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Abstract

In this paper we deal with quasivarieties of residuated structures which
form the equivalent algebraic semantics of a positive fragment of some
substructural logic. Our focus is mainly on varieties and quasivarieties of
Wajsberg hoops, which are the equivalent algebraic semantics of the pos-
itive fragment of  Lukasiewicz many-valued logic. In particular we study
the lattice of subquasivarieties of Wajsberg hoops and we describe com-
pletely all the subvarieties of Wajsberg hoops that are primitive. Though
the treatment is mostly algebraic in nature, there are obvious connections
with the underlying logics.

1 Introduction

With the birth of Abstract Algebraic Logic, which can be traced back to the
seminal monograph by W. Blok and D. Pigozzi [17], the connections between
a logic (and its extensions) and its class of algebraic models have become a
fact of life and a continuing source of inspiration. In fact, formulating such a
deep, but somewhat transparent and user-friendly connection has enabled the
discovery of many bridge theorems between the two fields. Loosely speaking
formulating a bridge theorem consists in stating a “logical” result in a totally
algebraic fashion (or viceversa). This implies that certain logical concepts can
be studied and investigated using the machinery of general algebra; even more,
some logical concepts, when translated into algebra, can acquire a life on their
own and be investigated per se independently of their logical origin.

The main topic of this paper is an example; a logic L is structurally complete
if every admissible rule of L is derivable in L. Classical logic is structurally
complete but intuitionistic logic is not: a famous example is Harrop’s rule

{¬p → (q ∨ r)} ⇒ {(¬p → q) ∨ (¬p → r)}

which is admissible but not derivable. A logic L is hereditary structurally com-
plete if L and all its extensions are structurally complete. The first to realize
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that these two concepts have an interesting algebraic counterpart (even before
the Blok-Pigozzi connection was established) was C. Bergman [13]. The Blok-
Pigozzi algebraization machinery associates to a logic with enough structure
(an algebraizable logic) a quasivariety of algebras, called its equivalent algebraic
semantics. The following can be proved in a very standard way:

Theorem 1.1. Let L be a logic and Q its equivalent algebraic semantics; then

1. L is structurally complete if and only if no proper subquasivariety of Q
can generate the same variety as Q;

2. L is hereditary structurally complete if and only if every subquasivariety
of Q is equational relative to Q (i.e. is axiomatized relative to Q by a set
of equations).

In this paper we investigate the algebraic properties suggested by the above
theorem in quasivarieties of Wajsberg hoops. Hoops are residuated monoids,
introduced in an unpublished manuscript by Büchi and Owens, grounded on
the work of Bosbach on partially ordered monoids [19]. Hoops are commutative
semilattice ordered monoids and are in fact residuated; the monoidal operation
· has a residuum → which makes the underlying ordering the inverse divisibility
ordering (i.e. a ≤ b if and only if there is a c with a = bc. Hoops have been first
studied systematically by I.M.A. Ferreirim in her PhD thesis [27] and later in
[16].

Wajsberg hoops are hoops that satisfy Tanaka’s equation

(x → y) → y ≈ (y → x) → x

and play a very important role in mathematical fuzzy logic. The connection
between hoops and many-valued logic has been first investigated in [7]; how-
ever the real impact of Wajsberg hoops was made clear in [8]. In that paper
it was shown that one cannot really understand BL-algebras, i.e. the equiva-
lent algebraic semantics of Hájek Basic Logic, without understanding Wajsberg
hoops; this happens because every subdirectly irreducible BL-algebra can be
constructed as an ordinal sum of a Wajsberg algebra and Wajsberg hoops.

Wajsberg hoops are also connected with ℓ-groups: the totally ordered Wa-
jsberg hoops generate the variety of Wajsberg hoops and they are either iso-
morphic to negative cones of an abelian ℓ-group or intervals in abelian ℓ-groups
[9]. In terms that are perhaps more familiar to the reader versed in many-
valued logic, totally ordered Wajsberg hoops are either cancellative hoops (hoops
in which the underlying monoid is cancellative), or (term equivalent to) MV-
algebras, whose representation in terms of intervals of abelian ℓ- groups with
strong unit is actually a categorical equivalence via the Mundici’s functor [42].
From the logical point of view Wajsberg hoops are (term equivalent to) zero-free
subreducts of MV-algebras, the equivalent algebraic semantics of  Lukasiewicz
many-valued logic; in fact they are the equivalent algebraic semantics of the
positive fragment of that logic.
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Since in this paper we use (sometimes sophisticated) techniques in general
algebra, in order to make it understandable to a wider audience we felt it neces-
sary to provide a reasonably thorough introduction to the algebraic properties of
varieties and quasivarieties, as well as the main algebraic results that are needed.
Some of these results are already known but we wanted to present them in a
form that we could use in the remainder of the paper. We do this in Sections
2, 3 and 4. In Section 5 we investigate that lattice of subquasivarieties of Wa-
jsberg hoops with special attention to quasivarieties generated by chains. In
Section 6 we tackle the problem of characterizing the primitive and structurally
complete subvarieties and subquasivarieties of Wajsberg hoops. In Section 7 we
look at subquasivarieties not generated by chains and we try to highlight the
complexity of the lattice of subquasivarieties. Finally in Section 8 we investigate
the connections (or the lack thereof) between the lattice of subquasivarieties of
Wajsberg hoops and the lattice of subquasivarieties of MV-algebras.

2 Quasivarieties

For general results in universal algebras, as well as for all the unexplained basic
notions, we refer the reader to [20] or [41]; we will be constantly using the class
operators I,H,S,P,Pu that, applied to a class K of algebras, give the class
of isomorphic images, homomorphic images, subalgebras, direct products and
ultraproducts of (families of) algebras in K. A class of algebras is a variety if
it is closed under H, S and P; if V = HSP, then V(K) is a variety and it is
the smallest variety containing all algebras in K. The subvarieties of a variety
V form a complete lattice under inclusion, that we denote by Λ(V).

There are two fundamental results that we will be using many times and
deserve a spotlight. Let (Ai)i∈I be a family of algebras; we say that B embeds
in

∏
i∈I Ai if B ∈ IS(

∏
i∈I Ai). Let pi be the i-th projection (better the compo-

sition of the isomorphism and the i-th projection) from B to Ai; the embedding
is subdirect if for all i ∈ I, pi(B) = Ai and in this case we will write

B ≤sd

∏
i∈I

Ai.

An algebra B is subdirectly irreducible if it is nontrivial and for any subdirect
embedding

B ≤sd

∏
i∈I

Ai.

there is an i ∈ I such that B and Ai are isomorphic under pi If V is a variety
we denote by si(V) the class of subdirectly irreducible algebras in V.

Theorem 2.1. (Birkhoff [15]) Every algebra can be subdirectly embedded in a
product of subdirectly irreducible algebras. So if A ∈ V, then A can be subdirectly
embedded in a product of members of si(V).

A variety V is congruence distributive if the congruence lattices of all algebras
in V are distributive.
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Theorem 2.2. (Jónsson’s Lemma [36]) Suppose that K is a class of algebras
such that V(K) is congruence distributive. Then

1. si(V) ⊆ HSPu(K);

2. if V1, . . . ,Vn are subvarieties of V, then

si(V1 ∨ . . . ∨ Vn) = si(V1) ∪ · · · ∪ si(Vn)

where the join is taken in the lattice of subvarieties of V.

A quasivariety is a class of algebras defined by a set of quasiidentities;
a quasiidentity is an implication whose premise is a finite join of equations
and whose conclusion is a single equation. Given a class K of algebras the
quasiequational theory of K, denoted by Thq(K) is the set of quasiidentities
holding in all algebras in K; given a set Σ of quasidentities Mod(Σ) is the class
of algebras in which every quasiidentity in Σ holds. A.I. Mal’cev showed first
that for any class K of algebras Mod(Thq(K)) is a quasivariety and

ISPPu(K) = Mod(Thq(K)).

Therefore, if K is a class of algebras, then Q(K) = ISPPu(K) is the quasivari-
ety generated by K. While in the western world doing general algebra mostly
meant dealing with varieties of algebras, quasivarieties were vigorously pursued
in Russia, under the impulse of A.I. Mal’cev. An extensive account of the results
of the Russian school can be found in [34].

If Q is a quasivariety and A ∈ Q, a relative congruence of A is a con-
gruence θ such that A/θ ∈ Q; relative congruences form an algebraic lattice
ConQ(A) and for any congruence lattice property P we say that A ∈ Q is rela-
tively P if ConQ(A) satisfies P . So for instance A is relatively subdirectly
irreducible if ConQ(A) has a unique minimal element; since clearly ConQ(A)
is a meet subsemilattice of Con(A), any subdirectly irreducible algebra is rel-
atively subdirectly irreducible for any quasivariety to which it belongs. For a
quasivariety Q we denote by Qrsi the class of relatively subdirectly irreducible
algebras in Q.

We have the equivalent of Birkhoff’s and Jónsson’s results for quasivarieties:

Theorem 2.3. Let Q be any quasivariety.

1. (Mal’cev [39]) Every A ∈ Q is a subdirectly embeddable in a product of
algebras in Qrsi.

2. (Czelakowski-Dziobiak [24]) If Q = Q(K), then Qrsi ⊆ ISPu(K).

The class of all subquasivarieties of a given quasivariety V is a lattice under
inclusion, called the lattice of subquasivarieties of Q and denoted by Λq(Q)
Lattices of subquasivarieties are in general very complex. A quasivariety Q is
Q-universal [45] if for any other quasivariety Q′ of finite type, Λq(Q′) is a
homomorphic image of a sublattice of Λq(Q).
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Lemma 2.4. For every Q-universal quasivariety Q

• the free lattice on ω generators is embeddable in Λq(Q);

• |Λq(Q)| = 2ℵ0 .

So the lattice of subquasivarieties of a Q-universal quasivariety is horri-
bly complex and unfortunately Q-universal quasivarieties are ubiquitous. First
clearly Q-universality is upward hereditary: if Q is Q-universal and Q ⊆ Q′,
then Q′ is universal as well. Second in [1] the authors gave a sufficient condition
for a quasivariety to be Q-universal, condition that is satisfied in many cases.
Here is a dumbed-down version of the condition that works well in our case (see
[1], Corollary 3.4).

Lemma 2.5. Let Q be a quasivariety such that V(Q) is congruence distributive
and has the congruence extension property. If Q contains and infinite family
of simple algebras, such that none is embeddable in any other, then Q is Q-
universal.

