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Closed sets of finitary functions between
products of finite fields of coprime order

Stefano Fioravanti

Abstract. We investigate the finitary functions from a finite product of
finite fields

∏m
j=1 Fqj = K to a finite product of finite fields

∏n
i=1 Fpi = F,

where |K| and |F| are coprime. An (F,K)-linearly closed clonoid is a subset
of these functions which is closed under composition from the right and
from the left with linear mappings. We give a characterization of these
subsets of functions through the Fp[K

×]-submodules of FK

p , where K
× is

the multiplicative monoid of K =
∏m

i=1 Fqi . Furthermore we prove that
each of these subsets of functions is generated by a set of unary functions
and we provide an upper bound for the number of distinct (F,K)-linearly
closed clonoids.
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1. Introduction

Since P. Hall’s abstract definition of a clone the problem to describe sets of
finitary functions from a set A to a set B which satisfy some closure properties
has been a fruitful branch of research. E. Post’s characterization of all clones on
a two-element set [12] can be considered as a foundational result in this field,
which was developed further, e.g., in [13,11,15,10]. Starting from [9], clones
are used to study the complexity of certain constrain satisfaction problems
(CSPs).

The aim of this paper is to describe sets of functions from a finite product
of finite fields

∏m
j=1 Fqj = K to a finite product of finite fields

∏n
i=1 Fpi

= F,
where |K| and |F| are coprime. The sets of functions we are interested in are
closed under composition from the left and from the right with linear mappings.
Thus we consider sets of functions with different domains and codomains; such
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sets are called clonoids and are investigated, e.g., in [2]. Let B be an algebra,
and let A be a non-empty set. For a subset C of

⋃
n∈N

BAn

and k ∈ N, we let
C [k] := C ∩ BAk

. According to Definition 4.1 of [2] we call C a clonoid with
source set A and target algebra B if
(1) for all k ∈ N: C [k] is a subuniverse of BAk

, and
(2) for all k, n ∈ N, for all (i1, . . . , ik) ∈ {1, . . . , n}k, and for all c ∈ C [k], the

function c′ : An → B with c′(a1, . . . , an) := c(ai1 , . . . , aik) lies in C [n].
By (1) every clonoid is closed under composition with operations of B on

the left. In particular we are dealing with those clonoids whose target algebra
is the ring

∏m
i=1 Fpi

that are closed under composition with linear mappings
from the right side.

Definition 1.1. Let m, s ∈ N and let K =
∏m

j=1 Kj , F =
∏s

i=1 Fi be prod-
ucts of fields. An (F,K)-linearly closed clonoid is a non-empty subset C of
⋃

k∈N

∏s
i=1 F

∏m
j=1 K

k
j

i with the following properties:

(1) for all n ∈ N, a , b ∈ ∏s
i=1 Fi, and f, g ∈ C [n]:

af + bg ∈ C [n];

(2) for all l, n ∈ N, f ∈ C [n], (x 1, . . . ,xm) ∈ ∏m
j=1 K

l
j , and Aj ∈ K

n×l
j :

g : (x 1, . . . ,xm) �→ f(A1 · x t
1, · · · , Am · x t

m) is in C [l],

where the juxtaposition af denotes the Hadamard product of the two vectors
(i.e. the component-wise product (a1, . . . , an) ·(b1, . . . , bn) = (a1b1, . . . , anbn)).

Clonoids naturally appear in the study of promise constraint satisfac-
tion problems (PCSPs). These problems are investigated, e.g., in [4], and in
[5] clonoid theory has been used to provide an algebraic approach to PCSPs.
In [14] A. Sparks investigate the number of clonoids for a finite set A and
finite algebra B closed under the operations of B. In [8] S. Kreinecker char-
acterized linearly closed clonoids on Zp, where p is a prime. Furthermore, a
description of the set of all (F,K)-linearly closed clonoids is a useful tool to
investigate (polynomial) clones on Zn, where n is a product of distinct primes
or to represent polynomial functions of semidirect products of groups.

