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ABSTRACT 

 

The morphology of a red blood cell (RBC) in physiological conditions (discocyte) is of primary 

importance for its main physiological role (i.e., the transport of respiratory gases to and from the 

tissues). The erythrocyte membrane-cortical cytoskeleton-complex structure, ensuring both shape 

resilience and marked physiological deformability, also allows erythrocytes to undergo peculiar shape 

changes, from spherical globes (spherocytes), concave shapes (stomatocytes), cells provided with 

spines (echinocytes) or with a central crest (knizocytes). Several pathological conditions are 

associated with characteristic RBC shape alterations. For instance, typical thorny red cells 

(acanthocytes) are prevalent in neuroacanthocytosis, a group of rare genetic diseases; hereditary 

spherocytosis, elliptocytosis, and stomatocytosis are RBC disorders resulting from mutations in genes 

encoding various membrane and skeletal proteins; codocytes are a common occurrence in beta-

thalassemia. Furthermore, aberrant erythrocytic shapes are observed in renal and liver disease, and in 

case of hemoglobinopathies and toxemias. Leptocytes, as well as other abnormal erythrocyte shapes, 

are reported in patients diagnosed with Rett syndrome, an X-linked genetically determined 

neurodevelopmental disorder. Abnormal RBC shapes have been described also in patients diagnosed 

with autism spectrum disorders (ASD). ASD represent a complex set of neurodevelopmental 

disorders, characterized by social and behavioral impairments. These disorders have a prevalent 

genetic etiology; however, epigenetically acting environmental factors (e.g., immune dysregulation, 

pollutants) seem to play a key role in the development of the disease. This condition is associated 

with a high social impact and strong suggestions of a dramatically rising prevalence in the general 

pediatric population over the last decades. 

In the present thesis work, we started to investigate the potential value of the RBC shape as a 

biomarker candidate for an early ASD diagnosis, illustrating and discussing the results achieved so 

far within this broad research project. One of these results is the optimization of a new protocol, based 

on the acupuncture method, for blood samples preparation aimed at SEM (Scanning Electron 

Microscopy) morphological analysis of RBC. Indeed, to reach the final research goal it is necessary 

to carry out many bloods drawn from young children in a practical way. The novel preparation and 

imaging method, both minimally invasive and cheap, consists in aspirating by a capillary tube 

(preloaded with anticoagulant solution) a drop of peripheral blood obtained from a prick in a human 

subject’s fingertip. Samples are subsequently processed by ad hoc protocols and imaged at SEM. 

Another goal successfully achieved through this work is the favorable opinion and approval from 

local ethics committee. Preliminary results from blood samples analysis at SEM confirm the presence 



 

of morphologically abnormal erythrocytes in ASD patients in a greater extent than in healthy 

volunteers. Nevertheless, given the small sample size searched to date, more accurate information 

and a high caseload of subjects are still needed. 

The last and most consistent part of this thesis work illustrates development and validation of a new 

computer-assisted tool for erythrocyte phenotyping in SEM micrographs. Indeed, achieving our final 

research goal involves the analysis of many blood samples, each of which needing a time-consuming 

manual search, count and classification of a large number of RBC. In this context a software capable 

to semi-automatically associate a distribution of erythrocytes among the relevant morphological 

classes to each examined patient would represent a powerful tool towards a more rapid and 

reproducible analysis of RBC morphology. Furthermore, observations from studying of intra-operator 

variability of the manual RBC morphological analysis by SEM carried out in this thesis work suggest 

the need of a high number of replicate counts, supporting the key relevance of implementing reliable 

computer-assisted algorithms and machine learning systems for our research project. Our own 

software, developed using Microsoft Visual Studio 2010 as a working environment and the C++ 

language as a programming language, has shown to be able to detect RBC in SEM micrographs and 

to intercept erythrocyte morphological categories, albeit with different degrees of efficiency. This 

new software represents a promising and powerful tool with many potential applications, from early 

ASD diagnostic to basic research in hematology. 

This thesis work presents the initial phases of an ambitious research project about erythrocyte 

morphological changes in pediatric ASD patients, laying solid foundations for its continuation. 

Indeed, further investigations are needed to establish the statistical significance of the differences 

about erythrocyte morphological alterations in blood micro-samples from ASD patients and 

neurotypical controls.  Moreover, our work will continue validating the data - obtained by our 

software - about the distribution of erythrocytes among several morphometric classes in SEM 

micrographs from peripheral blood samples. These aspects are of seminal importance in the research 

aimed at discovering potential novel biomarkers for ASD diagnosis based on the SEM analysis of 

peripheral blood micro-samples. 
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1. INTRODUCTION 

 

1.1. Erythrocyte morphology and related analysis techniques 

Erythrocytes are unique anuclear cells, with their cytoplasm consisting of 95% hemoglobin (Buys 

et al., 2013). Under physiological conditions, a normal human red blood cell (RBC) assumes a 

biconcave disc shape (discocyte). In general, there is a close relationship between cell shape and its 

function: muscle fibers are somewhat elongated in order to perform contraction; neurons have a 

strongly branched structure to be able to receive (through the dendrites) impulses, which come from 

other neurons or are produced by environmental stimuli. Very often changes in cell morphology are 

signals of an altered ability of the cell, or the tissue of which it is part, to carry out its physiological 

functions. Erythrocytes are no exception, as the retention of their disc-shape is of primary importance 

for their main physiological role (e.g. transport of respiratory gases to and from tissues; Ciccoli et al., 

2013; Pierre, 2002). Changes in morphology, mechanical features or integrity of erythrocyte have 

implications on correct functioning of the cell, as it can be observed in several dysfunctional 

erythrocyte states (Buys et al., 2013). In particular, the study of erythrocyte morphology assumes 

critical importance in the field of rheology. In fact, considerable evidence indicates that erythrocytes 

shape is directly related to their deformability, with a critical influence on rheological properties of 

blood (Ciccoli et al., 2012; Simpson, 1989; Vromen and McCane, 2009).  For example, in the case of 

sickle cell anemia, sickle-shaped erythrocytes are found, which are rigid and cause dramatic changes 

in viscosity and rheological properties of the blood. These cells within the circulation block the blood 

flow in thin capillaries, causing stasis and poor oxygen supply to the tissues, and finally painful 

abdominal crises, splenic or cerebral infarcts and kidney damage (Bessis, 1974). 

 

1.1.1. Erythrocyte membrane 

The peculiarities of the erythrocyte plasma membrane allow the cell to have an extended surface 

area for gas exchanges. In order to be able to pass through small capillaries (some of which with a 

cross section 1/3 of erythrocyte’s diameter) and to be able to withstand high shear stresses, 

erythrocyte membrane must be highly deformable and robust at the same time (Bolotta et al., 2018a; 

Buys et al., 2013). Erythrocyte membrane consists of an asymmetrical phospholipid bilayer, 

supported by an underlying cytoskeleton complex, which is responsible for the unusual features of 

erythrocyte’s plasma membrane (Bolotta et al., 2018a; Buys et al., 2013). In the erythrocyte 

membrane cytoskeleton, vertical and horizontal interactions are established between cytoskeletal 
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proteins, integral membrane proteins and phospholipid bilayer; the integrity of erythrocyte membrane 

is based on these interactions. Vertical linkages are based on spectrin, ankyrin, and band 3 protein, 

and on spectrin, protein 4.1 and glycophorin. These interactions also include the spectrin - ankyrin - 

Rh multiprotein complex association and the weak interactions between skeletal proteins and 

negatively charged lipids of membrane phospholipid bilayer’s inner layer. Instead, horizontal 

interactions are based mainly on spectrin, protein 4.1 and actin (Ciccoli et al., 2013; Cortelazzo et al., 

2015; Fig. 1.1). The plasma membrane, together with its cytoskeletal support, is considered to be 

responsible for maintaining cell shape and stability and for possibility of large deformations when 

necessary (Buys et al., 2013).  

Abnormalities of the erythrocyte membrane are related to inherited hemolytic anemias. In 

hereditary spherocytosis syndromes (characterized by the presence of spherical-shaped erythrocytes), 

in hereditary elliptocytosis (characterized by the presence of elliptical, cigar-shaped erythrocytes on 

peripheral blood smear) and in hereditary pyropoikilocytosis (characterized by erythrocyte 

morphology reminiscent of that seen in patients after a thermal burn) there is a mechanical weakness 

or fragility due to defects in proteins of the erythrocyte membrane. In hereditary spherocytosis, 

destruction of abnormal erythrocytes in the spleen is the principal cause of hemolysis.  As it regards 

hereditary elliptocytosis, erythrocyte life span is decreased in a subset of patients: in this case, patients 

experience hemolysis, anemia, splenomegaly and intermittent jaundice. In hereditary stomatocytosis 

syndromes (characterized by erythrocytes with a mouth-shaped area of central pallor on peripheral 

blood smear) there are abnormalities in red cell cation permeability leading to changes in red cell 

volume. Patients can experience hemolysis and anemia, along with predisposition to thrombosis after 

splenectomy (Gallagher, 2005). 

Figure 1.1 - Cytoskeletal proteins of red blood cells (Gallagher, 2005). 
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The bulk of evidence on the existence of a close correlation between erythrocyte morphology and 

their function justifies the development and use of several techniques for the morphological study of 

RBC. Morphological data regarding erythrocytes are of crucial importance in basic research on cell 

biology, as well as for translational research and medical diagnostics. 

 

1.1.2. Automated hematological analyzers 

Automated analyzer peripheral blood counts provide accurate and precise RBC counts and red cell 

indices, information on RBC population distribution, size and haemoglobin content (Palmer et al., 

2015). Technologies used by hematology flow analyzers can be traced back to two fundamental 

principles: the impedance principle and the optical or light scattering principle (Buttarello, 2016). The 

impedance principle is based on detecting the increase in electrical resistance produced by the passage 

of a cell through a hole filled with high conductivity liquid. The change in resistance is - in a first 

approximation - directly proportional to the cell volume (Kubitschek, 1960). In optical methods, the 

suspended cells are introduced in sequence through a flow cell where they are intercepted by a 

suitably focused light beam. The interaction between the light beam and the cell determines the 

dispersion of light in all directions. This light is collected by one or more detectors (photodiodes or 

photomultipliers) positioned at well-defined angles. The amount of light measured in the "forward" 

direction mainly depends on the cell size, while in the "side" direction it mainly depends on the 

refractive index and on the level of cell’s structural complexity (Brunsting and Mullaney, 1972; 

Mullaney and Dean, 1969; Salzman et al., 1975).  

 

1.1.3. Light microscopy 

Despite the advances in technology of automated hematology analyzers, specialized flow cytometry, 

molecular diagnostic, cytogenetics, and chemical studies of the blood cells, the use of conventional 

microscopy still forms the basis of the morphologic evaluation of erythrocytes (Pierre, 2002; 

Yturralde et al., 2020). In patients with anemia, or other diseases with abnormal erythrocytes, the 

peripheral smear permits interpretation of diagnostically significant RBC findings. These include 

assessment of RBC shape, size, color, inclusions, and arrangement (Ford, 2013). According to the 

Rümke table distribution, a minimum of 1000 RBC should be evaluated to provide a precise 

percentage of the cells having a particular morphological abnormality (Palmer et al., 2015). 

Commonly, in laboratory hematology diagnostics, peripheral blood smears are dried and then stained 

with Giemsa and May-Grunwald solutions. In this case, normal erythrocytes examined in the center 
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of a smear appear isolated from each other, about 7.5-8 μm in diameter, round or slightly oval in 

shape, dark pink on the outside and gradually fading towards the center (the area of central pallor 

occupying approximately the middle third of the cell; Palmer et al., 2015). The preparations can also 

be set up for in vivo observation, for example with the interference contrast technique (also known as 

Differential Interference Contrast, DIC). This method is based on the interference of two light rays 

polarized perpendicularly to each other. The images obtained with this method have a characteristic 

relief effect (similar to that obtained by scanning electron microscopy, SEM). Erythrocytes in this 

type of images have very sharp outlines, unlike what occurs in phase contrast images - in which 

erythrocytes are surrounded by characteristic pericellular halos. 

 

1.1.4. Scanning electron microscopy 

SEM is a versatile tool for morphological imaging, for surface features and structures in the order 

of microns and nanometers and can be used in many fields, including life sciences, biology and 

nanotechnology (Swanepoel and Pretorius, 2012). SEM uses a high-energy electron beam to scan the 

sample (Bhowmick et al., 2012). Some advantages of this tool are its considerable depth of field 

(which is responsible for the three-dimensional appearance of the sample), the ability to obtain the 

image in a few seconds and a high resolution (Pretorius et al., 2016; Russell et al., 2001). SEM works 

in a high vacuum environment (with pressures below 10-3 Pa). The interaction between the electron 

beam and the metallized sample generates secondary electrons which are captured by a detector offset 

from the sample holder. The signal is 

converted into electrical pulse which are sent 

to a monitor: one pixel on the monitor is related 

to one point on the sample. A monochrome 

image with high resolution and great depth of 

field is obtained as a result. It is made up of 

fundamental elements defined as pixels, with 

light intensity that is a function of how many 

electrons have been captured by the detector. 

The image observed on the monitor can be 

saved as a digital file on the computer. In SEM 

microgrphs discocytes appear gray in color 

with a bright luminous outline and a dark 

central depression (Fig. 1.2). 
Figure 1.2 - Scanning electron micrograph of three discocytes. 
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In their work, Pretorius et al. (2016) suggest that, although light microscopy represents one of the 

main tools for clinical hematologists to classify and diagnose pathological conditions based on study 

of erythrocyte morphology, SEM technology should be employed as a recurrent morphological 

analysis tool. The question about technique cost and ease of use may arise, however the preparation 

of erythrocytes for SEM does not involve samples staining. Furthermore, erythrocytes visualization 

with SEM is probably simpler than focusing under light microscope, and the cost of a low-end SEM 

is in line with that of a high-end light microscope (Pretorius et al., 2016). 

 

1.2. Red cell morphotypes and diseases characterized by abnormally shaped 

erythrocytes 

Erythrocytes can be considered as key cellular indicators of an individual's overall well-being 

(Pretorius and Kell, 2014), also due to the short duration of their lifetime (Pretorius et al., 2016). 

There are several pathological conditions associated with characteristic changes in erythrocyte 

morphology (Bolotta et al., 2018a). Anomalies in erythrocyte shape are indicated by the word 

poikilocytosis, introduced by Quincke in 1877, while variation in erythrocyte size is called 

anisocytosis. Shape changes in patient’s circulating blood can represent hereditary or acquired 

abnormalities. Such anomalies can be non-specific and associated with several mechanisms or highly 

specific and essential for the diagnosis of acquired or hereditary conditions (Pierre, 2002). In their 

work, Pretorius et al. (2016) provide examples of how diagnostic significance of erythrocytes as an 

important morphological indicator can have a great prognostic value, in particular in the study of 

erythrocyte structure during diagnosis of the disease and then in monitoring erythrocyte structure’s 

health status after intervention therapies (Pretorius et al., 2016). Hypothesis according to which 

erythrocyte alterations may represent real-time biosensors of pathologies progression had previously 

been advanced by other authors (Berliner et al., 2005; Lucantoni et al., 2006; Rogowski et al., 2005). 

 

1.2.1. Macrocytes 

Macrocytes are mature erythrocytes with volume, area and diameter larger than discocytes (Bessis 

and Weed, 1973; Pierre, 2002; Fig. 1.3). In a peripheral blood smear, their diameter measures 8.5 

microns or more. Erythrocytes with a diameter greater than 10 microns are called gigantocytes. Their 

hemoglobin concentration is generally lower than normal. Macrocytes can be found in severe anemias 

(Bessis and Weed, 1973). In newborns and premature babies, erythrocytes have both a large diameter 

and a large volume, even if this condition is not generally considered as macrocytosis since it 
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represents a physiological state. Macrocytosis can be due to an increase in reticulocytes. Macrocytes 

can have a round or oval shape. In many cases, round macrocytes are caused by chronic liver failure. 

On the other hand, if macrocytes have got an oval configuration, it means that erythrocytic precursors 

are dyserythropoietic. There may be a vitamin B12 or folate deficiency or exposure to drugs that 

inhibit DNA synthesis. Indeed, damage to DNA synthesis prolongs the cell cycle, but does not 

interfere with the rate of cytoplasmic hemoglobin synthesis. The level of cytoplasmic hemoglobin 

that signals nuclear division cutoff and expulsion of nucleus is reached before the normal number of 

cell divisions has occurred, leading to larger mature cells (Pierre, 2002). 

 

1.2.2. Microcytes 

Microcytes are erythrocytes with smaller diameter and area than discocytes, generally with no 

change in thickness/diameter ratio (Pierre, 2002; Fig. 1.3). They may be associated with decreased 

amounts of hemoglobin (hypochromia; Palmer et al., 2015). Hypochromic microcytes are found in 

anemia caused by iron deficiency (Pierre, 2002) and thalassemia (Palmer et al., 2015). Hypochromic 

microcytic erythrocytes with siderotic granules (iron-containing inclusions) are observed in patients 

with both hereditary and acquired refractory sideroblastic anemia. Chronic lead poisoning also 

produces hypochromic microcytic anemia with siderotic granules (Pierre, 2002).  

 

 

Figure 1.3 - Scanning electron micrograph of a macrocyte (on the left) and a microcyte (on the right). 
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1.2.3. Spherocytes 

Spherocytes are spheroidal erythrocytes with a markedly reduced surface area/volume ratio (Fig. 

1.4). In a peripheral blood smear these spherocytes appear denser and darker (absence of central 

pallor) due to their thickness (Palmer et al., 2015; Pierre, 2002). According to Bessis and Weed 

(1973), spherocytes class includes several morphologically and etiologically different cell types: 

• Macrospherocytes, produced by the osmotic swelling of normal erythrocytes; 

• Sphero-echinocytes and sphero-stomatocytes (described later); 

• Microspherocytes, resulting from erythrocyte fragmentation processes. They can be 

produced in cases of severe frostbite or frozen extremities (Pierre, 2002); microspherocytes 

may also be a feature of microangiopathic hemolytic anemia (Palmer et al., 2015). In 

addition, a marked microspherocytosis is observed in the case of exotoxin produced by 

Clostridium species, which leads to significant erythrocytic damage and intravascular 

hemolysis (Pierre, 2002). 

• Spherocytes observed in hereditary spherocytosis. Some patients with hereditary 

spherocytosis demonstrate occasional variants called "mushroom cell" or "pincer cell", 

which resemble spherocytes with mirror indentations, resulting in an appearance similar to 

a button mushroom (Ford, 2013).  

Spherocytes can also be found in other pathological conditions or in case of direct damage to red 

cell membrane (Palmer et al., 2015; Pierre, 2002). Acquired causes of spherocytosis are due to 

antibodies damage towards erythrocyte membrane; such damage can be isoimmune or autoimmune 

Figure 1.4 - Scanning electron micrographs of spherocytes. 
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in nature. A pseudospherocytosis is observed in patients who have received recent RBC transfusions: 

transfused erythrocytes may appear small and rounded in a peripheral blood smear (Pierre, 2002). 

Spherocytosis can also be observed in newborns with gram-negative sepsis and in patients with 

thermal burns, as well as in other hemolytic anemias including G6PD (Glucose-6-Phosphate 

Dehydrogenase) deficiency (Ford, 2013). 

 

1.2.4. Elliptocytes 

Elliptocytes are elliptical shaped red blood cells (Fig. 1.5). Approximately 1% of RBC are elliptical 

in normal cases. This shape ranges over a barely distinguishable ellipse to almost rod-shaped cells. 

Typically, elliptocytes are present as macro-elliptocytes in case of vitamin B12 and folate deficiency, 

or are the result of chemotherapeutic agents that affect DNA or RNA synthesis (Pierre, 2002). In all 

type of anemia, the percentage of elliptocytes can increase up to 10% (Bessis and Weed, 1973). 

Indeed, these cells can in fact be found in patients with megaloblastic anemia, dyserythropoietic 

anemia, such as 5q minus syndrome, and in myelodysplastic syndromes (Ford, 2013; Pierre, 2002). 

Additionally, hypochromic microcytic anemias due to iron deficiency and thalassemic syndromes 

frequently go along with elliptocytic changes in RBC. Elliptocytes are also found in an autosomal 

dominant hereditary pathology: hereditary elliptocytosis. In the homozygous form of the disease, 

elliptocytes can represent up to 90% of peripheral RBC (Pierre, 2002). Parents with typical hereditary 

elliptocytosis may have infants with a much more abnormal phenotype, with severe 

microschistocytosis, as well as elliptocytosis. These children can have either hereditary elliptocytosis 

Figure 1.5 - Scanning electron micrographs of elliptocytes. 
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with infantile poikilocytosis or hereditary pyropoikilocytosis. In Southeast Asian ovalocytosis, 

elliptocytes show a central transverse (not longitudinal) pale region, or pale regions separated by a 

transverse cytoplasmic line, or even a central pale region divided into two or three rays (Ford, 2013). 

 

1.2.5. Echinocytes 

Echinocytes are erythrocytes covered with 10-30 short blunt projections or spicules of fairly regular 

shape (the term echinocyte derives from the Greek word that means "sea urchin"; Lim et al., 2002; 

Palmer et al., 2015). Such red blood cells can represent artifacts: it has been shown that if erythrocytes 

are washed with saline solution and placed between a glass microscope slide and a coverslip, they 

transform into echinocytes. When a plastic slide is used, no echinocytes are formed (Pierre, 2002). In 

the transformation from discocyte to echinocyte, the following stages can be recognized: echinocyte 

I (an irregularly contoured disc), echinocyte II (a flattened cell with spines, Fig. 1.6A), echinocyte III 

(a spherical or ovoid cell with 10-30 spines distributed on its surface, Fig. 1.6B; Bessis et al., 1973). 

If RBC are exposed to high concentrations of certain chemicals or to a very high pH (10.0) the 

spicules become smaller and more numerous and eventually bud irreversibly, forming extracellular 

vesicles composed of material derived from the plasma membrane and leaving behind spherical 

bodies with a small area and volume: sphero-echinocytes I and II (Fig. 1.7). In addition to high pH 

and proximity to a glass surface, echinocytes can be induced by: plasma incubated at 37°C for 24 

hours, lysolecithin, fatty acids, ATP depletion, erythrocytes aging, amphipathic anions, high 

concentration of salts and cholesterol enrichment (Bessis, 1974; Bessis et al., 1973; Brecher and 

Bessis, 1972). Under some conditions, discocyte-echinocyte transformation is reversible by washing 

Figure 1.6 – Scanning electron micrograph of an echinocyte II (A) and an echinocyte III (B). 

A B 
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cells with fresh normal plasma (Brecher and Bessis, 1972). It has been observed that spicules always 

appear (or reappear) in the same place on the cell surface (Bessis, 1974). Echinocytic changes can 

occur with RBC of any type, for example: echino-spherocytes, echino-elliptocytes, echino-

drepanocytes, and so on; Pierre, 2002). Echinocytes have been observed in patients with chronic liver 

disease (Turchetti et al., 1997), in cases of renal failure, following transfusion, phosphate deficiency, 

burns (Ford, 2013), uremia, pyruvate kinase deficiency and phosphoglycerate kinase deficiency 

(Brecher and Bessis, 1972). 

 

1.2.6. Stomatocytes 

Stomatocytes are concave, cup-shaped erythrocytes (Fig. 1.8). The term “stomatocytes” derives 

from the Greek word which means "mouth"; in fact the stomatocytes’ enfolding appears in a blood 

smear prepared for light microscopy as an elongated depression surrounded by two lips (Bessis, 

1974). The stomatocytes’ “line of pallor” usually runs parallel to the main axis of the erythrocyte, but 

in certain variants (for example in South East Asian ovalocytosis), the line may run across the main 

Figure 1.7 - Discocyte-echinocyte transformation. (A) Echinocyte I: a discocyte with an irregular contour; (B) Echinocyte II: a flat 
red blood cell with spicules; (C) Echinocyte III: spherical or ovaloid cell with 30-50 spicules distributed evenly over its surface; (D) 
Sphere-echinocyte I: a sphere with short spicules; (E) Sphere-echinocyte II: a sphere with spicules that can only be clearly seen with 
the scanning electron microscope (they are too small to be seen with a light microscope; Bessis et al., 1973). 

A B C 

E D 
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axis or may be nonlinear, for example bifurcated or trifurcated (Ford, 2013). Stomatocytes can 

represent both real anomalies and artifacts. In the first case, they are found in hereditary 

stomatocytosis (Pierre, 2002). Furthermore, these cells have been observed in certain hemolytic 

anemias in which this morphological change appears to be characteristic (Bessis and Weed, 1973), in 

obstructive liver disease and alcoholic liver disease, Rh null syndrome, as well as in the 

aforementioned South East Asian ovalocytosis (Ford, 2013; Palmer et al., 2015). Stomatocytic 

transformation represents the opposite of echinocytic transformation. It occurs progressively over 

time and if RBC are exposed to a low pH (3.0), multiple concave invaginations are produced, which 

eventually bud to form internal vesicles, leaving a sphero-stomatocyte. Stomatocytes return to a 

normal configuration when placed in normal plasma (Fig. 1.9). In addition to low pH, stomatocytes 

can also be induced by chemicals including amphipathic cations and drugs (phenothiazine and 

chlorpromazine), or by low salt concentration and cholesterol depletion (Bessis et al., 1973). As with 

discocyte-echinocyte transformation, disc-stomatocyte transformation can occur in pathological 

erythrocytes. This transformation overlaps with the underlying structural pathology of the cell 

(Bessis, 1974). 

 

1.2.7. Knizocytes 

Knizocytes are three-concave erythrocytes (Fig. 1.10). In fresh blood they can be observed in certain 

hemolytic anemias, such as hereditary spherocytosis. These shapes have also been observed in 

patients with cirrhosis after acute alcoholic intoxication and in patients with chronic liver disease. 

Figure 1.8 - Scanning electron micrographs of stomatocytes. 
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The number of knizocytes is also elevated in diabetic vasculopathy (Bessis et al., 1973; Turchetti et 

al., 1998, 1997). Furthermore, this shape can be produced by exposure of RBC to a hypotonic medium 

with anti-echinocytic factors, or it can be caused by a slight deformation of the cells by a stream of 

liquid passed between a slide and a cover slip, after letting the RBC settle on the glass (Pierre, 2002). 

Finally, it should be reminded that knizocytes can represent an artifact due to drying, during 

preparation for scanning electron microscopy (Bessis et al., 1973). 

 

 

Figure 1.9 - Discocyte - stomatocyte transformation: (A) Stomatocyte I: this shape can be observed in certain states of hereditary or 
acquired haemolytic disease; (B) Stomatocyte II: cell that has got the shape of a cup deeper than stomatocyte I; (C) Sphere-stomatocyte 
I: stomatocyte with minimal central depression; (D) Sphere-stomatocyte II: a sphere with an irregularly shaped contour on one side 
(which can only be clearly observed by scanning electron microscope; Bessis et al., 1973). 

A B 

C D 
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1.2.8. Acanthocytes 

Acanthocytes (or spur cells) are hyperchromic and "spiny" erythrocytes (Palmer et al., 2015; Fig. 