A quasivariety Q is locally finite if every finitely generated algebra in Q
is finite, and it is finitely generated if it is generated by finitely many finite
algebras. The following facts are easy to check:

• for any quasivariety Q, H(Q) = V(Q);

• Q is locally finite if and only if V(Q) is such;

• for any quasivariety Q and any subquasivariety Q′ of Q, V(Q′) is the
smallest variety V such that Q′ ⊆ V ∩ Q.

3 Structurally complete and primitive quasiva-
rieties

Because of the results in [17], one may argue that quasivarieties represent the
real algebraic counterparts of logics understood as consequence relations (as
opposed to varieties, that are counterparts of logics viewed as a set of theo-
rems). In fact there are some interesting algebraic properties of quasivarieties
that have been considered only because of their connection with logic: to a logic
with certain characteristics one can associate a quasivariety of algebras called to
equivalent algebraic semantics. Conversely, given a quasivariety Q with certain
algebraic properties one can find a logic such that Q is its equivalent. The pro-
cedure is algorithmic and it allows to pass definitions from one side to the other.
However, once a logical property is transformed into an algebraic one, than it
can be applied to any quasivariety of algebras, irregardless of its “logicizability”.
The properties we are introducing in this section have both a logical origin that
has been discussed in Section 1; more information can be found in [13].

A quasivariety Q is structurally complete if all its proper subquasivarieties
generate proper subvarieties of H(Q); we have the following characterization.
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Theorem 3.1. [21] For a quasivariety Q the following are equivalent:

1. Q is structurally complete;

2. for all quasivarieties Q′ ⊆ Q if H(Q′) = H(Q), then Q = Q′;

3. for all A ∈ Q if V(A) = H(Q), then Q(A) = Q;

4. Q = Q(FQ(ω)).

Proof. That (1) and (2) are equivalent is obvious. If (2) holds, and V(A) =
H(Q(A)) = H(Q), then Q(A) = Q and (3) trivially implies (4). Finally as-
sume(4) and let Q′ ⊆ Q such that H(Q′) = H(Q). Then FQ′(ω) = FQ(ω) and
thus

Q = Q(FQ(ω)) = Q(FQ′(ω)) ⊆ Q′.

Thus Q = Q′ and (2) holds.

For any quasivariety Q, we define the least Q-quasivariety as the smallest
Q′ ⊆ Q such that H(Q) = H(Q′). This concept has been introduced by J.
Gispert in [32] for MV-algebras and it is very useful since:

Corollary 3.2. For any quasivariety Q, Q(FQ(ω)) is structurally complete and
moreover it is the least Q-quasivariety.

It follows at once that a quasivariety Q is structurally complete if and only
if it coincides with its least Q-quasivariety. As a consequence the structurally
complete subvarieties of a quasivariety Q are exactly those that are the least
Q′-quasivarieties for some Q′ ⊆ Q; even more, since H(Q) is a variety, the
structurally complete subquasivarieties of a variety V are exactly the least V′-
quasivarieties for some subvariety V′ of V. This is not as good as it seems; in
general describing the least V-quasivariety is not an easy task, since it requires
knowledge of the free countably generated algebra in V.

To get more information we need some definitions: let A be an algebra and
K a class of algebras of the same type as A. We say that

• A is projective in K if for all B ∈ K if f : B −→ A is a surjective
epimorphism, then there is an embedding g : A −→ B with gf = idA;

• A is weakly projective in K if for all B ∈ K if A ∈ H(B), then A ∈
S(B).

It is clear that if A is projective in K, then A is weakly projective in K. An
algebra A is finitely presented in Q if it is nontrivial and can be defined by a
finite set of generators and relations in Q. This means that there is a finite set
X and a compact congruence θ of FQ(X) such that FQ(X)/θ ∼= A.

Lemma 3.3. Let Q be a quasivariety and let K ⊆ Q such that every A ∈ K is
weakly projective in Q(K). Then Q(K) is structurally complete.

6



Proof. Let Q ⊆ Q(K) with H(Q) = H(Q(K)); then for any A ∈ K there exists
a B ∈ Q with A ∈ H(B). As A is weakly projective in Q, A ∈ S(B) and so
A ∈ Q. This implies Q = Q(K) and so Q(K) is structurally complete.

It is well-known (and a standard exercise in many books) that every algebra
is embeddable in an ultraproduct of its finitely generated subalgebras; it is less
known but still true ([34], Proposition 2.1.18) that any quasivariety Q is gener-
ated by its finitely presented algebras. Since any quasivariety is also generated
by its relative subdirectly irreducible algebras we have

Corollary 3.4. Let Q be a quasivariety; if either

1. every finitely generated algebra in Q is weakly projective, or

2. every finitely presented algebra in Q is weakly projective, or

3. every finitely generated relative subdirectly irreducible in Q is weakly pro-
jective,

then Q is structurally complete.

Clearly (1) implies both (2) and (3); however none of these conditions is
necessary and to get a necessary one we have to consider a smaller class of qua-
sivarieties. We say that a class K of algebras is tame if every finitely generated
algebra in K is finitely presented. Note that the concept has content: any class
K of algebras of finite type which is locally finite in the usual sense (i.e. every
finitely generated algebra in K is finite) is tame since in that case finite, finitely
generated and finitely presented coincide. Tame classes of algebras have been
studied mainly in groups (better, in algebras in which groups are interpretable):
for instance any nilpotent class of groups is tame, so abelian groups are tame
(and it is an example of a tame non locally finite variety).

If A ∈ Q we define

[Q : A] = {B ∈ Q : A /∈ IS(B)}.

It is also folklore that if A is finitely presented, then there is a first order formula
(that in many cases can be made explicit ) Ψ such that for any B, A ∈ S(B) if
and only if B ⊢ Ψ.

Lemma 3.5. Let Q be any quasivariety.

1. If A ∈ Q is finitely presented, then [Q : A] is closed under ISPu (i.e. it
is a universal class);

2. if A is also relatively subdirectly irreducible in Q, then [Q : A] is a quasi-
variety;

3. if A is finitely presented and relatively subdirectly irreducible in Q, then
A is weakly projective in Q if and only if [Q : A] is a variety.
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Proof. Let’s prove (1) Consider B ∈ ISPu([Q : A]); if A ∈ IS(B), then A ∈
ISPu([Q : A]). Hence there exists a family (Ai)i∈I ⊆ [Q : A] and an ultrafilter
U on I such that C = Πi∈IA/U and A ∈ IS(C). So, if Ψ is the first order
formula mentioned above, C ⊨ Ψ; but then by  Lòs Lemma Ψ must be valid
in each Ai (i ∈ J for some J ∈ U), which is clearly a contradiction, since
Ai ∈ [Q : A]. So A /∈ IS(B) and B ∈ [Q : A].

For (2) we proceed as in (1) using ISPPu up to the point in which A ∈
ISPPu(C); but since in this case A is relatively subdirectly irreducible, really
A ∈ ISPu(C) and the previous argument applies.

For (3) we observe that [Q : A] is a quasivariety by (2). First suppose
that A is weakly projective in Q; let B ∈ [Q : A] and let f : B −→ C be
en epimorphism. If A ∈ S(C) we let D = f−1(C; then D ≤ B so that D ∈
[Q : A] and moreover A ∈ H(D). Since A is weakly projective, A ∈ S(D), a
contradiction. Therefore A /∈ S(C) and C ∈ [Q : A].

Conversely suppose that A is not weakly projective in Q; then there is a
B ∈ Q with A ∈ H(B) and A /∈ S(B). It follows that B ∈ [Q : A] but
H(B) ̸⊆ [Q : A]. Therefore [Q : A] is not a variety and (3) holds.

A subquasivariety Q′ of Q is equational relative to Q if Q′ = H(Q′)∩Q; a
quasivariety Q is primitive if every subquasivariety of Q is equational relative to
Q. Clearly primitivity is downward hereditary and a variety V is primitive if and
only if every subquasivariety of V is a variety. The following is a straightforward
exercise:

Lemma 3.6. For a quasivariety Q the following are equivalent:

1. Q is primitive;

2. every subquasivariety of Q is structurally complete (i.e. Q is hereditarily
structurally complete).

A more interesting fact is:

Lemma 3.7. Let Q be a quasivariety and A ∈ Q; then A is weakly projective
in Q if and only if [Q : A] is equational relative to Q.

Proof. Suppose that A is weakly projective in Q; we have to show that

[Q : A] = V([Q : A]) ∩ Q.

So take B in Q such that there is a C ∈ [Q : A] with B ∈ H(C) (here we are
using the hypothesis that [Q : A] is a quasivariety). If B /∈ [Q : A] then A ∈
S(B); therefore A ∈ SH(C) ⊆ HS(C). This means that there is a subalgebra
D of C with A ∈ H(D); since A is weakly projective A ∈ S(D) ⊆ S(C), a
clear contradiction. So B ∈ [Q : A] and [Q : A] is equational relative to Q.

Conversely assume that [Q : A] is equational relative to Q and let B ∈ Q
with A ∈ H(B). If A /∈ S(B), then B ∈ [Q : A] and since [Q : A] is equational
we must have A ∈ [Q : A] a contradiction. So A ∈ S(B) and A is weakly
projective in Q.
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The following result was obtained for varieties of lattices by Slavik [46] (but
his proof works for any variety of algebras) and later generalized to quasivarieties
by Gorbunov [34].

Theorem 3.8. Let Q be a quasivariety of finite type. Then (1) implies (2)
which is equivalent to (3); if Q is also tame, then they are all equivalent:

1. Q is primitive;

2. for every finitely presented relative subdirectly irreducible algebra in A ∈ Q,
[Q : A] is equational relative to Q;

3. every finitely presented relative subdirectly irreducible algebra in Q is weakly
projective in Q.

Proof. (2) and (3) are equivalent by Lemma 3.7. Hence assume (1); if A ∈
Qrsi is finitely presented, then [Q : A] is a subquasivariety of Q and by (1) is
equational relative to Q, hence (2) holds.

Conversely assume (3), let Q be tame and let Q′ ⊆ Q; we have to show that
Q′ = V(Q′) ∩ Q. Suppose that

A ∈ (V(Q′) ∩ Q) \ Q′;

then A is a subdirect product of a family (Ai)i∈I of finitely presented algebras
in Qrsi. Clearly each Ai ∈ Q; moreover A ∈ H(B) for some B ∈ Q′ and
since Ai ∈ H(A) for all i, it follows by (3) that Ai ∈ S(B) ∈ Q′. Therefore
A ∈ Q′, a clear contradiction, so Q′ is equational relative to Q and Q is weakly
projective.

