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Appendix 1. Analysis of the cumulative effects of weather on aggression rate 

 

Table S1. Results of model selections conducted to investigate the cumulative effects of climatic conditions at different time windows (T: mean temperature; 

P: total amount of precipitation) on the pro capite aggression rate of chamois. The top-ranked, non-nested models within ΔAICc<2 are shown, with relevant 

K, AICc, ΔAICc and standardized weight. All models evaluated also included the chamois group identity as random intercept. 

 

Time 

window 

length 

Intercept T P Site Time Time2 Julian day T × Site P × Site K AICc ΔAICc Weight 

              

15 days 

 

X X   X X    7 1833.4 0.00 1 

20 days 

 

 

X X   X X X   8 1836.2 0.00 0.553 

X X   X X    7 1836.6 0.04 0.447 

25 days 

 

 

X X   X X X   8 1836.1 0.00 0.621 

X X   X X    7 1837.1 0.01 0.379 

30 days 

 

 

X X   X X X   8 1837.6 0.00 0.475 

X X   X X    7 1838.4 0.08 0.314 

X    X X    6 1839.2 1.60 0.211 
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Table S2. Parameters estimated from the best GLMM predicting the pro capite aggression rate of 

chamois at feeding, for each time window: variance of random intercepts (σ
2
), predictors’ coefficient 

estimates (β) and their 95% confidence intervals (CIs). An asterisk marks coefficients whose CIs do 

not include ‘0’. Effects of accumulated climatic conditions (mean temperature, T) on aggression rate 

are bolded. For measurement units of explanatory variables, and the best supported model at the 30 

days-time window, see main text. 

 

Time window length Random intercept Predictor β coefficient 95% CI  

      

15 days 

 

 

 

 

σ
2
GroupID = 0.328 Intercept -3.296 -3.479; -3.113 * 

T15 0.254 0.078; 0.430 * 

Time of day 0.266 0.086; 0.446 * 

Time of day
2
 0.181 0.026; 0.335 * 

20 days 

 

 

 

 

 

σ
2
GroupID = 0.346 

 

 

 

 

Intercept -3.296 -3.482; -3.110 * 

T20 0.264 0.067; 0.461 * 

Time of day 0.274 0.092; 0.456 * 

Time of day
2
 0.179 0.025; 0.334 * 

Julian day -0.162 -0.367; 0.043  

25 days 

 

 

 

 

 

σ
2
GroupID = 0.338 Intercept -3.298 -3.483; -3.113 * 

T25 0.275 0.071; 0.479 * 

Time of day 0.279 0.097; 0.461 * 

Time of day
2
 0.181 0.026; 0.335 * 

Julian day -0.185 -0.397; 0.027  
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Appendix 2. Analysis of the cumulative effects of weather on aggression intensity 

 

Table S3. Results of model selections conducted to investigate the cumulative effects of climatic conditions (T: mean temperature; P: total amount of 

precipitation) on the probability of chamois delivering a more aggressive behaviour pattern during feeding contests, at different time windows. The top-

ranked, non-nested models within ΔAICc<2 are shown, with relevant K, AICc, ΔAICc and standardized weight. All models evaluated also included the 

chamois group identity as random intercept. 

 

Time 

window 

length 

Intercept T P Site Time Time2 
Julian 

day 

Opponent’s 

relative age 

Sender’s 

age class 

Contest 

type 
T × Site P × Site K AICc ΔAICc Weight 

                 

15 days 

 

X  X    X X  X   7 817.3 0 1 

20 days 

 

X  X    X X  X   7 816.7 0 1 

25 days 

 

X  X    X X  X   7 817.0 0 1 

30 days 

 

X  X    X X  X   7 816.1 0 1 
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Table S4. Parameters estimated from the best GLMM predicting the probability of chamois delivering 

a more aggressive behaviour pattern during feeding contests, for each time window: variance of 

random intercepts (σ
2
), predictors’ coefficient estimates (β) and their 95% confidence intervals (CIs). 