In [6] there is a complete description of the structure of all (F,K)-linearly
closed clonoids in case F and K are fields and the results we will present are a
generalization of this description.

The main result of this paper (Theorem 1.2) states that every (F,K)-
linearly closed clonoid is generated by its subset of unary functions.

Theorem 1.2. Let K =
∏m

i=1 Fqi , F =
∏s

i=1 Fpi
be products of fields such that

|K| and |F| are coprime. Then every (F,K)-linearly closed clonoid is generated
by a set of unary functions and thus there are finitely many distinct (F,K)-
linearly closed clonoids.

The proof of this result is given in Section 3. From this follows that under
the assumptions of Theorem 1.2 we can bound the cardinality of the lattice of
all (F,K)-linearly closed clonoids.
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Furthermore, in Section 4 we find a description of the lattice of all (F,K)-
linearly closed clonoids as the direct product of the lattices of all Fpi

[K×]-
submodules of FK

pi
, where K

× is the multiplicative monoid of K =
∏m

i=1 Fqi .
Moreover, we provide a concrete bound for the cardinality of the lattice of all
(F,K)-linearly closed clonoids.

Theorem 1.3. Let F =
∏s

i=1 Fpi
and K =

∏m
j=1 Fqj be products of finite fields

such that |K| and |F| are coprime. Then the cardinality of the lattice of all
(F,K)-linearly closed clonoids L(F,K) is bounded by:

|L(F,K)| ≤
s∏

i=1

∑

1≤r≤n

(
n

r

)

pi

,

where n =
∏m

j=1 qi and
(

n

h

)

q

=
h∏

i=1

qn−h+i − 1
qi − 1

with q ∈ N\{1}.

2. Preliminaries and notation

We use boldface letters for vectors, e.g., u = (u1, . . . , un) for some n ∈ N.
Moreover, we will use 〈v ,u〉 for the scalar product of the vectors v and u .
Let f be an n-ary function from an additive group G1 to a group G2. We say
that f is 0-preserving if f(0G1 , . . . , 0G1) = 0G2 . A non-trivial (F,K)-linearly
closed clonoids is the set of all 0-preserving finitary functions from K to F.
The (F,K)-linearly closed clonoids form a lattice with the intersection as meet
and the (F,K)-linearly closed clonoid generated by the union as join. The top
element of the lattice is the (F,K)-linearly closed clonoid of all functions and
the bottom element consists of only the constant zero functions. We write
Clg(S) for the (F,K)-linearly closed clonoid generated by a set of functions S.

In order to prove Theorem 1.2 we introduce the definition of 0-absorbing
function. This concept is slightly different from the one in [1] since we consider
the source set to be split into a product of sets. Nevertheless, some of the
techniques in [1] can be used also with our definition of 0-absorbing function.

Let A1, . . . , Am be sets, let 0Ai
∈ Ai, and let J ⊆ [m]. For all a =

(a1, . . . , am) ∈ ∏m
i=1 Ai we define a (J) ∈ ∏m

i=1 Ai by a
(J)
i = ai for i ∈ J and

(a (J))i = 0Ai
for i ∈ [m]\J .

Let A1, . . . , Am be sets, let 0Ai
∈ Ai, let G = 〈G,+,−, 0G〉 be an abelian

group, let f :
∏m

i=1 Ai → G, and let I ⊆ [m]. By Dep(f) we denote {i ∈
[m] | f depends on its ith set argument}. We say that f is 0Aj

-absorbing in
its jth argument if for all a = (a1, . . . , am) ∈ ∏

i=1 Ai with aj = 0Aj
we have

f(a) = 0G. We say that f is 0-absorbing in I if Dep(f) ⊆ I and for every i ∈ I
f is 0Ai

-absorbing in its ith argument.
Using the same proof of [1, Lemma 3] we can find an interesting property

of 0-absorbing functions.
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Lemma 2.1. Let A1, . . . , Am be sets, let 0Ai
be an element of Ai for all i ∈ [m].