1.11). Indeed, the term acanthocytes, introduced by Singer et al. (1952), derives from the Greek word 

that means "thorn". These spines are of variable length, size, thickness and shape (Palmer et al., 2015; 

Pierre, 2002). Their ends are described as knobby by Brecher and Bessis (1972) and, conversely, 

pointed by Ford (2013); Palmer et al. (2015) 

describe them as club-shaped, while Pierre (2002) 

reports that these spines arise from a dense, small 

and round central structure and have the ends bent 

backwards. All these authors agree that the spines 

are distributed in an irregular manner at the level 

of the cell surface. Pierre (2002) reports that these 

spicules are much less numerous than those of 

echinocytes: from 5 to 10 according to Brecher and 

Bessis (1972) and from 2 to 20 according to Palmer 

et al. (2015). These spines may also be provided 

with branches in acantho-echinocytes (Brecher 

and Bessis, 1972; Pierre, 2002). 

 

Figure 1.10 - Scanning electron micrograph of knizocytes. 

Fig. 1.11 - Scanning electron micrograph of an acanthocyte. 
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Acanthocytes are found in hereditary acanthocytosis, characterized by plasma abetalipoproteinemia. 

Acanthocytes are also found in cases of terminal liver failure associated with low serum cholesterol 

(an association which has been called spur cell anemia (Pierre, 2002). Furthermore, acanthocytes 

have been found in a familial disorder with neuronal degeneration, but without abetalipoproteinemia 

and in severe neonatal liver disease with hemolytic anemia (Brecher and Bessis, 1972). Presence of 

acanthocytes may suggest pyruvate kinase deficiency (in this case there are also irregularly contracted 

cells) or the McLeod phenotype. Acanthocytes are most commonly seen in patients with some 

dyslipidemia and also with anorexia nervosa (Ford, 2013). This erythrocyte morphotype is also found 

in cases of vitamin E deficiency (Palmer et al., 2015). Finally, acanthocytes have been found in 

patients without any recognizable hematological disorder in which the spleen has been removed by 

traumatic rupture or related to kidney transplantation (Brecher and Bessis, 1972) and also in patients 

with hyposplenism (Ford, 2013). 

 

1.2.9. Codocytes 

Codocytes are bell-shaped hypochromic erythrocytes. In fact, the term codocytes derives from the 

Greek word that means “bell”. The mean corpuscular volume of hemoglobin and the mean 

corpuscular concentration of hemoglobin of codocytes are always low. Codocytes can be thought as 

cells whose envelope is too large for their hemoglobin content. As a result, their resistance to 

hypotonic saline is increased and lysis occurs only when the cell membrane is fully stretched. 

Codocytes can therefore be considered as the antithesis of spherocytes, which have too little 

membrane for their volume and therefore have an increased susceptibility to lysis or an increase in 

"osmotic fragility" (Bessis, 1974). Codocytes can be found in many hypochromic anemias, 

particularly in thalassemia. When a drop of blood is prepared, bell-shaped hypochromic erythrocytes 

often appear as target cells when they lie flat on the slide (Fig. 1.12, 1.13). The appearance of target 

cell can also arise from other causes, for example in the case of echino I-lepto-torocytes (Fig. 1.14; 

Bessis et al., 1973). Under light microscope, target cells appear as erythrocytes having a central red 

area within the area of central pallor. Target cells are found in liver diseases, hyposplenism, 

hemoglobin C or S-C disease and xerocytosis (a type of stomatocytosis with decresed red cell cation 

permeability; Gallagher, 2005); they can also be observed in case of iron deficiency (Ford, 2013). If 

the bell-shaped hypochromic cells lean on one side, they resemble helmet cells (Fig. 1.15; Bessis et 

al., 1973). 
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1.2.10. Leptocytes 

Leptocytes are flat erythrocytes with thin edges: the term derives from the Greek word for "thin". 

They have a larger diameter and a comparable volume to those of discocytes (Fig. 1.16). These cells 

appear pale in color in a peripheral blood smear. Leptocytes can be seen in a broad spectrum of 

Figure 1.12 - Codocytes/target cells: when a drop of blood is prepared, if the bell-shaped hypochromic erythrocytes lie flat on 
the slide, they appear as target cells (Bessis et al., 1973). 

Figure 1.13 - Scanning electron micrographs of a target 
cell.  

Figure 1.14 - Scanning electron micrograph of an echino I-
lepto-thorocyte: this combination generates the appearance of 
a target cell (Bessis et al., 1973). 
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conditions including thalassemia, iron deficiency (e.g. in dogs), drug adverse effects (phenothiazine), 

liver or biliary tract disease, or may even represent a familiar trait (Bessis et al., 1973; Pierre, 2002). 

 

1.2.11. Other abnormal red cell morphotypes 

• Keratocytes (from the Greek word that means "horn") are RBC with peculiar pointed projections 

(Pierre, 2002). Keratocytes are yield in case of microangiopathic hemolytic anemias, because of 

mechanical damage or exposure of 

erythrocytes to oxidative drugs in vivo 

(Palmer et al., 2015; Pierre, 2002). The 

following RBC morphotypes can be 

considered subtypes of keratocytes: 

• Bite cells, RBC with peripheral 

single or multiple arcuate defects 

(bites) caused by the removal of 

Heinz bodies by the spleen. They 

are a feature of oxidant 

haemolysis (Suppl. Fig. 1); 

• Blister cells, RBC in which the 

haemoglobin appears retracted 

Figure 1.15 - Codocytes/helmet cells: when a drop of blood is prepared, if the bell-shaped hypochromic erythrocytes lean to one 
side, they resemble helmet cells (Bessis et al., 1973). 

Figure 1.16 - Scanning electron micrograph of a leptocyte 
(Bessis et al., 1973).  
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into one half of the cell to form a dense mass leaving the remainder of the cell as an 

empty membrane; 

• Irregularly contracted cells, smaller and denser RBC which lack an area of central 

pallor but are not as regular in shape as spherocytes (Palmer et al., 2015). 

• Myelinic figures are phospholipids released from red cell membrane during cell necrosis; with 

interaction with plasma, they form filaments, spheres, or strings of spheres. They are most 

commonly seen in the blood of burn victims with large amounts of tissue damage (Pierre, 2002). 

• Dacryocytes (from the Greek word meaning "drop") are erythrocytes with a single spicule, wide 

and tapered, which gives the cell the shape of a drop (Suppl. Fig. 2). Dacryocytes are found in 

chronic idiopathic myelofibrosis (and are occasionally observed in other myelodysplastic and 

myeloproliferative syndromes) and in many severe anemias (especially thalassemia major; 

Bessis et al., 1973; Pierre, 2002). 

• Fish cells resemble dacryocytes because they have a round end and a tapered end but, unlike 

dacryocytes, the tapered end flares up in two buds, generating the appearance of a fish's tail. This 

type of erythrocyte has been found in cases of thalassemia (Ford, 2013). 

• Sickle cells are found in sickle cell disease (or sickle cell anemia), a hereditary disease in which 

erythrocytes have got abnormal hemoglobin (hemoglobin S). When the oxygen tension decreases 

(for example at high altitude), the hemoglobin molecules polymerize and form thin and long rods 

inside the cell. These tiny rods of hemoglobin group into bundles that stretch the membrane and 

deform the discocyte (Bessis, 1974).  

• Schistocytes (from the Greek word which means "to divide”) are fragments of RBC produced by 

extrinsic mechanical damage within the circulation and are a diagnostic feature of 

microangiopathic haemolytic anaemia. Schistocytes are always smaller than intact red cells and 

can have the shape of fragments with sharp angles and straight borders, small crescents, helmet 

cells or keratocytes (Palmer et al., 2015; Suppl. Fig. 3).  

 

1.2.12. Pathologies characterized by a systemic inflammatory profile 

Erythrocytes with aberrant morphologies are typically observed in blood samples from patients 

diagnosed with a systemic inflammatory profile, such as type II diabetes, thromboembolic stroke, 

rheumatoid arthritis, Parkinson’s disease and Alzheimer’s disease, as well as conditions such as 

hereditary hemochromatosis and hyperferritinemia (Bester et al., 2013; Buys et al., 2013; Pretorius 

et al., 2015, 2014a, 2014b, 2013; Pretorius and Kell, 2014; Pretorius and Lipinski, 2013). It is believed 
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that these morphological changes are due precisely to alterations in inflammatory state, which are 

caused, for example, by the generation of ROS (Reactive Oxygen Species) and oxidative stress, and 

can directly affect coagulation and hematological system (Pretorius et al., 2016).  

In inflammatory conditions, peculiar erythrocyte morphologies - not visible through a light 

microscope - are often observed. Two new terms have been coined to describe these erythrocyte 

morphologies: knot cells and balloon cells (Fig. 1.17). The knot cells twist into each other (through 

a light microscope they appear just as discocytes). In the presence of fibrin fibers, their membranes 

are so elastic that they twist and knot around the fibers. Balloon cells are modified drop-shaped cells, 

with an extended and long projection that can interact with fibrin fibers (Pretorius and Lipinski, 2013). 

Such projections are too thin to be observed with a light microscope (Pretorius et al., 2016). Through 

SEM, Buys et al. (2013) observed erythrocyte morphological changes in patients with diabetes: 

erythrocytes are elongated, their membranes form extensive projections, moreover cells 

spontaneously twist around fibrin fibers. These cells also appear 

visibly smoother than those of healthy erythrocytes (Fig. 1.18). 

Macroparameter measurements by atomic force microscopy 

(AFM) suggest that erythrocytes of these patients are smaller and 

with a reduced concavity depth (Buys et al., 2013). 

 

 

 

Figure 1.17: new erythrocyte morphologies, visible only by SEM. (A) Knot 
cell; (B) Knot cell with fibrin associations; (C) Balloon cell; (D) Balloon cells 
associated with each other. Scale bar: 1 micron (Pretorius et al., 2016). 

Figure 1.18: Scanning electron 
micrographs of erythrocytes from a 
diabetic subject. (A) Erythrocyte with 
very smooth membrane spontaneously 
twisted around fibrin fibers; (B) 
Erythrocyte showing an elongated 
ultrastructure. (C) Erythrocyte 
showing a smooth membrane. Scale = 
1 micrometer (Buys et al., 2013). 
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1.2.13. Pathologies characterized by oxidative stress 

Changes in erythrocyte morphology can occur via a biochemical mechanism in which oxidative 

stress leads to changes in lipids and membrane proteins. Oxidative stress is defined as the destruction 

of normal intracellular balance between ROS, yielding during aerobic metabolism or as a result of 

pathological processes, and antioxidant defense mechanisms (Ghezzo et al., 2013). As a result of 

oxidative stress, biophysical alterations of erythrocyte morphology occur, such as cell shrinkage and 

changes in cell rigidity or elasticity. These changes result in less deformability and greater 

aggregation of erythrocytes (Loyola-Leyva et al., 2019; Manzur-Jattin et al., 2016; Pretorius et al., 

2016).  

For example, in patients with chronic obstructive pulmonary disease chronic oxidative stress 

modifies red blood cells shape, but normal shape is restored following appropriate antioxidant 

medications (Lucantoni et al., 2006). Similarly, RBC storage in blood banks leads to formation of 

ROS and oxidation products such as malondialdehyde. The consequent oxidative stress leads to 

echinocytes formation, then to budding of micro and nano-vesicles from the spines (Greenwalt, 2006) 

and finally to hemolysis; all of these processes can be avoided by supplementing with antioxidants 

(Pallotta et al., 2014). Another pathology with a proven increase in oxidative stress in which 

morphological alterations of erythrocytes have been reported is end-stage renal disease. Distinctive 

morphological features of this condition are echinocytosis and stomatocytosis (Antonelou et al., 

2011). 

In addition, it has been reported that hypercholesterolemia modifies erythrocyte morphology 

through an increase in membrane cholesterol content and yielding biochemical changes (Fessler et 

al., 2013; Radosinska and Vrbjar, 2016). Indeed, hypercholesterolemia facilitates formation of free 

radicals, which can lead to lipid peroxidation and modify erythrocyte membrane proteins and, 

therefore, their morphology (Radosinska and Vrbjar, 2016). Obesity can also alter erythrocyte 

morphology. A possible mechanism for this type of alteration is the production of pro-inflammatory 

cytokines by adipose tissue, thus yielding lipid peroxidation in erythrocyte membrane and changes in 

cytoskeletal proteins, which alter erythrocyte morphology and membrane fluidity (Babitha and 

Gunasekaran, 2016). Loyola-Leyva et al. (2020) reported altered erythrocyte morphologies (analyzed 

by SEM) in metabolically unhealthy subjects (patients with hypercholesterolemia, hypertension or 

high levels of triglycerides or glucose) of normal weight, metabolically healthy subjects with obesity, 

and metabolically unhealthy subjects with obesity. In the metabolically unhealthy group, a greater 

erythrocyte diameter was observed compared to the metabolically healthy counterpart. The axis ratio 

was higher in metabolically unhealthy groups (more elongated RBC). The study shows that 
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hypercholesterolemia was associated with larger and more elongated erythrocytes, while obesity was 

associated with smaller erythrocytes. Furthermore, age, high-density lipoprotein (HDL), consumption 

of ultra-processed food were factors associated with altered erythrocyte morphologies (Fig. 1.19). 

 

1.2.14. Other conditions in which abnormally shaped RBC are found 

• Infantile pycnocytosis: this term has been used to describe finding of acanthocytes with thin 

projections in newborns and premature babies. This condition, sometimes accompanied by 

hemolysis, is thought to be due to a vitamin E deficiency in the mother and in the baby. It is 

a disorder that disappears when the child begins to receive vitamin E, either through the diet 

or as a drug. The awareness of the need for proper nutrition during pregnancy and the almost 

universal administration of multivitamins to pregnant women have practically caused this 

pathology to disappear (Pierre, 2002).  

• Hereditary pyropoikilocytosis: in this disease, extreme variation in the shape and size of red 

blood cells is found. It is an autosomal recessive disorder most frequently diagnosed in black 

children (Pierre, 2002). Hereditary pyropoikilocytosis is caused by defects in the horizontal 

interactions of erythrocyte membrane (Cortelazzo et al., 2015). There are both quantitative 

and structural changes in spectrin, which lead to a decrease in spectrin tetramers. This 

Figure 1.19: SEM images of red blood cells with normal and pathological morphologies observed in the different 
groups. (a) and (e) correspond to the healthy group and are normocytes. (b) and (f) correspond to the metabolically 
unhealthy group of normal weight, in (b) an echinocyte and an erythrocyte with an irregular shape can be observed. (c) and 
(g) belong to metabolically healthy participants with obesity, in (c) an erythrocyte with morphology similar to a normocyte 
can be observed and in (g) erythrocytes with “flat pancake” shapes can be observed. (d) and (h) correspond to the 
metabolically unhealthy group with obesity, in (d) a stomatocyte and an echinocyte can be observed, and in the image (h) 
there are different types of pathological erythrocyte morphologies. Both (d) and (h) contain what could be fibrin fibers, 
indicators of the inflammatory process (Loyola-Leyva et al., 2020). 
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pathology is associated with thermal instability of erythrocyte membrane. Peculiar features of 

this pathology are: a significant increase in the fragmentation of RBC, changes in shape when 

erythrocytes are heated to 46°C and a marked microcytosis (Pierre, 2002). 

• Extracorporeal circulation in cardiovascular surgery: in their work, Deng et al. (2018) show 

that the percentage of erythrocyte malformations in the postoperative group was higher than 

in the pre-operative and intra-operative groups, through SEM and AFM image analysis. The 

authors of the study suggest that the dissection itself can induce erythrocyte damage due to 

disorders of blood coagulation system and hemodynamics. 

• Patients lacking G6PD: Fang et al. (2016) reported significantly high percentages of altered 

erythrocyte shapes, predominantly echinocytes, in these patients (Fig. 1.20). G6PD is an X-

linked enzyme catalyzing the first-rate limiting step in the pentose phosphate pathway, which 

produces reduced nicotinamide adenine dinucleotide phosphate (NADPH), a binding 

substrate for several redox systems. Erythrocytes from individuals lacking G6PD are 

vulnerable to oxidative stress, predisposing them to chemically induced hemolysis when 

certain oxidizing agents are administered. Ford (2013) instead reported that the G6PD 

deficiency condition often shows bite and blister cells, schistocytes and spherocytes.  

  

Figure 1.20 - RBC population type distribution in control individuals and G6PD deficient 
patients, N = 3. (*p < 0.05, **p < 0.01; Fang et al., 2016). 
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1.3. Autism spectrum disorders 

Autism spectrum disorders (ASD) represent a heterogeneous and complex neurodevelopmental 

disorder consisting mainly of impaired social interaction, communication difficulties and restricted, 

repetitive and stereotyped patterns of behavior (Ciccoli et al., 2013; Ghezzo et al., 2013). Children 

with ASD also generally suffer from echolalia, hyperactivity, memory/learning/motor skills or other 

neurological functions deficits, abnormal excitability, hyper- or hypo-sensitivity to sensory stimuli, 

anxiety, difficulty adapting to new environments or habits, and excessive dependence on routines 

(Abruzzo et al., 2015; Parletta et al., 2016). Subjects with ASD may also suffer from a broad spectrum 

of somatic disorders, such as immunological, gastrointestinal, sleep disturbances and others, at a 

much higher rate compared to general population. Associated medical conditions negatively affect 

the main symptoms of ASD, and increase the probability of behaviors that are difficult to manage 

(Jasenovec et al., 2019). 

ASD include several conditions: classical (non-syndromic) autism, which is the predominant 

phenotype, Asperger's syndrome, childhood disintegrative disorder, and pervasive developmental 

disorder not otherwise specified, according to the Diagnostic and Statistical Manual of Mental 

Disorders, fifth edition (DSM-V). This manual classifies ASD on three levels (mild, moderate or 

severe) based on the degree of support that the patient requires (Abruzzo et al., 2015) 

It is believed that ASD result from a complex interaction between genetic background and 

environmental factors (Ciccoli et al., 2013). Immune dysregulation, inflammation, oxidative stress, 

mitochondrial dysfunction, and environmental toxicant exposures have been reported in a large 

number of studies on associated physiological abnormalities in ASD (Frustaci et al., 2012; Kaur et 

al., 2014; Rossignol and Frye, 2012). With particular regard to oxidative stress, this condition in ASD 

subjects damages deeply and in many ways erythrocytes and their plasma membrane: oxidative stress 

changes fluidity and lipid composition of erythrocyte membrane and affects the activity of Na+/K+-

ATPase (Bolotta et al., 2018b; Ghezzo et al., 2013). Several possible risk factors for ASD have been 

investigated, which include advanced parental age, birth complications, prematurity, low birth 

weight, and assisted conception (Shen et al., 2019).  

The epidemiology of ASD is continuously increasing all over the world with huge social and 

economic burdens (Shen et al., 2019). ASD affect four to five times more males than females (1/42 

for boys versus 1/189 for girls). Centers for Disease Control and Prevention (CDC) estimated that 

1/68 children (aged 8 years) in 2014 suffered from ASD in the USA. Another recent valuation points 

out the presence of ASD in 1 in 132 people with little variation globally. This discrepancy could be 

a sign of both a real increase in the presence of ASD and their diagnosis (in 2012 the CDC estimated 
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that ASD rate in American children was 1/88) and the fact that ASD diagnosis is often “lost” when 

children progress into adulthood, being replaced by a “generic” intellectual disability and/or hidden 

under late-developing neuropsychiatric illnesses (Abruzzo et al., 2015). 

ASD begins early in childhood and lasts throughout life (Shen et al., 2019). A recent review (Brian 

et al., 2015) points out four broad domains of development that are predictive for ASD: sensory-

motor, social-emotional, attention and communication. Deficits in these areas may appear as early as 

6-9 months, although the clinical onset of ASD generally occurs during the second year of life. 

Indeed, a reliable diagnosis can be made at three years old children (since clinical diagnosis is difficult 

and uncertain in younger children); however, many children receive a final diagnosis only much later 

(Abruzzo et al., 2015): the mean age of clinical diagnosis has found stable at 4-5 years with no 

evidence of decline (Brett et al., 2016). 

As the etiology of ASD is not completely understood, there is still no cure available for the treatment 

of this disorder. However, some behavioral interventions are available to improve the core and 

associated symptoms of autism, particularly when initiated at an early stage. Thus, there is an 

increasing demand for finding biomarkers for use in the prognosis and diagnosis of ASD patients 

(Shen et al., 2019). In particular, there is growing interest in the identification of biomarkers that 

could be implemented easily in clinical practice through conventional laboratory medicine, following 

the routine collection of body fluids such as blood, urine, or saliva. However, the availability of 

reliable biomarkers remains an unmet clinical need (Ruggeri et al., 2014). Although diagnostic 

biomarkers have not yet been established, research efforts have been carried out in neuroimaging and 

biological analyses including genomics and gene testing, proteomics, metabolomics, transcriptomics, 

and studies of the immune system, inflammation, and microRNAs (Shen et al., 2019).  

 

1.3.1. Erythrocyte morphological alterations in patients with RTT 

With their work, Ciccoli et al. (2012) reported the presence of oxidative stress, mild chronic 

hypoxia, and a high frequency of leptocytes (Fig. 1.21) in girls with Rett syndrome (RTT), which is 

a neurodevelopmental disorder with autistic features - but it has recently been separated from ASD 

as a nosologically distinct entity (DSM-V). It is a severe and relatively rare disorder that affects 

females (about 1: 10000-1: 15000) characterized, in addition to autistic behavior, by neurological 

regression and typical hands stereotypies. RTT represents the second most common cause of severe 

intellectual disability in females and is genetically determined as it is mainly due (approximately 90-

95% of cases) to loss-of-function mutations in the X-linked methyl-CpG-binding protein 2 gene 

(MeCP2), a key gene for transcriptional regulation (Cortelazzo et al., 2015). Furthermore, the work 
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by Ciccoli et al. (2012) shows that altered RBC morphology in RTT patients is partially restored by 

supplementing omega-3 polyunsaturated fatty acids (PUFA), a family of biologically active fatty 

acids with antioxidant potential. For the generation of the altered RBC shapes in these patients, the 

combination of oxidative stress and hypoxia plays a key role.  

Furthermore, Cortelazzo et al. (2015) reported that oxidative stress could play an important role in 

influencing the state of the erythrocyte plasma membrane and its cytoskeleton. Authors of this study 

identified in RTT patients significant changes in the redox state for nearly all membrane cytoskeletal 

proteins and a reduced expression of more than half of membrane cytoskeletal proteins (with 

particular reference to five proteins showing expression changes proportional to the severity of 

MECP2 mutations: spectrin alpha chain, adducin, erythrocyte membrane protein 55 kDa, fructose-

bisphosphate aldolase and tropomodulin). In this study, changes observed in membrane cytoskeletal 

proteins appear to be related to changes in cells shapes (leptocytes) and involve both vertical and 

horizontal interactions: this consideration is suggested by the peculiar morphological features of 

leptocytes, which appear slightly larger and elongated (possible involvement of horizontal 

interactions) and more thin (possible involvement of vertical interactions). This study also shows that 

an omega-3 PUFA supplement has got a strong impact on restoration of post-translational oxidative 

Figure 1.21 - Abnormal erythrocyte shapes in Rett syndrome observed by SEM. Top panel row: frames of main red cell shape 
changes from untreated RTT patients (A: normal shaped red blood cells (B-F: abnormal shaped red cells). Bottom panels: SEM red 
blood cells of RTT patients before and after omega-3 PUFA supplement (6 and 12 months) and healthy controls. (G, J) healthy 
controls. (H, K) typical RTT patients. (I) typical RTT patients after 6 months of PUFA omega-3 supplement. (L) typical RTT patients 
after 12 months of PUFA omega-3supplementation (Ciccoli et al., 2012). 
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modifications affecting proteins of critical importance for erythrocytes shape maintenance and 

structural stability. 

 

1.3.2. Erythrocyte morphological alterations in ASD patients 

After discovering altered erythrocyte morphologies in RTT patients, the same authors reported high 

percentage of abnormal RBC shapes, mainly elliptocytes, in patients with “classical” autism through 

SEM analysis (Fig. 1.22). In this study, morphologically abnormal RBC in autistic subjects were 

related to oxidative damage of erythrocyte membrane. Indeed, the study also highlighted an increase 

in F2-isoprostanes and in 4-hydroxynoneal protein adducts of erythrocyte membrane. F2-

isoprostanes are considered as specific and reliable markers of oxidative stress (Ciccoli et al., 2012). 

They are compounds similar to F2 prostaglandin originated from the peroxidation, catalyzed by free 

radicals, of arachidonic acid esterified in phospholipids. Instead, 4-hydroxynoneal is a highly reactive 

toxic aldehyde which, depending on its concentration and localization, can be considered as a "second 

toxic messenger" which disseminates and augments initial free radicals events. Indeed, 4-

hydroxynoneal is  generated as a degradation product following free radicals attack on omega-6 

PUFA (arachidonic acid, linoleic acid) and can in turn covalently bind proteins, phospholipids and 

DNA; in particular, it easily reacts with nucleophilic groups of amino acid side chains and its covalent 

bond to proteins leads to alterations in their structure and biological activity (Ciccoli et al., 2013, 

2012). The study by Ciccoli et al. (2013) also highlighted a reduction and oxidative damage of !-

Figure 1.22 - Abnormal erythrocyte shapes in classical autism at the scanning electron microscopy (SEM). (a): normal 
discocyte shape; (b) to (g): main shape-altered RBC observed in autistic patients; (h): healthy controls; (i): a typical morphological 
pattern in nonautistic neurodevelopmental disorders (NA-NDDs); (j): typical picture in an autistic patient with predominant 
elliptocytosis. Symbols indicate intermediate-shaped RBC: the arrow indicates a disco-echinocyte shape, while the arrowhead 
indicates the presence of a knizo-echinocyte shape in autistic patients, bars correspond to 2 !m in (a) to (g) upper panels and to 10 
!m in the (h), (i), and (j) lower panels (Ciccoli et al., 2013).  
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actin protein of erythrocyte membrane. The authors therefore hypothesize that these three factors 

(erythrocyte abnormalities, oxidative damage to membrane, and !-actin alterations) may be a 

promising candidate in the identification of new biological markers for ASD diagnostic process.  

A subsequent study (Bolotta et al., 2018a) confirmed the results obtained by Ciccoli et al. (2013) 

about abnormally shaped erythrocytes in autistic children through SEM analysis (Fig. 1.23). In this 

work, more than 50% of ASD children's erythrocytes assumes an altered morphology, and codocytes 

and star-shaped cells were responsible for approximately 30% of all abnormalities. It is important to 

note that ASD patients’ RBC do not show characteristic or bizarre morphologies; rather they have 

got a higher percentage of altered morphologies found in smaller quantities in control subjects’ RBC.  

In the study by Bolotta et al. (2018a) it is also shown that changes in RBC shapes are independent 

from the anticoagulant used (Na2-EDTA or heparin), confirming that only a long storage in Na2-

EDTA could affect erythrocyte shape. In this study, changes in RBC shape were also shown not to 

be affected by treatment procedures prior to glutaraldehyde fixation, such as repeated centrifugations 

Figure 1.23 - Erythrocyte morphology at SEM. (a, b) Normal erythrocyte morphology (discocytes) found in neurotypically 
developing children. (c, d) A variety of abnormal red cell morphologies found in children with ASD. Bottom panel: a gallery of 
abnormal erythrocyte morphologies (Bolotta et al., 2018a). 
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carried out in saline buffer. These observations suggest that abnormal erythrocyte shapes found by 

the authors do not represent artifacts.  

