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Abstract

Image recognition has recently witnessed a paradigm
shift, where vision-language models are now used to per-
form few-shot classification based on textual prompts.
Among these, the CLIP model has shown remarkable capa-
bilities for zero-shot transfer by matching an image and a
custom textual prompt in its latent space. This has paved the
way for several works that focus on engineering or learning
textual contexts for maximizing CLIP’s classification ca-
pabilities. In this paper, we follow this trend by learning
an ensemble of prompts for image classification. We show
that learning diverse and possibly shorter contexts improves
considerably and consistently the results rather than relying
on a single trainable prompt. In particular, we report better
few-shot capabilities with no additional cost at inference
time. We demonstrate the capabilities of our approach on
11 different benchmarks.

1. Introduction

Thanks to their large-scale pre-training, foundational

vision-language models proved to be very effective at gen-

eralizing to downstream tasks. In particular, CLIP (Con-

trastive Language-Image Pre-training) [15] has achieved

surprising performance in several different fields, such as

image generation [7], image retrieval [1,2] and image qual-

ity assessment [18]. Specifically, CLIP can be employed for

zero-shot classification by predicting the output class based

on the similarity between the image features and the textual

features of words belonging to a given vocabulary.

However, the textual input – referred to as prompt –

greatly influences the performance in downstream tasks.

For example, [21] reports a 5% increase in accuracy by

adding an “a” before the class token in the prompt “a photo
of [CLASS]” for few-shot classification with the Caltech101

[6] dataset. Given the significant difference in performance

caused by slight changes in wording, crafting prompts by
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Figure 1: Overview of our approach. While CoOp uses

a single prompt with M context tokens, ECO trains D
prompts with N context tokens each, such that M=D ∗N .

Given the same number of trainable parameters, ensembling

multiple prompts with a reduced number of context tokens

performs better than using a single prompt with a larger

number of context tokens.

hand to find the best-performing one is a non-trivial task.

Therefore, prompt ensembling is often employed to improve

the robustness and achieve better results [15]. Prompt en-

sembling consists of computing the textual features of sev-

eral different prompts, such as “a photo of a [CLASS]”, “an
illustration of a [CLASS]” etc., and then using the average

of them for the downstream task.

Recently, several works have proposed to employ prompt

learning to substitute hand-crafted prompts with learned

context word vectors. CoOp [21] was the first work to pro-

pose to use prompt learning for vision-language models,

improving over hand-crafted prompts. CoCoOp [20] trains

a neural network to generate an input-conditional token for

each image. MaPLe [10] proposes to learn a multi-modal

prompt instead of a textual-only one. However, all existing

methods only learn a single prompt, thus not exploiting the

This ICCV workshop paper is the Open Access version, provided by the Computer Vision
Foundation. Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.
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potential of prompt ensembling.

For this reason, we present ECO (Ensembling Context

Optimization), a method for merging prompt learning and

prompt ensembling. The main idea of our approach is con-

ceptually quite straightforward: learning multiple prompts

with a reduced number of context tokens instead of a single

one with a larger number of context tokens, and then com-

bining them with prompt ensembling. Figure 1 shows an

overview of the proposed method and a comparison with

CoOp [21]. Note that ECO is orthogonal to the prompt

learning technique being used, as it focuses on how to take

full advantage of the information of the learned prompts

rather than how to obtain it. Despite its apparent simplicity,

our approach performs significantly better than the compet-

ing methods on 11 testing datasets. Moreover, it proves to

be a more data-efficient and effective few-shot learner, since

the largest gains in performance are observed for as few as 1

and 2 shots. Finally, ECO does not add any computational

overhead at inference time since the textual features used

for the classification can be precomputed.

We summarize the contributions of this work as follows:

• We propose ECO, an approach for prompt learning

that employs prompt ensembling to combine multiple

prompts with reduced learned context tokens;

• ECO can be combined with any prompt learning strat-

egy, making it a simple and versatile tool for improving

accuracy with no overhead at inference time;

• We obtain significant improvements over the compet-

ing methods on 11 testing datasets, showing the effec-

tiveness of our method.