Let B = 〈B,+,−, 0G〉 be an abelian group, and let f :
∏m

i=1 Ai → B. Then
there is exactly one sequence {fI}I⊆[m] of functions from

∏m
i=1 Ai to B such

that for each I ⊆ [m], fI is 0-absorbing in I and f =
∑

I⊆[m] fI . Furthermore,
each function fI lies in the subgroup F of B

∏m
i=1 Ai that is generated by the

functions x → f(x(J)), where J ⊆ [m].

Proof. The proof is essentially the same of [1, Lemma 3] substituting Am with∏m
i=1 Ai. We define fI by recursion on |I|. We define f∅(a) := f(0A1 , . . . , 0Am

)
and for all I 
= ∅ and a ∈ ∏m

i=1 Ai and fI by:

fI(a) := f(a (I)) −
∑

J⊂I

fJ(a), (2.1)

for all a ∈ ∏m
i=1 Ai. �

Furthermore, as in [3], we can see that the component fI satisfies fI(a)
=

∑
J⊆I(−1)|I|+|J| f(a (J)). From now on we will not specify the element that

the functions absorb since it will always be the 0 of a finite field.

3. Unary generators of (F,K)-linearly closed clonoid

In this section our aim is to find an analogon of [6, Theorem 4.2] for a generic
(F,K)-linearly closed clonoid C, which will allow us to generate C with a set
of unary functions. In general we will see that it is the unary part of an (F,K)-
linearly closed clonoid that determines the clonoid. To this end we shall show
the following lemmata. We denote by e

F
n
qi

1 = (1, 0, . . . , 0) the first member of
the canonical basis of Fn

qi as a vector-space over Fqi . Let f :
∏m

i=1 F
k
qi → Fp.

Let s ≤ m and let K =
∏s

i=1 Fqi . Then we denote by f |K:
∏s

i=1 F
k
qi → Fp the

function such that f |K (x 1, . . . ,x s) = f(x 1, . . . ,x s, 0, . . . , 0).

Lemma 3.1. Let f, g :
∏m

i=1 F
n
qi → Fp be functions, and let b1, . . . , bm be such

that bi ∈ F
n
qi\ {(0, . . . , 0)} for all i ∈ [m]. Assume that f(λ1b1, . . . , λmbm) =

g(λ1e
F
n
q1

1 , . . . , λme
F
n
qm

1 ), for all λ1 ∈ Fq1 , . . . , λm ∈ Fqm , and f(x) = g(y) =
0 for all x ∈ ∏m

i=1 F
n
qi\{(λ1b1, . . . , λmbm) | (λ1, . . . , λm) ∈ ∏m

i=1 Fqi} and

y ∈ ∏m
i=1 F

n
qi\{(λ1e

F
n
q1

1 , . . . , λme
F
n
qm

1 ) | (λ1, . . . , λm) ∈ ∏m
i=1 Fqi}. Then f ∈

Clg({g}).

Proof. For j ≤ m let Aj be any invertible n × n-matrix over Kj such that

Ajbj = e
F
n
qj

1 . Then is straightforward to check that f(x 1, . . . ,xm) = g(Ax 1,
. . . , Axm). �
Lemma 3.2. Let q1, . . . , qm and p be powers of primes and let K =

∏m
i=1 Fqi .

Let h ≤ m and let K1 =
∏h

i=1 Fqi . Let C be an (Fp,K)-linearly closed clonoid
and let

C |K1 := {g | ∃g′ ∈ C : g′ |K1= g}.

Let Dep(f) = [h] and let f :
∏m

i=1 F
s
qi → Fp. Then f ∈ Clg(C [1])[s] if and only

if f |K1∈ Clg(C |[1]
K1

)[s].
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Proof. It is clear that if f ∈ Clg(C [1]) then f |K1∈ Clg(C |[1]
K1

), simply restrict-
ing to K1 all the unary generators of f . Conversely, let S′ be a set of unary
generators of f |K1 . Let S ⊆ C [1] be defined by

S :=

{

g | ∃g′ ∈ S′ : g(x1, . . . , xh, 0, . . . , 0) = g′(x1, . . . , xh),

for all (x1, . . . , xh) ∈
h∏

i=1

Fqi

}

.