The authors also showed that in vitro treatment with antioxidants (tocotrienol and Q10) for 24 h 

brings the percentage of morphotypic erythrocytes in ASD patients from 47.5% to 82%, thus restoring 

normal morphology to control levels (Fig. 1.24). Considering this evidence and the fact that, in their 

study, the presence of quantitative differences in proteins playing a key role in membrane-

cytoskeleton organization (beta-actin, band 3, stomatin) was not detected between ASD subjects and 

neurotypical development subjects, the authors hypothesize the presence in ASD subjects of oxidative 

stress-induced modifications in membrane proteins, or their associations, rather than quantitative 

differences.  

Given that inside RBC there is a high cellular concentration of oxygen and hemoglobin (which has 

the peculiar property of undergoing self-oxidation), these cells represent a constant source of super 

oxide production and for this reason they are highly susceptible to oxidative damage. Despite this, as 

far as is known so far, oxidative stress in ASD children does not seem to be generated within 

Figure 1.24 - Effect of antioxidant treatment on the morphology of RBC from children affected by autistic spectrum disorder. 
(a, b) Before the in vitro 24 h treatment. (c, d) After the treatment with tocotrienol and Q10. The percentage of abnormally shaped 
erythrocytes is clearly decreased.  
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erythrocytes and could be a consequence of chronic (neuro)inflammation. It is interesting to note that, 

despite several alterations in ASD erythrocytes, oxidative stress in these cells seems to be limited in 

its consequences, as suggested by the fact that no clinical signs of reduced erythrocyte activity (e.g. 

oxygenation) have been described so far in ASD patients (Bolotta et al., 2018a). 

 

1.4. Computer-assisted methods for erythrocyte images analysis 

Computer-assisted analysis of erythrocyte images has attracted considerable attention in the field of 

research on hematological diseases. Traditionally, the blood test under microscope, which plays an 

important role in the diagnosis of hematological and non-hematological pathologies, is carried out 

manually by expert operators. However, measuring the distribution of different RBC in a blood 

sample involves a great amount of tedious, time-consuming and repetitive work. The accuracy of 

recognition largely depends on subjective factors such as operator experience and fatigue. This limits 

the translation of results from studies concerning deformability, filterability and morphology of 

erythrocytes from research laboratories to clinical diagnosis (Durant et al., 2017; Nithyaa et al., 2013; 

Vromen and McCane, 2009; Wang, 2011). Hence the need to automate the entire process. This would 

not only reduce the hematologists workload but would also lead to accurate results in significantly 

shorter periods of time. The automation of this task would therefore be very useful for improving the 

hematological procedure and accelerating diagnosis of many diseases (Nithyaa et al., 2013). 

 

1.4.1. Erythrocyte image segmentation and computerized recognition of erythrocyte 

morphotypes 

In the computerized image analysis process, segmentation represents the bridge between the original 

image and intelligent processing (Wang, 2011). Segmentation is the operation through which an 

image is reduced into multiple segments (consisting of sets of pixels) corresponding to the object of 

interest. Relevant research has been done in trying to solve this problem, and several segmentation 

algorithms have been proposed in recent years. Among them there are segmentation methods applied 

to the analysis of several cell types or biological images. In fact, some practical applications of image 

segmentation are used in medical imaging to study anatomical structures, diagnosis, treatment 

planning or to locate tumors or other pathologies. There are several medical image segmentation 

techniques used for blood cells analysis. The goal of blood cell segmentation is to extract images of 

cells from complex backgrounds (Adollah et al., 2008; Devi et al., 2015; Vromen and McCane, 2009). 

Regarding erythrocytes in particular, many methods of segmentation have been reported for their 
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identification and enumeration. These methods use different techniques including morphological 

operations, filtering, thresholding and edge detection. Many of erythrocyte segmentation and 

counting methods use the Circular Hough Transform (CHT; Hegde et al., 2018). The Hough 

transform is a technique for extracting features of an object used in image analysis that is generally 

applied after edge detection (Maitra et al., 2012). Edge detection includes several mathematical 

operators that are designed to identify edges in the image. They are defined as segments consisting 

of digital image‘s pixels of rapid variation in intensity (Lindeberg, 2011; Szeliski, 2020). The Hough 

transform is computed using a primitive basic graphical, which in this case is a circle; each circle 

with the desired radius is drawn on each contours’ edge point (i.e. the maximum points of the 

transform are highlighted), they are those circles that rest on the cellular contour already detected 

(Barducci and Pippi, 1999). If the cellular radius is known, the CHT can be applied to find the center 

of the circle, knowing the number of points that fall on cell perimeter, that is, on cell edge; if the 

cellular radius is not known, the points of image center and the radius are searched in the three 

dimensions (x, y and z), complicating the calculation (Mazalan et al., 2013). 

Historically, efforts for automatic morphological classification have used statistical models based 

on an input derived in a similar way to the analysis performed by morphologists. Known as feature 

engineering, this science tries to quantify predetermined morphological features from digital images 

used as inputs for prediction algorithms (Durant et al., 2017). In the literature, most of the studies 

concerning automatic classification of erythrocytes are based on light microscopy images. The first 

study concerning this topic was the work by Bacus et al. (1976). It explored the feasibility of 

developing a technique for automatic classification of abnormal erythrocytes, applying digital image 

processing and pattern recognition techniques, and in particular gray level thresholding and labeling 

of contiguous regions for the segmentation step. Thresholding is a very simple image segmentation 

technique through which, starting from a grayscale or RGB (red, green, blue) image, a binary image 

(black and white) is produced. Image pixels are labeled as belonging to the object or to the background 

if their value is respectively higher or lower than an arbitrary cutoff value. In the work by Bacus et 

al. (1976), after segmentation step erythrocytes analyzed were then characterized by variations in 

size, roundness, presence of spicules, eccentricity, and distribution of gray levels in the center of the 

cell. These features allowed the authors to separate erythrocytes into distinct subgroups, each 

consisting of morphologically similar cells: (a) macrocytes, (b) normocytes, (c) schistocytes, (d) 

acanthocytes and burr cells, (d) microcytes and spherocytes, (e) elliptocytes, sickle cells, pencil-

shaped cells and (f) target cells. The authors obtained an accuracy range from 88 to 100% for the 

subgroups considered, suggesting that a classification into multiple erythrocyte categories was 

possible. 
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The implementation of feature engineering was also explored by Albertini et al. (2003), who created 

a statistical analysis model based on 4 preselected erythrocyte indices (chromogenic index, size index, 

biconcavity index and density profile) to discriminate between 7 morphological classes (discocytes, 

echinocytes, microcytes, macrocytes, ovalocytes, target cell, cup-shaped cell) from images acquired 

with a light microscope processed with an image processing software. Results of the study showed 

an agreement of 70% between actual and predicted classification. 

Many of the studies in the literature regarding automatic classification of erythrocytes about 

processing of light microscopy images are based on samples obtained from patients with anemia. The 

first of such works was carried out by Westerman & Bacus (1983), who reported the accurate 

evaluation of different erythrocyte morphological classes (normocytes, macrocytes, target cells and 

sickle cells) in peripheral blood images of adults with sickle cell disease. The automatic image 

processing system identifies cells based on size, hemoglobin content, central pallor and shape 

(circularity, elongation, spicularity) and provides concentrations of the different erythrocyte 

morphotypes. In this work, counts of sickle cells obtained through this image processing system were 

compared with counts obtained through more traditional methods of analysis, highlighting a close 

correlation. The authors also demonstrated a very good reproducibility of results obtained through 

image processing, analyzing nine pairs of duplicate slides, prepared simultaneously, from four 

different patients, and observing a high correlation between the two slides for cell types. 

More recently, Chandrasiri e Samarasinghe (2014) have introduced an accurate fully automatic 

system to identify four types of red cell morphological abnormalities found in anemic patients 

(elliptocytes, macrocytes, hypochromic microcytes and spherocytes), and to carry out blood cell 

counts. Identification of erythrocyte typologies was achieved by extracting different erythrocyte 

features such as area, shape, central pallor, and rectangular factor. The new segmentation method 

introduced by the authors was developed above all to solve the problem of identification and 

separation of overlapping cells. The accuracy in the erythrocyte count was found to be greater than 

99%, the range of accuracy in identifying abnormal erythrocyte morphologies was instead 91-97%. 

Nithyaa et al. (2013) reported the automatic recognition of disease such as malaria, sickle cell 

anemia, elephantiasis, trypanosomiasis and polycythemiasis by extracting statistical features of blood 

smears images acquired under light microscope and processed using MATLAB software. Results of 

classification appeared more accurate and in synchrony with the results obtained by operators. 

In the work by Bala and Doegar (2015) image processing techniques were applied to erythrocyte 

images to count normal and abnormal cells (sickle cells) using watershed segmentation. Watershed 

segmentation is a segmentation method whose name derives from an expression relating to 

geography: in fact, this algorithm operates on a digital grayscale image as if it were a topographic 
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surface with reliefs. Gray level of pixels indicates the elevation of these reliefs. All surface’s pixels 

at a given minimum constitute a hydrographic basin associated with that minimum and the 

watersheds, defined as dams that divide adjacent hydrographic basins, determine boundaries that 

separate different image regions (Arganda-Carreras and Legland, 2014; Bala and Doegar, 2015). 

After applying watershed segmentation, a shape factor for each cell was calculated for the 

differentiation between normal and abnormal cells. Additionally, erythrocyte contour plots were 

drawn to visualize sickle cell and target cells. The simulation of this technique was performed on 

MATLAB 2013a.  

Marzuki et al. (2017) proposed a method for identification of thalassemia using an active contour 

method for segmentation of blood smear images acquired under light microscope. The active contour 

model, also called snakes, is a structure in the context of computerized vision used for the delineation 

of an object profile starting from a potentially noisy two-dimensional image. A snake is a deformable 

tab influenced by image’s constraints and forces that push it towards object’s contours, and by internal 

forces that resist deformation (Kass et al., 1988). Following the segmentation phase, Marzuki et al. 

(2017) used the roundness and eccentricity of erythrocytes to identify abnormal cells, reporting the 

identification accuracy around 90%. 

Sharma et al. (2016) proposed a method for recognition of sickle cells, dacryocytes and elliptocytes 

with the aim of detecting sickle cell anemia and thalassemia. The proposed method involves the 

acquisition of thin blood smear images under light microscope, and then their pre-processing by 

applying a filter to remove image noise. This is followed by watershed segmentation method for 

separation of overlapping erythrocytes and morphological operations to improve the image. 

Subsequently, feature extraction was carried out, including the metric value (measurement of object 

roundness) and the relationship between the two axes. Finally, for classification based on extracted 

features, a k-nearest neighbor classifier was used. Nearest neighbors represent a very simple 

technique of non-parametric supervised learning (i.e., it does not involve any learning parameters). 

On the contrary, the training examples are all maintained and at the time of estimation the closest k 

examples are found and averaged to produce the output (Szeliski, 2020), where k is an arbitrary 

number established by the developer. Using this technique, Sharma et al. (2016) reported the accuracy 

of their classifier to be around 80% with  about 88% sensitivity. 

Implementation of feature engineering was also studied as an input for modern machine learning 

algorithms, including artificial neural networks (Durant et al., 2017). Artificial neural networks are 

computer systems that mimic biological neural computation model (Szeliski, 2020). For example, 

these systems were used by Khot e Prasad (2012) in their work, which is based on development of an 

image analysis system for detection of erythrocyte abnormalities - such as sickle cells, teardrop 
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erythrocytes, acanthocytes, Howell-Jolly’s bodies (nuclear residues consisting of erythrocyte 

nucleus’s fragments which, after its expulsion, remain in the cytoplasm), macrocytes and microcytes 

- in blood samples images acquired under light microscope. For their purpose, the authors first applied 

color normalization on images, then extracted different physical red cell features. The latter were used 

by the authors for artificial neural networks training. The accuracy achieved by their classifier was 

73.57%. 

In their work, Kim et al. (2001) presented a new scheme capable of automatically analyzing, 

counting and classifying red and white blood cells efficiently in images of human peripheral blood 

samples. After identifying RBC and white blood cells in blood samples images acquired with a CCD 

camera connected to microscope, the authors extracted cell features. Cells were then classified using 

a back-propagation learning-based neural network model. The authors considered five different 

categories of white blood cells (neutrophils, eosinophils, basophils, lymphocytes, and monocytes) 

and fifteen different classes of RBC (normal, crenate, burr cells, target cells, spherocytes, oat-shaped, 

ovalocytes, sickle cells, stomatocytes, blister cells, helmet-shaped, pinched cells, drop-shaped, 

filamentous, triangular; Suppl. Fig. 4-5). Classification of RBC was based on boundary and inner 

border information. On average, recognition rate of RBC and white blood cells was 91% and 81% 

respectively. 

Tomari et al. (2014) proposed a computer-assisted system to automate the process of RBC detection 

and identification from light microscope images of blood smears. First, erythrocyte-related regions 

were extracted from the background using global threshold method applied on images converted to 

monochromatic representation. The global threshold is a segmentation method by which the object 

can be extracted from the background through a simple operation that compares image values with a 

threshold value (Rogowska, 2009). After applying the global threshold method, noise and holes in 

erythrocytes were deleted through morphological filters and labeling of connected components. 

Subsequently, information relating to erythrocytes was extracted based on geometric properties. 

Finally, erythrocytes were classified as normal or abnormal using an artificial neural network 

classifier. The proposed method was tested on blood cells images, proving to be an effective and 

reliable system for classifying normal and abnormal erythrocytes (accuracy: 82%). 

The commercial system CellaVision (CellaVision® DM9600) offers an image analysis solution for 

erythrocytes based on artificial neural networks, using 80 predetermined object’s features to classify 

cells starting from 17 morphological classes, within 4 qualitative categories (Durant et al., 2017). 

However, reports published for erythrocytes classification with CellaVision demonstrate limited 

specificity and variable accuracy without re-classification by operators (Criel et al., 2016; Egelé et 

al., 2016). 
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Erythrocyte classification based on their morphological changes was also addressed using deep 

learning methods. Deep learning is a machine learning and artificial intelligence’s research field that 

is based on different levels of representation, corresponding to hierarchies of factors or concepts’ 

features, where high-level concepts are defined on the basis of low-level ones. 

Durant et al. (2017) implemented a deep convolutional neural network for erythrocyte classification 

consisting of more than 150 layers. Convolutional neural networks are based on patterns that mimic 

human visual recognition fields, known as filters, which are mathematically convoluted with the 

image of interest. Unlike traditional artificial neural networks that take inputs along a whole image 

simultaneously, convolutional filters operate on limited areas to produce "feature maps" of local 

patterns, which are combined through successive layers into more summary features (Zeiler and 

Fergus, 2014). Durant et al. (2017) reported an accuracy of 90.60% for the correct classification. 

Wąsowicz et al. (2017) proposed a method for automatic erythrocytes counting and classification 

in images of stained human blood smears. These authors used advanced image processing methods 

for erythrocyte identification and separation, followed by eigenfaces method coupled to neural 

networks for erythrocyte classification into normal and abnormal. The eigenfaces method allows to 

describe an image through a much smaller set of representative images (eigenfaces). Eigenfaces can 

be considered as a set of standardized elements of human face, obtained from the static analysis of 

many faces. Then, each face can be reconstructed as a linear combination of these eigenfaces plus an 

average image of the faces. In the case of the problem considered by Wąsowicz et al. (2017), blood 

cells (normal and abnormal) were analyzed by the algorithm instead of human faces. Vectors obtained 

by eigenfaces method, representing images of blood cells, were used to train the neural network. 

Accuracy and sensitivity of the system reached 88%, along with 90% specificity.  

 

1.4.2. Computerized processing of erythrocytes SEM images 

With regard to erythrocytes SEM images, Vromen and McCane (2009) proposed a segmentation 

method called the contour tracing based approach for automatic identification of normal 

erythrocytes’ contours. This method focuses on solving the problem of correctly tracing overlapping 

erythrocytes’ edges, based on information regarding changes in image brightness. The incorporation 

of this model into the contour tracing process allowed the authors to include a priori knowledge 

regarding shapes assumed by contours, rather than simply following the major change in brightness. 

The authors used a second order polynomial model with a simple Bayesian approach to ensure smooth 

contours and an ellipse fitting procedure to remove noising contours. Of all outlines detected, 95.7% 

are correct, with a 0.6% false negative rate, and 4.3% false positive rates. 



 
  

34 

The contour tracing approach described by Vromen and McCane (2009) was subsequently used by 

Wang (2011) with the aim of developing a sophisticated algorithm to accurately classify RBC into 

different groups. This method of recognition and classification was implemented based on RBC’ real 

shape. In fact, unlike conventional segmentation methods for erythrocyte images, based on two-

dimensional grayscale images, segmentation strategy proposed by Wang (2011) is based on extraction 

of surface features. In this work, first, the distribution of erythrocyte shapes was estimated from SEM 

images. Subsequently, the approach based on contour tracing described previously by Vromen and 

McCane (2009) for erythrocytes recognition and extraction was applied.  Each three-dimensional cell 

shape was then reconstructed as 3D height field using the Shape from Shading technique (Fig. 1.25). 

It involves the computation of the three-dimensional shape of a surface starting from the brightness 

of the black and white image of that surface. Surface was then divided into different types: peak, pit, 

ridge, valley, flat, minimal surface, saddle ridge and saddle valley. 3D height field was then used to 

segment cell surface through a surface fitting segmentation algorithm (Fig. 1.26). Eventually, cells 

were divided into different categories according to the distribution of their surface types. Finally, a 

classifier was built to discriminate erythrocytes with regular morphology from those with irregular 

morphology, by means of a linear combination SVM (Support-Vector Machines). SVM is an 

automatic learning model that use supervised learning methods in which algorithm categorizes a set 

of training examples (Yturralde et al., 2020). In the work by Wang (2011) irregular erythrocyte shapes 

are seen as input samples from the classifier. The combined classifier shows efficient and easily to be 

implemented. 

The same author published another work (Wang, 2017), in which the distribution features of curved 

surfaces are extracted using a three-dimensional reconstruction of RBC shape. The methodology 

proposed in this study consists, first of all, in a reduction of noise (white lines of a grid superimposed 

on the SEM image) through local median filtering techniques (Fig. 1.27). After that, superimposed 

cells are extracted individually using the guided contour tracing method. A three-dimensional 

Figure 1.25 - Two three-dimensional erythrocyte shapes 
reconstructed using the Shape from Shading technique 
(Wang, 2011). 

Figure 1.26 - Example of segmentation result using surface fitting 
method. The cell is perfectly segmented into three isolated parts. 
There are two different types of resulting surfaces: flat and pit (Wang, 
2011). 
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reconstruction is then performed using the linear approximation and finally the shape distribution is 

established by calculating the curvatures (Fig. 1.28).  

Instead, the work by Bhowmick et al. (2013) focused on the development of a computer-assisted 

method for classifying anemia types in SEM images of peripheral blood samples. This approach is 

based on morphological features and erythrocyte structure, such as shape, size and variation in the 

surface appearance of abnormal erythrocytes. In this study, erythrocytes were separated from blood 

samples and then processed for SEM imaging. Subsequently, erythrocytes were segmented from SEM 

images using gray level thresholding, morphological operators, and watershed algorithms (Fig. 1.29). 

Subsequently, erythrocytes in the foreground were extracted and then, through morphological 

operators, the unwanted and distorted cells were eliminated from the image. Starting from correctly 

segmented cells, features of the external surface profile and geometric features (area, perimeter, 

eccentricity, compactness) were extracted for anemia identification. All the extracted features were 

statistically evaluated with the intention of characterizing 7 classes of erythrocytes (1 normal and 6 

of anemia: normochromic and hypochromic macrocytic, hypochromic and normochromic 

normocytic, normochromic and hypochromic microcytic). Finally, to automatically predict the 

Figure 1.27 - Individually extracted cells in a SEM image. (a) noise image, (b) filtered image, (c) single cell image (Wang, 
2017). 

Fig. 1.28 - Results of curvature calculation. (a) and (d) are images of original cells, (b) and (e) are the main curvatures of (a) and 
(d): the black regions represent the main curvature value while the gray regions represent the value of secondary curvature. The region 
with the main curvature corresponds to the most prominent part of the shape change. (c) and (f) are mean curvature and Gaussian 
curvature illustration of (a) and (d) (Wang, 2017). 
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different types of anemia, a Bayesian classification (a statistical learning technique whereby 

pathology can be probabilistically predicted) was trained and tested. 

The same research team also developed a computer-assisted methodology for thalassemia screening 

using multi-layer perceptron (MLP) neural networks based on morphological features of RBC from 

SEM images (Fig. 1.30; Bhowmick et al., 2012). This approach consists of several steps: (1) a 

segmentation step using watershed algorithms for RBC segmentation in SEM images, (2) a feature 

extraction and selection step by which features are extracted on the basis of morphological changes 

of RBC in thalassemia using different mathematical measures (9 out of 17 morphological features 

were found to be statistically significant in discriminating normal and thalassemic RBC), (3) a final 

classification step in which RBC were classified into two groups - normal and thalassemia - using 

MLP neural networks. The proposed machine learning methodology provides 90.38% sensitivity, 

98.81% specificity, 98.93% positive predictive value and 94.59% overall accuracy for thalassemia 

screening. 

 
1.5. Aim of the work 

Because prior scanning electron microscopy (SEM) evidence show a significant percentage of 

altered erythrocyte shapes in ASD subjects (Bolotta et al., 2018a; Ciccoli et al., 2013), we want to 

investigate if the erythrocyte morphological alterations found in ASD patients can represent a 

biomarker to use as a component of a screening for early diagnosis of this group of disease. In absence 

of laboratory tests, ASD diagnosis is currently carried out by neuropsychiatric evaluation based on 

specific screenings, symptoms, clinical observations, and behavioral evaluations. Early diagnosis and 

prediction are however essential for ASD. In fact, several rehabilitative interventions with proven 

efficacy in reducing core symptoms of these disorders are currently available, but their clinical course 

Figure 1.29 - Segmentation of erythrocytes SEM images. (a) input SEM image and (b) segmented image (Bhowmick et al., 2013). 



 
  

37 

depends fundamentally on how early the intervention is established. Substantial improvements can 

be achieved by intensive behavioral intervention initiated prior to 24 months of age as neural plasticity 

is increased and challenging behavior are less prominent (Shen et al., 2019). Prior to the onset of 

behavioral abnormalities, behavioral interventions could conceivably minimize their severity - with 

a better neurodevelopmental outcome for the patient and improved performances in most life contexts 

- or even result in prevention of a full-blown autism (Dawson, 2008; Estes et al., 2015; Fossum et al., 

2018; Kandasami et al., 2017; Kasari et al., 2015; Shen et al., 2019). However, without any biological 

determination, early diagnostics are difficult and subjective (Brett et al., 2016).  

In order to test the hypothesis according to which the biomarker erythrocyte morphological 

alterations may be used as a component of a screening for early ASD diagnosis, it is necessary to 

carry out many bloods drawn from young children in a practical way. For this reason, our research 

team has developed a new preparation and imaging method, based on acupuncture technique, for 

SEM analysis of blood samples. This method, minimally invasive and cheap, consists in aspirating 

by a capillary tube (preloaded with anticoagulant solution) a drop of peripheral blood obtained from 

Figure 1.30 - Segmentation of erythrocytes SEM images from patients with thalassemia. (a) input SEM image and (b) 
segmented image (Bhowmick et al., 2012). 
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a prick in a human subject’s fingertip (Fortunato, 2016). Furthermore, in order to achieve the ultimate 

goal of our research project is necessary to manually search, count and classify a large number of 

RBC for each one of the numerous blood sample considered, as demonstrated by a previous thesis 

work (part of our research project; Zarra, 2017). As can be easily understood, this type of work takes 

a long time during which an operator is subject to fatigue, with possible repercussions on the precision 

and accuracy of the analysis. Therefore, for the optimization of our research work, an automated 

computer system which would relieve the operator from performing the analysis manually would be 

very important. Hence, it was thought to develop a new computerized morphometric analysis system 

for a quick and accurate work of semi-automatic detection and classification of human erythrocyte 

morphological variants in SEM micrographs. This software was developed precisely to operate on 

SEM micrographs obtained from blood samples prepared through the novel acupuncture method. 

The aim of the present thesis work is to present the results achieved so far within this broad project: 

the optimization of the protocol for blood micro-samples preparation, the preliminary results of the 

clinical study about erythrocyte morphological changes in pediatric ASD patients and, above all, the 

development and validation of our new software for erythrocyte phenotyping in SEM micrographs. 
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2. MATERIALS AND METHODS 

 

2.1. Ethical authorization 

This study was conducted according to the guidelines established in the Declaration of Helsinki and 

all procedures involving human patients have been approved by the Local Ethics Committee (Local 

Health Company Umbria 2, prot. N. 19000/20/OV of 30/06/2020). 

 

2.2. Protocol for blood samples preparation aimed at RBC morphological analysis 

by SEM 

Blood samples for SEM were prepared using the following protocol which was previously fine-

tuned  in a master degree thesis work (Fortunato, 2016; Fig. 2.1): 

! loading of a disposable 10 μl capillary (Hirshmann Instruments™) equipped with a pro-pipette 

(Hirschmann Instruments™) with anticoagulant solution (0.05 M sodium citrate in physiological 

solution). To do this, the capillary must be immersed in the anticoagulant solution and the latter 

rises by capillarity along the tube. The capillary must be loaded with anticoagulant solution for ¾ 

of its volume; 

! disinfection of patient’s fingertip; 

! puncture of the fingertip, through an automatic lancing device (Roche Diabetes Care) or through a 

disposable lancet (Ascensia Diabetes Care Single-Let®); 

! aspiration of the blood drop from the puncture site. To do this, the capillary with anticoagulant 

solution must be brought close to the blood drop and the latter rises by capillarity along the tube. 

To facilitate this operation, the capillary must be tilted with respect to the puncture site. If the 

meniscus of the anticoagulant solution does not contact the blood drop, the latter may not be 

aspirated. In this case it is necessary to occlude the hole at the upper end of the pro-pipette with a 

finger and apply a slight pressure on the upper part of the pro-pipette itself. The capillary must be 

loaded for ¼ of its capacity with the blood material; 

! deposition of the mixture of blood and anticoagulant solution on the support, consisting of a glass 

slide (7x15mm) or a rectangle of aclar film (7x10 mm). To carry out this operation, the capillary 

must be brought close to the support, while the hole at the end of the pro-pipette must be occluded 

with a finger and at the same time a slight pressure must be applied on the upper part of the pro-
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pipette itself. By this operation, the content of the capillary is deposited on the support. After that, 

it is necessary to wait 30 seconds to achieve better adhesion of the blood material to the support; 

! immersion of the support with the RBC adhering to it in a 2 ml tube containing a solution of 2.5% 

glutaraldehyde in 0.1 M phosphate buffer (which will be stored at 4°C) for the ultrastructural 

preservation of the blood material. In fact, once the blood is taken from the human subject, the 

erythrocytes morphology begins to change over time. To avoid these morphological changes, instant 

erythrocyte fixation is an important step (Bhowmick et al., 2013). 