An asterisk marks coefficients whose CIs do not include ‘0’. Effects of accumulated climatic 

conditions (total amount of precipitation, P) on aggression intensity are bolded. For measurement units 

of explanatory variables, and the best supported model at the 30 days-time window, see main text. 

 

Time window 

length 

Random 

intercept 
Predictor β coefficient 95% CI  

      

15 days 

 

 

 

 

 

 

σ
2
GroupID = 0.436 Intercept 2.202 1.807; 2.596 * 

P15 -0.314 -0.604; -0.025 * 

Julian day 0.551 0.249; 0.853 * 

Opponent’s relative age (same) 0.489 0.035; 0.943 * 

Opponent’s relative age (older) -0.369 -0.913; 0.176  

Contest type (escalated) -0.827 -1.210; -0.445 * 

20 days 

 

 

 

 

 

 

σ
2
GroupID = 0.407 

 

 

 

 

Intercept 2.166 1.775; 2.557 * 

P20 -0.299 -0.551; -0.046 * 

Julian day 0.497 0.214; 0.779 * 

Opponent’s relative age (same) 0.505 0.051; 0.959 * 

Opponent’s relative age (older) -0.367 -0.909; 0.175  

Contest type (escalated) -0.804 -1.187; -0.422 * 

25 days 

 

 

 

 

 

 

σ
2
GroupID = 0.460 Intercept 2.162 1.764; 2.560 * 

P25 -0.282 -0.545; -0.020 * 

Julian day 0.460 0.172; 0.748 * 

Opponent’s relative age (same) 0.507 0.051; 0.962 * 

Opponent’s relative age (older) -0.367 -0.912; 0.177  

Contest type (escalated) -0.798 -1.183; -0.413 * 
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Appendix 3. Analysis of the cumulative effects of weather on vegetation productivity 

 

Table S5. Results of model selections conducted to investigate the cumulative effects of climatic 

conditions (T: mean temperature; P: total amount of precipitation) on the standardized EVI index, at 

different time windows. The top-ranked, non-nested models within ΔAICc<2 are shown, with relevant 

K, AICc, ΔAICc and standardized weight. All models evaluated also included the study year as 

random intercept and, following preliminary data exploration, had the dispersion modelled in relation 

to whether the daily EVI is interpolated and to the interaction T × Site. 

 

Time 

window 

length 

Intercept T P Site 
Julian 

day 
T × Site P × Site K AICc ΔAICc Weight 

            

15 days 

 

X X X X X  X 12 -910.8 0.00 1 

20 days 

 

X X X X X X  12 -859.5 0.00 1 

25 days 

 

X X X X X X  12 -820.8 0.00 1 

30 days 

 

X X X X X X  11 -796.4 0.00 0.679 

X X X X X   10 -794.9 1.49 0.321 
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Table S6. Parameters estimated from the best GLMM predicting the standardized EVI index, for each 

time window: variance of random intercepts (σ
2
), predictors’ coefficient estimates (β) and their 95% 

confidence intervals (CIs). All models, following preliminary data exploration, had the dispersion 

modelled in relation to whether the daily EVI is interpolated and to the interaction T × Site (results of 

dispersion model not shown). An asterisk marks coefficients whose CIs do not include ‘0’. Effects of 

accumulated climatic conditions (mean temperature, T, and total amount of precipitation, P) on 

relative vegetation productivity are bolded. For measurement units of explanatory variables, see main 

text. 