We have a necessary and sufficient condition if Q is tame.

Theorem 3.9. If Q is a tame quasivariety, then then the following are equiva-
lent.

1. Q is primitive;

2. if A is relative subdirectly irreducible, then [Q : A] is a variety;

3. every relative subdirectly irreducible finitely presented algebra A ∈ Q is
weakly projective in Q;

4. every relative subdirectly irreducible finitely presented algebra A ∈ Q is
weakly projective in the class of finitely presented algebras in Q.

Again this has been proved by V. Slavik for locally finite varieties of lattices
[46] and extended to locally finite quasivarieties of algebras by Gorbunov ([34],
Proposition 5.1.24); tameness is more general than local finiteness and the same
proofs go through with trivial modifications.

Most results in the literature are about structurally complete and primitive
varieties of algebras and the reason is quite obvious; first the two concepts are
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easier to formulate for varieties. In fact a variety is structurally complete if
and only if every proper subquasivariety generates a proper subvariety and it is
primitive if and only if every subquasivariety is a variety. Secondly being sub-
directly irreducible is an absolute concept (every subdirectly irreducible algebra
is relative subdirectly irreducible in any quasivariety to which it belongs) while
being relative subdirectly irreducible depends essentially on the subquasivariety
we are considering. Of course when a quasivariety is generated by a “simple”
class (e.g. by finitely many finite algebras), then Theorem 2.3(2) gives a simple
solution; but in general describing the relative subdirectly irreducible algebras
in a quasivariety is not an easy task.

Let’s say that a (quasi)variety is structurally precomplete if all its proper
sub(quasi)varieties are structurally complete; it is obvious that a structurally
precomplete quasivariety is primitive if an only if it is structurally complete. A
little less obvious but very useful is:

Lemma 3.10. Let V be a structurally precomplete variety; then V is primitive
if and only if it is structurally complete.

Proof. One direction is obvious. Let then Q be a proper subvariety of V; since
V is structurally complete, then Q must generate a proper subvariety of V. This
means that there is a proper subvariety V′ of V such that H(Q) = V′; but V′ is
structurally complete, hence Q = V′ (Theorem 3.1). So Q is a variety and V is
primitive.

Remark 3.11. A variety is minimal if it does not have any proper nontrivial
subvarieties; so a minimal variety is primitive if it has no proper subquasiva-
rieties. In [14] it is shown that a locally finite minimal variety is primitive if
and only if it has exactly one subdirectly irreducible algebra that is embeddable
in any nontrivial member of the variety. Moreover this is always the case if
the variety is congruence modular. Recently this result has been extended in
two directions in [22]: the author showed that every minimal dual discriminator
variety is primitive and, if the variety is also idempotent, then minimality can
be dropped.

Remark 3.12. If L is a finite projective subdirectly irreducible lattice, then
V(L) is primitive (this is obvious by Jónnson’s Lemma) so for instance V(2)
and V(N5) are primitive. By [43] every finite semidistributive lattice satisfying
the Whitman condition (W) is projective, so all the (finite sets of) subdirectly
irreducible ones generate a primitive variety. On the other hand a variety V of
modular lattices is primitive if and only if V = V(Mn) for some n, where Mn is
the height 3 modular lattice with n coatoms [34]. For a thorough investigation
of primitive varieties of lattices we direct the reader to [35].

4 Splittings

A splitting of a lattice L is a pair of elements a, b ∈ L such that L is the disjoint
union of the ideal generated by a and the filter generated by b; in this case a must
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be completely meet prime and b completely join prime [50]. Splittings in lattice
of subvarieties have been extensively studied, starting from the seminal paper
[40]; for residuated structures (which are the focus of this paper) we quote [3],[4],
[5], [6] and [10]. On the other hand splittings in lattices of subquasivarieties has
received much less attention, but the theory is not so different. Suppose that
Q1, Q2 is a splitting in Λq(Q); if Σ1 is the quasiequational theory of Q1 (i.e. all
the quasiequations holding in Q1), then

Q1 = Mod(Σ1) =
⋂

{Mod(σ) : σ ∈ Σ1}.

As Q1 is completely meet prime it must be Q1 = Mod(σ1) for some σ1 ∈ Σ.
On the other hand every algebra in a quasivariety is embeddable in an ul-

traproduct of its finitely generated subalgebras, each of which is a subdirect
product of (necessarily finitely generated) relative subdirectly irreducible alge-
bras. It follows that

Q2 =
∨

{Q(A) : A ∈ Qrsi,A is finitely generated};

as Q2 is completely join prime Q2 = Q(A) for some finitely generated A ∈ Qrsi.
A splitting algebra is a finitely generated algebra A ∈ Qrsi such that there

is a Q1 ⊆ Q such that Q1,Q(A) is a splitting in Λq(Q); in this case σ1 is called
the splitting quasiequation for A. In other words A is splitting if there
exists a largest subquasivariety Q1 of Q, called the conjugate quasivariety of
A such that A /∈ Q1.

A class of algebras K has the the finite embeddability property (FEP
for short) if for all A ∈ K and for all partial subalgebra A′ of A, there is a finite
B ∈ K such that A′ is embeddable in B. For a quasivariety Q we let Qfin be
the class of finite algebras in Q.

Theorem 4.1. For a quasivariety Q the following are equivalent:

1. Q has the FEP;

2. every algebra in Qrsi has the FEP;

3. Q = ISPPu(Qfin).

Proof. (1) implies (2) is obvious. Assume then (2) and let

Ψ =

n∧
i=1

(pi ≈ qi) → r ≈ s

be a quasi equation in the language of Q such that Q ̸⊨ Ψ; since any algebra is a
subdirect product of algebras in Qrsi, there exists an A ∈ Qrsi such that A ̸⊨ Ψ.
Let x1, . . . , xn be the variables in Ψ; then there exists a1, . . . , an ∈ A such that
pi(a1, . . . , an) = qi(a1, . . . , an) for all i but r(a1, . . . , an) ̸= s(a1, . . . , an). Let

A′ = {a1, . . . , an} ∪ {t(a1, . . . , an) : t is a subterm of Ψ};
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then A′ is a finite partial subalgebra of A and, since Qrsi has the FEP, there
exists a finite B ∈ Qrsi such that A′ is embeddable in B. But clearly B ̸⊨ Ψ,
hence (3) holds by counterpositive.

The proof that (3) implies (1) appears in [27] and it is an easy modification
of the analogous result in [26] for varieties.

As a consequence we get:

Theorem 4.2. Let Q be any quasivariety with the FEP and let Q1,Q2 be a
splitting in Q; then there exists a finite algebra A ∈ Qrsi such that Q2 = Q(A).

Proof. Since Q has the FEP by Theorem 4.1 we may assume that Q is the join
in Λq(Q) of all its finitely generated subquasivarieties. Since Q2 is completely
join prime, then Q2 is contained in one of them and hence it is itself finitely
generated. Hence Q2 is the join of a set of quasivarieties and each of one is
generated by a single finite algebra that(by Theorem 2.3(2) can be taken to be
relatively subdirectly irreducible; but since Q2 is completely join irreducible, it
must be equal to one of them. This concludes the proof.

Lemma 4.3. Let Q be a quasivariety; then every finitely presented A ∈ Qrsi is
splitting in Λq(Q) with conjugate quasivariety [Q : A].

Proof. Since A is relative subdirectly irreducible and finitely presented, then
[Q : A] is a quasivariety. Suppose Q′ is a quasivariety such that A /∈ Q′;
if Q′ ̸⊆ [Q : A] then there is an algebra B ∈ Q′ with A ∈ S(B) ⊆ Q′, a
contradiction. Hence Q′ ⊆ [Q : A] and A is splitting with conjugate quasivariety
[Q : A].

It follows (from Lemma 3.5) that every finitely presented weakly projective
algebra in Q has a conjugate variety.

5 Quasivarieties of Wajsberg hoops: chain gen-
erated subquasivarieties

A left residuated semilattice (short for left residuated semilattice ordered
monoid) is an algebra A = ⟨A,∧, ·,→, 1⟩ where

• ⟨A,∧⟩ is a semilattice;

• ⟨A, ·, 1⟩ is a monoid;

• (·,→) form a left residuated pair w.r.t. the semilattice ordering.

Left residuated semilattices form a variety; for an axiomatization the reader can
consult [2] where they have been studied under the (rather unfortunate) name
of em BI-monoids. A left residuated semilattice is commutative if so is the
monoid operation; in that case the left residuation is a also a right residuation
and the monoid is residuated. A left residuated semilattice is integral if 1 is
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the uppermost element of the ordering. We will denote by CIRS the variety of
integral and commutative residuated semilattices.

Residuated lattices are defined in the obvious fashion (see [18] and we denote
by CIRL the variety of commutative and integral residuated lattices. CIRSs share
a good chunk of the theory with CIRLs since CIRS is exactly the class of ∨-less
subreducts of CIRLs. They are congruence permutable with Mal’cev term

m(x, y, z) = ((x → y) → z) ∧ ((z → y) → x).

and moreover, since they have a semilattice term, they are also congruence
distributive. The theory of congruences (and filters) is identical to the one of
residuated lattices; as a matter of fact it can be easily shown that the congru-
ences of a residuated lattice are exactly the congruences of its semilattice reduct.
For a list of equations holding in residuated (semi)lattices the reader can con-
sult [2] or [18]. A residuated (semi)lattice is bounded if it has a (necessarily
unique) minimal element in the ordering.

A commutative and integral residuated semilattice A is representable if
for all a, b, c ∈ A

(a → b) → c ≤ ((b → a) → c) → c;

it is divisible if for all a, b, c ∈ A

(a → b)a = (b → a)b.

We are mainly interested in quasivarieties of commutative and integral residu-
ated lattices whose members are all representable and divisible. It is easy to
check that any totally ordered CIRS is representable; moreover

Lemma 5.1. Let A be a representable commutative and integral residuated
semilattice; then

1. A is a subdirect product of totally ordered residuated semilattices;

2. the ordering of A is a lattice ordering where

a ∨ b := ((a → b) → b) ∧ ((b → a) → a).

For a proof the reader can consult [18] and/or [4]. It follows that any repre-
sentable algebra in CIRS is really an algebra in CIRL; since both representability
and divisibility are expressible by equations a (quasi)variety consists entirely of
representable and/or divisible algebras if and only if it satisfies the correspond-
ing equations.