A. Loading of a disposable 10 μl capillary equipped with a pro-
pipette with an anticoagulant solution. 

B. Fingertip disinfection. 

C. Puncture of the fingertip. D. Blood drop aspiration. 

E. Deposition of capillary’s content on the support. F. Immersion of the support in fixative solution. 

Figure 2.1 – Preparation of blood samples for SEM analysis. 
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After this preparation, the samples were subjected to the following procedure for morphometric 

analysis by SEM: 

! two consecutive washes at 4°C with 0.1M phosphate buffer (pH 7.2), each one for 10 minutes; 

! fixation of lipid components in a 1% osmium tetroxide aqueous solution at 4 ° C for 1 hour; 

! two washes at 4°C with water, each one for 10 minutes; 

! dehydration in ascending scale of ethyl alcohol (30%, 50%, 70%, 90%, 100%), each step for 10 

minutes at 4°C, and a further step in 100% ethyl alcohol at room temperature; 

! CO2 critical point drying using a CPD010 unit (Balzers Union, Liechtenstein); 

! mounting of dried samples on aluminum stubs (Tedpella, Inc); 

! metallization with gold by means of a sputtering device MED010 (Balzers Union, Liechtenstein); 

! analysis at either SEM XL20 (Philips, Eindhoven, Netherlands), SEM XL30 (Philips, Eindhoven, 

Netherlands) or SEM Quanta 400 (FEI – Field Electron and Ion Company, Hillsboro, Oregon). 

 

2.3. Pilot study on ASD patients and healthy volunteers 

Through the protocol just described blood samples from 4 healthy volunteers (age: 21-25 years old) 

and 15 ASD patients were obtained. Table 2.1 shows the clinical data concerning ASD patients, 

whose neuropsychiatric evaluation was performed through CARS2 (Childhood Autism Rating Scale, 

Second edition, Schopler et al., 2010). The CARS2-ST (ST for “Standard Form”) is used with 

younger or lower functioning individuals, while CARS2-HF (HF for “High Functioning”) is used 

# Gender Age Diagnosis Comorbidities
1 Unavailable 4 HFA (high functioning autism) ///
2 Unavailable 3.5 ASD moderate-severe ///
3 M 3.5 ASD moderate-severe ///
4 M 5.5 ASD moderate-severe ///
5 Unavailable 5 ASD mild-moderate ///
6 M 3.5 ASD moderate ///
7 M 9 ASD mild-moderate ///
8 M 7 ASD mild-moderate hearing loss
9 Unavailable 3.5 ASD moderate-severe ///

10 M 7 LFA (low functioning autism) - MFA 
(medium functioning autism) ///

11 M 3.5 ASD moderate-severe ///
12 M 5 ASD mild ///
13 M 5 ASD mild-moderate ///
14 F 4 ASD mild-moderate Attention-Deficit/Hyperactivity Disorder (ADHD)
15 F 3.5 ASD mild ///

Table 2.1 - Clinical data of patients enrolled for the pilot study. This table shows for each patient: gender, age at enrollment, 
diagnosis, and eventual comorbidities. 
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with higher functioning individuals1. The CARS2 scale is divided into 15 items relating to the main 

behavioral areas, each of which must be assigned a variable score from 1 to 4 in seven steps. The sum 

of all scores gives an overall value, which indicates the presence or the absence of the disease and – 

if present – also its severity. 

  

2.4. Optimization of the protocol for blood samples preparation aimed at SEM 

morphological analysis 

For the optimization of blood samples preparation protocol, 30 experimental tests were carried out 

starting from 19 blood samples from 7 different healthy volunteers. For protocol optimization, the 

following 3 variables were tested: 

- Times of permanence of the blood material in the fixative 

• 1 day; 

• 4 days; 

• 5 days; 

• 7 days; 

• 2 months; 

- Support cleaning methodology 

• by optical lens tissue; 

• by sonication (support dipped in acetone); 

- Deposition times of blood material on the support 

• 30 seconds; 

• 1 minute; 

• 2 minutes; 

• 10 minutes; 

• 15 minutes. 

 

 
1 In ASD patients the level of functioning is indexed by overall intelligence quotient (IQ). High functioning autism (HFA) can be 
thought as within one standard deviation of population mean IQ (that is, IQ of 85 or above); medium functioning autism (MFA) can 
be thought of as between one and three standard deviations below the population mean (that is, IQ of 55– 84). Low functioning autism 
(LFA) can be thought of below this (that is, IQ of 54 or below; Baron-Cohen, 2006). 
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2.5. Neuropsychiatric parameters evaluated and clinical data collected for the 

clinical study 

Blood samples from ASD patients enrolled for the clinical study were processed through the 

optimized protocol. For this clinical study, doctors of the Child and Adolescent Neuropsychiatry Unit 

of the local health unit Umbria 2 in Terni took care of the enrollment of the patients. Their team, also 

made up of psychologists and nurses, carried out the neuropsychiatric visit and the collection of 

biological material for each patient enrolled. They organized their work in sessions of 2-4 patients at 

a time, dedicating about half of their working day to this activity. The neuropsychiatric assessment 

of patients made use of a tool for the ASD diagnosis, that is nationally and internationally recognized: 

the Autism Diagnostic Observation Schedule (ADOS; Lord et al., 2012). It consists of a standardized 

and semi-structured assessment of communication, social interaction, play and imaginative use of 

materials for ASD subjects. ADOS consists of standardized activities that allow the examiner to 

observe behaviors critical for ASD diagnosis at different chronological ages and for different levels 

of development. Through this tool it is possible to evaluate behavior of the subject in response to 

stimulus situations and activities predetermined by the test, in order to obtain information on 

relational and communicative features. This test is based on an interactive evaluation context, capable 

of generating situations that provide stimuli on a social level, through play and verbal exchanges. The 

ADOS includes four different modules depending on the level of expressive language of the subject 

and the age. The scores are organized according to 5 main groups: A. Language and communication; 

B. Mutual social interaction; C. Game; D. Stereotypical behaviors and narrow interests; E. Other 

abnormal behaviors. ADOS score along with other clinical data of the enrolled patients are shown in 

Table 2.2. 

 

 

 

# Gender Date of enrollment Age at enrollment Autism level at enrollment Diagnosis date Age at diagnosis ADOS-2 score Comparison score Comorbidities
1 M 20/04/21 4 y 11 m 2 July 2020 4 y 2 m 10 3 mild Attention-Deficit/Hyperactivity Disorder (ADHD)
2 M 20/04/21 5 y 3 Spet 2020 3 y 6 m 20 7 moderate severe intellectual disability
3 M 20/04/21 6 y 6 m 3 July 2019 3 y 10 m 22 7 moderate intellectual disability
4 F 20/04/21 5 y 1 April 2019 3 y 1 m 14 4 mild ///
5 M 02/08/21 17 y 4 m 1 unavailable unavailable unavailable not available dyslexia
6 M 02/08/21 6 y 3 m 3 April 2019 3 y 11 m 18 6 moderate intellectual disability
7 M 02/08/21 6 y 10 m 2 April 2017 2 y 6 m 15 5 moderate intellectual disability
8 M 19/11/21 10 y 2 m 3 June 2014 2 y 9 m 15 5 moderate intellectual disability
9 M 19/11/21 7 y 1 m 2 December 2017 3 y 2 m 17 7 moderate intellectual disability

10 M 30/12/21 8 y 4 m 1 March 2017 3 y 8 m 13 4 mild ///
11 M 30/12/21 6 y 6 m 3 April 2019 3 y 10 m 16 6 moderate intellectual disability
12 M 30/12/21 11 y 5 m 2 May 2021 10 y 10 m 13 6 moderate intellectual disability, stutter

Table 2.2 - Clinical data of patients enrolled for the clinical study. This table shows for each patient: gender, date of enrollment, 
age at enrollment, autism level at enrollment, diagnosis date, age at diagnosis, ADOS-2 score, comparison score, and eventual 
comorbidities. The comparison score, corresponding to a symptom level of the disorder, allows to standardize the ADOS modules. 
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2.6. SEM analysis of erythrocyte morphology 

The analysis of erythrocyte morphology was carried out counting ≥ 1000 erythrocytes at a 

magnification of 1500x (for the SEM XL20 and XL30) and of 3000x (for SEM Quanta400) setting 

the microscopes at an electron accelerating voltage of 10kV. A Numbers file with a format previously 

created was used for each sample to classify erythrocytes observed at the SEM in the different 

morphological classes (an example is shown in Fig. 2.2). Counting and classification of erythrocytes 

Figure 2.2 - Numbers table used to classify erythrocytes observed at SEM in the corresponding morphological classes. Each row 
of the table corresponds to a red blood cells area observed at SEM. The total number of erythrocytes present in the area was entered in 
the first column; the following columns, related to the different erythrocyte morphological classes, were filled with the corresponding 
number of erythrocytes. The sum of morphologically abnormal erythrocytes present in the area was automatically calculated in the 
penultimate column. In the last column, the number of discocytes present in the field was automatically calculated (by subtracting to 
the number of total erythrocytes the number of morphologically abnormal erythrocytes). In the last rows of the table, the total number 
of erythrocytes counted in the sample, the number of total erythrocytes for each morphological class and for the total of morphologically 
abnormal erythrocytes were calculated by adding the values present in all the previous rows of the table. For the latter two types of 
values, the respective percentage compared to the total number of erythrocytes counted in the sample was automatically calculated and 
displayed in the last row of the table. 

 



 
  

45 

in different SEM areas was done by proceeding from right to left, then moving down and continuing 

from left to right, and so on following a regular rasterized pattern. 

 

2.7. Intra-operator variability of erythrocyte SEM analysis 

In order to gauge intra-assay variability, relative standard deviation (SD; %) were used for triplicate 

measurements on n=3 different blood samples as assessed by the same operator (Suppl. Tab. 1). Data 

were extracted from the corresponding descriptive summary statistics. Variance values were 

calculated for the 15 main morphologic categories of circulating erythrocyte shapes observed at the 

SEM analysis: echinocyte I, echinocyte II, echinocyte III, acanthocyte, spherocyte, stomatocyte, 

sphero-stomatocyte, elliptocyte, macrocyte, microcyte, target cell, leptocyte, knizocyte, discocyte, 

other shapes, as well as total abnormal morphotypes. The relationship between cell shape frequency 

(as expressed as percentage value of total observed shapes) and relative SD (%) was tested by 

univariate regression analysis models. Analysis of variance was performed by one-way ANOVA test. 

The MedCalc version 20.013 statistical software package (MedCalc Software Ltd., Ostend, Belgium) 

was used for data analysis, and a two-tailed p < 0.05 was considered to indicate statistical significance. 

 

2.8. SEM micrographs for software development and evaluation 

A micrograph obtained by an electron microscope fitted with digital imaging tools consists in 

computer file with information about a two-dimensional grid of pixels. Pixels are the smallest 

individual elements of the image, and they are characterized by numerical values. These values 

represent local intensities of image brightness and may range from white to black. Therefore, a digital 

image is an ordered set of rows and columns composed by pixels: the width and height of the image 

are defined by a number of pixels in the abscissa (rows) and a number of pixels in the ordinate 

(columns; Ferreira and Rasband, 2012). The digital images of RBC used for the development of our 

computer system, aimed at automatic recognition and classification of human erythrocytes in SEM 

micrographs, are in grayscale and measure: 

• 3872x2904 pixels, when acquired at SEM XL20; 

• 4096x3200 pixels, when acquired at SEM XL30; 

• 3584x3301 pixels, when acquired at SEM Quanta 400.2 

 
2 The digital images, despite having been acquired through different SEM, do not have great differences in their resolution 
(and therefore in their pixel size). 
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Fig. 2.3 shows a sample SEM image of those used in our study. There are some notable features 

concerning these images that make our problem - that is, to recognize and semi-autonomously classify 

erythrocytes in these images - meaningful and challenging. On the one hand, the images produced by 

the SEM are of very high quality and high contrast. In these images there are varying shading, 

generated by the detection source. On the other hand, erythrocytes take on irregular shapes. In fact, 

although many cells are more or less circular in shape with smooth contours, some cells are not, and 

the latter type is the one of particular interest in the study of both ASD and other pathologies with 

abnormally shaped erythrocytes. SEM images of the blood drop consist of two regions: background 

and foreground. The foreground consists of erythrocytes, white blood cells, platelets and plasma 

protein aggregates, while the background consists of the support surface (aclar or glass). Most of the 

Figure 2.3 - Example of SEM micrograph of erythrocytes used for software development and evaluation. 
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cells are located perpendicular to the electron beam and, in the case of discocytes, show a flat surface 

with an almost circular shape.  

 

2.9. SEM XL20 and SEM XL30 set-up for micrographs acquisition 

! Magnification: 400x; 

! sample placed orthogonally to the detector (tilt angle: 0°); 

! acceleration voltage: 10.0 kV; 

! spotsize: 5; 

! working distance: 12 mm; 

! contrast: about 12; 

! brightness: about 47; 

! file saving in .TIF format;  

 

2.10. SEM Quanta 400 set-up for micrographs acquisition 

! Magnification: 1000x; 

! sample placed orthogonally to the detector (tilt angle: 0°); 

! acceleration voltage: 10.0 kV-15.0 kV; 

! spotsize: 5; 

! working distance: 10 mm; 

! contrast: about 12; 

! brightnes: about 47; 

! file saving in .TIF format;  

 

2.11. Protocol for micrographs acquisition 

The following requirements have proved to be indispensable for software development and use and 

they can be considered as an essential part of the standard protocol for SEM micrographs acquisition 

(which was previously established in a master degree thesis work; Pianigiani, 2018):  
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! images must contain an adequate number of blood cells: not too low, so as not to acquire too much 

micrographs and thus increase time for acquisition and analysis, nor too high in order to guarantee 

quick and simple data processing; 

! the magnification used must allow, on the one hand, to accurately reconstruct the erythrocyte shape 

and, on the other hand, to show in a same image a number of cells suitable for optimizing the 

algorithm calculation speed (and consequently the image analysis process). For this reason, the 

decision was made to use a 400x magnification for SEM XL20 and for SEM XL30, which 

corresponds, as it was subsequently determined, to a 1000x magnification for SEM Quanta 4003; 

! there must be as few erythrocyte stacks (i.e., cells superimposed on each other) as possible and 

acquisitions must be made away from the edges of the blood drop, in order to avoid aggregated 

erythrocytes; 

! the background (represented by the aclar/glass support placed on the stub) must be less noisy as 

possible, i.e. there must be the least possible quantity of plasma protein residues, fibrin clots and 

improperly metallized components; 

! the contrast and brightness levels must be within the thresholds denoted by the SEM videoscope. 

 

2.12. Software development: general overview 

For software development, Microsoft Visual Studio 2010 was used as a working environment, and 

the C++ language as a programming language. The development steps of our computer-assisted tool 

for phenotyping erythrocytes in SEM micrographs that involved computer programming were carried 

out by Professor Alessandro Barducci (I.C.S. Srl). The first step within the image processing and 

analysis procedure for the development of a software whose purpose was to detect and classify 

erythrocytes in SEM micrographs, is represented by the image segmentation process. Segmentation 

consists of dividing the image into geometrically coherent segments (consisting of sets of pixels) 

corresponding to the object of interest in the image (in this case, an erythrocyte). The goal of 

segmentation is to simplify the representation of the original image into another one which is more 

meaningful and easier to analyze (Adollah et al., 2008). The segmentation represents a crucial step, 

since the accuracy of the subsequent steps such as feature extraction and erythrocyte morphotypes 

classification depend on the precision of single RBC segmentation process. Segmentation of this type 

 
3 That is, by acquiring photos of a sample through SEM Quanta 400, these photos will show cells having the same 
dimensions in mm as those in photos acquired at SEM XL20 and SEM XL30. 
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of images is a difficult and challenging problem due to the complex shaping of the cells recorded in 

digital microscope images (Tomari et al., 2014). 

Following the segmentation step, the image was subjected to the so-called instance classification, 

that is the process by which all the segments belonging to the same instance (object of interest in the 

image, in this case an erythrocyte) are grouped into connected spatial units and are labeled one by 

one.  Instance classification process therefore recognizes RBC as physical entities distinct from each 

other that at that point can also be labeled and counted. 

Following the instance classification step, there was a step of features extraction, where the features 

were represented by cellular morphological parameters such as area, eccentricity, length of the cell 

perimeter, number of crosses, to name a few. Subsequently, a training step of the software was 

performed in order to make the semi-automatic classification of erythrocyte morphotypes possible. 

During this step, each recognized instance was manually assigned by the operator to a specific 

erythrocyte morphological type. At the end of this process, processing data are saved in a text or excel 

file, in which a certain set of numerical values - related to the identified cell morphological parameters 

- is associated with an erythrocyte, which is named according to its corresponding morphological 

class. 

Based on the processing data, an erythrocyte classifier was developed with the aim of semi-

automatically establishing which phenotypic class the instance belongs to, i.e. morphologically 

typical class or morphotype-atypical class with the different subclasses. 

 

2.13. Data set for software development and evaluation 

For the early stages of software development, 180 micrographs were used. These micrographs were 

obtained from blood samples of ASD patients enrolled for the pilot study. This first set of micrographs 

were acquired at the SEM XL20 using the acquisition protocol and the setup previously illustrated. 

To evaluate the software ability of single erythrocytes detection in SEM micrographs, 112 photos 

acquired at SEM XL20 from 3 different samples were analyzed. These samples were obtained from 

ASD patients enrolled for the pilot study. The total number of erythrocytes in this set of photos was 

3˙000, ranging from a minimum of 876 to a maximum of 1˙070 and an average of 1˙000 erythrocytes 

per sample.  

To evaluate the software performance of detecting the total number of erythrocytes in SEM images, 

380 photos acquired at SEM XL20 or at SEM Quanta 400 from 10 different samples were analyzed. 

These samples were obtained from ASD patients enrolled for the pilot study. The total number of 
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erythrocytes in this set of photos was 1˙3131, ranging from a minimum of 777 to a maximum of 2˙071 

and around 1˙353 of erythrocytes per sample in average.  

For the software training step, 215 photos acquired at SEM Quanta400 from 4 different samples 

(from ASD patients enrolled for the pilot study) plus 24 photos acquired at SEM XL-30 from a single 

sample (from ASD patient enrolled for the clinical study) were used 4 . The total number of 

erythrocytes which have been manually assigned to the respective morphological classes was 5˙244, 

ranging from a minimum of 250 to a maximum of 1˙253 in the different samples and an average of 

about 834 erythrocytes per sample. Most of these processing data were then used for the construction 

of scatterplot graphs, which allow to view erythrocytes belonging to different morphological classes 

according to the values of their respective morphological parameters differently coupled to each 

other. Information obtained from these graphs were used to guide the development of algorithms to 

cover the last calculation step: semi-automatic morphometric classification of erythrocytes in 

different morphological categories. After having combined all the processing data in a single excel 

file, so that in each sheet the data of erythrocytes belonging to a specific erythrocyte class were 

grouped, 59 scatterplots were constructed in total. 

To evaluate the software's ability to recognize blobs (irregularities which resemble protuberances 

found sometimes in abnormal RBC), 28 target cells were analyzed in SEM micrographs from two 

different pathological samples. In particular, the number of false negatives (target cells with 

unrecognized blobs) and true positives (target cells with recognized blobs) were calculated with the 

relative percentages. 

 

2.14. Erythrocyte morphotypes classifier 

For transitioning from the sets of morphological parameters to the classification of erythrocyte 

morphotypes, a crossroad between the criterions of Bayes classification and the Neyman-Pearson 

classification was used. To represent morphological parameters at a probabilistic level, normal 

(Gaussian) probability densities and Poisson's probability densities were used for continuous 

variables (eg: area, perimeter) and for integers variables (eg: the number of crosses) respectively. A 

priori probabilities (likelihood ratio) were established empirically using the data generated by 

software training step. 

The problem of erythrocyte morphotypes classification is a typical problem of decision theory. On 

the one hand, there are n erythrocyte classes Ak	k	=	1,	2,	…,	n (discocytes, elliptocytes, microcytes, 

 
4 It was possible to use images acquired at SEM XL30 for software training after having brought their resolution to the 
same value as those of the micrographs acquired at SEM Quanta 400 using Photoshop. 
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etc). On the other hand, there are m morphological parameters pk	k	=	1,	2,	...,	m associated with each 

erythrocyte. We want to define the conditional probability "! = "	(&!	|	-(⃗ 	)  of belonging to the 

generic class Ak	assuming that the vector of parameters -	///⃗  has occurred. We will choose as class &* the 

one that produces the highest membership probability value &* = max{&!}! .  

A priori probabilities for each class are usually a rectangular function, that is, the function assumes 

1.0 as value for morphological variable’s certain ranges of values (domain), and 0.0 for values outside 

the domain. The range of values allowed for each morphological parameter is established by 

calculating statistical moments for each erythrocyte morphological class (Fig. 2.4), starting from the 

processing data of the available erythrocyte population. In particular, the permitted range of values is 

established by calculating the min-max interval on the population of erythrocytes observed. In the 

presence of a small number of erythrocytes per class (<100), the interval is extended by 10% on both 

extremes (0.9min-1.1max). Conversely, a safety margin of 3% (0.97min-1.03max) is taken in the case 

of a large number of erythrocytes per class. The exception is the "other anomaly" class which, for the 

a priori probability, admits any value of morphological parameters, but with a lower probability, equal 

to 0.03. The Poisson and Gaussian probability densities are entirely defined by a few statistical 

moments: only by the mean (µ) for the first one 

(2"($)(4) =
&!
"! 5

(&) 

and by the mean and standard deviation (σ) for the second one 

(2)($)(7) = 	
*

+,-."#
5
(("%&")

#
#("# ). 

In the case of multivariate probability density, the entire covariance matrix (Σ) is needed 

(1#⃗(!)(2⃗) = '
[)π‖Σ‖]

)
2
4,

"#$$⃗ &µ,'
-
		Σ
−1(,$⃗ −µ,)
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By using estimates of statistical moments, a priori probabilities and probability densities of each 

morphological class were defined. A multivariate probability density - which can include 3, 4 or 5 

morphological parameters among the following: area, perimeter, maximum diameter, eccentricity, 

boundary Routh Mean Square - was defined. For all the other morphological parameters, variables 

are considered to be statistically independent. Based on this knowledge, it was possible to carry out 

the classification calculation (decision making).  
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Figure 2.4 - Statistical moments for erythrocyte morphological class. This figure shows statistical moments for discocyte class as 
an example. For each column (relating to a morphological parameter) the following are displayed: mean value (first row), standard 
deviation (second row), maximum value (third row), minimum value (fourth row), covariances (fifth row), number of erythrocytes 
considered (sixth row). 



 
  

53 

3. RESULTS AND DISCUSSION 

 

3.1. Pilot study on ASD patients and healthy volunteers 

The pilot study conducted on healthy volunteers and ASD patients allowed to prepare and observe 

by SEM a set of RBC samples and to produce morphometric data from either healthy controls (Suppl. 

Tab. 2) and ASD patients (Suppl. Tab. 3). The pilot study also enabled to start testing the applicability 

on ASD patients of the mini-invasive protocol for blood samples collection and preparation aimed at 

SEM morphological analysis. Chart 3.1 and Chart 3.2 show the results, in terms of average values, 

obtained from the RBC morphological analysis at SEM for the 7 blood samples from healthy 

volunteers and for the 15 blood samples from ASD patients, respectively. These data are discussed in 

the paragraph “Erythrocyte shape analysis at SEM: discussion” of the present chapter.  

 

3.2. Optimization of the protocol for blood samples preparation aimed at RBC 

morphological analysis by SEM 

 

3.2.1. Times of permanence of the blood material in the fixative 

It has been observed that storage of erythrocytes in fixative solution for up to 2 months does not 

negatively affect their morphological appearance (Fig. 3.1). This feature of the method allows to have 

adequate time available for the samples transmission from the sampling points to the electron 

microscopy laboratory, where their subsequent processing takes place. 

 

3.2.2. Nature of the support 

Glass was chosen as a support for the adhesion of the blood material, since through experimental 

tests carried out previously it was found that rectangles of aclar film were subject to breakage 

following exposure to the SEM electron beam (Fig. 3.2). 
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Chart 3.1 – RBC population type in healthy volunteers’ blood samples prepared through 
the original version of protocol for blood samples preparation aimed at RBC 
morphological analysis by SEM. 

Chart 3.2 - RBC population type in ASD patients’ blood samples prepared through the 
original version of protocol for blood samples preparation aimed at RBC morphological 
analysis by SEM. 
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3.2.3. Cleaning methodology of the support 

The best cleaning method of the support is found to be by optical lens tissue. This method, involving 

a coarser cleaning than the standard sonication method used in other routine preparation protocols, 

turned out as being more efficient in allowing the adhesion of a greater number of RBC to the support 

(Fig. 3.3). 

 

 

 

 

 

Figure 3.1 - SEM micrographs of RBC samples stored in fixative liquid for 2 months. RBC morphological appearance is preserved. 

Figure 3.2 – Blood samples prepared through the original version of the protocol with aclar film used as support for RBC 
adhesion. The figure shows breaks in the aclar because of exposure to the SEM electron beam. 
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3.2.4. Deposition times of blood material on the support 

It was observed that the optimal deposition time of the blood material on the support, among those 

tested, was 15 minutes. This time allows the adhesion of an adequate number of cells to the support 

without, at the same time, causing the blood drop to dry out (Fig. 3.4). 

 

3.2.5. Indicative protocol 

After performing the acupuncture and taking the blood drop with a capillary preloaded with 0.05 

M sodium citrate in physiological solution, the optimized protocol is structured as follows: 

• Addition of the capillary content to 25 μl of fixative solution (2.5% glutaraldehyde in 0.1 M 

phosphate buffer) contained in a 1.5 ml tube; 

• Centrifugation at 1˙000 RPM for 5 minutes (ALC microCENTRIFUGETTE®4214), then 

aspiration of the supernatant and addition of 10 μl of 0.1 M phosphate buffer (repeat this 

step 3 times); 

• Deposition on the support of 2 μl of RBC diluted in buffer (15 minutes in a humid chamber 

at 4 ° C); 

• Drip addition of 2 μl of 1% osmium (15 minutes at 4 ° C); 

• Rinses in water (2x5 minutes) and then processing according to the original protocol 

described in “materials and methods”. 

Figure 3.3 – Cleaning methodology of the support. The figure shows a small number of RBC adhering to the glass slide cleaned by 
sonication (on the left) and a greater number of RBC adhering to the glass slide cleaned by optical lens tissue (on the right). 



 
  

57  

Figure 3.4 – Deposition times of blood material on the support. The figure shows different samples with RBC adhered to the slide 
according to different deposition times of the blood material on the support: 30 seconds (A), 1 minute (B), 2 minutes (C), 10 minutes 
(D), 15 minutes (E,F). It is noted that the deposition time of 15 minutes allows to obtain better results in terms of density of RBC 
adhered to the support. 