 

Time window 

length 
Random intercept Predictor β coefficient 95% CI  

      

15 days 

 

 

 

 

 

 

σ
2
Year < 0.001 Intercept 2.280 2.148; 2.412 * 

Julian day -0.200 -0.244; -0.156 * 

T15 -0.111 -0.178; -0.044 * 

P15 0.183 0.057; 0.308 * 

P15 × Site (food-restricted) -0.148 -0.275; -0.021 * 

Site (food-restricted) -0.372 -0.541; -0.203 * 

20 days 

 

 

 

 

 

 

σ
2
Year = 0.048 

 

 

 

 

Intercept 2.301 1.964; 2.637 * 

Julian day -0.189 -0.256; -0.121 * 

T20 -0.081 -0.263; 0.101  

P20 0.156 0.072; 0.239 * 

T20 × Site (food-restricted) -0.241 -0.427; -0.055 * 

Site (food-restricted) -0.296 -0.472; -0.120 * 

25 days 

 

 

 

 

 

 

σ
2
Year = 0.104 Intercept 2.315 1.843; 2.787 * 

Julian day -0.129 -0.206; -0.051 * 

T25 -0.083 -0.292; 0.126  

P25 0.281 0.180; 0.383 * 

T25 × Site (food-restricted) -0.330 -0.533; -0.127 * 

Site (food-restricted) -0.252 -0.434; -0.071 * 

30 days 

 

 

 

 

 

 

σ
2
Year = 0.110 Intercept 2.298 1.813; 2.782 * 

Julian day -0.037 -0.132; 0.057  

T30 -0.113 -0.356; 0.130  

P30 0.242 0.139; 0.345 * 

T30 × Site (food-restricted) -0.253 -0.483; -0.023 * 

Site (food-restricted) -0.280 -0.467; -0.092 * 
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Figure S1. Effects of (a) mean temperature (T30) and (b) total amount of rainfall (P30) accumulated 

over 30 days prior to focal observation day on the standardized EVI. In (a), the interactive effect of T30 

and study site is shown (light green: food-restricted site; dark green: food-rich site). Lines and 

shading: values predicted while averaging the effects of other confounding variables and 95% 

confidence intervals. 
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Appendix 4. Analysis of the direct effects of temperature on aggression indices 

 

Table S7. Result of the model selection conducted to investigate the direct effects of temperature (T) 

on the pro capite aggression rate of chamois. The top-ranked, non-nested models within ΔAICc<2 are 

shown, with relevant K, AICc, ΔAICc and standardized weight. All models evaluated also included 

the chamois group identity as random intercept. 

 

Intercept T Site Time Time2 
Julian 

day 
T × Site K AICc ΔAICc Weight 

           

X   X X   6 1839.2 0 0.69 

X   X    5 1840.8 1.6 0.31 
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Table S8. Result of the model selection conducted to investigate the direct effects of temperature (T) on the probability of delivering a more aggressive 

behaviour pattern by chamois during feeding contests. The top-ranked, non-nested models within ΔAICc<2 are shown, with relevant K, AICc, ΔAICc and 

standardized weight. All models evaluated also included the chamois group identity as random intercept. 

 

Intercept T Site Time Time2 
Julian 

day 

Opponent’s 

relative age 

Sender’s 

age class 

Contest 

type 
T × Site P × Site K AICc ΔAICc Weight 

               

X     X X  X   6 819.5 0 1 
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Appendix 5. Analysis of the proximate effect of vegetation productivity on aggression indices 

 

Table S9. Result of the model selection conducted to investigate the effect of vegetation productivity 

(standardized EVI index) on the pro capite aggression rate of chamois. The top-ranked, non-nested 

models within ΔAICc<2 are shown, with relevant K, AICc, ΔAICc and standardized weight. All 

models evaluated also included the chamois group identity as random intercept. 

 

Intercept EVI Site Time Time2 Julian day EVI × Site K AICc ΔAICc Weight 

           

X X  X X X  8 1833.3 0 0.46 

X X  X X   7 1834.0 0.70 0.33 

X X  X  X  7 1834.9 1.62 0.21 
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Table S10. Result of the model selection conducted to investigate the effect of vegetation productivity (standardized EVI index) on the probability of 

delivering a more aggressive behaviour pattern by chamois during feeding contests. The top-ranked, non-nested models within ΔAICc<2 are shown, with 

relevant K, AICc, ΔAICc and standardized weight. All models evaluated also included the chamois group identity as random intercept. 