A divisible CIRS is called a hoop [16]; a divisible and representable CIRS
(that is also a CIRL by Lemma 5.1) is called a basic hoop [7]. We stress that a
hoop is not in general a divisible CIRL even though many properties of hoops can
be transferred easily to divisible CIRls. We will deal mainly with quasivarieties
of basic hoops and the reason will be clear shortly.
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A hoop A is cancellative if for all a, b ∈ A, a → ba = b; it is an easy exercise
to check that this corresponds to the underlying monoid being cancellative in
the usual sense. A hoop A is a Wajsberg hoop if for all a, b ∈ A

(a → b) → b = (b → a) → a.

Lemma 5.2. [16] Every Wajsberg hoop is a basic hoop and every cancellative
hoop is a Wajsberg hoop.

We will denote by BH, WH and CH the varieties of basic hoops, Wajsberg
hoops and cancellative hoops respectively.

Wajsberg hoops have a canonical representation. Let G be a lattice ordered
abelian group; by [42], if u is a strong unit of G we can construct a bounded
Wajsberg hoop Γ(G, u) = ⟨[0, u],→, ·, 0, u⟩ where ab = max{a+b−u, 0} and a →
b = min{u−a+b, u}. The main result of [42] is that any bounded Wajsberg hoop
can be presented in this way (really there is a catecorical equivalence between
the category abelian ℓ-groups with strong unit and the category of bounded
Wajsberg hoops). Let now Z×lZ denote the lexicographic product of two copies
of Z. In other words, the universe is the cartesian product, the group operations
are defined componentwise and the ordering is the lexicographic ordering (w.r.t.
the natural ordering of Z); then Z ×l Z is a totally ordered abelian group and
we can apply Γ to it. A Wajsberg chain is a totally ordered Wajsberg hoop.
Let’s define some useful Wajsberg chains:

• the finite Wajsberg chain with n + 1 elements  Ln = Γ(Z, n);

• the infinite finitely generated Wajsberg chain  L∞
n = Γ(Z×l Z, (n, 0));

• the infinite finitely generated Wajsberg chain  Ln,k = Γ(Z×l Z, (n, k));

• the infinite bounded Wajsberg chain [0, 1] L = Γ(R, 1), i.e. the real interval
with operations induced by the Wajsberg norm. i.e xy = max(x+y−1, 0),
x → y = min(1 + x− y, 1);

• the infinite bounded Wajsberg chain Q = Γ(Q, 1) = Q ∩ [0, 1]L;

• the unbounded Wajsberg chain Cω that has as universe the free group on
one generator, where the product is the group product and al → am =
amax(l−m,0);

• finally we fix once and for all an irrational number α ∈ [0, 1] and we let
X be the totally ordered dense subgroup of R generated by α and 1; then
Sn = Γ(X,n).

The proof of the following is a simple verification:

Lemma 5.3. 1. For n,m ∈ N,  Ln ∈ S( Lm) if and only if n | m.

2. For n, r, j ∈ N,  Ln ∈ S( Lr,j) if and only if n | gcd{r, j}.

3. For n, l ∈ N,  Ln ∈ S(Sl) if and only if n | l.
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A Wajsberg algebra is a Wajsberg hoop with an additional constant 0
which is minimal in the ordering; it is straightforward to show that a bounded
Wajsberg hoop is polynomially equivalent to a Wajsberg algebra so all the
bounded chains above have their Wajsberg algebra counterpart; we will denote
by Wn and W∞

n the Wajsberg algebras counterparts of  Ln and L∞
n . Similarly

the variety of Wajsberg algebras will be denoted by WA. A complete descriptions
of Λ(WH) is in [9] while Λ(WA) was first considered in [38] (for a complete
description see and [44]); they are both countable and of course distributive.

On the other hand it is easy to see that CIRL has the congruence extension
property and that each  Ln is simple; so, by applying Lemma 2.5, to the set
{ Lp : p prime} or {Wp : p prime} we get at once that Λq(WH) and Λq(WA)
are Q-universal, hence uncountable and extremely complex. Hence our only
hope to understanding them, at least in part, is considering particular classes
of subquasivarieties and then combining the information.

We first consider subquasivarieties generated by chains; we note in passing
that those quasivarieties are exactly the subquasivarieties of WH that are rela-
tive congruence distributive, i.e. those quasivarieties Q for which ConQ(A)
is a distributive lattice for any A ∈ Q. Let’s explain briefly why:

• the finitely subdirectly irreducible Wajsberg hoops coincide with the to-
tally ordered ones, hence the class of finitely subdirectly irreducible Wa-
jsberg hoops is a universal class;

• if V is any congruence distributive variety then a subquasivariety Q of V
is relative congruence distributive if and only if it is generated by a class
of finitely subdirectly irreducible algebras in V ([24], Corollary 2.7);

• so the relative congruence distributive subquasivarieties of WH are exactly
those generated by Wajsberg chains.

A lot of information about universal classes and subquasivarieties of Wajs-
berg algebras is contained in [31] and [32] respectively; however to justify our
use of these results we need to explain the context better. First the results are
stated in terms of MV-algebras; this is not a great problem since MV-algebras
are easily proven to be term-equivalent to Wajsberg algebras and in fact they
are two different avatars of the same concept. We recall that the operator ISPu

on Wajsberg hoops has been studied in [8] using the results about Wajsberg
appeared in [31]; while we maintain that it should be clear why we can do this
(and in [8] no explanation was given), maybe some clarification is useful. Wa-
jsberg algebras are polynomially equivalent to bounded Wajsberg hoops; it is
easy to see that if O is a class operator that is a composition of I,H,S,P,Pu,
A,B are Wajsberg algebras and A0,B0 are their Wajsberg hoop reducts, then
O(A) ⊆ O(B) if and only if O(A0) = O(B0). This allows us to consider
bounded Wajsberg hoops as they were Wajsberg algebras. Since a totally or-
dered Wajsberg hoop is either bounded or cancellative [16] we can use results
about Wajsberg algebras and integrate them with the cancellative case.

In [31](Lemma 4.3) the author observed that a quasivariety generated by
a class K of totally ordered MV-algebras is determined by the universal class
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generated by K. This is not a property of MV-algebras, so let us state and prove
it for the most general case we are aware of.

Theorem 5.4. Let K,K′ be classes of commutative and integral residuated
chains with the property that, for all A ∈ K ∪ K′, 1 is join irreducible in A.
Then Q(K) = Q(K′) if and only if ISPu(K) = ISPu(K′).

Proof. Any universal class is axiomatized by a set of finite conjunctions of so-
called universal basic sentences; a universal basic sentence is of the form

Γ =⇒ r1 ≈ s1 ∨ . . . ∨ rn ≈ sn

where Γ is a finite disjunction of equations. But it is well-known (see for instance
Lemma 3.1 in [29]) that in an integral and commutative residuated lattices the
left hand side of the implication is equivalent to

n∨
i=1

((ri → si) ∧ (si → ri)) ≈ 1.

But in any algebra in K ∪ K′, 1 is join irreducible; so for any possible assign-
ment of the variables the universal basic sentence in question is equivalent to a
quasiequation. It follows that the quasivariety generated by K and the universal
class generated by K satisfy the same quasiequations, from which the conclusion
follows.

We remark that any chain satisfies the hypothesis of Theorem 5.4; but so
does any finitely subdirectly irreducible n-potent (i.e. satisfying xn ≈ xn+1)
CIRL ([30], Lemma 3.60).

Now some definitions; the radical of a bounded Wajsberg chain A, in sym-
bols Rad(A), is the intersection of the maximal filters of A; it is easy to see
that Rad(A) is a cancellative basic subhoop of A. We say that a bounded Wa-
jsberg hoop A has rank n, if A/Rad(A) ∼=  Ln. For any bounded Wajsberg
hoop A, dA, called the divisibility index, is the maximum k such that  Lk is
embeddable in A if any, otherwise dA = ∞.

Here is the summary of the main results about the rank and the divisibility
index; the proofs are either trivial or can be found in [31] or [8].

Lemma 5.5. For any n, k ≥ 1

1.  Ln is simple and  Ln ∈ S( Lk) if and only if n | k,

2.  Ln has rank n and divisibility index n.

3. For any k ≥ 0,  Ln,k has rank n and d Ln,k
= gcd(n, k); in particular

d L∞
n

= n.

4. Sn has infinite rank and  Lk ∈ S(Sn) if and only if k | n; hence dSn
= n.

5. If A is a nontrivial totally ordered cancellative hoop then ISPu(A) =
ISPu(Cω).
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6. If A is a bounded Wajsberg chain of finite rank k, then dA divides k, and
ISPu(A) = ISPu( Lk,dA

).

7. If A is a bounded Wajsberg chain of finite rank n, then ISPu(A) =
ISPu( L∞

n ) if and only if dA = n.

8. If A,B are a Wajsberg chains of infinite rank then ISPu(A) ⊆ ISP(B)
if and only if {n :  Ln ∈ S(A)} ⊆ {n :  Ln ∈ S(B)}. In particular
A ∈ ISPu(Sn) if and only if dA | n.

A v-presentation is a triple {I, J,K} where I, J are finite subsets of N and
K ⊆ {0}; a v-presentation is reduced if:

• I ∪K ∪ J ̸= ∅;

• if K = {0}, then J = ∅;

• no m ∈ I divides any m′ ∈ (I \ {m}) ∪ J ;

• no t ∈ J divides any t′ ∈ J \ {t}.

Theorem 5.6. [9] The proper subvarieties of WH are in one-to-one correspon-
dence with the reduced triples via the mapping

{I, J, ∅} 7−→ V({ Lm : m ∈ I} ∪ { L∞
t : t ∈ J})

{I, ∅, {0}} 7−→ V({ Lm : m ∈ I} ∪ {Cω}).

If P = {I, J,K} is a v-presentation we denote by V(P ) or by V(I, J,K) the
variety associated with P . Now it is clear from the description of Λ(WH) in [9]
that if I, I ′ are reduced subsets of N then the relation

I ≤ I ′ if and only if for all i ∈ I there is a j ∈ I ′ with i | j

is a partial ordering. The following lemma is quite obvious:

Lemma 5.7. Let V = V(I, J,K),V′ = V(I ′, J,K ′) be proper subvarieties of
WH; then the following are equivalent:

1. V ⊆ V′;

2. I ≤ I ′ ∪ J ′, J ≤ J ′ and K ⊆ K ′;

3. if Cω ∈ V, then Cω ∈ V′ and I ≤ I ′ ∪ J ′, J ≤ J ′.

