et al., 2015; Bordoni et al., 2019; Coller et al., 2023; Möth et al., 2023). 
Maintaining vegetation cover can help creating a favorable microhab-
itat, providing organic matter, mitigating the effects of drought and 
solarization, and providing shelters from predators (Renaud et al., 2004; 
Gonçalves et al., 2020; Coller et al., 2023). Even in the case of herbicide 
application, the presence of cover grass may exert a beneficial effect on 
soil fauna compared to bare soil (Reinecke et al., 2002; Renaud et al., 

2004). Another commonly used technique in vineyards is mulching, a 
practice that involves soil covering with organic or inorganic materials 
for maintaining soil moisture, reduce soil compaction, and protect soil 
surface (Fraga and Santos, 2018; Cataldo et al., 2021). Mulching can 
create a humid microclimate favorable for soil mesofauna, and, when 
living plants are involved, may prevent weed development and enhance 
nutrient levels available for soil biota (Favretto et al., 1992; Fraga and 
Santos, 2018). Springtails and mites can be strongly influenced by 
mulching in vineyards (Nannelli and Simoni, 2002; Gagnarli et al., 
2019), with the former being more sensitive to moisture, and usually 
favored by a more humid microclimate (Tsiafouli et al., 2005). However, 
the outcomes of mulching are not always straightforward and its impact 
on soil arthropods may vary depending on the type of mulch and the 
crop being grown (Noor-ul-Ain et al., 2022). 

6. Future perspectives for soil biota in organic viticulture 

Vineyards are among the most intensively managed agroecosystems 
and widespread practices such as tillage, mineral fertilization and the 
absence of inter-row plant cover can have a strong impact on the soil 
biotic component (Gonçalves et al., 2021; Andrés et al., 2022). At the 
same time, a decline in soil biodiversity and a change in the structure of 
biotic communities can have major consequences on the yield and 
quality of the wine produced (Priori et al., 2016). Therefore, a conver-
sion of viticulture towards an eco-sustainable agroecological model, 
which recognizes the importance of biotic communities in maintaining 
soil health and functionality, appears necessary (Gonçalves et al., 2021). 
In this context, the shift towards organic viticulture, encouraging 
practices such as the reduction or elimination of tillage, permanent plant 
cover, and the reduction of herbicides and synthetic fertilizers, is seen as 
promising management model to maintain soil functionality and pre-
serve soil biodiversity (Conti, 2015; Christel et al., 2021; Gagnarli et al., 
2021; Andrés et al., 2022). 

Historically, the benefits of organic farming for soil biodiversity have 
been attributed to the ban on synthetic pesticides and fertilizers, higher 
levels of organic matter in the soil and the maintenance of cover crops 
(Hole et al., 2005). However, some practices, such as the use of 
copper-based fungicides or tillage, which are more prevalent in organic 
than in conventional agriculture, may interact negatively with soil 
biodiversity (Ostandie et al., 2021). Indeed, although soils in organic 
vineyards exhibit an overall higher quality than those in conventional 
ones (Peverieri et al., 2009; Gagnarli et al., 2015; Menta et al., 2015; 
Simoni et al., 2019; Ghiglieno et al., 2020, 2021), in organic farming, 
where tillage is the only technique allowed for weed control in the 
absence of herbicide application, the effects of mechanical disturbance 
on mesofauna may overshadow the benefits of the pesticide ban (Linnyk 
et al., 2019). In addition, tillage, even when performed infrequently, can 
have negative effects on the organic matter pool, nullifying the miti-
gating effect of cover crops (Belmonte et al., 2018). Excessive earth 
works and accelerated erosion can lead to a reduction in soil fertility 
regardless of organic management, with cascading effects on soil 
arthropod communities (Costantini et al., 2018). Lastly, some studies 
have highlighted how the beneficial effects of conversion to organic 
farming may be scale- and crop-dependent, raising the need to evaluate 
the impact of agricultural management practices in different contexts 
(Gabriel et al., 2010; Pfingstmann et al., 2019; Menta et al., 2020; 
Ostandie et al., 2021). The effects of organic farming may be masked by 
the proximity of conventional crops, or by residual effects from previous 
land use (Menta et al., 2020). Further investigations are needed to un-
ravel the drivers of change in community composition of soil mesofauna 
at different temporal and spatial scales, and how these communities 
respond to modifications induced by ongoing climate change. 

The brief review provided here is little more than a glimpse at the 
complex interactions occurring in the soil ecosystem, where it is often 
complicated to clearly distinguish how individual factors contribute to 
modelling soil communities. Paradoxically, monocultures such as 
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vineyard, as simplified systems, are ideal models for studying the pro-
cesses involved in observed patterns of abundance and diversity of soil 
microarthropods (Gergócs et al., 2022). In general, the use of synthetic 
biological indices such as QBS-ar proves to be adequate for evaluating 
the short- and long-term effects of anthropogenic factors on soil biota 
(Menta et al., 2018b). However, a higher taxonomic resolution is 
sometimes necessary in order to find out how agronomic disturbances 
affect the relationship between soil chain components (Viketoft et al., 
2021) and how they impact organisms characterized by different bio-
logical traits and belonging to different feeding guilds (Gagnarli et al., 
2017; Simoni et al., 2019). Although organic farming is therefore an 
ever-expanding model, the management aspects of organic versus con-
ventional farming are not entirely clear, and the emergence of con-
flicting responses underlines how crucial it is to assess the effects of 
management practices at the level of individual functional groups and 
not just as a whole. 
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