 

Intercept EVI Site Time Time2 
Julian 

day 

Opponent’s 

relative age 

Sender’s 

age class 

Contest 

type 
T × EVI K AICc ΔAICc Weight 

              

X X    X X  X  7 817.5 0 1 
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Table S11. Parameters estimated from the best GLMM predicting (a) the pro capite aggression rate of 

chamois at feeding and (b) the probability of delivering a more aggressive behaviour pattern by 

chamois during feeding contests, in relation to vegetation productivity: variance of random intercepts 

(σ
2
), predictors’ coefficient estimates (β) and their 95% confidence intervals (CIs). An asterisk marks 

coefficients whose CIs do not include ‘0’. Effects of vegetation productivity on aggression indices are 

bolded. For measurement units of explanatory variables, see main text. 

 

Response 

variable 
Random intercept Predictor β coefficient 95% CI  

      

a. Pro capite 

intra-group 

aggression 

rate 

 

 

σ
2
GroupID = 0.303 Intercept -3.275 -3.452; -3.098 * 

EVI -0.303 -0.488; -0.118 * 

Time of day 0.232 0.054; 0.410 * 

Time of day
2
 0.148 -0.004; 0.299  

Julian day -0.161 -0.353; 0.031  

b. Aggression 

intensity 

 

 

 

 

 

σ
2
GroupID = 0.478 

 

 

Intercept 2.188 1.789; 2.588 * 

EVI -0.346 -0.683; -0.009 * 

Julian day 0.334 0.021; 0.646 * 

Opponent’s relative age (same) 0.508 0.053; 0.963 * 

Opponent’s relative age (older) -0.362 -0.907; 0.184  

Contest type (escalated) -0.806 -1.191; -0.421 * 
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Appendix 6. Model validation 

 

Using the R package DHARMa (Hartig 2022), we inspected the residuals of each best model to 

identify potential model misspecification. As interpreting conventional residuals for GL(M)Ms is often 

problematic (see Hartig 2022), this package uses a simulation-based approach to create scaled 

(quantile) residuals for GL(M)Ms, which are standardized to values between 0 and 1, and can be 

interpreted more easily. For each best model, qq-plot of the simulated residuals was inspected to check 

for their uniformity. A nonparametric dispersion test (two-tailed, α=0.01) was also performed by 

comparing the standard deviation of the fitted residuals against that of the simulated ones, in order to 

test for potential over- or underdispersion. 

For the best models predicting the pro capite aggression rate and standardized EVI, the goodness of fit 

was assessed by comparing the observed values to those predicted by considering model parameters 

while adding randomly simulated errors specifically generated for each model and based on their 

assumed error distribution. Thus, for the best models predicting the pro capite aggression rate and 

standardized EVI, 10,000 distributions of the predicted values were generated assuming respectively 

Tweedie or beta errors, using the R functions rTweedie and rbeta. Then, the distribution of observed 

values was compared against each distribution of predicted values by using a Kolmogorov-Smirnov 

(KS) test (two-tailed; α=0.05; H0: the two distributions do not differ from each other), thus performing 

10,000 KS tests through the R function ks.test. For the best model predicting aggression intensity, 

given that the outcome of this model is binary, the goodness of fit was evaluated by building the ROC 

curve and calculating relevant AUC (through the R package pROC; Robin et al. 2011), as 

recommended for logistic models. Using a 0.5 cut-off, we also calculated model accuracy (i.e., the 

sum of the number of observations correctly predicted as 0 and the number of observations correctly 

predicted as 1, divided by the total number of observations). 