For quasivarieties things are slightly more complex. A q-presentation is a
set P = {I, J, L,K} such that I, L,K ⊆ N, J ⊆ N × N such that:

• for any (r, j) ∈ J , j | r;

• K ⊆ {0};

• if K = {0}, then J = L = ∅.
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To any q-presentation P we associate sets of Wajsberg chains in the following
way: where

QI = { Li : i ∈ I}

QJ =
⋃
r∈J

{ Lr,j : (r, j) ∈ J}

QL = {Sl : l ∈ L}
QK = {Cω} if K = {0} and ∅ if K = ∅.

We will set

Q(P ) = Q(I, J, L,K) = Q(QI ∪QJ ∪QL ∪QK)

so that Q(P ) is the quasivariety defined by the q-presentation P .

Theorem 5.8. Let Q be a quasivariety of Wajsberg hoops generated by chains;
then Q = Q(P ) for some q-presentation P .

Proof. Let C be a set of chains such that Q = Q(C); since any algebra is
embeddable in an ultraproduct of its finitely generated subalgebras we may
consider only the finitely generated members of C. Let

C1 = {A ∈ C : A is bounded and finite}
C2 = {A ∈ C : A is bounded, infinite and has finite rank}
C3 = {A ∈ C : A is bounded, infinite and has infinite rank}
C4 = {A ∈ C : A is cancellative}.

We observe also that all algebras in C \ C4 have finite divisibility index, since
they are bounded and finitely generated. Now we define P = {I, J, L,K} as:

I = {i :  Li ∈ C1}
J = {(r, j) : there is an A ∈ C2 with rank(A) = r and dA = j}
L = {l : there is an A ∈ C3 with dA = l}
K = ∅ if C2 ∪ C3 ̸= ∅.

Observe that {I, J, L,K} is a presentation, because of Lemma 5.5(6).
Let now A ∈ C2 with rank(A) = r; by Lemma 5.5(6) ISPu(A) = ISPu( Lr,dA

),
where dA | r. Then

C2 ⊆ ISPu(
⋃

A∈C2

Lrank(A),dA
)

= ISPu({ Lr,d : r = rank(A),A ∈ C2, d | r} ⊆ ISPu(QJ).

If A ∈ C3, then by Lemma 5.5(8), A ∈ ISPu(SdA
) whenever dA | n. Hence

C3 ⊆ ISPu({SδA : A ∈ C3}) ⊆ ISPu(QL). Since clearly C1 ⊆ ISPu(QI) and
C4 ⊆ ISP(QK) we get

C1 ∪ C2 ∪ C3 ∪ C4 ⊆ ISPu(QI ∪QJ ∪QL ∪QK).
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Therefore

Q = ISPPu(C1 ∪ C2 ∪ C3 ∪ C4)

⊆ Q(QI ∪QJ ∪QL ∪QK) ⊆ Q,

as wished.

The first question we want to answer is: which q-presentations P are generic,
in the sense that Q(P ) = WH? It is well-known that WH [16] has the FEP,
hence by Lemma 5.13 they are both generated as a quasivarieties by their finite
totally ordered algebras. This implies that any reduced presentation P in which
N = I ∪ {j : (r, j)J} ∪ L is such that Q(P ) = WH. Is this the only possibility?
Everything boils down to characterizing the subsets X ⊆ N for which

Q({ Lx : x ∈ X}) = WH.

A. Tarski proved long time ago [47] that V({ Lx : x ∈ X}) = WH if and only if
X is infinite, but it this is not the case for Q({ Lx : x ∈ X}). To prove that we
need a lemma which will be useful also in the sequel.

In any Wajsberg hoop we can define a derived operation

x⊕ y = (x → xy) → y

and then by induction

1x = x

(n + 1)x = x⊕ nx.

Lemma 5.9. For every Wajsberg hoop A,  Ln ∈ S(A) for n > 1 if and only if
there is an a ∈ A, a ̸= 1 such that

(n − 1)a = a → an+1.

For a proof the reader can look at [8] or (for an even more general case) [4];
the idea however traces back to [48].

Lemma 5.10. Let K be any class of Wajsberg hoops. If A ∈ ISPu(K) is such
that  Ln ∈ S(A) for some n, then A ∈ ISPu({B ∈ K :  Ln ∈ S(B)}).

Proof. Let Ai ∈ K for all i ∈ I and let U be an ultrafilter on I; suppose that
A ∈ S(

∏
i∈I Ai/U). Then  Ln ∈ S(

∏
i∈I Ai/U) so, by Lemma 5.9, there is an

a ∈
∏

i∈I Ai/U such that (n − 1)a = a → an.
Let K = {i ∈ I : (n − 1)ai = ai → ani } ∈ U and J = {i ∈ I :  Ln ∈ S(Ai)};

then K ⊆ J , so J ∈ U . It follows that V = U ∩ J is a ultrafilter on J and∏
i∈I

Ai/U =
∏
j∈J

Aj/V.

The conclusion follows.
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So let X be the set of prime numbers; if Q({ Lp : p ∈ X}) = WH, then for
any composite n,  Ln ∈ Q({ Lp : p ∈ X}). Then, by Lemma 5.10,

 Ln ∈ ISPu({ Lp : p ∈ X and  Ln ∈ S( Lp)});

but since n is composite the generating set is empty, a clear contradiction.

Theorem 5.11. Let P be a presentation; then then Q(P ) = WH if and only if
for any n ∈ N there is an t ∈ I ∪ {j : (r, j) ∈ J} ∪ L with n | t.

Proof. Assume P has the desired property and let

Ψ =

n∧
i=1

(pi ≈ qi) → r ≈ s

a quasi equation such that WH ̸⊨ Ψ. Then there exists a finitely generated
totally ordered Wajsberg hoop A such that A ̸⊨ Ψ. Since WH has the FEP we
may argue as in Theorem 4.1 and find a finite totally ordered Wajsberg hoop
A′ with A′ ̸⊨ Ψ. Of course A′ =  Ln for some n; by the property we can find
a t ∈ I ∪ {j : (r, j) ∈ J} ∪ L such that n | t, hence  Ln ∈ S( Lt) ⊆ Q(P ) and
Q(P ) ̸⊨ Ψ. This shows that Q(P ) = WH.

Conversely suppose that Q(P ) = WH = Q({ Ln : n ∈ N}); this implies that
ISPu(P ) = ISPu({ Ln : n ∈ N}) and so  Ln ∈ ISPu(P ) for any n. By Lemma
5.10

 Ln ∈ ISPu({A : A ∈ QI ∪QJ ∪QL and  Ln ∈ S(A)});

since the generating set cannot be empty, there exists an A with  Ln ∈ S(A).
But if A =  Li, then n | i; if A =  Lr,j then n | j ∈ {j : (r, j) ∈ J} and if A ∈ Sl,
then n | l. The conclusion follows.

We have already observed that, due to the fact that a Wajsberg chain is either
bounded of cancellative, we can extend many results about Wajsberg algebras
(MV-algebras) to Wajsberg hoops, simply taking care of the cancellative case.
Theorem 5.8 is an example of this and we can find many others. We proceed to
illustrate some of them without going into details. If A is a bounded Wajsberg
chain (say by 0) the order of a ∈ A is{

min{n : an = 0}, if such n exists;
∞, otherwise.;

the order of A is

ord(A) = sup{n : ord(a) = n for some a ∈ A}.

It is easily checked that rank(A) = ord(A/Rad(A)). From Lemma 5.5 and the
analogous result in [31] (Theorem 4.4) about MV-algebras we get:

Theorem 5.12. Let A,B be two Wajsberg chains; then Q(A) = Q(B) if and
only if
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1. either A and B are both cancellative;

2. or they are both bounded rank(A) = rank(B), ord(A) = ord(B) and { Ln :
 Ln ∈ S(A)} = { Ln :  Ln ∈ S(A)}.

Next we deal with inclusion properties between quasivarieties of Wajsberg
hoops generated by chains. Let I, J,K,L be a q-presentation and for any r ∈ J
let Jr = {s : s | r} = {j ∈ N : (j, r) ∈ J}. The q-presentation is reduced if

• for all i ∈ I, i ̸ | t for t ∈ (I \ {i}) ∪
⋃

r∈J Jr ∪ L;

• for all l ∈ L,

(a) either there is an i ∈ I with l ̸ | i, or

(b) there is an r′ ∈ J such that for all j′ ∈ Jr′ , l ̸ | j′;

• for all r ∈ J and j ∈ Jr

(a) for all l′ ∈ L, j ̸ | l′;
(b) for all r′ ∈ J \ {r}, for all j′ ∈ Jr′ , either r ̸ | r′ or j ̸ | j′;
(c) either there is an i ∈ I with j ̸ | i, or there is an r′ ∈ J such that for

all j′ ∈ Jr′ , j ̸ | j′.

Finally we remark that we can find an axiomatization of any quasivariety
generated by chain; here the key point is that, as for Wajsberg algebras, every
proper subvariety of of WH can be axiomatized (modulo WH) by a single equa-
tion in one variable [9]. Using this (and the fact that cancellative hoops are
axiomatized modulo WH by the single equation x → x2 ≈ x), one can find an
analogue to Theorem 4.5 in [31].

A further question that we want to answer is for which q-presentation P ,
Q(P ) is a variety; let’s start with a lemma of general interest.

Lemma 5.13. Let K be any class of basic hoops; then Q = Q(K) is a vari-
ety if and only if all finitely generated totally ordered members of V(K) are in
ISPu(K). If Q has the FEP, then Q = Q(Kfin).

Proof. If Q(K) is a variety, then Q(K) = V(K) and by Theorem 2.3 every
relatively subdirectly irreducible in Q(K) is in ISPu(K). But since Q(K) is
a variety a relatively subdirectly irreducible is subdirectly irreducible and the
conclusion follows.

Conversely let F be the class of all finitely generated totally ordered members
of V(K). Since any algebra is embeddable in an ultraproduct of its finitely
generated subalgebras and and any basic hoop is a subdirect product of totally
ordered basic hoops we get

V(K) ⊆ ISPSPu(F) ⊆ ISPSPuSPu(k) ⊆ ISPPu(K) = Q(K).

Hence Q(K) = V(K) and Q(K) is a variety. The second claim is a straightfor-
ward consequence of Theorem 4.1.
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Theorem 5.14. Let A be a Wajsberg chain; then Q(A) is a variety if and only
if

•  Ln is embeddable in A for all n, or

• A is finite, or

• A is cancellative, or

• A is infinite, bounded and the rank of A is equal to dA.