From Dep(f) = [h] follows that S is a set of unary generators of f . �

Lemma 3.3. Let q1, . . . , qm and p be powers of primes with
∏m

i=1 qi and p
coprime. Let K =

∏m
i=1 Fqi . Let C be an (Fp,K)-linearly closed clonoid, let

g ∈ C [1] be 0-absorbing in [m], and let tk :
∏m

i=1 F
k
qi → Fp be defined by:

tk(λ1e
F
k
q1

1 , . . . , λme
F
k
qm

1 ) = g(λ1, . . . , λm) for all (λ1, . . . , λm) ∈
m∏

i=1

Fqi

tk(x) = 0

for all x ∈
m∏

i=1

F
k
qi\

{

(λ1e
F
k
q1

1 , . . . , λme
F
k
qm

1 ) | (λ1, . . . , λm) ∈
m∏

i=1

Fqi

}

.

Then tk is 0-absorbing in [m], with Ai = F
k
qi and 0Ai

= (0Fqi
, . . . , 0Fqi

). Fur-
thermore, tk ∈ Clg(C [1]) for all k ∈ N.

Proof. Since g is 0-absorbing in [m] then also tk is 0-absorbing in [m]. Moreover
,we prove that tk ∈ Clg(C [1]) by induction on k.
Case k = 1: if k = 1, then t1 = g is a unary function of C [1].
Case k > 1: we assume that tk−1 ∈ Clg(C [1]). For all 1 ≤ i ≤ m we define the
two sets of mappings T

[k]
i and R

[k]
i from F

k
qi to F

k−1
qi by:

T
[k]
i := {ua : (x1, . . . , xk) �→ (x1 − ax2, x3 . . . , xk) | a ∈ Fqi}

R
[k]
i := {wa : (x1, . . . , xk) �→ (ax2, x3 . . . , xk) | a ∈ Fqi\{0}}.

Let P
[k]
i := T

[k]
i ∪R

[k]
i . Furthermore, we define the function c[k] :

⋃m
i=1 P

[k]
i → N

by:

c[k](h) =

{
0 if h ∈ ⋃m

i=1 T
[k]
i ,

1 if h ∈ ⋃m
i=1 R

[k]
i .

Let us define the function rk :
∏m

i=1 F
k
qi → Fp by:

rk(x 1, . . . ,xm)

=
∑

h1∈P
[k]
1 ,...,hm∈P

[k]
m

(−1)
∑m

i=1 c[k](hi)tk−1(h1(x 1), , . . . , hm(xm)), (3.1)

for all x i ∈ F
k
qi .
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Claim: rk(x 1, . . . ,xm) =
∏m

i=1 qi · tk(x 1, . . . ,xm) for all (x 1, . . . ,xm) ∈∏m
i=1 F

k
qi

Subcase ∃i ∈ [m], 3 ≤ j ≤ k with (x i)j 
= 0:

By definition of tk−1, we can see that in (3.1) every summand vanishes
if there exist i ∈ [m] and 3 ≤ j ≤ k with (x i)j 
= 0. Thus rk(x 1, . . . ,xm) =∏m

i=1 qi · tk(x 1, . . . ,xm) = 0 in this case.

Subcase ∃l ∈ [m] with (x l)2 
= 0 and (x i)j = 0 for all i ∈ [m], 3 ≤ j ≤ k:

We prove that rk(x 1, . . . ,xm) = 0. We can see that for all (x1, x2) ∈ Fql ×
Fql\{0} and for all b ∈ Fql\{0}, there exists a ∈ Fql such that bx2 = x1 − ax2,
and clearly a = x1x

−1
2 − b. Conversely, for all (x1, x2) ∈ Fql × Fql\{0} and for

all a ∈ Fql\{x1x
−1
2 } there exists b ∈ Fql\{0} such bx2 = x1 − ax2, and clearly

b = x1x
−1
2 − a.