For every model run (Appendices 1-3), the dispersion test was not significant and misspecifications 

were not detected (Figure S2). For the best models predicting the pro capite aggression rate (Appendix 
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1) and standardized EVI (Appendix 3), respectively 99.5% and 72.8% p-values (30 days), 99.7% and 

73.4% p-values (25 days), 99.7% and 89.8% p-values (20 days), and 99.9% and 92.3% p-values (15 

days) of the KS tests were greater than 0.05, meaning that in most cases the distribution of the 

predicted values reflected that of the observed ones (Figure S3a,c), confirming the good fit of these 

models. For the best models predicting aggression intensity (Appendix 2), accuracy was 83.7% and 

AUC=0.78 (30 days), 83.7% and AUC=0.78 (25 days), 83.7% and AUC=0.78 (20 days), and 83.5% 

and AUC=0.78 (15 days) (Figure S3b), confirming the good fit of these models. The same results 

occurred for model predicting the pro capite aggression rate and aggression intensity in relation to 

EVI (Appendix 5), showing no misspecification and, respectively, having 98% p-values greater than 

0.05 (Figure S4a), and 83.5% accuracy and AUC=0.78 (Figure S4b). 

 

 

Figure S2. For each best model run at each time window (a: pro capite aggression rate, b: aggression 

intensity, c: standardized EVI), a qq-plot of the scaled residuals showing overall deviations from the 

expected (red line) distribution is depicted. 
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Figure S3. For each best model run at each time window (a: pro capite aggression rate, b: aggression 

intensity, c: standardized EVI), goodness of fit is shown. In (a) and (c), the figure shows the (kernel) 

frequency distributions of both the observed values and the values predicted by the model using one of 

the 10,000 simulated error distributions. In (b), the figure shows the ROC curve. 
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Figure S4. For each best model predicting (a) the pro capite aggression rate and (b) aggression 

intensity in relation to EVI, a qq-plot of the scaled residuals showing overall deviations from the 

expected (red line) distribution is depicted, together with goodness of fit (a: kernel frequency 

distributions of both the observed values and the values predicted by the model using one of the 

10,000 simulated error distributions; b: ROC curve). 
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Appendix 7. Projection of future accumulated temperature in our study area 

 

Historical weather data in our study area are available from 1990 onwards. We considered the 30 

days-cumulative temperature (T30) and precipitation (P30) recorded in our study area in the period 

1990-2020 to predict trajectories of accumulated temperature and rainfall for the next 60 years, up to 

2080. We fixed the date at the 1
st
 August, to simulate aggression indices of chamois at the median date 

of the study period, and to allow validating our local projections with those forecasted by global 

scenarios, which are available at the monthly scale (see Appendix 8). Whereas T30 showed a 

significantly linear increase in our study area, in the period 1990-2020 (OSL regression; Table S12 

and Fig. 2a in main text), P30 did not vary (Table S12). Hence, we only projected trajectories of future 

T30. Because there have been linear/exponential increases in global temperatures during the last 

decades (Hegerl et al. 2018), our projection assumed no major variation of the trend of temperature 

increase in the next few decades, up to 2080. From 2021 to 2080, 10000 trajectories of T30 were 

simulated according to the following linear model: 

𝑇30,𝑡,𝑖 = 𝛼 + 𝛽𝑡 + 𝜀𝑡,𝑖, t = 2021,…,2080, i = 1,…,10000, 

where T30,t,i denotes the mean spring temperature of the i-th trajectory for the year t, α and β were the 

OLS estimates (Table S12), and εt,i was the error term assumed to be a normal random variable with 0 

expectation and variance σ
2
 estimated by the residual variance of the OLS regression (Table S12). As 

the OLS regression of T30 in the period 1990-2020 did not show autocorrelated residuals (Durbin-

Watson test; p = 0.156), we did not assume them in our simulations. 

 

Table S12. Parameters estimated by OLS regressions conducted to determine the trends of T30 and P30 

through years, in the period 1990-2020. 