A B 

C D 

E F 
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The original protocol for blood samples preparation aimed at RBC morphological analysis by SEM 

suffers mainly from two limitations. The first one is represented by the possibility, starting from an 

acupuncture, to prepare only a single blood sample for subsequent processing and SEM imaging. The 

second limitation is that sometimes the RBC field appeared noisy under SEM due to the presence of 

plasma proteins. This presence was a problem especially during development and use of our software, 

altering the cellular contour recognized by the program or creating lighter regions within the cellular 

area. To overcome these limitations, it was decided to change the protocol of blood samples 

preparation in such a way that the fixation of the blood material took place in suspension, before the 

deposition of the blood material itself on the support. This feature of the optimized protocol allows 

to obtain samples in suspension that can be worked safely in the laboratory. Indeed, the optimized 

protocol allows on the one hand, to make multiple SEM samples starting from a single blood drop 

obtained through a single acupuncture, and on the other hand to separate the RBC from plasma by 

centrifugation, obtaining cleaner samples (Fig. 3.5). 

In this new procedure, the step of immersion of the support with blood material in the fixative liquid 

- which guaranteed the simple and definitive adhesion of the RBC on the support - was not present 

anymore. This leads to two consequences. The first one is that during the development of the new 

protocol, among other things, the optimal time needed for adequate sedimentation of the RBC on the 

support could be tested and established.  The second consequence is that manual steps that hospital 

staff must carry out at the time of acupuncture are reduced compared to what was foreseen by the 

original version of the protocol. Indeed, hospital staff are no longer expected to handle the support - 

Figure 3.5 - SEM micrographs of blood samples prepared using the two different versions of the protocol in comparison. It is 
possible to notice the higher level of cleanliness of the samples prepared using the optimized protocol (figure on the right) compared 
to the samples prepared using the protocol in its original version (figure on the left). 
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on which the blood material was previously deposited - with a pair of tweezers to submerge it in the 

fixative liquid: it is sufficient for hospital staff to settle the contents of the capillary directly into the 

fixative solution. Results of RBC samples from two healthy volunteers prepared by the optimized 

protocol and visualized at SEM are shown in Fig. 3.6. As can be seen, the normal erythrocyte 

morphology is preserved and, unlike classical preparation methods, where RBC are highly 

overlapping (Vromen and McCane, 2009), our method of preparing blood samples produced in most 

cases a monolayer of cells with rare aggregates. The optimized protocol was initially tested to prepare 

blood samples from 4 healthy volunteers, to then realize a set of RBC morphometric data about these 

healthy controls at SEM (Suppl. Tab. 4). Chart 3.3 shows the results obtained from the RBC 

morphological analysis of these samples, in terms of average values. 

Figure 3.6 – SEM micrographs of RBC samples prepared by the optimized protocol. Monostratified and morphologically normal 
erythrocytes. Clean slide background. 
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3.3. Preliminary results of the clinical study 

The first samples of the clinical study showed a high percentage of spherocytes (33.96% on average, 

Suppl. Tab. 5). This result aroused suspicion, so checks were carried out with the solutions 

(anticoagulant and fixative) from the same stock used for the patients in the clinical study, using blood 

samples from healthy volunteers. From these checks it emerged that the percentage of spherocytes 

was also in this case significant, albeit lower than in the first pathological samples of the clinical study 

(15.55%, Suppl. Tab. 6). It was thought that the problem might be generated by the anticoagulant 

solution; therefore, an experimental test was carried out on healthy volunteers using the anticoagulant 

solution from the same stock used for the pathological samples of the clinical study, together with 

another experimental test using the re-prepared anticoagulant solution. As can be seen from the table 

in supplementary materials, the sample prepared using the anticoagulant solution from the same stock 

used for the pathological samples of the clinical study showed a high percentage of spherocytes 

(22.91%, Suppl. Tab. 7), while the sample prepared using the re-prepared anticoagulant solution 

showed a low percentage of spherocytes (1.52%, Suppl. Tab. 8). The re-prepared solution was then 

supplied to the colleagues in Terni for the preparation of the subsequent samples. The results obtained 

from these last samples are shown in the Suppl. Tab. 9 and summarized in the Chart 3.4 in terms of 

average values. These data are discussed in the paragraph below. 

 

3.4. Erythrocyte shape analysis at SEM: discussion 

It is currently known from results published by two different research groups that indeed alterations 

of the erythrocyte morphology were observed by SEM in patients diagnosed positive for ASD 

(Bolotta et al., 2018a; Ciccoli et al., 2013). Our research project about the study of alterations of 

erythrocyte morphology in ASD patients aims however at answering some questions, such as at what 

age the erythrocyte morphological changes begin to appear in patients and whether such changes can 

be detectable even before the onset of symptoms routinely used for the diagnosis of the disorder on a 

neurobehavioral basis. Answering these questions is of fundamental importance to know if the 

presence of erythrocyte morphological alterations in ASD patients can be validated as a biomarker to 

be included in a screening for early ASD diagnosis. 

  



 
  

61 

  

Chart 3.3 - RBC population type in healthy volunteers’ blood samples prepared through 
the optimized protocol. 

 

Chart 3.4 - RBC population type in ASD patients’ blood samples prepared through the 
optimized protocol. 
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In addition to the knowledge already present in the literature, our study presents the development of 

a new minimally invasive protocol for blood samples preparation aimed at RBC morphological 

analysis by SEM, together with a set of initial RBC morphometric data at SEM derived from both 

ASD and controls’ blood samples prepared using this new method. Our novel protocol is based on 

the acupuncture method, while data already published were obtained from blood taken by venous 

sampling. Indeed, the invasiveness of diagnostic practices is particularly critical in pediatric patients 

and, consequently, it is important to minimize the stress for the patient induced by sampling practices. 

Regarding the presence of erythrocyte morphological changes in ASD patients, some considerations 

can be made, although it is worth remembering that ours are preliminary data and so, it is necessary 

to increase the caseloads of both ASD patients and control subjects, to provide more accurate 

information with statistical significance. From the data concerning erythrocyte shape analysis at SEM 

presented in this thesis, it is clear that the percentage of discocytes in healthy volunteers’ blood 

samples, prepared both through the original version of the protocol (95.58%) and through the 

optimized one (93.48%), is in line with the percentage of discocytes in control subjects from the work 

by Bolotta et al. (2018a; ~90%) and significantly higher than that one in the work by Ciccoli et al. 

(2013; ~75%; Fig. 3.7). From this observation it can be deduced that the protocol based on 

acupuncture aimed at blood samples preparation for SEM morphological analysis described in this 

thesis does not appear to induce an excessively high number of laboratory artifacts concerning 

erythrocyte morphology, compared to similar data already published in the literature. 

Regarding the quantity of discocytes present in ASD patients, differences can be observed between 

the data emerging from this thesis and those already published. The percentage of morphotypic 

erythrocytes in these patients in the study by Bolotta et al. (2018a) is ~45%, significantly higher than 

of ~15% in the study by  Ciccoli et al. (2013; Fig. 3.7) and both are significantly lower than those 

that emerged from our study (respectively of 88.66% for ASD patients of the pilot study and 78.05% 

for ASD patients enrolled for the clinical study). The prevalent morphological anomalies found in 

blood samples of ASD patients enrolled for the pilot study, to a greater extent than in healthy 

volunteers, are echinocytes I and target cells. This observation is in line with the results shown in the 

studies by Ciccoli et al. (2013) and by Bolotta et al. (2018a) reporting the presence of a significantly 

higher percentage of both codocytes (which take shape of target cells) and echinocytes in ASD 

subjects compared to control subjects (Fig. 3.7). Instead, in blood samples of ASD patients enrolled 

for the clinical study, the prevalent morphological anomalies, which are found to a greater extent than 

in control subjects, are: spherocytes, knizocytes, elliptocytes and abnormal erythrocytes that fall into 

the category "other anomaly”. As regards knizocytes, they were found to a greater extent in ASD 

patients than in control subjects both in the study by Ciccoli et al. (2013; in a statistically significant 
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way) and in that one by Bolotta et al. (2018a; in a statistically non-significant way; Fig. 3.7). As far 

as elliptocytes are concerned, they were found to a greater extent (in a statically significant way) in 

ASD patients than in control subjects both in the study by Ciccoli et al. (2013) and in the study by 

Bolotta et al. (2018a; Fig. 3.7). However, elliptocytes in autistic patients are found in a much greater 

percentage in the study by Ciccoli et al. (2013; ~35%) than in the study by Bolotta et al. (2018; ~5%; 

Fig. 3.7). The data of this thesis concerning the relationship between elliptocytes in ASD patients and 

control subjects seem to be more in line with those from the study of Bolotta et al. (2018a). As far as 

spherocytes and "other anomalies" are concerned, these RBC morphotypes represent a novelty as 

these classes have not been taken into consideration in the previously published works, presumably 

because no erythrocytes belonging to these morphological classes have been found in the samples 

analyzed in these works. Regarding erythrocyte morphological changes in ASD patients, future 

studies are needed to establish if a single predominant morphological abnormality or rather a 

combination of several morphological abnormalities with canonical relative percentages, should be 

considered for the correlation between erythrocyte morphological abnormalities and ASD. The 

second hypothesis seems more plausible. 

Another aspect that remains to be clarified concerns the factors and cofactors that determine the 

presence of erythrocyte morphological abnormalities in ASD patients. It is reasonable to hypothesize 

that among these factors and cofactors there are the modifications induced by oxidative stress on 

Figure 3.7 - Comparison of SEM analysis about erythrocyte morphologies in ASD and control subjects by Ciccoli et al. (2013; 
on the left) and by Bolotta et al. (2018a; on the right). Image on the left: RBC morphology distribution in autistic patients (A, 
black columns), subjects with nonautistic neurodevelopmental disorders (C+, gray columns) and healthy controls (C-, white columns). 
Statistically significant differences are highlighted by a single asterisk (P> 0.05). The P values on the classification of each erythrocyte 
shape refer to one-way ANOVA. Image on the right: RBC morphology distribution in typically developing children (light columns) 
and in ASD children (dark column) are shown. The numbers above the columns indicate whether the difference was statistically 
significant (p> 0.05 by Student t-test). 
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erythrocyte membrane’s proteins or their associations. In fact, it is known that defects in erythrocyte 

membrane skeleton’s components, and the consequent loss of functional and structural integrity, 

gives rise to characteristic alterations of the erythrocyte morphology in some other pathological 

conditions (e.g. hereditary spherocytosis, elliptocytosis and stomatocytosis; Gallagher, 2005). 

Besides, a SEM morphological study (Ciccoli et al., 1994) on mouse erythrocytes incubated with 

oxidizing agents reported that these cells exhibited several alterations in shape, including 

transformation into echinocytes and the presence of codocyte-like, stomatocyte-like and knizocyte-

like shapes. Reconnecting to that, it is worth noting that several publications highlight the presence 

of oxidative stress’ deep effect in the erythrocyte membrane of ASD patients (Bolotta et al., 2018b; 

Ciccoli et al., 2013; Ghezzo et al., 2013). The hypothesis according to which modifications induced 

by oxidative stress on erythrocyte membrane’s proteins can be responsible for erythrocyte 

morphological abnormalities in ASD patients is reinforced by scientific works showing the presence 

of abnormal erythrocyte morphologies in pathological conditions characterized by oxidative stress - 

such as chronic obstructive pulmonary disease (Lucantoni et al., 2006) and end-stage renal disease 

(Antonelou et al., 2011) – and, above all, two published papers (Ciccoli et al., 2012; Cortelazzo et al., 

2015) involving RTT patients, a neurodevelopmental disorder with autistic features which has 

recently been separated from ASD as a nosological distinct entity (DSM-V). With their work, Ciccoli 

et al. (2012) reported the presence in these patients of abnormal RBC shapes (mainly leptocytes), for 

the generation of which oxidative stress - together with a situation of hypoxia - plays a key role. 

Cortelazzo et al. (2015) identified in RTT patients significant changes in the redox state for nearly all 

membrane cytoskeletal proteins, suggesting that oxidative stress could play an important role in 

influencing the state of the erythrocyte plasma membrane and its cytoskeleton. In this study, changes 

observed in membrane cytoskeletal proteins appear to be related to changes in cells shapes 

(leptocytes). Even if a key role of membrane cytoskeleton proteins would be confirmed, it remains to 

be precisely determined whether changes in cytoskeletal proteins and, consequently, in erythrocyte 

morphology of ASD subjects always occur in the same way in different RBC and/or in different ASD 

patients. 

Considering the ascertained presence of alterations in the fatty acid composition of the erythrocyte 

membrane in ASD patients (Ghezzo et al., 2013), erythrocyte morphological changes of these 

subjects could also have a correlation with the composition of erythrocyte membrane’s lipid bilayer, 

or with the nature of its  interaction with the erythrocyte membrane’s proteins. It is also reasonable 

to hypothesize that morphological, lipid and protein changes of the erythrocyte membrane in ASD 

patients are the result of systemically altered physiological conditions of these patients, such as a pro-
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inflammatory state, the presence of which in ASD subjects is reported in the literature (Rose et al., 

2012; Rossignol and Frye, 2012; Vargas et al., 2005). Further and continuous studies are necessary 

to clarify in a precise and detailed manner which are the factors and cofactors leading to the onset of 

erythrocyte morphological alterations in ASD patients.  

 

3.5. Intra-operator variability of erythrocyte SEM analysis 

Mean intra-assay variability for discocytes and total abnormal morphotypes was 3.06 ± 0.61% and 

10.67 ± 8.24%, respectively (Chart 3.5). Consistently larger intra-operator variabilities were 

evidenced for the remaining erythrocyte shape classes, while the intra-assay variance for echinocytes 

II and III was not evaluable (Chart 3.6). A statistically significant exponential regression was 

observed between intra-operator variability and cell shape frequency (y=57.782-2.64x+0.0248 x2; 

R2=0.14, p=0.034; Chart 3.7).  

While intra-operator variability was found to be acceptable for the most frequently observed 

circulating erythrocyte shape classes (i.e., discocytes) and total abnormal cell shapes, intra-assay 

variance was found to be inversely related to cell shape frequency. These observations strongly 

suggest the need of a high number of replicate counts and the key relevance of implementing reliable 

computer-assisted algorithms and machine learning systems in order to discover potential novel 

disease biomarkers at the SEM analysis of peripheral blood micro-samples. 

Chart 3.5 – Relative Standard Deviation (%) for discocytes and total abnormal morphotypes. Histograms describe intra-operator 
variability, as expressed as mean ± 1 standard deviation of percentage relative SD, for discocytes and total abnormal morphotypes. 
These data result from erythrocyte counts at SEM in triplicate for 3 samples. 
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Chart 3.6 – Relative Standard Deviation (%) for each abnormal erythrocyte morphological class. Histograms describe intra-
operator variability, as expressed as mean ± 1 standard deviation of percentage relative SD, for each abnormal erythrocyte 
morphological class. These data result from erythrocyte counts at SEM in triplicate for 3 samples. 

Chart 3.7 - Correlation between intra-operator variability and cell shape frequency. Univariate exponential regression 
between intra-operator variability (Y axis, percentage values) and frequency (X axis, percentage values of total cell counts) 
of erythrocyte morphotypes observed at the SEM analysis. Open circles represent single observations. Note: the negative 
curve graph reconstruction is for didactical purpose only. 
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3.6. Software functionalities and erythrocyte semi-automatic detection  
 
3.6.1. Software’s graphic interface 

In the software user interface, there is the open image button at the bottom left. After executing this 

command, a dial-needle window opens - the operator can use it to select the digital image which he 

wants to analyze. At this point, the software performs a test to make sure that the image has been 

loaded. If this step is performed correctly, the image appears in the software window with a 

significantly reduced resolution, to allow full viewing. 

On the right of the software window there is a column of options, in which a square sub-image is 

easily visible at the top. By clicking on any point of the image, inside the sub-image (zoom box) an 

image’s detail at its natural resolution can be seen; the center of the image in the zoom box coincides 

with the point of the image on which the mouse pointer has been placed. Each time this operation is 

done, the software normalizes the image in the zoom box, bringing its contrast and brightness to 

preset values. The software is provided with a test to verify that the small image in the zoom box has 

been loaded. 

 

3.6.2. Horizontal plot and vertical plot 

Below the zoom box two figures show the plots of the horizontal and vertical transects extracted 

from the above sub-image. These plots show the profile of the image’s intensity (gray level) as a 

function of the pixel coordinate, i.e., horizontal coordinate for the horizontal plot and vertical 

coordinate for the vertical plot. The importance of these plots relates to the circumstance that the SEM 

signal depends on the inclination to the detector direction of the surface of the observed object. Thus, 

these two profiles can be considered as a signature of the three-dimensional shape of the observed 

cell. Almost always, two tall peaks (maxima) separated by a rather wide valley and surrounded by 

two minima define the cell area. 

The software analyzes many horizontal and vertical transects as to fill the entire image available. 

Each transect is calculated as the average between the current row (or column) and the two 

neighboring ones to drastically reduce the noise amplitude and improve the accuracy of the processing 

results. It is worth noting that averaging of the image signal always occurs in a direction orthogonal 

to the plot arrangement, in order to reduce its random component, while preserving its information 

content. In Fig. 3.8 it is shown the software interface as it appeared during the first development steps. 
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3.6.3. Segmentation algorithm 

By clicking the processing button in the software window’s right column, the image shown by the 

zoom box is processed to identify a red blood cell. To do this, the software looks for a starting 

minimum on horizontal transects, first, and on the vertical ones, then. After finding the first minimum, 

the algorithm searches for the first maximum within a fairly short lag, then for the second maximum 

and finally for the second minimum. 

To identify features of transects profiles, the procedure evaluates a fairly extensive list of parameters 

with which it reports the main features of transects; these parameters include the average value of the 

transect, the values of the first and second maximum, the values of the first and second minimum, the 

average of the transect between the first and second maximum, the distance between the first 

minimum and the first maximum and the one between the second minimum and the second maximum. 

In order that all erythrocytes can be recognized by the software, the distance between the first 

maximum and the second maximum (roughly corresponding to the width of the cell) must fall within 

Figure 3.8 - Software interface as it appeared during the first development steps. Left: the image as it appears once 
opened within the software; the Open image button is located at the bottom left. Right: the 200x200 pixel sub-image, followed 
by horizontal plot and vertical plot. Below the zoom box and above the plots, it can be found some textboxes concerning the 
sub-image in the zoom box: Min (minimum pixel intensity value), Max (maximum pixel intensity value), Mean (average 
pixel intensity value), NumPunti (number of pixels that are found inside the cell – this value gives a first indication about 
cell size). Next it can be found the Processing button (through which it is possible to process the image in the zoom box) and 
the Cell size textbox (which indicates the average size of cell diameter; it is a parameter that can be modified by operator as 
it changes according to the image resolution; this value stays the same for the images obtained at that particular microscope 
with the same experimental acquisition conditions). Below the plots there are three other textboxes which refer respectively 
to the column number, the row number and the gray level value related to the point of the whole image on which the mouse 
cursor is placed. 
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a rather wide range of acceptable values, deduced in an empirical way. This distance range is about 

3-13 microns, which is wide enough to include abnormal cells as well. 

It is necessary to underline that all the images darken by moving down and to the right, as if they 

had a virtual source of illumination in the upper left corner: this effect is due to the position of the 

sample with respect to the electron source and to the detector and to the self-shielding effect of 

secondary electrons operated by the cell. This means that, in the plots, the second maximum always 

is less toll than the first one and that the second minimum always is deeper than the first one. 

When the algorithm recognizes the pair of maxima that define the cell extremes, and after all the 

named conditions are validated, the pixels contained between the maxima are assigned to the image 

segment classified as belonging to the cell (visually, the space between the starting pixels and the 

ending ones is filled with an orange line in the middle). This process is applied first to rows and then 

to the columns of the sub-image within the zoom box. Any erythrocytes in the zoom box become 

orange: this represents the graphic display of segmentation operated by the algorithm within the 

selected area. In other words, the cell colored in orange is a set of orthogonal segments identified by 

the software and all labeled in the same way (Fig. 3.9).  

It is necessary to note that only healthy erythrocytes show the typical pattern of profiles within the 

plots, represented by two maxima accompanied by two minima and separated by a valley, while 

sometimes erythrocytes with abnormal morphology show remarkably different profiles. Fibrin clots, 

and all other impurities in the sample that do not belong to the morphological class of RBC, also have 

an irregular plot profile (Fig. 3.10).  

 

3.6.4. Segmentation: discussion 

Edge-based techniques for segmentation are based on the idea that rapid changes in intensity values 

occur when passing from one region of interest to another. The aim is the detection (and therefore the 

classification) of the discontinuities (edges) of the image (gray levels). Instead, class-based 

techniques rely on the analysis of the whole image to group the pixels through thresholding or 

clustering operations. The segmentation procedure proposed resembles edge detection segmentation 

methods (which represent a type of edge-based techniques), although not belonging to them properly. 

Edge detection algorithms usually calculate the derivative of the image intensity according to a given 

mathematical operator. Many edge detection algorithms compute the first order derivative (image 

gradient), then search for peak values to detect object boundaries. Other edge detection operators are 

based on the calculation of the second derivative operator (e.g.: the Laplace operator), which roughly 
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corresponds to the gradient’s speed of change. A general-purpose algorithm, such as that of gradient  

or edge detection methods, would be applied to every point of the image, regardless of whether to 

start the processing from a dark or light pixel. On the other hand, the segmentation method here 

adopted has the advantage of considering a trigger (black border which is always present around the 

cells) which allows to start the next part of processing. In this way our segmentation procedure 

becomes specialized for cells recognition.  

The classic edge-based approach was excluded from the present study because, if a contour extractor 

was applied to an image with high field noise, many false positives would result. In our case, if the 

edge-based approach was applied to an image containing several fibrin clots, these fibrin clots, having 

a gradient on the edges even greater than that of RBC, would be highlighted even more than 

erythrocytes, causing confusion in count and distinction between cells of interest and noising  

Figure 3.9 - Segmentation. Left: example of a selected erythrocyte with its relative plots. Right: after clicking on the Processing 
button it is possible to appreciate how the erythrocyte is filled with vertical and horizontal orange segments. In the plots it can be 
seen how, in correspondence of erythrocyte edges, there are always two peaks (two maxima), separated by a rather wide valley 
and surrounded by of two minima. It is also noted that the first maximum is higher than the second one and that the second 
minimum is deeper than the first one. 
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elements. Fibrin clots are in fact very bright elements on a dark background, while RBC are gray 

objects on a dark background. In this case, it would then be desirable to first apply a pixel threshold 

with a cutoff value, such as to eliminate a set of pixels below that value, to which subsequently apply 

a contour extractor. But, in this case, the cutoff value could cut out some cells of interest that are 

characterized by an area generally smaller than that of a healthy erythrocyte. To exclude fibrin clots 

and other disturbing elements, shape or size could be used as discriminants, but in this case one would 

risk, once again, not admitting an abnormal RBC, or instead retaining and scoring fibrin clots of larger 

size than an erythrocyte. 

The thresholding segmentation method, belonging to the class-based methods, is found in the 

literature for the segmentation of erythrocytes in micrographs produced by either light or electron 

microscopes (Bacus et al., 1976; Bhowmick et al., 2013; Tomari et al., 2014). This method was also 

disregarded, since the threshold’s cutoff value could lead to an over-segmentation or to the exclusion 

Figure 3.10 - Examples of atypical erythrocyte morphology and fibrin clots’ plot profiles. In both images it is possible 
to appreciate how plot profile of erythrocytes with atypical morphology (left) and of fibrin clots (right) are visibly different 
from RBC with canonical morphology’s plot profiles shown above. 
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of erythrocytes with altered morphology, or to the inclusion of disturbing elements, such as fibrin 

clots. 

Another kind of segmentation methods is represented by the region-based techniques. Among these, 

there is the watershed segmentation method. It has been used by several authors for erythrocyte 

segmentation in both light and electron microscope images (Bala and Doegar, 2015; Bhowmick et 

al., 2013, 2012; Garnier et al., 2019; Malpica et al., 1997; Sharma et al., 2016). The segmentation 

method based on the watershed algorithm was not taken into consideration for this project, because 

it gives an over-segmentation where there are many local minima, as in the case of erythrocytes whose 

center has levels of gray intensity clearly different from those of the cellular contours: for example, 

in the case of target cell, which have a thin area with a central lighter area. The watershed algorithm 

gives over-segmentation even in images with a very noisy background (Arganda-Carreras and 

Legland, 2014). 

The Hough transform is widely used in the literature (Agrawal and Verma, 2015), for example to 

identify and count erythrocytes on the basis of the range of RBC radius, which extends from the 

minimum - to the maximum radius of the cell (Cruz et al., 2019; Mazalan et al., 2013). Although the 

average diameter of an erythrocyte is known, in each image there are cells with a different radius, 

which must therefore be determined before proceeding with the Hough transform. Moreover, the 

shape of real cells never is a perfect circle, making it complex to find a general curve to accurately 

match the generic cell shape. As an instance, elliptocytes, having an elliptical or sometimes rod shape, 

acanthocytes and echinocytes, which have a spheroidal shape with spines on the surface, or the 

knizocytes, which are even triconcave, could have a radius range that differs greatly from the average 

one. This means that this type of cell may not be correctly recognized through the CHT due to the 

incompleteness of the circle drawn (Mazalan et al., 2013). Furthermore, to find out if one RBC’s 

outline passes in a point of the image, it is necessary to add on the extracted contours all the possible 

circular profiles that pass through that point. Having to repeat this operation on each single cell’s 

extracted outline of in the image, the calculation becomes long and laborious (Barducci and Pippi, 

1999). 

In conclusion, it is possible to state that our segmentation method aimed at the recognition of RBC 

is the best one suited for the specific type of SEM micrographs used in our work, compared to the 

methods found in the literature for similar purposes. 
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3.6.5. Instance classification   

As a result of the segmentation process, the image is reduced to a set of many adjacent pixel 

segments placed horizontally and vertically; at this level, it is impossible to discriminate between the 

pixels that belong to the same physical element and those that are extraneous to it. After the 

segmentation process there is the instance classification process, which consists in establishing 

whether the set of pixels belonging to the class of erythrocyte segments constitutes a compact and 

connected set or not. Whenever it is possible to find in the set a couple pixels for which no path exists 

laying entirely in the set itself that joins them, we state this set as unconnected (composed by two or 

more connected sets, which are not connected to each other). The instance classification is used to 

join segments of connected pixels, that is, those for which there is a path that connects them in 

extension. In other words, instance classification process rejoins all adjacent pixel segments. With 

this operation, all connected segments become an object, that is, a class or instance. 

 

3.6.6. Filtering 

Following segmentation and instance classification processes, the algorithm can identify regions 

corresponding to erythrocytes, however in the image obtained there are false positives, unwanted 

foreground elements and noise. To overcome these problems, some filtering methods were applied. 

This step is critical as noise can significantly impair the system's ability to accurately identify and 

classify extracted objects (Kass et al., 1988). 

First, the topological filter is applied, thanks to which sets of segments with a smaller area than the 

expected area of an average erythrocyte are removed. These set of segments presumably are not 

erythrocytes (false positives) or they are wrongly segmented erythrocytes (i.e. erythrocytes for which 

the software has recognized so few pixels for which it is not worth doing further processing). 