With this observation we can see that for all hi ∈ P
[k]
i with i ∈ [m]\{l}

and for all (x 1, . . . ,xm) ∈ ∏m
i=1 F

k
qi with (x l)1 = x1 and (x l)2 = x2 we have

that if a 
= x1x
−1
2 then:

tk−1(h1(x 1), . . . , hl−1(x l−1), ua(x l), hl+1(x l+1), . . . , hm(xm))

= tk−1(h1(x 1), . . . , hl−1(x l−1), wx1x
−1
2 −a(x l), hl+1(x l+1), . . . , hm(xm))

where ua ∈ T
[k]
l and wx1x

−1
2 −a ∈ R

[k]
l . Thus they produce summands with

different signs in (3.1). Moreover, if a = x1x
−1
2 , then

tk−1(h1(x 1), . . . , hl−1(x l−1), ua(x l), hl+1(x l+1), . . . , hm(xm))

= tk−1(h1(x 1), . . . , hl−1(x l−1),0 F
k−1
ql

, hl+1(x l+1), . . . , hm(xm)) = 0,

since tk−1 is 0-absorbing in [m]. This implies that all the summands of rk are
cancelling if (x l)2 
= 0. Thus rk(x 1, . . . ,xm) =

∏m
i=1 qi · tk(x 1, . . . ,xm) = 0 in

this case.

Subcase (x 1, . . . ,xm) = (λ1e
F
k
q1

1 , . . . , λme
F
k
qm

1 ) for some (λ1, . . . , λm) ∈∏m
i=1 Fqi :

We can observe that:

tk−1(h1(x 1), . . . , hl−1(x l−1), hl(λle
Fql
1 ), hl+1(x l+1), . . . , hm(xm)) = 0

= tk−1(h1(x 1), . . . , hl−1(x l−1),0 F
k−1
ql

, hl+1(x l+1), . . . , hm(xm)) = 0,
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for all hi ∈ P
[k]
i with i ∈ [m]\{l}, for all l ≤ m, λl ∈ Fql , x i ∈ F

k
qi , and

hl ∈ R
[k]
l , since tk−1 is 0-absorbing in [n]. Thus we can observe that:

rk(λ1e
F
k
q1

1 , . . . , λme
F
k
qm

1 )

=
∑

hi∈P
[k]
i

(−1)
∑m

i=1 c[k](hi)tk−1(h1(λ1e
F
k
q1

1 ), . . . , hm(λme
F
k
qm

1 ))

=
∑

hi∈T
[k]
i

(−1)
∑m

i=1 c[k](hi)tk−1(h1(λ1e
F
k
q1

1 ), . . . , hm(λme
F
k
qm

1 ))

=
∑

hi∈T
[k]
i

tk−1(h1(λ1e
F
k
q1

1 ), . . . , hm(λme
F
k
qm

1 ))

=
∑

hi∈T
[k]
i

tk−1(λ1e
F
k−1
q1

1 , . . . , λme
F
k−1
qm

1 )

=
m∏

i=1

qi · tk−1(λ1e
F
k−1
q1

1 , . . . , λme
F
k−1
qm

1 )

=
m∏

i=1

qi · tk(λ1e
F
k
q1

1 , . . . , λme
F
k
qm

1 ).

Thus rk =
∏m

i=1 qi · tk.
Because of (3.1) and the inductive hypothesis, we have rk ∈ Clg({tk−1})

⊆ Clg(C [1]). Thus
∏m

i=1 qitk ∈ Clg(C [1]). Since
∏m

i=1 qi 
= 0 modulo p we have
that tk ∈ Clg(C [1]) and this concludes the induction proof. �

Lemma 3.4. Let q1, . . . , qm and p be powers of primes with
∏m

i=1 qi and p co-
prime and let K =

∏m
i=1 Fqi . Let C be an (Fp,K)-linearly closed clonoid, let

I ⊆ [m] and let f ∈ C be 0-absorbing in I. Then f ∈ Clg(C [1]).