 Intercept α Regression Coefficient β (SE) p-value Residual variance σ
2
 

T30 -80.37 0.047 (0.023) 0.049 1.20 

     

P30 -988.77 0.521 (0.686) 0.460 1005.90 

     



19 

 

Appendix 8. Concordance of locally-projected temperature with CMIP6 global scenarios 

 

Because temperatures predicted by global circulation models (GCMs) are not comparable, in absolute 

value, to those recorded at weather stations (which we used to build our local projections), we 

compared the future change in temperature (∆T, in °C) projected by our simulations to that projected 

in our study area using GCMs and four “Shared Socioeconomic Pathways” (SSPs; SSP1-2.6, SSP2-

4.5, SSP4-6.0, and SSP5-8.5), corresponding to four different scenarios of climate policy 

encompassing the likely range of future radiative forcing. 

We downloaded data from Worldclim 2.1 (Fick & Hijmans 2017), considering GCMs with available 

projections for all the four SSPs (i.e., 21 GCMs; Table S13), totalling 84 different scenarios. As our 

projections of accumulated temperature are based on the mean temperatures within 30 days prior to 

the 1
st
 August, thus reflecting the mean temperature of July, we had to use the monthly data of July. 

We used data at the spatial resolution of 2.5 min (approximately corresponding to cells of size 3.5 × 

4.5 km), i.e. the minimum resolution available to match these future projections with historical 

monthly Worldclim data. Future projections of monthly temperatures are available for 2030 (average 

for 2021-2040) and 2070 (average for 2061-2080), while the monthly reference data used was the year 

1990, corresponding to our first observed year of data. Therefore, we were able to compare 

temperature changes forecasted by CMIP6 projections with ours, in the periods 1990-2030 and 2030-

2070. To make comparisons, we used the ensemble of 84 scenarios by considering the average of all 

the predicted outcomes, as customary when selecting climate models (Seager et al. 2007). 

Comparison shows that our projected increase in temperature is consistent with the mean increase 

projected by the ensemble of 84 CMIP6 scenarios (Table S14). In particular, our projections of 

temperature used to simulate the future aggression rate of chamois are robust, as being included in the 

95% confidence interval of temperature changes based on four SSPs reflecting the possible range of 

future radiative forcing (Figure S5). 
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Table S13. Details of Global Circulation Models (GCMs) used for the comparison between our 

temperature change projections and those of CMIP6 scenarios. 

GCM Resolution (°lon × °lat) Reference 

ACCESS-ESM1-5 1.9 × 1.2 Law et al. 2017 

BCC-CSM2-MR 1.1 × 1.1 Wu et al. 2019 

CanESM5 2.8 × 2.8 Swart et al. 2019 

CanESM5-CanOE 2.8 × 2.8 Swart et al. 2019 

CMCC-ESM2 0.9 × 1.2 Lovato et al. 2022 

CNRM-CM6-1 1.4 × 1.4 Voldoire et al. 2019 

CNRM-CM6-1-HR 0.5 × 0.5 Voldoire et al. 2019 

CNRM-ESM2-1 1.4 × 1.4 Séférian et al. 2019 

EC-Earth3-Veg 0.7 × 0.7 Wyser et al. 2020, 

Döscher et al. 2022 

EC-Earth3-Veg-LR 0.7 × 0.7 Wyser et al. 2020; 