Proof. Since WH is generated as a quasivariety by its finite algebras [16] if every
 Ln is embeddable in A, then Q(A) = WH. If A is finite, Q(A) is locally finite
so it is primitive; if A is cancellative, then ISPu(A) = ISPu(Cω) and so

Q(A) = ISPPu(A) = ISPPu(Cω) = C.

Finally assume that A is bounded and infinite (so it is not simple) and it’s rank
is d = dA. Then ISPu(A) = ISPu( Ld,d); now any totally ordered member of
V( Ld,d) is either cancellative or else it is bounded Wajsberg hoop B such dB

divides d and all these chains are in ISPu( Ld,d) (see for instance Lemmas 6.1
and 6.3 in [8]). Therefore by Lemma 5.13, Q(A) is a variety.

Conversely suppose that A is either of infinite rank and  Lk is not embeddable
in A for some k, or else A has finite rank and dA is strictly less than the rank
of A. In the first case V(A) = WH ([9], Theorem 2.4); now Q = [0, 1] L ∩Q is a
simple member of WH that does not belong to ISPu(A) (since  Lk is embeddable
in Q for all k). Hence by Lemma 5.13 Q(A) is not a variety. In the second case
consider  L∞

n ; then  L∞
n ∈ V(A) (since it has rank n), but  L∞

n /∈ ISPu(A) (by
Lemma 5.5. Again by Lemma 5.13 Q(A) is not a variety.

We can use Theorem 5.14 for proper subquasivaries of WH generated by
chains applying Jónnson’s Lemma to varieties of basic hoops; for a variety V of
basic hoops let Vt be the class of totally ordered members of V.

Lemma 5.15. Let A1, . . . ,An be basic hoops, let Vi = V(Ai) and let V =
V(A1, . . . ,An); then

Vt = V1
t ∪ · · · ∪ Vn

t .

Let us remark that, due to the existence of 1 which is idempotent w.r.t.
to any operation, if A,B ∈ CIRL, then A and B are both embeddable in
A × B. This means that any subvariety of CIRL has the joint embedding prop-
erty and thus every subquasivariety of CIRL (and so every subquasivariety of
WH) is generated by a single algebra ([34], Proposition 2.1.19). In particular if
A1, . . . ,An ∈ WH, then

Q(A1, . . . ,An) = Q(A1 × · · · × An).

Theorem 5.16. Let A1, . . . ,An be totally ordered Wajsberg hoops; if for i =
1, . . . , n
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•  Ln is embeddable in Ai for all n, or

• Ai is finite, or

• Ai is cancellative, or

• Ai is infinite, bounded and the rank of A is equal to dA,

then Q(A1, . . . ,An) is a variety.

Proof. By Lemma 5.13, to show that Q(A1, . . . ,An) is a variety, it is enough
to prove that every Wajsberg chain in V(A1, . . . ,An) is in ISPu(A1, . . . ,An).
But each of such chains is a totally ordered member of V(Ai) for some i (by
Lemma 5.15) and by Theorem 5.14 it is in ISPu(Ai).

Corollary 5.17. Let P be a reduced q-presentation; if

• P is finite (i.e. all the sets involved are finite),

• L = ∅,

• (r, j) ∈ J implies r = j,

then Q(P ) is a variety.

Actually a little more is true; by looking at the description of the proper sub-
varieties of WH and observing that ISPu( L∞

n ) = ISPu( Ln,n) (Lemma 5.5(7))
it is clear that any proper subvariety of Wajsberg hoop is Q(P ) for some finite
q-presentation P of the type described above. This means that the class of
quasivarieties of WH generated by chains contains all the subvarieties of WH
and also that Λq(WH) contains Λ(WH) as a distributive sublattice.

6 Primitivity and structural completeness inWa-
jsberg hoops

The question of primitivity in varieties of commutative and integral residuated
lattices has been tackled in several papers [23] [37] in connection with the cor-
responding logics. Here need only a result that appears in [11]:

Theorem 6.1. [11] Every finite hoop is finitely projective, i.e. it is projective
in the class of finite hoops.

By Theorem 3.9 we get:

Corollary 6.2. Every locally finite variety of basic hoops is primitive.

In particular, since every locally finite quasivariety is contained in a locally
finite variety, any locally finite quasivariety of Wajsberg hoops is a primitive
variety. On the other hand the variety of cancellative hoops CH = Q(Cω) is not
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locally finite but by Lemma 5.5(5) if A and B are totally ordered cancellative
hoops, then [8]

ISPu(A) = ISPu(B).

It follows that CH has no proper nontrivial subquasivarieties and thus is primi-
tive. So there are (quasi)varieties of Wajsberg hoops that are primitive without
being locally finite. Now let V be any proper variety of Wajsberg hoops; then
V = V(I, J,K) for some reduced v-presentation {I, J,K}. .

Lemma 6.3. For any n > 1, V( L∞
n ) is not structurally complete; hence if

V = V(I, J,K) is primitive, then J ⊆ {1}.

Proof. Since WH is not primitive, V must be proper, so it has a reduced v-
presentation {I, J,K}. Suppose then then there is an n > 1 such that  L∞

n ∈ V.
Then by Lemma 5.5(7),  Ln,n ∈ V and it is easily checked that  Ln,1 ∈ S( Ln,n);
but by Theorem 5.14  Ln,n /∈ ISPu( Ln,1), so ISPu( Ln,n) ̸= ISPu( Ln,1). By
Theorem 3.5, Q( Ln,1) ⊊ Q( Ln,n) = V( Ln,n); however by Lemma 5.5(6,7)

V( Ln,1) = V( Ln,n) = V( L∞
n ).

. Therefore V( Lω
n) is not its own least Q-quasivariety and so it is not structurally

complete.

Now if J = K = ∅, then V is locally finite, hence primitive. It follows that
a primitive variety of Wajsberg hoops must be either V(I, ∅, ∅) or V(I, ∅, {0})
or V(I, {1}, ∅). To proceed further we need to observe that every variety of
Wajsberg hoops can be axiomatized by a single equation in one variable [9]. It
follows that for any quasivariety Q of Wajsberg hoops, its least Q-quasivariety
is Q(FQ(x)).

In all the following proofs we will write  Lm, m ≥ 1, in multiplicative notation
(as opposed to the additive notation suggested by the Mundici’s representation).
In other words  Lm = {1, a, a2, . . . , am} where

ak → an = amax(0,n−k) akan = amin(k+n,m).

We have the following easy lemma, whose proof is left to the reader.

Lemma 6.4. 1. ah generates  Lk if and only if h < k and k, h are relatively
prime;

2. there is an element c ∈ Cω such that c generates Cω and if c′ generates
Cω, then c′ = c.

3. if C is cancellative and c′ ∈ C with c′ ̸= 1, then c′ generates a subalgebra
of C isomorphic with Cω.

4. there is an element d ∈  L∞
1 such that d2 is the minimum, d generates  L∞

1

and if d′ generates  L∞
1 , then d′ = d;

5. if d′ ∈  L∞
1 and d′ ≤ d′ → d2, then d′ generates a subalgebra of  L∞

1

isomorphic with  L∞
1 .
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We simply observe that if we represent  L∞
1 a Γ(Z×lZ, (1, 0)) then d = (0, 1).

Lemma 6.5. Let V = V(I, ∅, {0}) and let

∆I = {(k, h) : k |m for some m ∈ I and h, k are relatively prime}.

Let J = ∆i ∪ {0} and let’s define for j ∈ J

Aj =

{
 Lk, if j = (k, h);
Cω, if j = 0;

then define g ∈
∏

j∈J Aj by

gj =

{
ah, if j = (k, h);
c, if j = 0.

where c is the generator of Cω. If B is the subalgebra of
∏

j∈J Aj generated by
g, then B ∼= FV(x).

Proof. First note that, since ah generates  Lk whenever k, h are relatively prime
the embedding of B into

∏
j∈J Aj is subdirect. Next suppose that there is an

equation in one variable t(x) ≈ s(x) that fails in V; then it must fail in some one-
generated Wajsberg chain in V. This chain is either bounded or cancellative; if
it is cancellative than it must be isomorphic with Cω, since it is one-generated.
We claim that if it is bounded then it must be finite. In fact let C be an infinite
bounded chain in V; since V is a proper subvariety C cannot have infinite rank,
as any chain of infinite rank generates WH ([9], Theorem 2.4). Hence C must
have rank n an thus, by Lemma 5.5,  L∞

n ∈ V; but this contradicts Theorem 5.6,
hence C must be finite. Therefore C ∼=  Lk for k | m and m ∈ I.

Now if the equation fails in Cω, then it fails for some d ∈ Cω; clearly d ̸= 1,
so the subalgebra generated by d in Cω is isomorphic with Cω. Therefore
t(c) ̸= s(c) in Cω; since p0(g) = c it follows that t(g) ̸= s(g) in B. If the
equation fails in some  Lk with k | m and m ∈ I, then there is a generator b of
 Lk such that t(b) ̸= t(c). Such generator must ah for some h which is relatively
prime with k; since g(k,h) = ah, we have that t(g) ̸= s(g) in B.

The conclusion follows.

Theorem 6.6. For each I, V = V(I, ∅, {0}) is structurally complete.

Proof. Let B,
∏

j∈J Aj and ∆I as in Lemma 6.5; then

B ≤sd

∏
j∈J

Aj .

Let I = {n1, . . . , nk} and let g be the generator of B i.e.

g = ((ah)(nk,h)∈∆I
, c);
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if and m = n1n2 · · ·nk, then gm → g2m ∈ B; since (ah)m = (ah)2m for all
(nk, h) ∈ ∆I , we get that

g′ = gm → g2m = ((1)(nk,h)∈∆I
, cm).

By Lemma 6.4 g′ generates a subalgebra of B isomorphic with Cω, thus Cω ∈
IS(B).

Now consider g′′ = g′ → g; of course g′′ = ((ah)(nk,h)∈∆I
, 1). Then g′′ gener-

ates a subalgebra C of B which is isomorphic with a subalgebra of
∏

(k,h)∈∆I
 Lnk

.

Hence C is finite and, since ah generates  Lnk
for all (k, h) ∈ ∆I , p(nk,h)(C) =

 Lnk
. So  Lnk

∈ H(C) and, since any finite hoop is finitely projective (Theorem
6.1),

 Lnk
∈ S(C) ⊆ S(B)

for all nk.
Now we have

V = V({ Lnk
: nk ∈ I},Cω)

= Q({ Lnk
: nk ∈ I},Cω)

⊆ Q(B) = Q(FV(x)) ⊆ V.

Thus V = Q(FV(x)) and hence V is structurally complete.