The topological filter makes use of morphological operators. Morphological operators are so called 

because they carry out elaborations on the shape of an object. Standard operations include dilation 

(accretion), erosion, opening and closing. Dilation causes regions belonging to the foreground to grow 

(thicken), while erosion shrinks and thins them (Szeliski 2010). Topological filters consist of n 

openings followed by n closures, where n is the number of iterations with which it is possible to 

parameterize the topological filters. The opening consists of a first phase of erosion of border pixels, 

during which those pixels that belong to the object and that are surrounded by at least one background 

pixel are assigned to the background, and of a second phase of growth, in which those pixels of 

backgrounds that are surrounded by pixels belonging to the object are assigned to the object. With 

this process, those pixel segments that, at the end of the segmentation, sprouted from the objects, are 
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removed with erosion and are not reconstructed with the growth because they are not connected with 

the element structure. Then there is the closure, which consists of a first phase of growth followed by 

a phase of erosion. After segmentation, incorrectly segmented areas may remain inside the object 

(displayed as variably extended areas without orange pixels but actually belonging to the erythrocyte), 

but the growth of the pixels belonging to the background and surrounded by pixels belonging to the 

object solves the error assigning such areas to the object RBC itself; the subsequent erosion does not 

remove the pixels newly added because they are connected with the pixels of the object structure. 

Since sometimes the topological filter is not enough, the anti-segment filter is applied. Thanks to it, 

segments extraneous to the cell are detected and cut. These segments are like bridges that can connect 

small residues of plasma proteins to the cellular perimeter. In the first part of the anti-segment filter, 

the software extracts the contour of the result of the instance classification filtered by the topological 

filter and divides it according to the median vertical line, obtaining two semi-profiles (right semi-

contour and left semi-contour). When the software detects a non-progressive profile by recognizing 

"jumps", it cuts the segments that protrude horizontally from the semi-contour and carries on the 

detection of the progressive profile. Therefore, segments that protrude from the semi-contour are 

recognized as segments of pixels not belonging to the cellular perimeter and are attributed to the 

background. In the second phase of the anti-segment filter, the result of the instance classification 

filtered by the topological filter is divided according to the median horizontal line, obtaining two 

other semi-profiles (upper semi-contour and lower semi-contour). The analysis is repeated as 

described above for the vertical segments (Fig. 3.11). 

It is possible to iterate topological filters in an arbitrary way, just by typing a digit in the number of 

iterations textbox. For example, with n = 1, the aperture filter removes 2-pixel thick segments, while 

with n = 2 it removes 4-pixel thick segments. To prevent removing objects of interest it is in general 

advisable not to exceed 4 iterations (which corresponds to exclusion of objects with linear dimensions 

up to 8 pixels). It should be noted that the request for n iterations yields repeated applications of the 

opening filter for n times followed by n following applications of the closing filter. 

These procedures can be performed only after the instance classification has taken place, that is, 

only after the sets of pixels have been recognized as individual elements. It is clear that, since the 

instance classification excludes objects (instances) having an area smaller than the expected area 

values of an erythrocyte, such filters operate more efficiently and quickly than applying them to the 

result of the initial segmentation, which yields many unconnected segments that are not eligible as 

erythrocytes. 
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3.6.7. Filtering: discussion 

Tomari et al. (2014), in their work about developing a computer-assisted system to automate the 

process of identifying erythrocytes in blood smear images, used morphological operators to remove 

unnecessary elements from the segmented image. In particular, a sequence of two times of erosion, 

two times of dilation and contour filling algorithms was applied to reduce noise and holes inside the 

cell. Wąsowicz et al. (2017) in their study about a computerized system for automatic counting and 

classification of erythrocytes in images acquired under a light microscope, used morphological 

operations at two different moments of the erythrocyte separation procedure. In the first moment, 

they applied morphological operators such as dilation and erosion, to remove background noise and 

give prominence to the central part of the erythrocytes, and in the second moment, after carrying out 

other image pre-processing procedures, they performed morphological operations to fill holes in the 

image and erase excessively small objects. Morphological operators were also used for the 

segmentation of erythrocytes in the study by Bhowmick et al. (2013), having the objective to address 

quantitative microscopic approach for automated screening of erythrocytes in anaemic cases using 

SEM images of unstained blood cells. In particular, morphological opening operator is being used to 

eliminate the unwanted and distorted cells from the image. IdentiCyte program, specifically designed 

Figure 3.11 - Application of topological and anti-segment filters. The image on the left shows an erythrocyte in the zoom window 
without the application of any filter. In the image in the center, obtained following the application of the topological filter, it can be 
seen an imperfect segmentation that leaves segments of pixels sprouting from the erythrocyte. In the image on the right, it can be 
seen how, after the application of the topological and anti-segment filters, extraneous segments have been completely eliminated. 
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to quickly count and identify RBC from a series of light microscope images, discard from the image 

of elements that are too small occurs thanks to the measurement of their area. This way debris are 

removed from the image (Garnier et al., 2019). 

In conclusion, it is possible to state that the selected combination of mathematical operators 

underlaying our filtering methods for an accurate recognition of RBC is, among others previously 

used by other authors, the best one suited for the specific type of SEM micrographs used in our work. 

 

3.6.8. Ellipse fitting 

Following filtering, the ellipse fitting takes place, an 

operation with which the algorithm computes the 

ellipse that best approximates the identified RBC. The 

software superimposes on the set of orange pixels an 

elliptical shape with a couple of free parameters (two 

ellipse’s semi-axes and the ellipse’s center). The 

dimensions of the two semi-axes and the center of the 

ellipse are then modified until the best fit is obtained, 

i.e. the best overlap area of this theoretical shape over 

the segments identified as belonging to the RBC. In 

this way, the result of the instance classification is 

refined. In fact, at the end of the segmentation, a 

partially incorrectly recognized RBC could appear. In 

this case, if the algorithm tried to superimpose an 

ellipse on the classified region, an ellipse of smaller or 

larger dimensions than expected would be obtained, 

determining the exclusion of this element from 

subsequent proceedings (Fig. 3.12). 

Filtering and ellipse fitting processes have been inserted because it was thought that it is much better 

to remove a potential cell whose instance-classification procedure is not accurate, rather than try to 

process it and run the risk of introducing a wrong information. In fact, when a cell is thrown away 

randomly, the odds of throwing away a healthy cell or a diseased cell exactly follow the statistic of 

the disease (there is no bias in the statistic). On the contrary, accepting a wrongly segmented cell at 

the beginning and then obtaining an incorrect classification can give rise to problems. 

 

Figure 3.12 - Ellipse fitting. To improve the 
result of instance classification, the algorithm 
computes and superimposes an ellipse on the 
erythrocyte that best represents the erythrocyte 
itself. 
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3.6.9. Detection of erythrocyte perimeter 

The ellipse fitted can adapt to erythrocyte geometry but imperfectly: it does not follow the cellular 

contour accurately. To solve this problem, the ellipse perimeter is deformed so that each point is 

moved forward or backward radially until it meets the actual cellular contour (the brightest part of 

the cellular profile, represented by the maximum peak on the plots). With the process of detection of 

erythrocyte perimeter, a red outline appears on erythrocyte contour (Fig. 3.13). Fig. 3.14 shows how 

the graphical interface of the software appears in a second phase of its development, with the addition 

of the functions just described. 

By testing the software at this phase of development, it was observed that it recognizes RBC and 

highlights them with a red contour with a rather high success rate. This can be affirmed thanks to an 

evaluation of the software ability of single erythrocytes detection in SEM micrographs. The total of 

erythrocytes recognized by the software was 2475 out of a total of 3000 erythrocytes manually 

counted: the percentage of erythrocytes recognized in average was therefore 83.08% (Tab. 3.1). This 

kind of analysis was necessary to establish if this first phase of software development had reached 

the optimization and so if it was possible to continue with the subsequent steps of development.  

 

 

Figure 3.13 – Detection of erythrocyte perimeter. When one or more erythrocytes are displayed in the zoom box and the operator 
requests their processing, a red line appears following the erythrocyte outline (all the textboxes related to filtering, ellipse fitting 
and erythrocyte perimeter must be selected). 
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3.7. Computation of erythrocyte morphological parameters  

The next step in the software development was to devise formulas and algorithms for the accurate 

calculation of some cellular morphological parameters. These parameters were chosen as they were 

considered useful for the discrimination and classification of the abnormal erythrocyte morphotypes 

most frequently observed in the previously analyzed and classified ASD blood samples. At this 

Figure 3.14 - Software window in a newer development version. It can be seen how the size of the zoom box has increased. New textboxes 
have also been added: Std Dev (standard deviation of the pixel intensity value in the zoom box), Inp MinVal (minimum input value, referred 
to the whole image), Inp SatVal (value of input saturation, referred to the whole image), Max lag (distance between the first minimum and 
the first maximum and between the second maximum and the second minimum of the plot). These last two parameters can be modified by 
the operator. Below these functions, checkboxes relating to the two filters, ellipse fitting and erythrocyte perimeter were added. Other 
textboxes have also been added below the plots: they are related to the first cellular morphological parameters and for the cell number. The 
column, row and gray level textboxes have been moved lower, below the whole image. 
 

Table 3.1 - Results of single erythrocytes processing in SEM micrographs for 
the evaluation of their correct detection by the software. The table shows the 
data for each sample in terms of the number of images analyzed, the number of 
erythrocytes correctly detected by the software, the number of erythrocytes counted 
manually. The last row shows the sums of these data for the total samples analyzed. 

sample number images 
analyzed

detected 
erythrocytes

counted 
erythrocytes

1 21 688 1054
2 23 819 876
3 68 968 1070
3 112 2475 3000
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purpose, software interface has been modified with the addition of textboxes relating to the RBC’s 

morphological parameters. When an erythrocyte is displayed and detected in the zoom window, the 

operator can click with the left mouse button on erythrocyte itself to view values relating to its 

morphological parameters within the corresponding textboxes (Fig. 3.15). This software development 

step is also extremely important, as the ability of the extracted object’s features (represented by 

cellular morphological parameters) to uniquely represent the object, starting from the available 

information, influences the effectiveness of individual erythrocyte subclasses recognition (Tomari et 

al., 2014). 

 

Figure 3.15 - Morphological parameters. As software development progressed, textboxes related to cellular morphological 
parameters have been added in its interface (Area, Perimeter, Perim./Area, Eccentricity, #crosses, Bound. RMS, Blobs, Av. 
Grad., #Pix high Grad., #Blobs, Best cost, Constraint, Blob). After clicking anywhere inside the RBC in the zoom window, 
values relating to morphological parameters are displayed. The difference between before (figure on the left) and after (figure 
on the right) having clicked can be seen by observing contents of textboxes related to cellular morphological parameters. 
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3.7.1. Perimeter 

During the computation of erythrocyte perimeter, the software completes the entire circle of the cell 

contour with an angular step that allows the movement of one pixel at a time. Sometimes, however, 

cell perimeters go back angularly, with respect to the cell center: always moving in the same direction 

along the perimeter (for example: counterclockwise, in the direction in which the angle increases) 

sometimes the angle decreases for short distances, in correspondence with cellular contour’s spines 

or irregularities. In the progression made when sampling the superimposed ellipse’s perimeter, 

however, the angle always increases. This discrepancy causes gaps on the cellular perimeter (by going 

to debug one can realize their presence). The presence of such gaps gives rise to a series of cascading 

problems such as considering an unsatisfactory number of contour pixels (either a few pixels or too 

many pixels on the actual contour). A calculation function was developed; it identifies these gaps 

within the reconstructed contour and attempts to fill them by linear interpolation. This method 

consists in drawing a line that joins the two pixels at the ends of the gap. The gap is usually 2-3 pixels 

large, so the result obtained by linear interpolation in most cases represents an acceptable 

approximation of perimeter shape. When the gap is larger, the line no longer represents a good 

approximation of the cell perimeter, and the program rejects the reconstruction of the gap with this 

method. In these cases, the program reports an error in the perimeter reconstruction.  

Another aspect that needs to be emphasized is that the perimeter is reconstructed using the 8-

connected mode. This means that, for each pixel, the immediately adjacent pixels are connected 

horizontally (right, left), vertically (below, above) and diagonally (Szeliski, 2020). Using this mode, 

sometimes two pixels connected diagonally are found on the perimeter. Then to be more precise in 

the calculation algorithm it is necessary to consider that the distance between the two pixels is no 

longer 1 but √2.	

In the perimeter calculation algorithm, there is also a function that can be asked if any pixel is inside 

or outside the cell perimeter. Thanks to this function it is possible to establish if a pixel is mistakenly 

considered as internal to the cell when it is actually external (or vice versa). This entails several 

advantages, including that of being able to determine the cellular area by counting the pixels inside 

the perimeter. 

 

3.7.2. Area 

The area represents the set of pixels contained within the erythrocyte perimeter. To be more precise 

in the calculation of this parameter, an approximate correction was made to the area calculated as a 

set of pixels contained within the erythrocyte perimeter, by subtracting half of the perimeter. This 
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was done because each of perimeter’s pixel is ideally half inside and half outside the erythrocyte area. 

In fact, in theory the perimeter is a thin line with zero thickness that passes through the center of 

perimeter pixels, while the erythrocyte perimeter has actually its own extension. For a greater 

accuracy, it has been considered that along the erythrocyte perimeter there may be angular points at 

which cusps are formed. In that case, not half, but 3/4 of pixels are assigned outside the perimeter. 

For the purpose of erythrocytes morphological classification, the area represents an important 

parameter for the discrimination of microcytes and macrocytes with respect to discocytes (Fig. 3.16). 

 

3.7.3. Eccentricity 

Eccentricity indicates the elongation degree of an erythrocyte. To measure the eccentricity, starting 

from the perimeter, the software searches for the longest axis (major axis) of the erythrocyte, then 

considers the orthogonal direction in space, then looks for the distance to be framed (minor axis). 

Thus, a major axis and a minor axis are established: the ratio between the two axes is the measure of 

eccentricity. Eccentricity represents an essential parameter for the discrimination of elliptocytes (Fig. 

3.17). 

 

Fig. 3.16 - Morphological parameters: area and perimeter. It can be seen how the area and perimeter values in the case of a 
discocyte (central figure) are intermediate between those of a microcyte (figure on the left) and a macrocyte (figure on the right). 
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3.7.4. Perimeter/area ratio 

Another parameter considered as important for classification and discrimination between 

morphotypic and morphologically abnormal erythrocytes is the perimeter/area ratio. For this 

measurement, the following calculation was used: 

-./01.2./(	/	4/.4
56	 .	

The perimeter/area ratio is intended to represent an important feature for classifying abnormal 

erythrocytes such as those with a jagged outline (echinocytes). In detail, we are interested in 

understanding when the perimeter increases consistently for the same area. In the case of echinocytes, 

which have irregular contours and surface spiny protusions, the perimeter/area ratio increases 

compared to a discocyte of comparable size, due to the greater length of the perimeter. Furthermore, 

the perimeter/area ratio could help in the identification of elliptocytes. In fact, with the same 

perimeter, the area of an elliptocyte can decrease and therefore the perimeter/area ratio can increase 

(Fig. 3.17).  

 

 

3.7.5. Number of crosses and Boundary RMS 

Number of crosses (#crosses) and boundary RMS (Root Mean Square; Bound. RMS) are two other 

measures that are effective to analyze the irregularity of erythrocyte perimeter and therefore useful to 

identify abnormal cells. The pair of the two values reveals most of the red cell abnormalities 

frequently observed in some pathological blood samples under consideration. To understand the 

functioning of these two indicators, it must be pointed out that the software performs an upstream 

operation: it carries out a "smoothed" version of erythrocyte perimeter. Following the processing of 

erythrocyte images, the real perimeter is displayed in red, while the smoothed perimeter in blue. 

Boundary RMS represents the mean square deviation between the two curves (the two perimeters) in 

the space. The value of this indicator tends to 0 in healthy cells. #crosses instead represents the 

number of times the real perimeter intertwines on the smoothed perimeter. To validate the 

intersections, the part circumscribed by the intersection is required to have a minimum area (and if 

not, the result is zero intersections). Using the software, it was noted that the number of crosses is 

typically greater than 1 in abnormal cells (Fig. 3.18). The Boundary RMS value rises in each case 

when the cell begins to develop anomalies in its boundary.  
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3.7.6. Blobs 

It was decided to indicate with the term "blobs" the irregularities which resemble protuberances 

found sometimes in abnormal RBC (such as acanthocytes and target cells) of pathological blood 

samples taken into consideration. To detect blobs in a cell, the software considers a fairly extensive 

list of parameters: blobs value, average gradient in the cellular area, number of pixels with high 

gradient within the cellular area, numbers of blobs, cost and constraint. To compute blobs val. (blobs 

value), Av. Grad (average gradient in the cellular area), and #Pix high Grad (number of pixels with 

high gradient within the cellular area), the software considers the minimum value, the average value 

Fig. 3.17 - Morphological parameters: perimeter/area ratio and eccentricity. To discriminate an elliptocyte (example in the 
figure on the right) from a discocyte (example in the figure on the left) it is important to consider, between the morphological 
parameters, perimeter/area ratio and eccentricity. Generally, in case of elliptocytes the value of perimeter/area ratio is greater, while 
that of eccentricity is lower than in case of discocytes. 
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A B 

C 

Figure 3.18 - Morphological parameters for echinocytes recognition. To discriminate an echinocyte from a discocyte, it is 
important to consider, between the morphological parameters, Perim./Area ratio, #crosses and Boundary RMS. In this image it 
can be seen how the values of these three parameters progressively increase passing from a discocyte (A) to an echinocyte I (B) 
up to an echinocyte III (C). 

A B 
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and the maximum value of gray level on the cell boundary and also the minimum, average and 

maximum value of gray level within the cell.  

Blobs value equal to 0 should occur for cells completely free from blobs, while a blobs value equal 

to 1 should occur for cells completely full of blobs. To obtain a blobs value equal to 0, one of the 

following conditions must be false: (1) the maximum value within the cell is greater than the mean 

value of the boundary, (2) the maximum value within the cell is greater than or equal to 85% of the 

maximum value calculated on the contour. If both conditions are true, and therefore the cell contains 

some blobs, the software calculates the blobs value as follows: 

14#0171	8497.	:;	0<2./<49	48./4=.>	,	48./4=.	8497.	:;	2?.	-./01.2./
14#0171	8497.	:;	2?.	-./01.2./,	48./4=.	8497.	:;	2?.	-./01.2./

5. 

Therefore, the perimeter’s grayscale value is used as a reference point to establish blobs value. It was 

so decided, as the value of the perimeter’s gray level varies from cell to cell. It was considered the 

maximum value of the internal averages and not the absolute maximum value, because otherwise the 

software would be too sensitive to variability: there may be very intense pixels inside the cell due to 

acquisition errors or image noise, which generate extremes. 

Instead, to establish the number of high gradient pixels within the cellular area, the gradient 

threshold is first constructed. This was done starting from the following calculation: 

1,15	 ∗ 'ℎ)	*+,-*.*	/0+1	2)3)2	45	'ℎ)	6)0-*)')0 −*-5-*.*	48	/0+1	2)3)2	+3)0+/)9	-59-:)	'ℎ)	;)22		. 

This gives an idea of the maximum gradient in the cellular area, that is, the maximum "jump" in terms 

of pixel intensity that occurs from the inside of the cell towards its boundary. 15% of this value is 

then considered as a threshold to establish whether the gradient measured inside the cell is high or 

not. It is believed that the set of parameters for detecting blobs inside the cell and that one for detecting 

contour irregularities may be important for recognition of acanthocytes (Fig. 3.19).  

However, testing the software on SEM images it was found that the blobs recognition procedure 

developed as just described did not generate completely satisfactory results. In fact, sometimes the 

software did not recognize protuberances inside the cell, generating false negatives, other times it 

exchanged normal shadows for these structures, generating false positives. Therefore, it was thought, 

to improve blobs recognition, to add a new procedure which consists in fitting an ellipse on the blob’s 

contours. This ellipse has got some parameters of freedom: position of the center (which can be 

moved on the cell), two semi-axes (which can increase or decrease) and the rotation angle of the 

 
5   To calculate the brightness internal averages the software scans the entire cell’s inner part (reaching a distance from the cell center 
equal to 90% of its radius); for each point, a small window (3x3 or 4x4 pixels in size) around the point is considered and its average 
brightness is constructed. Therefore, as many brightness averages are obtained as the number of pixels within the cell considered. 
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ellipse major axis. Some new parameters relating to blobs recognition procedure were therefore taken 

into consideration: number of blobs (#blobs), cost function (Best cost), constraint function 

(Constraint). Cost function indicates how much ellipse function resembles the blob’s outline in the 

image, giving a difference between the two objects. When the deviation is minimal, it means that the 

ellipse has been optimized and has undergone the best adaptation to the blob’s contour. Constraint 

function, on the other hand, requires that the blob’s (ellipse’s) central point be a minimum of 

brightness in the image, that is, the value of the surrounding pixels is higher than that of the central 

pixel. Again, a lower value indicates a better agreement. At this stage of software development, there 

were six parameters to consider for blobs detection, making it very difficult to manually evaluate 

Fig. 3.19 - Morphological parameters for acanthocytes recognition. From this figure it can be seen how, in the case of an 
acanthocyte, the values of the following morphological parameters are high: Perim./Area, #crosses, Bound. RMS, Blobs val. 
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processing results. Therefore, it was devised a new parameter to try to perform an overall blobs 

classification; a new textbox (Blob) was added: "Yes" or "No" is displayed, depending on the presence 

and absence of blobs respectively (Fig. 3.20). 

 

3.7.7. Morphological parameters: discussion 

As for our software, in the work by Bacus et al. (1976) the area was considered as one of the features 

useful for the separation of different erythrocyte categories. In this case, the area was described as the 

number of pixels enclosed by cell boundary. For the discrimination of macrocytes, Chandrasiri e 

Figure 3.20 - Morphological parameters for blob detection. In the figure on the left (discocyte) one can see: (1) the values of Blobs 
val., Av. Grad., #Pix high Grad., #Blobs parameters tend to zero, (2) the values of Best cost and Constraint parameters are maximum: 
this indicates the absence of blobs, as reported by the last of the textboxes for morphological parameters. In the figure on the right 
(target cell) one can see: (1) the values of Blobs val., Av. Grad., #Pix high Grad. parameters are high, (2) the #Blobs parameter 
indicates the presence of 1 blob, (3) the values of Best cost and Constraint parameters are low: this indicates overall the presence of 
blobs, as reported by the last of the textboxes for morphological parameters. 
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Samarasinghe (2014) instead used the Diameter Area Factor, corresponding to the ratio between the 

cell diameter and the area and also a factor calculated as the ratio between the area of central pallor 

and the area. Khot e Prasad (2012) used area values compared to the threshold values to discriminate 

macrocytes and microcytes, while for the identification of sickle and drop-shaped cells they extracted 

the minor axis, the major axis and the area. One of the erythrocyte indices used by Albertini et al. 

(2003) to discriminate 7 morphological classes from RBC images acquired under a light microscope 

processed with image processing software was the dimensional index. It was based on the area (in 

pixels) of the selection made using the software’s rectangular tool that encloses an erythrocyte. In the 

work by Bhowmick et al. (2012), area (number of pixel present in the segmented SEM image of 

erythrocytes) and perimeter (number of boundary pixel present in the binary erythrocytes image) were 

among the geometric extracted features of erythrocytes in SEM images. They were calculated as 

follow: 

• 9:59 = 	∑ ∑ 2(7, <)1) 	

where f(x,y) represent the pixel value corresponding to the (x,y) position of the binary erythrocytes 

image f(x,y)=1; if f(x,y)∈object else f(x,y)=0; otherwise; 

• -5:=45>5::	 ∑ ∑ 2(7, <)1) 	7, <	@	ABCDE9:<	:5F=BD . 

Regarding our perimeter/area ratio calculated just through this formula, notably it would not 

provide a suitable result for our purpose, as this ratio just changes according to the size of the cell (in 

particular, as the size of the erythrocyte increases, the ratio decreases). For example, in the case of a 

circle, the ratio between perimeter and area is 2πr/πr2 and therefore 2/r. To solve this problem, the 

perimeter was squared in the calculation, carrying out the ratio between the perimeter squared and 

the area. In this way, for example in the case of a perfectly circular cell, the ratio is 4π2r2	/	πr2 and 

therefore 4π. This number is fixed and does not depend on the circle size. We were also interested in 

the fact that the measurement of perimeter/area ratio with its corrections results in a number around 

the unit value, in order to easily verify the presence of anomalies. For this purpose, the perimeter 

squared/area ratio was divided in the calculation by the value that this ratio assumes for a perfect 

circle (4π). It must be considered that even for a perfectly round cell, the value of the perimeter/area 

ratio with its corrections will never be equal to 1, but always a little greater than 1. This is because 

the formulas described above for calculating the ratio between perimeter/area (including 

normalization by the factor 4π) are exact in a continuous space, but not in a discrete space such as 

that of pixels. In this type of space, the coordinates (area, radius, perimeter) do not vary continuously 

but in jerks. In an ideal continuous space, on the contrary, the image with which we relate is made up 
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of infinitely small pixels and for this reason the perimeter/area ratio with its corrections would be 

equal to 1 for an exactly round cell. In the study by Bacus et al. (1976) a parameter similar to our 

perimeter/area ratio was taken into consideration for the separation of different erythrocyte 

categories: circularity. It is described as the number of perimeter pixels squared divided by the area. 

This results in a constant of 3π for perfect circles and a larger number for other shapes.  

In several works, one of the features used for erythrocytes identification is the measurement of the 

roundness of an object. This parameter was represented by the following formula 

4L ∗ 9:59/	-5:=45>5:,. 

It was used by: Marzuki et al. (2017) to identify abnormal cells in cases of thalassemia (roundness), 

Bhowmick et al. (2012) for thalassemia screening (compactness), Sharma et al. (2016) to detect sickle 

cell anaemia and thalasssaemia (metric value), Bala and Doegar (2015) for automatic detection of 

sickle cell (form factor). In the work by Tomari et al. (2014) for the development of a computer-

assisted system to automate the process of detecting and identifying erythrocytes from blood smear 

images, a similar feature - compactness - was used. Compactness is based on information derived 

from perimeter and area and it provides information on how the object is formed in terms of the 

smoothness of the circular shape. When the compactness value becomes high, it means that the shape 

of the object is more complex.  