Döscher et al. 2022 

GISS-E2-1-G 1.2 × 1.0 Rind et al. 2020 

GISS-E2-1-H 1.0 × 1.0 Rind et al. 2020 

INM-CM4-8 2.0 × 1.5 Volodin et al. 2018 

INM-CM5-0 2.0 × 1.5 Volodin et al. 2018 

IPSL-CM6A-LR 2.5 × 1.3 Lurton et al. 2020 

MIROC-ES2L 2.8 × 2.8 Hajima et al. 2020 

MIROC6 1.4 × 1.4 Tatebe et al. 2019 

MPI-ESM1-2-HR 0.9 × 0.9 Gutjahr et al. 2019 

MPI-ESM1-2-LR 1.9 × 1.9 Mauritsen et al. 2019 

MRI-ESM2-0 1.1 × 1.1 Yukimoto et al. 2019 

UKESM1-0-LL 1.9 × 1.3 Sellar et al. 2019 
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Table S14. Changes in temperature, ∆T, in the two periods (CMIP6 scenarios: mean; our projection: 

difference between 50
th
 percentile and the observed value, for 1990-2030, or 50

th
 percentile, for 2030-

2070, of the previous time period). Brackets report variability of ∆T (CMIP6 scenarios: 95% 

confidence limits; our projection: difference between both 75
th
 and 25

th
 percentile with the observed 

value, for 1999-2030, or with 50
th
 percentile of the previous time period, for 2030-2070, to reflect 50% 

trajectories used to simulate aggression rate of chamois). 

Projection ∆T1990-2030 (°C) ∆T2030-2070 (°C) 

SSP 126 (n=21) 2.30 [1.77; 2.84] 0.65 [0.41; 0.90] 

SSP 245 (n=21) 2.32 [1.82; 2.83] 1.73 [1.40; 2.07] 

SSP 370 (n=21) 2.28 [1.79; 2.77] 2.58 [2.29; 2.87] 

SSP 585 (n=21) 2.44 [1.91; 2.98] 3.37 [3.00; 3.74] 

Ensemble (n=84) 2.34 [1.83; 2.84] 2.08 [1.55; 2.61] 

Our projection 1.95 [1.21; 2.69] 1.91 [1.17; 2.66] 
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Figure S4. Variability of the projected changes in temperature, ∆T, in the two periods (CMIP6 

scenarios: 95% confidence limits; our projection: difference between both 75
th
 and 25

th
 percentile with 

the observed value, for 1999-2030, or with 50
th
 percentile of the previous time period, for 2030-2070, 

to reflect 50% trajectories used to simulate aggression rate of chamois). Blue bars: CMIP6 scenarios; 

red bars: our projection. 
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Appendix 9. Future variation in chamois aggression rate 

 

Table S15. Simulated pro capite aggression rate of chamois in the period 2021-2080, showing the 

mean annual number of aggressions per female hour
-1

 and relevant percentage of variation compared 

to the year 2021, at each daytime period (-5, 0 and 5 hours from noon). 