2. Method
2.1. Preliminaries

The vision-language model CLIP [15] is designed to

align visual and textual data within a common embedding

space. It consists of two encoders: a visual encoder de-

noted as fθ and a text encoder represented as gφ. These

encoders extract feature representations fθ(I) ∈ R
d and

gφ(Ew(Y )) ∈ R
d from an input image I and its corre-

sponding text caption Y , respectively. Here, d indicates the

dimension of the CLIP embedding space, while Ew rep-

resents the word-embedding layer, which maps each tok-

enized word in Y to the token embedding space W . The

primary objective of training the CLIP model is to ensure a

high similarity between the feature representations of cor-

responding images and text, i.e. fθ(I) ≈ gφ(Ew(Y ))).
In the zero-shot classification setup using CLIP, we start

with an image I and a set of text prompts {Yi}Ki=1, where

K represents the number of classes. Each text prompt Yi

is of the form “a photo of a [CLASSi]”, with CLASSi de-

noting a specific class name, such as “bird”, “dog”, “cat”,

etc. We then extract feature representations from the image

and the text prompts using the CLIP encoders. The image

feature representation is denoted as ψI = fθ(I), while the

text feature representation for each prompt is represented as

ψi
T = gφ(Ew(Yi)). Finally, we can compute the prediction

probability for each class as follows:

p(y = i|I) = exp(cos(ψi
T , ψI)/τ)

∑K
j=1 exp(cos(ψ

j
T , ψI)/τ)

, (1)

Here, τ is a temperature parameter that is learned during

the training of the CLIP model, and cos(·, ·) represents the

cosine similarity between the image and text features.

2.2. ECO

Our approach, named ECO, aims to enhance the

adaptability of frozen pre-trained CLIP models to down-

stream tasks by overcoming the inefficiency of hand-crafted

prompts. Previous methods, such as CoOp [21], Co-

CoOp [20], and MaPLe [10], learn a single set of context

tokens. On the contrary, drawing inspiration from prompt

ensembling techniques that have proven to boost perfor-

mance over using a single prompt [15], we learn multi-

ple sets of context tokens. In other words, while standard

prompt learning techniques learn only a single prompt, we

learn multiple prompts that we combine together to improve

performance.

We denote the multiple sets of context tokens (i.e. the

learnable prompts) as {vi1, . . . , viN}Di=1, where each con-

text vector vij belongs to the CLIP token embedding space

W . Here, N represents the number of context tokens per

prompt, while D is the total number of prompts. For the k-th

class of a dataset, the inputs to the text encoder are defined

as {vi1, . . . , viN , ck}Di=1, where ck = Ew([CLASSk]).
Similarly to CoOp, we share the same set of context vec-

tors among all classes. We then extract the textual fea-

tures using the textual encoder, averaging across prompts

ψk
T = 1

D

∑D
i=1 gφ({vi1, . . . , viN , ck}). Consequently, we

can compute the probability p(y = k|I) using Eq. (1).

The key innovation lies in our use of multiple prompts.

We learn distinct sets of context vectors from data in-

stead of relying on hand-crafted prompts like ”a photo of
a [CLASS]”. Intuitively, each prompt contributes to a di-

verse feature extraction process, and we effectively blend

the prompt-specific features by performing an element-wise

average. This prompt-wise average conceptually emulates

prompt ensembling, known to enhance CLIP’s zero-shot

classification performance [15]. However, unlike standard

prompt ensembling with hand-created prompts, our method

learns context vectors directly from the data. To summarize,

ECO seamlessly combines the concepts of prompt learning

and prompt ensembling, a novel combination not previously

explored in vision-language tasks.
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Shots

Method 1 2 4 8 16

Zero-Shot CLIP‡ [15] 58.77 58.77 58.77 58.77 58.77
Linear Probe CLIP [15] 36.67 47.61 57.19 64.98 71.10
CoOp [21] 59.59 62.32 66.77 69.89 73.42

ECO (D=16, N=1) 62.42 63.97 66.10 69.72 72.82
ECO (D=8, N=2) 63.18 65.16 67.90 70.72 73.45
ECO (D=2, N=8) 61.76 64.51 67.26 70.95 73.71

CoOp† (D=1, N=16) 59.43 62.36 66.49 69.74 73.18
ECO (D=4, N=4) 62.90 65.24 68.26 71.33 74.03

+3.47 +2.88 +1.77 +1.59 +0.85

Table 1: Detailed comparison of the results on the average

of the 11 datasets. Best scores are highlighted in bold. ‡

uses always zero shots. † indicates results obtained with

our implementation. Note that CoOp† coincides with ECO

(D = 1, N = 16). Absolute gains over CoOp† [21] are

indicated in blue.