Lemma 6.7. Let V = V(I, {1}, ∅); let

∆I = {(k, h) : k |m for some m ∈ I and h, k are relatively prime}.

Let J = ∆i ∪ {0, 1} and let’s define for j ∈ J

Aj =

  Lk, if j = (k, h);
Cω, if j = 0;
 L∞
1 , if j = 1;

then define g ∈
∏

j∈J Aj by

gj =

 ah, if j = (k, h);
c, if j = 0;
d → d2, if j = 1;

where c is the generator of Cω and d is the generator of  L∞
1 . If B is the

subalgebra of
∏

j∈J Aj generated by g, then B ∼= FV(x).

Proof. The proof is almost identical to the one of Lemma 6.5. We have only to
observe that any chain in V is either finite or cancellative or else has rank equal
to 1; since we can consider only one-generated chains, the cancellative ones are
isomorphic with Cω and bounded ones are isomorphic with  L∞

1 .

Theorem 6.8. If V = V(I, {1}, ∅), then V is structurally complete.
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Proof. Let I = {n1, . . . , nk} and let ∆I , B and g as in Lemma 6.7. Let

m =

{
n1n2 · · ·nk, if I ̸= ∅;
2, otherwise.

Then dm is the bottom of  Lω
1 because the presentation is reduced and therefore

if I ̸= ∅, then nk ≥ 2 for all k. As in the proof of Theorem 6.6

gm → g2m = ((1)(nk,h)∈∆I
, cm, 1)

and therefore Cω ∈ S(B).
On the other hand

(gm → g2m) → g = ((ah)(nk,h)∈∆I
, 1, d)

generates a subalgebra C of B which is isomorphic with a subalgebra of∏
(nk,h)∈∆I

 Lnk
×  L∞

1 .

Now, identifying C with its isomorphic copy, we may assume that C is
generated by ((ah)(nk,h)∈∆I

, d) and by setting a = (ah)(nk,h)∈∆I
we may assume

it is generated by (a, d). Observe that (ma,md) = (1,md) ∈ C; now the reader
can easily check that (0, 1) 7−→ (1,md) defines an embedding of  L∞

1 in C.
Therefore  L∞

1 ∈ IS(C) ⊆ IS(B).
Next if we denote d2 by 0 we get

(1,md)2 = (1, 0) ∈ C.

On the other hand if we denote by 0 the bottom of each  Lnk
we get that

(am, dm) = (0, 0) ∈ C (it is also the minimum of C) and thus

(1, 0) → (0, 0) = (0, 1) ∈ C.

Let C′ be the filter generated by (0, 1) in C; this is a bounded Wajsberg sub-
algebra of C which is isomorphic with a subalgebra of

∏
(nk,h)∈∆I

 Lnk
. Hence

C′ is finite and since clearly (a, 1) ∈ C ′ we get that pnk
(C′) =  Lnk

. As in the
proof of Theorem 6.6 we may deduce that  Lnk

∈ IS(B) for all k.
In conclusion

V = V({ Lnk
: nk ∈ I},  L∞

1 )

= Q({ Lnk
: nk ∈ I},  L∞

1 )

⊆ Q(B)

= Q(FV(x)) ⊆ V).

Thus Q(FV(x)) = V; therefore by Theorem 3.1 V is structurally complete.
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Remark 6.9. We already know that V( L∞
n ) is not structurally complete for

n > 1, so the proof of Theorem 6.8 must fail . The failure of structural com-
pleteness can be witnessed by

Q({ Li : i ∈ I},  Ln,1) ⊊ V({ Li : i ∈ I},  Ln,1) = V({ Li : i ∈ I},  L∞
n ).

We define the coradical of a Wajsberg chain A in the following way:

• if A is cancellative, then Corad(A) = ∅;

• if A is bounded, say by 0, then

Corad(A) = {a → 0 : a ∈ Rad(A)}.

A Wajsberg chain A is perfect if A = Rad(A) ∪ Corad(A) (hence every can-
cellative chain is perfect and  L∞

1 is perfect). For an example of a bounded perfect
chain different from  L∞

1 we may take a totally ordered group G and consider
Γ(G ×l Z, (1, 0)). Really it can be shown that every bounded perfect Wajsberg
chain can be obtained in this way and this in turn implies that A ∈ ISPu( L∞

1 )
whenever A is a perfect chain. Hence the variety generated by all the per-
fect Wajsberg chains is exactly V( L∞

1 ) and it is axiomatized by 2x2 ≈ (2x)2.
The reader can easily verify that all these facts can be deduced from the cor-
responding results about perfect MV-algebras (see for instance [25]). Now we
can characterize all primitive and structurally complete varieties of Wajsberg
hoops.

Theorem 6.10. A proper variety V of Wajsberg hoops is primitive if and only
if every chain in V is either finite or perfect.

Proof. Let V = V(I, J,K) be such variety; suppose that in V there is a chain
that is neither finite nor perfect. Then such chain cannot belong to V( L∞

1 ),
otherwise it would be perfect; this implies that there is at least a j ∈ J with
j > 1. It follows that  L∞

j ∈ V and since V( L∞
j ) is not primitive, neither is V.

For the converse, if every chain in V is either finite or perfect and V is
proper, then either V = V(I, {1}, ∅) or else V = V(I, ∅,K) for some finite set
I = {n1, . . . , nk}. If m = n1n2 · · ·nk then V ⊆ V( Lm,  L∞

1 ), which is structurally
complete by Theorem 6.8.

If D is the set of divisors of m, then every subvariety of V( Lm,  L∞
1 ) is of

the form V(I ′, ∅,K) or V(I ′, {1}, ∅) for some reduced set I ′ ⊆ D. But those
varieties are all structurally complete because they are either locally finite o
else they satisfy the hypotheses of Theorem 6.6 or Theorem 6.8. By Lemma3.10
V( Lm,  L∞

1 ) is primitive and so is V.

Corollary 6.11. A variety of Wajsberg hoops is structurally complete if and
only if it is primitive.

What about primitive quasivarieties (that are not varieties) of Wajsberg
hoops? For those generated by chains there seems to be a promising path to
their description (and we will talk about it in Section 9). We will consider some
quasivarieties not generated by chains in the next section.
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7 Quasivarieties of Wajsberg hoops: highlight-
ing the complexity

Observe that Q( L1) and Q(Cω) are varieties that are the only two atoms in
Λ(WH) [12]. Since they are both primitive, they are also atoms in Λq(WH).
Are there any other atoms in Λq(WH)? This question was asked first a long
time ago [27]; we still do not have a solution, but we can clarify the matter a
little bit. First we observe that for all n, k ≥ 1,  Ln,  L∞

n and  Ln,k are finitely
generated and subdirectly irreducible, so they are splitting in Λq(WH) (Lemma
4.3). We also observe that none of them can be weakly projective in WH; really
no bounded finitely generated Wajsberg hoop can be weakly projective in WH.
In fact if A is n-generated and weakly projective, then it must be a subalgebra
of FWH(n); but it is clear from the description of FWH(n) in [9] that the only
idempotent element therein is 1. This prevents any bounded Wajsberg hoop
from being embeddable in FWH(n). Also Cω is finitely generated, subdirectly
irreducible (hence splitting) and not weakly projective in WH (this has been
proved by S. Ugolini in [49] using geometrical methods). It follows from Lemma
3.5 that the conjugate quasivarieties [WH :  Ln], [WH :  L∞

n ] and [WH :  Ln,k] for
n, k ≥ 1 and [WH : Cω] are all proper quasivarieties. Now a possible third atom
must be Q(A) for some A (since WH has the joint embedding property) and
moreover

Q(A) ⊆ [WH :  L1] ∩ [WH : Cω].

Of course A can be taken to be 1-generated and moreover no relative subdirectly
irreducible in Q(A) can be subdirectly irreducible otherwise it would be totally
ordered, hence bounded or cancellative, hence containing either  L1 or Cω . In
conclusion Q(A) would be a very strange object indeed, even though we know
nothing in the theory that prevents its existence.

To proceed further it is clear that the finitely generated covers of Q( L1) are
the Q( Lp) with p prime; a further cover is Q( L1,Cω) and the reason is that it
is a primitive variety, so it has no other subquasivarieties except for Q( L1) and
Q(Cω). The existence of other covers depends on the existence of other atoms;
if there are no more these are the only covers of Q( L1). Clearly Q( L1,Cω) is
also a cover of CH = Q(Cω) and it is the only cover above Q( L1); since  L1 is
splitting with with conjugate quasivariety [WH :  L1] any other cover of CH must
lie in [WH :  L1].

Let’s look now at the quasivarieties [WH :  Ln] for n ≥ 1; it is an easy exercise
to check that A ∈ [WH : L1] if and only if A has no idempotent different from
1; this means that [WH :  L1] is axiomatized by the single quasiequation

x ≈ x2 ⇒ x ≈ 1. (q1)

If n ≥ 2 then we can use Lemma 5.9; from that it follows that [WH :  Ln] is
axiomatized by the single quasiequation

(n − 1)x ≈ x → xn ⇒ x ≈ 1,
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which is of course the splitting quasiequation for  Ln. In Figure 1 we see the
slices relative kp for a prime p and k ∈ N; both chains of subvarieties in the
figure have WH as their join, because of Theorem 5.11.

T

Q( L1)

Q( Lp)

Q( L2p)

CH

WH

[WH :  L1]

[WH :  Lp]

[WH :  L2p]

[WH :  L3p]

Figure 1: The slices for  Lkp

Next we will show that none of the [WH :  Ln] is structurally complete; it is
obvious from Tarski’s result that H([WH :  Ln]) = WH for n ≥ 2. The following
lemma is a consequence of some very general facts (see [20], Chapter II, §10):

Lemma 7.1. For any variety V the smallest quasivariety Q such that H(Q) = V
is exactly Q(FQ(ω)).

Now every subvariety of WH is axiomatized by a single equation [9], so

H(Q(FWH(x))) = H(Q(FWH(ω))).

It is clear from the description of FWH(x) in [9] that FWH(x) satisfies (q1), so
(using Lemma 7.1),

WH = H(Q(FWH(x))) ⊆ H([WH :  L1]) ⊆ WH.

The final step is to show that Q(FWH(x)) ⊊ Q([WH :  L1]); but this is obvious
since there are clearly subquasivarieties Q such that H(Q) = WH but [WH :
 L1] ̸⊆ Q (for instance the quasivariety generated by all the  Lp with p prime).