Regarding our morphological parameter of eccentricity, before arriving at the decision to measure 

it in the way previously described, other attempts were made. Initially it was thought to measure the 

eccentricity starting from the already fitted ellipse. It was then found that this method was not 

adequate, as the first fitted ellipse did not give guarantees to cover the cellular area correctly. It was 

therefore decided to operate in such a way as to superimpose an ellipse on the real cellular perimeter 

and starting from it to measure the eccentricity. Even this method was not always adequate in 

accurately measuring eccentricity, since sometimes RBC are not symmetrical and in those cases the 

ellipse was not able to represent the cells correctly. Also in the work of Bacus et al. (1976), 

eccentricity was considered as one of the features useful for the separation of different erythrocyte 

categories. Again, eccentricity is described as a measure of the ratio of width to length of oblong 

cells. In the work by Chandrasiri and Samarasinghe (2014), a Shape Area Factor was defined to 

determine the oval or circular erythrocyte shape state. This factor was given by the ratio between the 

greater and the shorter length of the rectangle that encloses the erythrocyte. Unfortunately, this way 

to estimate the eccentricity of a closed curve (loop) only works when the ellipse major axis is parallel 

to one of the two rectangle sides, i.e. horizontal or vertical. Marzuki et al. (2017) used erythrocyte 
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eccentricity (E) to identify abnormal cells in cases of thalassemia. This parameter was given by the 

equation: 

N = O(49PB:	97=Q,	 −4=DB:	97=Q,)	/	49PB:	97=Q. 

Eccentricity value was between 0 and 1: if the value is equal to 0 it means that the shape is a circle, 

while if the value is equal to 1, the shape resembles a linear segment. Eccentricity in the work of 

Bhowmick et al. (2012) is calculated in the same way to the one just described. A similar parameter, 

called aspect ratio, has been used by Sharma et al. (2016) for the detection of sickle cell anemia and 

thalassemia. It was defined as the ratio between major axis and minor axis. The aspect ratio of a circle 

is 1 and as the circularity of the shape decreases the aspect ratio increases. It is worth to note that the 

eccentricity definition adopted by our software was quite different, as shown in the following 

equation. 

N =
4=DB:	97=Q
49PB:	97=Q 

With this definition  6 = 1	corresponds to a perfect circle, and the parameter again belongs to the 

[0;1] interval. 

In the work by Bacus et al. (1976), a feature similar to our morphological parameters of boundary 

RMS and #crosses parameters was considered for the separation of different erythrocyte categories: 

spicularity (number of spicules on the boundary).  

Regarding the blob fitting procedure, optimization algorithms were used to search for the minimum 

of a defined objective function. In our case, the minimum of the function is obtained when the ellipse 

is centered on the brightest area of the cell. Between an absolute optimization algorithm (which 

obtains the absolute minimum of the function) and a relative optimization algorithm (which searches 

for a relative minimum), the latter type was chosen. An absolute optimization algorithm obtains the 

absolute minimum of the function, while in the case of a relative optimization algorithm one indicates 

the approximate values around which the algorithm must look for the minimum - this will find a 

relative minimum and only occasionally an absolute minimum. A relative rather than absolute 

optimization algorithm was preferred since the latter are very slow and therefore difficult to use. In 

the work by Bacus et al. (1976), in a similar way with respect to our work, the authors used, for the 

separation of the different erythrocyte categories, the “target” feature as a measure of the distribution 

of gray levels in the center of the cell. 
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3.8. Semi-automatic classification of erythrocyte morphotypes 

3.8.1. Extension of processing to the whole image 

After establishing cellular morphological parameters crucial for discriminating between healthy and 

abnormal erythrocytes, the next step in software development was to extend the process of erythrocyte 

detection from single-cell readings (images in the zoom box) to the whole image. This represented a 

first step towards automation: it was no longer necessary to click on each cell manually to process it. 

The goal of extending calculation to the whole image was to allow processing, counting, calculation 

of morphological parameters and classification of all the cells in the image.  

To extend the calculation for erythrocytes detection to the whole image, it was necessary to apply 

to the whole image the contrast and brightness optimization process, initially carried out only on the 

image in the zoom box. After the software update, the procedure just described is performed during 

image loading: when the image is displayed in the software window, the contrast and brightness 

optimization has already been carried out. At this point, framing a small image in the zoom box, it no 

longer needs to be modified for brightness and contrast parameters. To perform the brightness and 

contrast optimization calculation on the whole image, the program builds two new images: one about 

local average values (of the gray level) on the whole image and the other about local standard 

deviation (of the gray level). To do this, the software computes for any image pixel the local average 

and the standard deviation, estimating them from a (moving) window centered on the considered 

image point. The software then repeats this calculation for all the pixels of the image, obtaining the 

mean and the standard deviation images. These mean and standard deviation images are then used to 

adjust brightness and contrast across the entire image. Since local information is also considered in 

this calculation, the software capabilities in erythrocytes detection stayed comparable to the initial 

ones. 

At this point in the software development, a new button was added at the software window’s bottom 

right: Full Img Processing (Full Image Processing). By clicking on this button, it is possible to process 

the entire image: after a calculation time of 2-3 minutes, individual detected erythrocytes’ boundaries 

are highlighted on the main image. A new textbox was also added to program window’s right column: 

Erythrocyte Num (Erythrocyte Number). It allows to immediately view what is the number of 

erythrocytes detected by the software in the whole image. By clicking anywhere on the main image, 

the image region that has got as its center the point on which the click was made, appears in the zoom 

box at its natural resolution. Detected erythrocytes in this region of the image appear with their 

boundaries already highlighted (Fig. 3.21). As previously happened, by clicking with the left mouse 
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button on a cell in the zoom box, values corresponding to the cellular morphological parameters are 

displayed in the appropriate textboxes at the bottom right of the software window. 

 

3.8.2. Extension of processing to the whole image: discussion 

The extension of the erythrocyte detection to the whole image in a single step requested to define 

the contrast and brightness optimization algorithm for the whole image, which was instead initially 

carried out only on the image in the zoom box. It could not be possible to divide the whole image into 

many small images and apply contrast and brightness optimization to each. In fact, this method would 

have posed the problem of non-intact cells in the small images (cells are not, in this case, neither all 

on a small image, nor on the other). So, applying this method would have meant deleting about half 

of the cells. There was therefore a need to apply brightness and contrast optimization directly to the 

entire image. If this operation is not carried out well, "jumps" may be produced along the image. That 

is, if for example a small image located at the top is optimized differently from one located at the 

bottom, the program detects "jumps" when these images are then seen close to each other. Initial 

attempts to adjust brightness and contrast applied to the whole image caused worsening in cell 

recognition, because the individual small images were low in contrast and therefore flat. With the 

Figure 3.21 - Extension of the calculation to the whole image. In the software window, on the right, one can see two new buttons: 
Full Img Processing and Erythrocyte Num. After a single click on the Full Img Processing button: (1) erythrocytes detected 
automatically by the software are highlighted in the main image, (2) the number of erythrocytes automatically detected is displayed 
in the appropriate textbox. 
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final solution found, the average value and standard deviation images are used to adjust the brightness 

and contrast of the entire image, also taking local information with it. So, with this solution, detection 

capabilities of RBC should have remained comparable to what they were at the beginning. To verify 

this, an evaluation of erythrocyte automatic detection process was performed. 

 

3.8.3. Evaluation of erythrocyte automatic detection process 

 Thanks to extension of the processing to the whole image, it was possible to test the software ability 

to detect erythrocytes in SEM images. For this purpose, erythrocytes were manually divided into four 

categories: automatically detected, correctly detected, incorrectly detected (false positives), not 

detected (false negatives; Suppl. Tab. 10). Incorrectly detected erythrocytes almost always 

correspond to two or more superimposed cells (stacks). Since the cells are located on a dark 

background, the change in brightness between one cell and the background is much higher than the 

change in brightness between the two cells. As a result, the contours separating the cell from its 

background are much clearer than those separating the two cells from each other. This sometimes 

results in unsatisfactory contours and, consequently, in incorrect cell recognition (Figure 3.22). Not 

detected erythrocytes presumably result from unsuccessful processes of filtering, ellipse fitting, or 

perimeter recognition. Of all the outlines detected, 96.45% were recognized correctly (with the 

remaining 3.55% of false positives). The efficiency rate of the software in identifying all erythrocytes 

in SEM images (percentage of erythrocyte correctly detected VS erythrocyte manually counted) was 

found to be 68.11%. Percentage of false negatives is 

instead 27.82% (Tab. 3.2). Therefore, it can be inferred 

a whole method sensitivity of 71% (95% CI: 70.21-

71.78%), with a positive predictive value of 96.45% 

(95% CI: 70.21-71.78%). This erythrocyte recognition 

step can tolerate a relatively large number of false 

negatives. In fact, this type of error, if distributed in a 

completely random fashion among the different 

morphometric classes of erythrocytes, will simply lead 

to a reduction in the total number of RBC per image 

available for subsequent processing without 

influencing in any way the final estimated distribution. 

Table 3.2 - Results of evaluation of erythrocyte 
automatic detection process on 380 selected images in 
10 samples. Column 2 shows the total number of blood 
cells detected in each category across all images. Column 
3 is the percentage of each category compared to the total 
number of RBC automatically detected for RBC correctly 
detected and false positives, and to the total number of 
RBC counted manually, for false negatives. 
 

Category
Total for 380 
images in 10 

samples
Percentage

correctly 
detected 9216 96.45%

incorrectly 
detected (false 

positives)
339 3.55%

not detected 
(false negatives) 3764 27.82%
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3.8.4. Software training step: classification of erythrocytes automatically detected 

For the development of the semi-automatic classifier, a training step was firstly necessary. During 

this phase, erythrocytes automatically detected by the software in SEM micrographs were assigned 

manually to the morphological classes they belong to. Thanks to a further step forward in software 

development, it is possible to see a fraction of the image in the zoom box when the mouse cursor is 

moved over the whole image. By clicking with the right mouse button on the large image, the zoom 

image at the top right is fixed and stops scrolling. This allows the user to: (1) click with the left button 

of the mouse on a RBC in the zoom box to see the values of its morphological parameters displayed 

in the textboxes at the bottom right, (2) click with the right button of the mouse on a red blood cell in 

the zoom box to set its state. The possible states are the morphological classes to which red blood 

cells belong (discocyte, echinocyte I, echinocyte II, echinocyte III, acanthocyte, spherocyte, 

stomatocyte, leptocyte, knizocyte, target cell, elliptocyte, microcyte, macrocyte, other anomaly), the 

"undefined" state (initially set for all RBC automatically detected) and the “deleted” status (to be 

selected when the software, making a mistake, identifies a stack of cells or another object as an 

erythrocyte). It is possible to assign to each erythrocyte its status by clicking with the left mouse on 

the appropriate wording in the drop-down menu. Following this operation of supervised erythrocyte 

classification, the erythrocyte class and the corresponding index can be displayed in the new textboxes 

of the software window (Fig. 3.23). To see again the image at the top right scrolling by moving the 

mouse over the main image, simply click with the left mouse button on the latter. 

Figure 3.22. False positives and correctly recognized erythrocytes. The figure on the left shows an example of 
a false positive in erythrocytes detection by the software (the software considers two partially overlapping 
erythrocytes as a single element), while the figure on the right shows how sometimes the software is able to correctly 
recognize an erythrocyte even if it is partially overlapping to other one. 



 
  

95 

 

3.8.5. Software training step: saving of processing data 

At the end of erythrocyte supervised classification process for each image, the operator must save 

the data obtained as a result of processing and classification, thanks to the new button at the software 

interface window’s bottom right Save Processing Data (Fig. 3.23). By clicking on this button, a dialog 

box appears. In this box, the operator can choose the format for saving the data (a CSV archive, which 

will be opened with the Excel software, or a text archive), enter the file name and choose the folder 

in which to save it. In the file saved (both in the case of the text format and of the CSV format), each 

line (apart from that of the header) corresponds to an erythrocyte recognized by the software. For 

each erythrocyte, the corresponding progressive number, the description of its class, the 

corresponding index and a series of numerical data are displayed. The first of these numerical data 

represent the x and y coordinates of RBC’s center within the image. This information allows to easily 

find a specific RBC within the micrograph in the software window. Indeed, by moving the mouse 

cursor on the main image it is possible to observe the row and column values in the corresponding 

textboxes. The other processing data are related to the erythrocytes morphological parameters 

previously described together with the values related to the two semiaxes, the angle (that describes 

Figure 3.23 - Classification of erythrocytes automatically detected. In this image it can be seen the drop-down menu: thanks to 
it, it is possible to manually set the morphological class to which the automatically detected erythrocytes belong or to delete an 
element from the analysis (if the software has made a detection error). After this process, the class index and the class description 
are displayed in the appropriate textboxes at the bottom right of software interface. The new button Save processing data allows to 
save the supervised classification data of the entire image. 
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how much the major semiaxis is rotated with respect to the x-axis of the image), maximum diameter 

(which represents the segment of maximum length passing through the center of the ellipse that joins 

two points belonging to the ellipse’s contour) and minimum, maximum, and average pixel intensity 

level calculated on the cell perimeter and inside the cell (these latter six new data were added with 

the aim of helping recognition of specific classes - for example, leptocytes - or to differentiate 

spherocytes and microcytes). In this way, the association is made between a certain set of numerical 

values, corresponding to the identified cellular morphological parameters, and a specific erythrocyte 

in the SEM image, named according to its corresponding morphological class (Fig. 3.24). 

 

3.8.6. Construction of scatterplots graphs 

The next step in the work was the construction of scatterplot graphs starting from most of the 

processing data saved for each image analyzed by the software and classified by the operator. These 

graphs allow to see how in a two-dimensional diagram the different morphometric classes arranged 

their points, each corresponding to an erythrocyte. For example, in the most representative of the 

graphs constructed (Fig. 3.25), it can be immediately noted that microcytes, macrocytes, discocytes 

and elliptocytes separate quite well, even if with a small overlapping area between discocytes and 

microcytes. Scatterplot graphs made it possible to get an initial idea of the separation of erythrocyte 

populations and to understand the precision limits on which it was necessary to work on. 
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Figure 3.24: File saved of processing data. In the file saved of processing data, each row (apart from that of the header) corresponds 
to an erythrocyte recognized by the software. Numerical data corresponding to the morphological parameters previously described 
are displayed for each erythrocyte. 
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3.8.7. Erythrocyte morphotypes classifier 

After the construction of the erythrocyte morphotypes classifier, a new button (Classification) was 

added to the software interface at the bottom right. This button was linked to erythrocytes detected in 

the image loaded into the software. It allows to perform automatic classification of erythrocytes after 

the Processing or Full Img Processing function have been performed. After executing the 

classification command, it is possible to click on an erythrocyte detected in the zoom image to view 

its predicted classification: the classification textbox is automatically filled by replacing the word 

“undefined” with the word corresponding to the morphological class to which the erythrocyte 

belongs. A new summary table was also added, in which the probabilities for the processed cell of 

belonging to each morphological erythrocyte class can be read (Fig. 3.26).  

In this new version of the software, a new checkbox was also added (Ignore Radiometric 

Parameters), just below the probability summary table. This checkbox instructs the classification 

algorithm to ignore those parameters which may depend on the radiometry of the image. It is 

important because if contrast and brightness were changed between the acquisition of the training 

dataset and the processed image, no valid statistical information is available for radiometric 

Fig. 3.25 - Distribution of discocytes, elliptocytes, macrocytes and microcytes according to eccentricity and maximum 
diameter. In this scatterplot graph it can be noted that microcytes, macrocytes, discocytes and elliptocytes separate quite well, 
even if with a small overlapping area between discocytes and microcytes.  
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parameters. Typically, classification can be tried first including all parameters and then, if recognition  

problems are noticed, radiometric parameters can be excluded. After the checkbox has been selected 

or deselected, the classification button must be clicked again. 

Differently from image intensity data, space-like or geometrical parameters (e.g.: cell area, 

perimeter, and eccentricity) can be easily corrected when image spatial resolution changes between 

the training and classification phases. The software can correctly manage space scale variations, as 

the user is requested to insert into a dedicated textbox – labeled Resolution (um) – the spatial 

resolution of the image currently processed. This is the explicit indication of the image resolution, 

that is, the spatial dimension of a pixel in micrometers. The default value is 0.08586. Inserting a new 

value automatically updates the adjacent textbox, called Cell size (pix). The update takes 6 

micrometers as the default average size of an erythrocyte. The smaller a pixel is (as an absolute scale), 

the larger the area of the erythrocytes will be, thus their perimeter, maximum diameter, etc. The 

Figure 3.26 - Automatic classification. The new Classification button can be noted at the bottom right of the software 
graphical interface. It can be also noted that, before performing the automatic classification, the state assigned to the erythrocyte 
just processed is undefined (figure on the left), while after clicking on Classification button, class index and class description 
are automatically assigned to the erythrocyte (figure on the right). To the right of the transects it can be also seen a new 
summary table in which the probabilities for the erythrocyte of belonging to each morphological class can be read. 
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algorithm uses this resolution when correcting the value of space-like parameters to match the values 

of these parameters with respect to the spatial resolution of the statistical parameterization data of the 

erythrocyte classes. Figure 3.27 shows how the graphical interface of the new software version looks 

like. 

 

3.8.8. Erythrocyte morphotypes classifier: discussion 

The possibility of using Bayes classification alone for semi-automatic classification of erythrocytes 

was excluded. Bayes classification minimizes the total probabilities of error (sum of false positives 

and false negatives). In this respect, it is the best classification possible, statically giving the best 

performance. However, whenever one of the two possible classes is very rare, Bayes classification 

scheme always assigns the element to the least rare class. The Neyman-Pearson classification 

criterion, on the other hand, tends to minimize not the probability of false positives and false 

negatives, but only the probability of false negatives, subject to the constraint that the number of false 

positives does not grow excessively. The problem of the Neyman-Pearson classification criterion is 

establishing the thresholds of a priori probabilities (likelihood ratio), a problem that cannot be solved 

analytically because it is mathematically too complex. Bayesian classification was instead chosen by 

Figure 3.27 - Graphical interface of the updated software version with the possibility of automatic erythrocyte classification. 
Apart from the new elements already described (Classification button and probabilities table), in this figure it can be noted: a new 
textbox (Resolution (um)) and a new checkbox (Ignore radiometric params). The Max Lag (pix) textbox has been moved close to the 
Erythrocyte Perimeter checkbox. 
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Bhowmick et al. (2013) for automated classification of anemia, along with its sub-class, using SEM 

images of unstained blood cells. Several authors (Kim et al., 2001; Tomari et al., 2014; Wąsowicz et 

al., 2017)  used neural networks to classify the blood cells in blood smear images. Instead, Sharma et 

al. (2016) used  a K-Nearest Neighbor classifier to detect sickle cell anaemia and thalassaemia.  

Actually, it is incorrect to state that the variables relating to all morphological parameters except 5 

(area, perimeter, maximum diameter, eccentricity and boundary RMS) are statistically independent. 

However, it was still decided to construct a multivariate probability density only for a maximum of 5 

parameters, because if, for example, a multivariate probability density with dimension 16 (how many 

morphological parameters are in all) were constructed, it would be necessary to work with square 

matrices of dimensions 16, making the work complicated and time-consuming. 

In the case of the IdentiCyte program, a library of examples of cell identifications has been built 

(examples of cells from each class are placed in the folder corresponding to that category). 

Subsequently, through the compilation process, all the images in the library folders are read and 

transformed and the results are saved in a file, as is the case of our software. This phase can be 

considered analogous to the training step of our software. Finally, RBC are identified using the 

eigenfaces method. It uses a principal component analysis to extract features from the library of pre-

identified cells. These features can be used to compare new images to those in the library and 

determine which is most similar. The program IdentiCyte shows the morphological classification of 

RBC a little differently than in our software: images that have already been identified can be viewed 

with labels over cells to show the identifications (Garnier et al., 2019). 

 

3.8.9. Erythrocytes semi-automatic classification 

The latest version of the software contains a new button (Open Test File) and a new textbox used to 

open the test files consisting of morphological parameter’s values of erythrocytes belonging to a 

specific morphological class (Fig. 3.28,3.29). After having opened the test file with the appropriate 

button, it is necessary to click on the Classification button to obtain the classification of the 

erythrocytes reported in the test file. At this point the program generates the Classification.txt file in 

its folder; in this file the classification results are reported (Fig. 3.30; this file is also generated when 

the operator classifies an image). This operation was performed for the erythrocyte test files belonging 

to the morphological classes of discocytes, echinocytes I, spherocytes, stomatocytes, knizocytes, 

target cells, elliptocytes, microcytes and macrocytes to evaluate the efficiency of the automatic 

classifier. The remaining morphological classes were not taken into consideration as for these classes 

there were not enough elements (erythrocytes) in the processing data generated during the training 
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Figure 3.29 - Graphical interface of the software as it appears after clicking on the "Open Test File" button. Just above the Open 
Image button the presence of the new Open Test File button and the related textbox can be seen. The dialog box that opens after clicking 
on the new button can be also noted. It allows to select the desired test file for the subsequent classification. 

Figure 3.28 – Example of text file used to test the efficiency of erythrocyte morphotypes classifier. Each line - which represented 
an erythrocyte - consists of erythrocyte morphological parameters’ values (the exception is the first line where only the number of total 
elements considered in the file itself is displayed). These values were extrapolated from the processing data of the training step. 
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step. Results of the test operation were organized 

in a confusion matrix (Tab. 3.3). In addition to the 

morphological classes previously mentioned, in 

the Tab. 3.3 a row relating to the “undefined” 

category can be also seen: an instance of 

morphological parameters is set to the undefined 

status when its probability to belong to various 

classes shows a small change between the first 

and the second most probable classes 

(uncertainty), or when the likelihood of obtaining 

that combination of morphological parameters is 

negligible (the instance is an outlier). The last 

three rows in the Tab. 3.3 report the estimates of 

true positives, false negatives and unknown rates 

regarding the classification of any morphological 

class. Sensitivity and accuracy values of the software for individual morphotype classes are shown in 

Tab. 3.4. The data confirm high accuracy of the software for identifying elliptocytes (91.45%), 

macrocytes (94.44%) and microcytes (98.57%) with acceptable accuracy for target cells (70.97%) 

and echinocytes I (76.52%) spherocytes (86.21%), discocytes (87.79%), while accuracy was found 

to be insufficient (<60%) for knizocytes (54.84%) and stomatocytes (58.97%). 

 

Figure 3.30 – Example of a Classification.txt file produced 
following the automatic classification of a test file. The 
summary file called Classification.txt reports the salient data of 
the classification carried out: first the list of individual cells with 
the different probabilities, then the overall summary. 

Table 3.3 - Result of automatic classification test. The first row and the first column show the erythrocyte morphological classes 
taken into consideration for the automatic classification test. The second row shows the total number of cells classified for each 
erythrocyte class. Subsequently, the assignments (classification) provided by the classification algorithm are shown in the individual 
columns. Below are shown the total number of cells classified for each erythrocyte class, followed by the percentages of true positive 
(TP) and false negatives (FN) and unknown relating to the class in question against all the other classes as a whole. The last column 
reports the total percentage of false positives (FP) of each class, summed up on all tests and normalized to the total number of 
classifications (2072). 

Discocytes Echinocytes I Spherocytes Stomatocytes Knizocytes Target cells Elliptocytes Microcytes Macrocytes FP (%)
Tot 1241 180 133 35 39 156 149 104 35
Discocytes 1208 61 24 2 4 71 1 5 0 8.108
Echinocytes I 1 88 0 0 0 23 1 2 0 1.303
Spherocytes 0 0 100 0 5 1 0 10 0 0.772
Stomatocytes 1 0 0 23 2 2 4 7 0 0.772
Knizocytes 3 2 0 0 17 7 1 1 0 0.676
Target cells 4 2 0 0 0 22 0 3 0 0.434
Elliptocytes 1 3 0 4 5 0 139 0 0 0.627
Microcytes 0 1 0 0 0 0 0 69 0 0.048
Macrocytes 1 0 0 0 0 2 0 0 34 0.145
Undefined 22 23 9 6 6 28 3 7 1 4.730

1241 180 133 35 39 156 149 104 35
TP (%) 97.341 48.889 75.188 65.714 43.590 14.103 93.289 66.346 97.143
FN (%) 0.886 38.333 18.045 17.143 41.026 67.949 4.698 26.923 0.000
Unknown (%) 1.773 12.778 6.767 17.143 15.385 17.949 2.013 6.731 2.857
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3.8.10. Erythrocytes semi-automatic classification: discussion 

In the current availability of numerous data regarding individual human operator classification, it is 

interesting to note how this software is able to intercept erythrocyte morphological categories, albeit 

with different degrees of efficiency. About this, we point out that the most frequent erythrocyte class 

(discocytes) has a false negative rate far below one (0.886%), an essential condition for any attempt 

to perform autonomous classification of SEM images. The low number of true positives related to 

target cells is due to the currently modest efficiency of the software in detecting blobs (Tab. 3.5), 

despite the numerous attempts we tried to improve this aspect of the software and despite the high 

number of morphological parameters related to blobs that the software can calculate. In addition, 

about the different degrees of efficiency of the software in intercepting abnormal erythrocyte 

morphotypes, let us note that not all classes of morphological anomalies have the same weight in 

terms of correlation with a specific pathology. In fact, in the 

future it will be worth asking whether a certain shape 

character classified in a more or less efficient way by the 

software is significant for the pathology to be intercepted, 

before performing an initial test of the software for 

diagnostic purposes. 

 

 

 

Table 3.5 – Evaluation of software's ability to 
recognize blobs. False negatives: target cells with 
unrecognized blobs. True positives: target cells 
with recognized blobs. 

Category
Total for 28 
target cells 

in 2 samples
Percentage

False negatives 21 75%
True positives 7 25%

Table 3.4 - Results of automatic classification test: sensitivity and accuracy values. Note: data are calculated not 
accounting “undefined” morphotypes. 
 

 

Erythrocyte 
morphological 
class 

Sensitivity 
(%) 

95% Confidence 
interval (C.I.) 

Accuracy 
(%) 

95% Confidence 
interval (C.I.) 

Knizocytes 51.52 33.54 – 69.20 54.84 36.03 – 72.68 
Stomatocytes 79.31 60.28 – 92.01  58.97 42.10 – 74.43 
Target cells 17.19 11.10 – 24.86  70.97 51.96 – 85.78 
Echinocytes I 56.05 47.92 – 63.95 76.52 67.71 – 83.92 
Spherocytes 80.65 72.58 – 87.19 86.21 78.57 – 91.91 
Discocytes 99.10 98.39 – 99.55 87.79 85.94 - 89.47 
Elliptocytes 95.21 90.37 – 98.05  91.45 85.82 – 95.37 
Macrocytes 100 89.72 – 100 94.44 81.34 – 99.32 
Microcytes 71.13 61.05 – 79.89 98.57 92.30 – 99.96 
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3.8.11. Computer-assisted tool for erythrocyte phenotyping in SEM micrographs: final 

discussion 

Several published works on erythrocyte classification have focused on classification of erythrocytes 

into normal or abnormal, limited number of erythrocyte shapes, or on correlation with specific disease 

processes based on the combination of extracted morphological features from RBC (Yturralde et al., 

2020). However, several previous publications (Agrawal and Verma, 2015; Ali et al., 2013; Tomari 

et al., 2014; Zheng et al., 2004) have described their methods and results without making their 

software readily available. On the other hand, there are some commercially available hematology 

analyzers (or automatic cell counters, which are the most common high-tech devices used to perform 

various types of tests on human blood samples): HemaCAM by Fraunhofer Institute for Integrated 

Circuits IIS, Germany (HemaCAM®), Vision Hema by West Medica, Germany (Vision Hema® 

Assist - Automatic Cell Imaging System by West Medica), EasyCell by Medica corporation, USA 

(Hematology Imaging System, 2014), and CellaVision® DM9600 by CellaVision, Sweden 

(CellaVision® DM9600). Most of these systems are specialized in the detection of white blood cells, 

while CellaVision is specialized for the automatic detection and classification of morphological 

abnormalities in RBC. However, reports published for erythrocytes classification with CellaVision 

demonstrate limited specificity and variable accuracy without re-classification by operators (Criel et 

al., 2016; Egelé et al., 2016).  