Proof. Let K1 =
∏

i∈I Fqi and let C1 := {g | ∃g′ ∈ C : g′ |K1= g}. By Lemma
3.2 f ∈ Clg(C [1]) if and only if f |K1∈ Clg(C |[1]

K1
) and we observe that f |K1

is 0-absorbing in I . Thus without loss of generality we fix I = [m]. The
strategy is to interpolate f in all the distinct products of lines of the form
{(λ1b1, . . . , λmbm) | (λ1, . . . , λm) ∈ ∏m

i=1 Fqi , bi ∈ F
n
qi\{(0, . . . , 0)}. To this

end let R = {Lj | 1 ≤ j ≤ ∏m
i=1(q

n
i −1)/(qi−1) = s} be the set of all s distinct

products of lines of
∏m

i=1 Fqi and let l (i,j) ∈ F
n
qi be such that (l (1,j), . . . , l (m,j))

generates the products of m lines Lj , for 1 ≤ j ≤ s, 1 ≤ i ≤ m. For all
1 ≤ j ≤ s, let fLj

:
∏m

i=1 F
n
qi → Fp be defined by:

fLj
(λ1l (1,j), . . . , λml (m,j)) = f(λ1l (1,j), . . . , λml (m,j))

for (λ1, . . . , λm) ∈ ∏m
i=1 Fqi and fLj

(x ) = 0 for all x ∈ ∏m
i=1 F

n
qi\{(λ1l (1,j),

. . . , λml (m,j)) | (λ1, . . . , λm) ∈ ∏m
i=1 Fqi}.

Claim 1: f =
∑s

j=1 fLj
.
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Since f is 0-absorbing in [m] we have that:
s∑

j=1

fLj
(λ1l (1,z), . . . , λml (m,z)) = fLz

(λ1l (1,z), . . . , λml (m,z))

= f(λ1l (1,z), . . . , λml (m,z))

for all (λ1, . . . , λm) ∈ ∏m
i=1 Fqi and z ∈ [s], since for all j1, j2 ∈ [s], Lj1

and Lj2 intersect only in points of the form (x 1, . . . ,xm) ∈ ∏m
i=1 F

n
qi with

x i = (0, . . . , 0) for some i ∈ [m].
Let 1 ≤ j ≤ s and let g :

∏m
i=1 Fqi → Fp be a function such that:

fLj
(λ1l (1,j), . . . , λml (m,j)) = g(λ1, . . . , λm) = f(λ1l (1,j), . . . , λml (m,j))

for all (λ1, . . . , λm) ∈ ∏m
i=1 Fqi . Then g ∈ C [1].

Claim 2: fLj
∈ Clg(C [1]) for all Lj ∈ R.

We can observe that fLj
(λ1l (1,j), . . . , λml (m,j)) = g(λ1, . . . , λm) for all

(λ1, . . . , λm) ∈ ∏m
i=1 Fqi , and fLj

(x 1, . . . ,xm) = 0 for all (x 1, . . . ,xm) ∈
∏m

i=1 F
n
qi\{(λ1l (1,j), . . . , λml (m,j)) | (λ1, . . . , λm) ∈ ∏m

i=1 Fqi}. Furthermore,
g is 0-absorbing in [m]. By Lemmata 3.1 and 3.3, fLj

∈ Clg(C [1]), which
concludes the proof of f ∈ Clg(C [1]). �

We are now ready to prove that an (F,K)-linearly closed clonoid C is
generated by its unary part.

Theorem 3.5. Let q1, . . . , qm and p be powers of primes with
∏m

i=1 qi and p
coprime and let K =

∏m
i=1 Fqi . Then every (Fp,K)-linearly closed clonoid C is

generated by its unary functions. Thus C = Clg(C [1]).