Now [WH :  L1] ⊊ [WH :  Ln] for all n and

H([WH :  L1]) = H([WH :  Ln]);
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so the conclusion holds by Theorem 3.1.
We close this section with an example of an uncountable set of proper qua-

sivarieties; for a set Σ of Wajsberg hoops we define

[WH : Σ] = {B : for all A ∈ Σ, A /∈ IS(B)}.

We have the following lemma whose proof is similar to the “if” direction of
Lemma 3.5(3).

Lemma 7.2. If Σ consists entirely of finitely presented Wajsberg hoops, then
[WH : Σ] is a quasivariety.

Let now P be the set of primes; for any subset Q ⊆ P we let

ΣQ = { Lq : q ∈ Q};

then for any Q ⊆ P , [WH : ΣQ] is a quasivariety; moreover if Q,Q′ ⊆ P , then
[WH : Q] = [WH : Q′] if and only if Q = Q′.In fact let q ∈ Q \ Q′; then
 Lq ∈ [WH : Q′] \ [WH : Q]. It follows that the set of such quasivarieties is in 1-1
correspondence with the subsets of a countable set, i.e. it is uncountable. We
cannot prove that they are all quasivarieties that are not varieties since the proof
of the “only if” direction of Lemma 3.5(3) does not work; however since there
are only countably many subvarieties of Wajsberg hoops, at least uncountably
many of them are not varieties.

8 A glance at quasivarieties of Wajsberg alge-
bras

Though quasivarieties of Wajsberg algebras have been studied thoroughly ([28],
[33], [31], [32]), there are some observations that we can make. We recall that
Wn,W

∞
n ,Wn,k denote the bounded versions of  Ln,  L

∞
n ,  Ln,k respectively and

that BL-algebras are the bounded version of basic hoops. Now it is obvious that
a version of Lemma 5.13 holds for classes of BL-algebras and from that we get
at once:

Theorem 8.1. Let A be a totally ordered Wajsberg algebra; then Q(A) is a
variety if and only if

• Wn is embeddable in A for all n, or

• A is finite, or

• A is infinite, bounded and the rank of A is equal to dA.

Theorem 8.2. Let A1, . . . ,An be totally ordered Wajsberg algebras; if for i =
1, . . . , n

• Wn is embeddable in Ai for all n, or
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• Ai is finite, or

• Ai is infinite, bounded and the rank of A is equal to dA,

then Q(A1, . . . ,An) is a variety.

Another similarity is that any proper subvariety of Wajsberg algebras admits
a v-presentation. In other words every proper subvariety V is generated by
finitely many chains that are either finite or W∞

n for some n. If {Wi : i ∈ I}
and {W∞

j : j ∈ J} are the generators of V we can denote V by V(I, J). As for
Wajsberg hoops we can define the concept of reduced pair in the obvious way
and it turns out that the set of proper subvarieties of WA is in 1-1 correspondence
with {V(I, J) : (I, J) a reduced pair} [44].

Now lattice Λ(WH) is indubitably more complex that Λ(WA), the reason
being that there is an entire variety of algebras, the variety of cancellative hoops,
that simply was not there before. On the other hand adding the constant makes
it harder for an algebra to be a subalgebra of something else; in particular it is
no longer true that A,B ≤ A×B a fact that conceivably should make Λq(WA)
more complex than the interval [V( L1),WH] in Λq(WH). Let’s confirm this
intuition: in Λq(WH), Q( Lp) covers Q( L1) for every prime p. This is not the
case for Λq(WA) because of the following:

Lemma 8.3. Let V = V(Wn1
, . . . ,Wnk

); then

Q(W1 × Wn1
, . . . ,W1 × Wnk

)

is a proper subquasivariety of V.

Proof. The proof is based on the fact that Wn is embeddable in a chain in WA
if and only if there is an a ∈ A such that (n − 1)a = ¬a (where ¬a = a → 0)
([8], Lemma 4.4).

We will prove the case k = 1 and n1 = 2; the procedure is general and the
interested reader can fill the details for any other case. W2 is embeddable in
A if and only if there is an a ∈ A with a = ¬a. If A is any subalgebra of a
power of W1 × W2, then no such a ∈ A can exist since the negation switches
0 and 1 in all the “coordinates” coming from copies of W1. This shows that
W2 /∈ Q(W1 × W2) and hence the conclusion.

Now in [32] it is shown that Q(W1 × Wp) covers Q(W1) for every prime p
and that

Q(W1 × W1,1) = Q(W∞
1 ) = V(W∞

1 ).

This implies that {Q(W1×Wp) : p prime}∪Q(W∞
1 ) is a complete set of covers

of Q(W1), which is of course the only atom in Λq(WA).
The problem of describing all the structurally complete quasivarieties of

Wajsberg algebras has been almost solved by J. Gispert in [32]; in fact therein he
was able to describe all the least V-quasivarieties where V is a proper subvariety
of V.
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Theorem 8.4. If V = V(I, J) is a proper variety of Wajsberg algebras and
(I, J) is a reduced pair, then the least V-quasivariety of V(I, J) is

Q(I, J) = Q({W1 × Wi : i ∈ I} ∪ {W1 × Wj,1 : j ∈ J}).

So the only structurally complete quasivarieties of Wajsberg algebras, be-
sides Q(FWA(x)) for which no description is available, are those of type Q(I, J)
where (I, J) is a reduced pair. It follows for instance that Q(W∞

1 ) = Q(∅, {1})
is structurally complete and together with Q(W1) = Q({1}, ∅) is the only qua-
sivariety generated by a chain that it is structurally complete.

Which of those structurally complete varieties are also primitive? It is evi-
dent that all the covers of the unique atom in Λq(WA) are such; in fact they are
all structurally complete and their unique subvariety is Q(W1) which is also
structurally complete. More generally a quasivariety Q of Wajsberg algebras is
primitive if and only if all its subquasivarieties are the least V-quasivariety for
some V ⊆ H(Q). Let’s see that this is not always the case by generalizing an
argument in [32]. First we observe:

Lemma 8.5. [32] If (I, J), (I ′, J ′) are two residuated pairs then Q(I, J) ⊆
Q(I ′, J ′) if and only if for every n ∈ I, n > 1, there is an n′ ∈ I ′ with n | n′

and for any m ∈ J there is an m′ ∈ J ′ such that m | m′.

If (I, J) is a reduced pair and I = {n}, J = {m} we will write V(n,m) for
V(I, J). Let p, q, r be three distinct primes; then

V(pq, pr) ∩ V(pr, pq) = V(∅, p).

It follows that every least V-quasivariety contained in Q(pq, pr) and Q(pr, pq) is a
least V(∅, p)-quasivariety. Using Lemma 8.5 it is easy to verify that those are ex-
actly {Q(1, ∅),Q(∅, 1),Q(p, ∅),Q(∅, p)}; clearly Q(p, ∅) and Q(∅, p) are maximal
in that set and they are incomparable by Lemma 8.5. So Q(pr, pq) ∩ Q(pq, pr)
is a quasivariety that is not a least V-quasivariety. Therefore for instance
Q(2pqr, 3pqr) of which both Q(pr, pq) and Q(pq, pr) are subquasivariey, cannot
be primitive. Of course this argument can be further generalized in many ways
to exclude primitivity for many structurally complete quasivarieties of Wajsberg
algebras.

9 Conclusion and further investigations

The main problem that has not been solved in this paper is determining the
structurally complete subquasivarieties of Wajsberg hoops. A possible path (as
observed also by Reviewer # 1 of this paper) is to use the classification of free
Wajsberg hoops in [9] to generalize the arguments in Lemmas 6.5 and 6.7. The
conjecture formulated by Reviewer #1 is that Q( Ln,1) is structurally complete
and it is indeed the least V( L∞

n )-quasivariety. We do agree with that conjecture
and we plan to work on it in the next future.
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Another possible path of investigation comes from the fact that Wajsberg
hoops constitute the building blocks of basic hoops in a precise sense; let
A0,A1 ∈ CIRL such that A0 ∩ A1 = {1}, and consider A0 ∪ A1. We define
operations in the following way: the ordering intuitively stacks A1 on top of
A0 \ {1} and more precisely it is given by

a ≤ b if and only if

 b = 1, or
a ∈ A0 \ {1} and b ∈ A1 \ {1} or
a, b ∈ Ai \ {1} and a ≤Ai b, i = 0, 1.

Moreover we define the product inside of the two components to be the original
one, and between the two different components to be the meet:

a · b =

 a, if a ∈ A0 \ {1} and b ∈ A1;
b, if a ∈ A1 and b ∈ A0 \ {1};
a ·Ai b, if a, b ∈ Ai, i = 0, 1.

a → b =

 b, if a ∈ A1 and b ∈ A0 \ {1};
1, if a ∈ A0 \ {1} and b ∈ A1;
a →Ai b, if a, b ∈ Ai, i = 0, 1.

The resulting structure is called the ordinal sum of A0 and A1 and we denote
it by A0 ⊕A1. It is easily checked that A0 ⊕A1 is a commutative and integral
and residuated semilattice. However, it might not be a residuated lattice: for
instance if 1A0

is not join irreducible, A1 is not bounded and a, b ∈ A0 \ {1} are
such that a∨A0

b = 1A0
, then all the upper bounds of {a, b} lie in A1. Since A1

is not bounded there can be no least upper bound of {a, b} in A0⊕A1, thus the
ordering cannot be a lattice ordering. However it is clear that the ordinal sum
of two totally ordered CIRLs is again a totally ordered CIRL. This allows us to
define the ordinal sum of a set of totally ordered CIRLs in the obvious way; for
more details about this construction the reader can consult [4] or [8]. A totally
ordered CIRL is sum irreducible if it cannot be expressed as the ordinal sum
of two nontrivial CIRLs; moreover any totally ordered CIRL can be decomposed
into a ordinal sum of sum irreducible CIRLSs in an essentially unique way ([4],
Theorem 3.2). The key result is:

Theorem 9.1. [8]

1. A totally ordered hoop is sum irreducible if and only if it is a Wajsberg
hoop. Hence every totally ordered hoop is the ordinal sum of Wajsberg
hoops.

2. A totally ordered BL-algebra is sum irreducible if and only if it is a Wajs-
berg algebra. Hence every totally ordered BL algebra is a bounded ordinal
sum of Wajsberg hoops, the first of which is a Wajsberg algebra.

So it is not unreasonable to think that some properties of quasivarieties
of Wajsberg hoops (and Wajsberg algebras) can be lifted to basic hoops (BL-
algebras) via ordinal sums. There are some results that are quite straightfor-
ward to generalize, while others require a great deal of attention; we plan to
investigate this topic in the future.
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