The software that has been presented in this thesis is the first computer-assisted tool to be designed 

specifically for identification of RBC morphotypes in SEM micrographs from ASD patients’ blood 

samples. In order to discover if erythrocyte morphological alterations may be used as a component 

of a screening for early ASD diagnosis, it is necessary to analyze many blood samples, and for each 

of them, to count and classify a large number of erythrocytes. Owning and being able to use a 

computerized system for erythrocyte morphometric analysis would relieve operators from manual 

search and classification of erythrocyte shapes during SEM analysis, a time-consuming and tedious 

work. Despite the flaw represented by the low sensitivity of the software in identifying all the RBC 

in SEM micrographs, this tool has the great advantage of high reproducibility. Indeed, results from 

manual classification are subject to strong variability of objective and subjective operators’ conditions 

which affects the results, determining their instability. Conversely, automatic classification processes 

are not subject to this type of variability. Another important advantage of using a computerized 

morphometric analysis system is the calculation speed. In fact, manual classification requires a 

generally long execution time, which is not susceptible of optimization. Instead, automatic 

classification can be optimized through more powerful computers and more efficient software 
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implementations. Another positive aspect of our software is the large number of computers on which 

it is potentially executable. Indeed, our software can be run from a Windows executable: this point is 

important because currently windows has an 82.45% market share on desktop computers (Garnier et 

al., 2019). This makes our software different from the program Cytomine, for which exists only 

instruction to use it on Linux-based operating systems. Another advantage of our software is its 

extreme simplicity of use for operators, thanks to its user-friendly interface and the few operations 

that must be carried out to get the final result. For example, unlike the method used by McInerney 

and Terzopoulos (2000) and that by Park and Keller (2001), our software does not require careful 

initial setup for the discrimination between significant and non-significant contours. The power of 

our software lies in the possibility of classifying many dozens of cells just by clicking on three buttons 

(one for image opening, one for processing and the last one for classification). This makes our 

software different from the programs CellProfiler and CellProfiler Analyst (the first one applies image 

processing, the second one uses machine learning techniques to count and identify cells; Carpenter et 

al. 2006; Jones et al. 2008). These programs, even if powerful, are not very user friendly: there are 

many modules, each of which has several options to parse. Furthermore, both these two separate 

pieces of software need to be run to get complete results. Another software which has been developed 

and published for public use is BlobFinder. Differently from our software, this program only counts 

cells without classifying them (Allalou and Wählby, 2009). Another software which has been 

developed to count and identify RBC from a series of microscope images is the program IdentiCyte 

developed by Garnier et al. (2019). In this program, for RBC recognition users are given the ability 

to change the value of minimum pixel area for an object to be considered a cell, together with other 

key variables in the operation of the program itself. This is similar to what happens with our software, 

which require initial definition of the cellular size value in pixel and other few parameters. However, 

while IdentiCyte focused on the discrimination from discocytes only two erythrocyte categories 

(spherocytes and echinocytes) and the related transition phases, our software also focuses on the 

classification of other morphological categories (for example microcytes, macrocytes, elliptocytes, 

stomatocytes, knizocytes). Furthermore, IdentiCyte was developed for light microscopy images, 

unlike our software which was developed specifically for SEM micrographs. 

Our research will continue by producing further software training data, in order to try to reach a 

sufficient number of elements also regarding the erythrocyte morphological classes of echinocytes II, 

echinocytes III, acanthocytes and leptocytes. In the future it will also be interesting to calculate the 

possible variability of the software efficiency in the classification of erythrocyte morphotypes, 

starting from different portions of the dataset, and then to compare this data with those of intra-

operator variability already calculated for the manual SEM analysis of erythrocyte morphotypes. 
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Further studies are also needed to establish whether our software has got the potential to perform well 

also on RBC photos acquired through light microscope with interferential contrast. In conclusion, it 

is possible to say that our software for erythrocyte phenotyping in SEM micrographs has very good 

chances to become a powerful laboratory tool with many potential applications ranging from many 

diagnostic purposes to basic research in hematology. 
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4. CONCLUSIONS 

 

This thesis work concerns a pioneering sector that begins the exploration aimed at finding new 

biomarkers for an early diagnosis of ASD, basing on SEM morphological analysis of RBC. One of 

the goals achieved by this work is the optimization of a new protocol, based on the acupuncture 

method, for blood samples preparation aimed at SEM morphological analysis of RBC. After having 

obtained, by the local ethics committee, a favorable opinion and the authorization to proceed for the 

research project about erythrocyte morphological changes in pediatric ASD patients, preliminary 

results from blood samples analysis at SEM were produced. This meant the possibility of starting to 

prepare a red blood cells morphometric dataset at SEM of ASD patients and healthy volunteers. 

Considering the limited number of blood samples available so far, this first part of the present thesis 

work should be considered as the basis for future research that eventually will allow to calculate the 

statistical significance of the possible differences in erythrocyte morphology between ASD patients 

and healthy controls. Then it will be possible to continue the research to determine at what age the 

erythrocyte morphological changes begin to appear in ASD patients and to establish, by retrospective 

analysis with respect to the clinical diagnosis of ASD, whether this occurs earlier than the 

neuropsychiatric diagnosis of the disease. Answering these questions is of seminal importance to 

know if the presence of erythrocyte morphological alterations in ASD patients can be considered as 

a biomarker to be included in a screening aimed at early ASD diagnosis. Indeed, it is desirable for the 

future the possibility of combining information obtained from erythrocytes morphometric tests with 

other data, for example molecular data concerning lipid and protein components of the erythrocyte 

membrane, to define a reliable set of laboratory tests useful for ASD diagnostics. 

This study also investigated the intra-operator variability of the RBC morphological analysis by 

SEM, while still remains to clarify the nature of the inter-operator variability of this kind of analysis. 

Observations from studying intra-operator variability of the RBC morphological analysis by SEM 

strongly suggest the need of a high number of replicate counts and supports the key relevance of 

implementing reliable computer-assisted algorithms and machine learning systems in order to 

discover potential novel disease biomarkers based on SEM analysis of peripheral blood micro-

samples. Indeed, the most consistent part of this thesis concerns the development, operation and 

validation of a computer-assisted tool that has been shown to be capable of detection and semi-

automatic classification of erythrocytes in SEM micrographs. Future development of the work will 

be to classify, through this software, erythrocytes in SEM micrographs acquired from blood micro-

samples, allowing the system to associate, to each subject, a distribution of erythrocytes among the 
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several morphometric classes. In the future it would be very interesting to compare these data with 

those obtained from the manual RBC classification at SEM of the same set of samples. Since the final 

aim of the study is to provide an automated predictive tool that can reveal potential pathological 

conditions, the definition of the patient's status will depend on the frequency of RBC in the different 

morphological classes. Based on the frequency of erythrocytes with altered morphology in the blood 

sample, it will be possible to hypothesize the patient's pathological state. We believe that, if the 

hypothesis about erythrocyte morphological alterations as an early biomarker of ASD will be 

validated, this software could become a very useful tool in the hands of families and clinicians to 

identify individuals at risk of developing ASD. Furthermore, our software will be able to find 

application not only in ASD diagnostics, but also in basic research studies, concerning for example 

the effects of alterations in RBC membrane’s cortical cytoskeleton or lipid composition on changes 

in erythrocyte shape. 
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7. SUPPLEMENTRY MATERIAL 

 
 
 

 

 
 
 

Supplementary figure 3 -  Schistocytes: fragments of red blood cells. 

Supplementary figure 2 -  Dacryocyte: erythrocyte with a 
single spicule, wide and tapered, which gives the cell the shape 
of a drop. 

Supplementary figure 1 - Bite cell: RBC with a peripheral 
arcuate defect (bite). 
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Supplementary figure 5 – Filamentous red blood cell. Supplementary figure 4 – Helmet-shaped red blood cell. 

Supplementary Table 1 - Triplicate measurements of RBC morphological analysis at SEM on 3 different blood samples as 
assessed by the same operator. Values are in percent. These data were used to gauge intra-assay variability. 

# sample echinocytes I echinocytes II echinocytes III acanthocytes spherocytes sphero-stomatocytes stomatocytes leptocytes
0.10 0.00 0.00 0.00 0.29 0.10 0.00 0.00
0.90 0.00 0.00 0.00 0.30 0.20 0.60 0.10
0.60 0.00 0.00 0.00 1.69 0.00 0.60 0.00
0.10 0.00 0.00 0.00 9.65 2.29 1.79 0.00
0.10 0.00 0.00 0.00 15.45 1.00 1.20 0.30
0.20 0.00 0.00 0.00 12.48 1.60 2.10 0.00
0.40 0.00 0.00 0.10 2.79 0.90 0.50 0.00
0.69 0.00 0.00 0.00 5.80 0.20 0.49 0.00
0.30 0.00 0.00 0.10 3.66 0.20 0.99 0.10

# sample knizocytes target cells elliptocytes microcytes macrocytes other anomalies total abnormal 
morphotypes discocytes

2.94 0.00 2.16 0.59 0.00 2.85 9.03 90.97
2.60 0.10 3.00 0.50 0.20 3.40 11.89 88.11
3.58 0.30 3.28 0.80 0.10 2.59 13.53 86.47
17.61 0.20 1.79 1.29 0.00 6.27 41.00 59.00
15.25 0.10 0.50 0.00 0.00 10.37 44.27 55.73
17.47 0.70 0.80 0.10 0.00 7.49 42.91 57.09
8.28 0.60 6.79 1.70 0.00 5.89 27.94 72.06
11.50 3.64 3.05 0.20 0.00 6.78 32.35 67.65
11.29 3.56 4.06 0.59 0.00 7.62 32.48 67.52

1

2

3

1

2

3
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Supplementary Table 2 - SEM morphological analysis of 7 blood samples from healthy volunteers enrolled for the pilot study. 

# total erythrocytes echinocytes I echinocytes I % echinocytes II echinocytes II % echinocytes III echinocytes III % spherocytes spherocytes %

1 1005 1 0.1 0 0.00 0 0.00 2 0.20
2 1008 0 0.00 0 0.00 0 0.00 1 0.10
3 1000 0 0.00 1 0.10 1 0.10 2 0.20
4 1008 9 0.89 1 0.10 0 0.00 0 0.00
5 1032 2 0.19 0 0.00 0 0.00 3 0.29
6 1019 0 0.00 0 0.00 0 0.00 1 0.10
7 1007 16 1.59 1 0.10 0 0.00 1 0.10

Average 0.40 0.04 0.01 0.14

# stomatocytes stomatocytes % leptocytes leptocytes % knizocytes knizocytes % target cells target cells % elliptocytes
1 4 0.40 0 0.00 15 1.49 1 0.10 24
2 0 0.00 2 0.20 8 0.79 2 0.20 21
3 7 0.70 1 0.10 12 1.20 0 0.00 45
4 0 0.00 0 0.00 3 0.30 5 0.50 26
5 1 0.10 0 0.00 1 0.10 0 0.00 16
6 4 0.39 0 0.00 2 0.20 0 0.00 15
7 17 1.69 0 0.00 6 0.60 0 0.00 22

Average 0.47 0.04 0.67 0.11

# elliptocytes % microcytes microcytes % other anomalies other anomalies % totale abnormal 
morphotypes

total abnormal 
morphotypes % discocytes discocytes %

1 2.39 3 0.30 0 0.00 50 4.98 955 95.02
2 2.08 1 0.10 0 0.00 35 3.47 973 96.53
3 4.50 1 0.10 0 0.00 70 7.00 930 93.00
4 2.58 2 0.20 0 0.00 46 4.56 962 95.44
5 1.55 1 0.10 0 0.00 24 2.33 1008 97.67
6 1.47 1 0.10 0 0.00 23 2.26 996 97.74
7 2.18 0 0.00 0 0.00 64 6.36 943 93.64

Average 2.39 0.13 0.00 4.42 95.58

Supplementary Table 3 - SEM morphological analysis of 15 blood samples from ASD patients enrolled for the pilot study. 

 

# total 
erythrocytes echinocytes I echinocytes I % echinocytes II echinocytes II % echinocytes III echinocytes III % spherocytes spherocytes %

1 1001 43 4.30 4 0.40 3 0.30 3 0.30
2 1020 41 4.02 2 0.20 1 0.10 0 0
3 1023 20 1.96 10 0.98 2 0.20 0 0.00
4 1070 45 4.21 2 0.19 3 0.28 1 0.09
5 1020 103 10.10 17 1.67 0 0.00 2 0.20
6 883 40 4.53 7 0.79 0 0.00 4 0.45
7 1039 18 1.73 3 0.29 1 0.10 4 0.38
8 1013 34 3.36 5 0.49 0 0.00 1 0.10
9 1017 43 4.23 10 0.98 0 0.00 4 0.39
10 1017 9 0.88 1 0.10 1 0.10 5 0.49
11 1387 112 9.02 27 2.22 11 0.89 8 0.69
12 1002 51 5.09 1 0.10 0 0.00 5 0.50
13 1006 100 9.94 2 0.20 6 0.60 14 1.39
14 1006 8 0.80 0 0.00 0 0.00 1 0.10
15 1020 2 0.20 0 0.00 0 0.00 1 0.10

Average % 4.29 0.57 0.17 0.35

# stomatocytes stomatocytes % leptocytes leptocytes % knizocytes knizocytes % target cells target cells % elliptocytes
1 0 0.00 2 0.20 9 0.90 24 2.40 22
2 0 0.00 0 0.00 0 0.00 13 1.27 11
3 0 0.00 0 0.00 1 0.10 37 3.62 2
4 0 0.00 0 0.00 1 0.09 32 2.99 5
5 0 0.00 0 0.00 0 0.00 7 0.69 32
6 0 0.00 2 0.23 1 0.11 18 2.04 11
7 0 0.00 2 0.19 3 0.29 16 1.54 18
8 8 0.79 5 0.49 13 1.28 44 4.34 14
9 1 0.10 1 0.10 1 0.10 6 0.59 48
10 0 0.00 2 0.20 2 0.20 32 3.15 5
11 9 0.64 2 0.11 4 0.24 52 3.72 34
12 0 0.00 2 0.20 9 0.90 31 3.09 20
13 3 0.30 52 5.17 33 3.28 89 8.85 18
14 0 0.00 2 0.20 6 0.60 16 1.59 28
15 2 0.20 0 0.00 5 0.49 6 0.59 3

Average 0.13 0.47 0.57 2.70

# elliptocytes % microcytes microcytes % other anomalies other anomalies % total abnormal 
morphotypes

total abnormal 
morphotypes % discocytes discocytes %

1 2.20 0 0.00 0 0.00 114 11.39 887 88.61
2 1.08 0 0.00 0 0.00 69 6.76 951 93.24
3 0.20 3 0.29 1 0.10 76 7.43 947 92.57
4 0.47 0 0.00 0 0.00 89 8.32 981 91.68
5 3.14 2 0.20 4 0.39 167 16.37 853 83.63
6 1.25 8 0.91 0 0.00 91 10.31 792 89.69
7 1.73 1 0.10 2 0.19 68 6.54 971 93.46
8 1.38 4 0.39 0 0.00 128 12.64 885 87.36
9 4.72 2 0.20 4 0.39 120 11.80 897 88.20
10 0.49 0 0.00 0 0.00 57 5.60 960 94.40
11 2.50 6 0.38 4 0.26 267 20.67 1120 79.33
12 2.00 0 0.00 0 0.00 119 11.88 883 88.12
13 1.79 0 0.00 0 0.00 317 31.51 689 68.49
14 2.78 0 0.00 1 0.10 62 6.16 944 93.84
15 0.29 0 0.00 8 0.39 27 2.65 993 97.35

Average 1.73 0.16 0.12 11.34 88.66
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Supplementary Table 5 - SEM morphological analysis of the first 7 blood samples from ASD patients enrolled for the clinical 
study. 

# total 
erythrocytes echinocytes I echinocytes I % echinocytes II echinocytes II % echinocytes III echinocytes III % acanthocytes acanthocytes % spherocytes spherocytes %

1 1001 0 0.00 0 0.00 0 0.00 0 0.00 579 57.84
2 1002 0 0.00 0 0.00 0 0.00 1 0.10 100 9.98
3 1002 0 0.00 0 0.00 0 0.00 0 0.00 264 26.35
4 1001 0 0.00 0 0.00 0 0.00 0 0.00 349 34.87
5 1003 1 0.10 0 0.00 0 0.00 0 0.00 398 39.68
6 1000 0 0.00 0 0.00 0 0.00 0 0.00 455 45.50
7 1005 1 0.10 0 0.00 0 0.00 0 0.00 236 23.48

Average 0.03 0.00 0.00 0.01 33.96

# sphero-
stomatocytes

sphero-
stomatocytes % stomatocytes stomatocytes % leptocytes leptocytes % knizocytes knizocytes % target cells target cells % elliptocytes

1 4 0.40 10 1.00 0 0.00 6 0.60 0 0.00 5
2 33 3.29 18 1.80 0 0.00 33 3.29 17 1.70 2
3 38 3.79 9 0.90 0 0.00 78 7.78 3 0.30 3
4 27 2.70 61 6.09 0 0.00 108 10.79 0 0.00 3
5 35 3.49 43 4.29 5 0.50 77 7.68 1 0.10 25
6 17 1.70 16 1.60 3 0.30 35 3.50 0 0.00 12
7 45 4.48 19 1.89 13 1.29 80 7.96 8 0.80 13

Average 2.84 2.51 0.30 5.94 0.41

# elliptocytes % microcytes microcytes % macrocytes macrocytes % other anomalies other anomalies % total abnormal 
morphotypes

total abnormal 
morphotypes % discocytes discocytes %

1 0.50 2 0.20 0 0.00 14 1.40 620 61.94 381 38.06
2 0.20 4 0.40 1 0.10 40 3.99 249 24.85 753 75.15
3 0.30 5 0.50 0 0.00 86 8.58 486 48.50 516 51.50
4 0.30 0 0.00 1 0.10 190 18.98 739 73.83 262 26.17
5 2.49 0 0.00 2 0.20 41 4.09 628 62.61 375 37.39
6 1.20 1 0.10 0 0.00 15 1.50 554 55.40 446 44.60
7 1.29 0 0.00 3 0.30 42 4.18 460 45.77 545 54.23

Average 0.90 0.17 0.10 6.10 53.27 46.73

Supplementary Table 6 - SEM morphological analysis of 3 blood samples from healthy volunteers to check effects of the 
anticoagulant solution on the amount of spherocytes. 

# total erythrocytes echinocytes I echinocytes I % echinocytes II echinocytes II % echinocytes III echinocytes III % acanthocytes acanthocytes % spherocytes spherocytes %

1 1001 0 0.00 0 0.00 0 0.00 0 0.00 101 10.09
2 1001 0 0.00 0 0.00 0 0.00 0 0.00 279 27.87
3 1024 1 0.10 0 0.00 0 0.00 0 0.00 89 8.69

Average 0.03 0.00 0.00 0.00 15.55

# sphero-
stomatocytes

sphero-
stomatocytes % stomatocytes stomatocytes % leptocytes leptocytes % knizocytes knizocytes % target cells target cells % elliptocytes

1 7 0.00 0 0.70 0 0.00 9 0.90 4 0.40 14
2 0 0.00 2 0.20 0 0.00 14 1.40 3 0.30 13
3 6 0.59 2 0.20 0 0.00 13 1.27 2 0.20 43

Average 0.20 0.37 0.00 1.19 0.30

# elliptocytes % microcytes microcytes % macrocytes macrocytes % other anomalies other anomalies % total abnormal 
morphotypes

total abnormal 
morphotypes % discocytes discocytes %

1 1.40 6 0.60 3 0.30 8 0.80 152 15.18 849 84.82
2 1.30 2 0.20 3 0.30 9 0.90 325 32.47 676 67.53
3 4.20 1 0.10 2 0.20 20 1.95 179 17.48 845 82.52

Average 2.30 0.30 0.27 1.22 21.71 78.29

Supplementary Table 4 - SEM morphological analysis of 4 healthy volunteers’ blood samples prepared through the optimized 
protocol. 

# total erythrocytes echinocytes I echinocytes I % echinocytes II echinocytes II % echinocytes III echinocytes III % acanthocytes acanthocytes % spherocytes spherocytes %
1 1002 7 0.70 0 0.00 0 0.00 0 0.00 29 2.89
2 1003 0 0.00 1 0.10 0 0.00 0 0.00 9 0.90
3 1019 1 0.10 0 0.00 0 0.00 0 0.00 3 0.29
4 1008 0 0.00 0 0.00 0 0.00 0 0.00 6 0.60

Average % 0.20 0.03 0.00 0.00 1.17

# sphero-
stomatocytes

sphero-
stomatocytes % stomatocytes stomatocytes % leptocytes leptocytes % knizocytes knizocytes % target cells target cells % elliptocytes

1 0 0.00 2 0.20 0 0.00 3 0.30 12 1.20 14
2 1 0.10 0 0.00 0 0.00 2 0.20 18 1.79 9
3 1 0.10 0 0.00 0 0.00 30 2.94 0 0.00 22
4 2 0.20 0 0.00 0 0.00 3 0.30 11 1.09 1

Average 0.10 0.05 0.00 0.94 1.02

# elliptocytes % microcytes microcytes % macrocytes macrocytes % other anomalies other anomalies % total abnormal 
morphotypes

total abnormal 
morphotypes % discocytes discocytes %

1 1.40 5 0.50 2 0.20 9 0.90 83 8.28 919 91.72
2 0.90 1 0.10 1 0.10 6 0.60 48 4.79 955 95.21
3 2.16 6 0.59 0 0.00 29 2.85 92 9.03 927 90.97
4 0.10 3 0.30 1 0.10 13 1.29 40 3.97 968 96.03

Average 1.14 0.37 0.10 1.41 6.52 93.48
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total 
erythrocytes echinocytes I echinocytes I % echinocytes II echinocytes II % echinocytes III echinocytes III % acanthocytes acanthocytes % spherocytes spherocytes %

1017 0 0.00 0 0.00 0 0.00 0 0.00 233 22.91

sphero-
stomatocytes

sphero-
stomatocytes % stomatocytes stomatocytes % leptocytes leptocytes % knizocytes knizocytes % target cells target cells % elliptocytes

0 0.00 6 0.59 2 0.20 31 3.05 7 0.69 10

elliptocytes % microcytes microcytes % macrocytes macrocytes % other anomalies other anomalies % total abnormal 
morphotypes

total abnormal 
morphotypes % discocytes discocytes %

0.98 3 0.29 1 0.10 15 1.47 308 30.29 709 69.71

Supplementary Table 7 - SEM morphological analysis of one blood samples from healthy volunteer to check effects of the 
anticoagulant solution from the same stock used for the first 7 pathological samples of the clinical study on the amount of 
spherocytes. 
 

total 
erythrocytes echinocytes I echinocytes I % echinocytes II echinocytes II % echinocytes III echinocytes III % acanthocytes acanthocytes % spherocytes spherocytes %

922 3 0.33 1 0.11 0 0.00 0 0.00 14 1.52

sphero-
stomatocytes

sphero-
stomatocytes % stomatocytes stomatocytes % leptocytes leptocytes % knizocytes knizocytes % target cells target cells % elliptocytes

0 0.00 0 0.00 0 0.00 5 0.54 26 2.82 10

elliptocytes % microcytes microcytes % macrocytes macrocytes % other anomalies other anomalies % total abnormal 
morphotypes

total abnormal 
morphotypes % discocytes discocytes %

1.08 1 0.11 1 0.11 6 0.65 67 7.27 855 92.73

Supplementary Table 8 - SEM morphological analysis of one blood samples from healthy volunteer to check effects of the re-
prepared anticoagulant solution on the amount of spherocytes. 

Supplementary Table 9 - SEM morphological analysis of the last 5 blood samples from ASD patients enrolled for the clinical 
study. 

# total 
erythrocytes echinocytes I echinocytes I % echinocytes II echinocytes II % echinocytes III echinocytes III % acanthocytes acanthocytes % spherocytes spherocytes %

8 1002 4 0.40 0 0.00 0 0.00 0 0.00 4 0.40
9 1005 12 1.19 0 0.00 0 0.00 0 0.00 22 2.19
10 1002 4 0.40 0 0.00 0 0.00 1 0.10 28 2.79
11 1001 0 0.00 0 0.00 0 0.00 0 0.00 85 8.49
12 1005 1 0.10 0 0.00 0 0.00 0 0.00 97 9.65

Average % 0.42 0.00 0.00 0.02 4.70

# sphero-
stomatocytes

sphero-
stomatocytes % stomatocytes stomatocytes % leptocytes leptocytes % knizocytes knizocytes % target cells target cells % elliptocytes

8 2 0.20 3 0.30 0 0.00 2 0.20 14 1.40 12
9 8 0.80 6 0.60 0 0.00 7 0.70 10 1.00 13
10 9 0.90 5 0.50 0 0.00 83 8.28 6 0.60 68
11 2 0.20 6 0.60 0 0.00 24 2.40 29 2.90 17
12 23 2.29 18 1.79 0 0.00 177 17.61 2 0.20 18

Average 0.88 0.76 0.00 5.84 1.22

# elliptocytes % microcytes microcytes % macrocytes macrocytes % other anomalies other anomalies % total abnormal 
morphotypes

total abnormal 
morphotypes % discocytes discocytes %

8 1.20 10 1.00 1 0.10 14 1.40 66 6.59 936 93.41
9 1.29 17 1.69 0 0.00 28 2.79 123 12.24 882 87.76
10 6.79 17 1.70 0 0.00 59 5.89 280 27.94 722 72.06
11 1.70 25 2.50 0 0.00 32 3.20 220 21.98 781 78.02
12 1.79 13 1.29 0 0.00 63 6.27 412 41.00 593 59.00

Average 2.55 1.64 0.02 3.91 21.95 78.05
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Supplementary Table 10 - Results of the overall processing of SEM images for the evaluation of erythrocyte detection by the 
software. The table shows the data for each sample in terms of the number of images analyzed, the number of erythrocytes manually 
counted, the number of erythrocytes automatically detected, the number of erythrocytes correctly detected, the number of erythrocytes 
incorrectly detected (false positives), and the number of not detected erythrocytes (false negatives). In the last row are reported their 
relative sums for the total of images analyzed for all the 10 samples. 

# sample # image manually 
counted

automatically 
detected

correctly 
detected

incorrectly detected 
(false positives)

not detected 
(false negatives)

1 35 2071 1425 1379 46 582
2 49 1760 1313 1229 84 403
3 29 893 572 565 7 321
4 20 1033 629 586 43 404
5 75 1851 1417 1366 51 417
6 34 1532 903 896 7 629
7 29 1038 910 898 12 128
8 32 1743 1135 1092 43 608
9 24 833 510 494 16 223
10 53 777 741 711 30 49
10 380 13531 9555 9216 339 3764
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