Proof. The inclusion ⊇ is obvious. For the other inclusion let C be an (Fp,K)-
linearly closed clonoid and let f be an n-ary function in C. By Lemma 2.1 with
Ai = F

n
qi and 0Ai

= (0Fqi
, . . . , 0Fqi

), f can be split in the sum of n-ary functions
∑

I⊆[m] fI such that for each I ⊆ [m], fI is 0-absorbing in I. Furthermore, each
function fI lies in the subgroup F of FK

n

p that is generated by the functions
x → f(x (I)), where I ⊆ [m] and thus each summand fI is in C. By Lemma
3.4 each of these summands is in Clg(C [1]). and thus f ∈ Clg(C [1]). �

The next corollary of Theorem 3.5 and the following theorem tell us that
there are only finitely many distinct (F,K)-linearly closed clonoids.

Corollary 3.6. Let q1, . . . , qm and p be powers of primes with
∏m

i=1 qi and p
coprime and let K =

∏m
i=1 Fqi . Let C and D be two (Fp,K)-linearly closed

clonoids. Then C = D if and only if C [1] = D[1].

Let us denote by L(F,K) the lattice of all (F,K)-linearly closed clonoids.
We define the functions ρi : L(F,K) → L(Fpi

,K) such that for all 1 ≤ i ≤ s
and for all C ∈ L(F,K):

ρi(C) := {f | there exists g ∈ C : f = πF

i ◦ g}, (3.2)

where with πF

i we denote the projection over the i-th component of the product
of fields F.
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Theorem 3.7. Let F =
∏s

i=1 Fpi
and K =

∏m
i=1 Fqi be products of finite fields.

Then the lattice of all (F,K)-linearly closed clonoids is isomorphic to the direct
product of the lattices of all (Fpi

,K)-linearly closed clonoids with 1 ≤ i ≤ s.

Proof. Let us define the function ρ : L(F,K) → ∏s
i=1 L(Fpi

,K) such that
ρ(C) := (ρ1(C), . . . , ρs(C)). Clearly ρ is well-defined. Conversely, let ψ :

∏s
i=1 L

(Fpi
,K) → L(F,K) be defined by:

ψ(C1, . . . , Cs) =
⋃

k∈N

{f : x �→ (f1(x ), . . . , fs(x )) | f1 ∈ C
[k]
1 , . . . , fs ∈ C [k]

s }.

From this definition it is clear that ψ is well defined. Furthermore,

ρψ(C1, . . . , Cs) = (C1, . . . , Cs)

and C ⊆ ψρ(C) for all (C1, . . . , Cs) ∈ ∏s
i=1 L(Fpi

,K) and C ∈ L(F,K).
To prove that C ⊇ ψρ(C) let f ∈ ψρ(C). Then there exists (f1, . . . , fs) ∈

ρ(C) such that fi = πF

i ◦ f for all i ∈ [s]. By definition of ρ, there exist
g1, . . . , gs ∈ C such that fi = πF

i ◦ gi for all i ∈ [s]. Let a i ∈ F be such
that a i(j) = 0 for j 
= i and a i(i) = 1. It is easy to check that the function
f =

∑s
i=1 a igi = f and thus f ∈ C.

Hence ρ is a lattice isomorphism. �
Proof of Theorem 1.2. Let F =

∏s
i=1 Fpi

and K =
∏m

i=1 Fqi be products of
finite with |K| and |F| coprime. Let C ∈ L(F,K). By Theorem 3.7 C is uniquely
determined by its projections C1 = ρ1(C), . . . , Cs = ρs(C) where ρi is defined
in (3.2). By Theorem 3.5 we have that for all i ∈ [s] every (Fpi

,K)-linearly
closed clonoid Ci is uniquely determined by its unary part C

[1]
i . Thus C is

uniquely determined by its unary part C [1]. �

4. The lattice of all (F,K)-linearly closed clonoids

In this section we characterize the structure of the lattice L(F,K) of all (F,K)-
linearly closed clonoids through a description of their unary parts. Let F =∏s

i=1 Fpi
and K =

∏m
j=1 Fqj be products of finite fields such that |K| and |F|

are coprime numbers.
We will see that L(F,K) is isomorphic to the product of the lattices

of all Fpi
[K×]-submodules of F

K

pi
, where K

× is the multiplicative monoid of
K =

∏m
i=1 Fqi . In order to characterize the lattice of all (F,K)-linearly closed

clonoids we need the definition of monoid ring.