 -5 h 0 h 5 h 

Year 
Aggression 

rate 
% variation 

Aggression 

rate 
% variation 

Aggression 

rate 
% variation 

2021 0.6048 - 0.6167 - 1.4118 - 

2022 0.5896 -2.51% 0.6031 -2.20% 1.4294 1.24% 

2023 0.5764 -4.70% 0.6377 3.41% 1.3738 -2.70% 

2024 0.5570 -7.91% 0.6352 3.02% 1.4655 3.80% 

2025 0.5897 -2.50% 0.6258 1.48% 1.4605 3.45% 

2026 0.6056 0.13% 0.6738 9.26% 1.4296 1.26% 

2027 0.6219 2.82% 0.6447 4.54% 1.4958 5.95% 

2028 0.6329 4.65% 0.6700 8.64% 1.4682 3.99% 

2029 0.6300 4.17% 0.6951 12.72% 1.5285 8.27% 

2030 0.6062 0.23% 0.6536 5.99% 1.5037 6.51% 

2031 0.6070 0.36% 0.6991 13.37% 1.5385 8.97% 

2032 0.6244 3.24% 0.6877 11.52% 1.5220 7.81% 

2033 0.5903 -2.40% 0.7078 14.78% 1.5343 8.67% 

2034 0.6519 7.79% 0.6836 10.86% 1.5530 10.00% 

2035 0.6601 9.14% 0.6928 12.36% 1.5836 12.17% 

2036 0.6457 6.77% 0.7023 13.88% 1.6394 16.12% 

2037 0.6481 7.15% 0.6997 13.46% 1.5725 11.38% 

2038 0.6515 7.72% 0.7216 17.03% 1.6317 15.57% 

2039 0.6496 7.40% 0.7210 16.91% 1.6324 15.62% 

2040 0.6589 8.94% 0.7387 19.79% 1.5902 12.64% 

2041 0.6680 10.45% 0.7472 21.17% 1.6210 14.81% 

2042 0.6842 13.12% 0.7564 22.67% 1.6427 16.35% 

2043 0.6909 14.23% 0.7061 14.50% 1.6379 16.01% 

2044 0.6731 11.29% 0.7255 17.65% 1.6656 17.97% 

2045 0.6512 7.68% 0.7159 16.09% 1.6399 16.15% 

2046 0.6894 13.98% 0.7168 16.25% 1.6472 16.67% 

2047 0.6906 14.18% 0.7486 21.39% 1.6929 19.91% 

2048 0.6713 10.98% 0.7355 19.28% 1.6964 20.15% 

2049 0.7037 16.34% 0.7815 26.73% 1.6984 20.30% 

2050 0.7186 18.81% 0.7681 24.55% 1.7896 26.76% 

2051 0.7170 18.55% 0.7643 23.94% 1.7555 24.34% 

2052 0.7151 18.23% 0.7859 27.45% 1.7397 23.22% 

2053 0.7085 17.15% 0.7676 24.48% 1.7828 26.28% 

2054 0.7481 23.70% 0.7758 25.82% 1.7442 23.54% 
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2055 0.6906 14.18% 0.7728 25.32% 1.7582 24.53% 

2056 0.7326 21.13% 0.8175 32.57% 1.7776 25.90% 

2057 0.7631 26.17% 0.8138 31.97% 1.8464 30.78% 

2058 0.7558 24.96% 0.8059 30.69% 1.8713 32.54% 

2059 0.7661 26.66% 0.8271 34.12% 1.8412 30.41% 

2060 0.7660 26.66% 0.8026 30.15% 1.8189 28.83% 

2061 0.7821 29.32% 0.8173 32.54% 1.8245 29.23% 

2062 0.7595 25.58% 0.8502 37.87% 1.8559 31.45% 

2063 0.7783 28.69% 0.8585 39.23% 1.8694 32.41% 

2064 0.7808 29.10% 0.8635 40.03% 1.9122 35.44% 

2065 0.7890 30.45% 0.8894 44.23% 1.8651 32.10% 

2066 0.8037 32.89% 0.8546 38.59% 1.8517 31.16% 

2067 0.7863 30.01% 0.8157 32.27% 1.8299 29.61% 

2068 0.7857 29.91% 0.8707 41.20% 1.9679 39.39% 

2069 0.7661 26.66% 0.8492 37.71% 1.9388 37.32% 

2070 0.8060 33.26% 0.8385 35.97% 1.9794 40.20% 

2071 0.8045 33.02% 0.8879 43.99% 2.0551 45.56% 

2072 0.8319 37.55% 0.8840 43.36% 2.0092 42.31% 

2073 0.8201 35.60% 0.9113 47.79% 2.0247 43.41% 

2074 0.8095 33.85% 0.8944 45.04% 2.0284 43.67% 

2075 0.8396 38.82% 0.8988 45.75% 2.0537 45.46% 

2076 0.8379 38.54% 0.9056 46.86% 2.0816 47.44% 

2077 0.8339 37.88% 0.9060 46.92% 2.0648 46.24% 

2078 0.8621 42.53% 0.9306 50.92% 2.0254 43.46% 

2079 0.8585 41.94% 0.9571 55.21% 2.1655 53.38% 

2080 0.8694 43.75% 0.9597 55.63% 2.1393 51.52% 
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