During training, we employ cross-entropy as the loss

function, allowing the gradients to flow through the text en-

coder to update the weights of the context vectors. Impor-

tantly, the CLIP base model remains frozen throughout the

entire training process. To ensure a fair comparison with

CoOp, we keep the number of trainable parameters con-

stant. If CoOp uses M context vectors, we set N and D
such that M = N ∗ D. Note that our method coincides

with CoOP when D= 1 and N =M . Although in our ex-

periments we extend the CoOp method, what we propose

is a general framework that can be extended to all prompt

learning techniques that learn a single set of context to-

kens. In addition, ECO does not add any computational

overhead at inference time. Despite learning multiple con-

texts, after training these are fixed and their encodings are

averaged into a single latent vector ψk
T . Since ψk

T does not

depend on the input, it can be stored and used as a single

prompt, requiring no additional computation compared to

non-ensembling models like CoOp.

3. Experimental Results
Since ECO does not depend on a specific prompt learn-

ing technique, we choose to compare our approach to the

most basic one, i.e. CoOp [21]. In future work, we will ex-

tend the proposed method to other prompt learning works,

such as CoCoOp [20] and MaPLe [10].

3.1. Evaluation Protocol

We follow the few-shot evaluation protocol of [15, 21],

using 1, 2, 4, 8, and 16 shots for training and evaluating the

performance of each model in the full test sets. We report

the average results over three seeds.

Similarly to [21], we evaluate our approach on 11

image classification datasets: ImageNet [5], Caltech101

[6], OxfordPets [14], StanfordCars [11], Flowers102 [13],

Food101 [3], FGVCAircraft [12], SUN397 [19], DTD [4],

EuroSAT [9] and UCF101 [16].

We consider the version of CoOp with the class token po-

sitioned at the end, ResNet 50 [8] as the backbone and with

the number of context tokens M =16. We inherit the train-

ing details from [21]. For a fair comparison, in the exper-

iments, we vary the number of prompts D and the number

of context tokens N for each of them so that the number of

trainable parameters stays the same (i.e. M=D ∗N ). Note

that, for D=1 and N=16, ECO coincides with CoOp.

3.2. Quantitative Results

Figure 2 shows the results of ECO for all the testing

datasets. For completeness, we also report the performance

of zero-shot CLIP, which is based on hand-crafted prompts.

ECO obtains significant improvements over the baselines

on all the datasets. The version of ECO with N = 4 and

D=4 achieves the best performance on average and proves

to be the best tradeoff between the number of prompts and

context tokens. In addition, ECO is less sensitive to noisy

labels than CoOp [21], as it achieves better performance

than zero-shot CLIP also on the Food101 dataset, which is

known to have noisy annotations [21].

In Table 1 we provide a comparison between the differ-

ent versions of ECO and the baselines by reporting the av-

erage accuracy on the 11 benchmarks, varying the number

of shots. For a fair comparison, for CoOp we report the re-

sults we obtained with the version of our model with D=1
and N = 16, since they coincide. We denote this in Ta-

ble 1 as CoOp†. However, we observed a difference of only

0.32% on average with the values of the original paper [21],

which can be attributed to different seeds and hardware. For

completeness, we also provide the results of the linear probe

model of CLIP, which is considered a strong few-shot learn-

ing baseline [17]. Our approach consistently outperforms

all the competing methods. In particular, we observe abso-

lute improvements up to 3.47 over CoOp. Moreover, the re-

sults show that ECO is a better few-shot learner and is more

data-efficient than CoOp since the largest gains in perfor-

mance are obtained for as few as 1 and 2 shots.

Overall, the experimental results demonstrate that, when

utilizing an equivalent number of trainable parameters, em-

ploying an ensemble of multiple prompts with a reduced

number of context tokens performs better than using a sin-

gle prompt with a larger number of context tokens.

4. Conclusion
In this paper, we have proposed a novel prompt learning

strategy that consists in optimizing an ensemble of multiple

contexts. Although simple, the method is effective, yield-

ing consistent improvements over 11 different benchmarks,

and versatile, being it applicable on top of potentially any
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Figure 2: Quantitative results on the 11 test datasets varying the number of shots, prompts D and context tokens N for each

of them. Note that CoOp [21] coincides with ECO when D=1 and N=16.

existing prompt learning technique with no additional over-

head at inference time. Interestingly, we found that balanc-

ing context length and number of prompts is beneficial for

effectively exploit CLIP for few-shot image classification.

This is particularly true for a reduced number of shots, such

as 1 or 2, for which we report the bigger gains.
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