Definition 4.1. Let 〈M, ·〉 be a commutative monoid and let 〈R,+,�〉 be a
commutative ring with identity. Let

S := {f ∈ RM | f(a) 
= 0 for only finitely many a ∈ M}.

We define the monoid ring of M over R as the ring (S,+, ·), where +
is the point-wise addition of functions and the multiplication is defined as
f · g : R → M which maps each m ∈ M into:

∑

m1,m2∈M,m1m2=m

f(m1)g(m2).
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We denote by R[M ] the monoid ring of M over R. Following the notation in
[3] for all a ∈ A we define τa to be the element of RM with τa(a) = 1 and
τa(M\{a}) = {0}. We observe that for all f ∈ R[M ] there is an r ∈ RM such
that f =

∑
a∈M raτa and that we can multiply such expressions with the rule

τa · τb = τab.

Definition 4.2. Let M be a commutative monoid and let R be a commutative
ring. We denote by RM the R[M ]-module with the action ∗ defined by:

(τa ∗ f)(x) = f(ax),

for all a ∈ M and f ∈ RM .

Let K
× be the multiplicative monoid of K =

∏m
i=1 Fqi . We can observe

that V is an Fp[K×]-submodule of F
K

p if and only if it is a subspace of F
K

p

satisfying
(x1, . . . , xm) �→ f(a1x1, . . . , amxm) ∈ V, (4.1)

for all f ∈ V and (a1, . . . , am) ∈ ∏m
i=1 Fqi . Clearly the following lemma holds.

Lemma 4.3. Let p, q1, . . . qm be powers of primes and let K =
∏m

i=1 Fqi . Let
V ⊆ F

K

p . Then V is the unary part of an (Fp,K)-linearly closed clonoid if and
only if is an Fp[K×]-submodule of FK

p .

Together with Theorem 3.7 this immediately yields the following.

Corollary 4.4. Let K =
∏m

i=1 Fqi and F =
∏s

i=1 Fpi
be products of finite fields

such that |K| and |F| are coprime. Then the function π[1] that sends an (F,K)-
linearly closed clonoid to its unary part is an isomorphism between the lattice
of all (F,K)-linearly closed clonoids and the direct product of the lattices of all
Fpi

[K×]-submodules of FK

pi
.

With the same strategy of [6, Lemma 5.6] we obtain the following Lemma.

Lemma 4.5. Let K =
∏m

i=1 Fqi and F =
∏s

i=1 Fpi
be products of finite fields

such that |K| and |F| are coprime. Then every (F,K)-linearly closed clonoid is
finitely related.

The next step is to characterize the lattice of all Fp[K×]-submodules of
F
K

p . To this end we observe that V is an Fp[K×]-submodule of FK

p if and only
if is a subspace of FK

p satisfying (4.1).
We can provide a bound for the lattice of all (F,K)-linearly closed clonoids

given by the number of subspaces of FK

pi
.

Remark 4.6. It is a well-known fact in linear algebra that the number of k-
dimensional subspaces of an n-dimensional vector space V over a finite field
Fq is the Gaussian binomial coefficient:

(
n

k

)

q

=
k∏

i=1

qn−k+i − 1
qi − 1

. (4.2)
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From this remark we directly obtain the bound of Theorem 1.3. In order
to determine the exact cardinality of the lattice of all (F,K)-linearly closed
clonoids we have to deal with the problem to find the Fp[K×]-submodules of
F
K

p . We will not study this problem here because we think that this is an
interesting problem that deserves an own research.
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