
Citation: Fedeli, R.; Fiaschi, T.; de

Simone, L.; Angiolini, C.; Maccherini,

S.; Loppi, S.; Fanfarillo, E. Low

Concentrations of Biochar Improve

Germination and Seedling

Development in the Threatened

Arable Weed Centaurea cyanus.

Environments 2024, 11, 189. https://

doi.org/10.3390/environments11090189

Academic Editor: Walter Alberto

Pengue

Received: 24 July 2024

Revised: 22 August 2024

Accepted: 2 September 2024

Published: 4 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

environments 

Article

Low Concentrations of Biochar Improve Germination and
Seedling Development in the Threatened Arable Weed
Centaurea cyanus
Riccardo Fedeli 1,* , Tiberio Fiaschi 1 , Leopoldo de Simone 1,*, Claudia Angiolini 1,2 , Simona Maccherini 1,2 ,
Stefano Loppi 1,2 and Emanuele Fanfarillo 1,2

1 Department of Life Sciences, University of Siena, 53100 Siena, Italy; tiberio.fiaschi@gmail.com (T.F.);
claudia.angiolini@unisi.it (C.A.); simona.maccherini@unisi.it (S.M.); loppi@unisi.it (S.L.);
emanuele.fanfarillo@unisi.it (E.F.)

2 National Biodiversity Future Center (NBFC), 90121 Palermo, Italy
* Correspondence: riccardo.fedeli@student.unisi.it (R.F.); leopoldo.desimone@unisi.it (L.d.S.)

Abstract: In the context of sustainable agriculture, the search for soil improvers that boost crop
growth without harming biodiversity is gaining much attention. Biochar, the solid residue resulting
from the pyrolysis of organic material, has recently emerged as a promising bioproduct in enhancing
crop yield, but there is a lack of information regarding its effects on arable biodiversity. Thus, in
this study, we tested the effect of biochar application on the germination and seedling growth of
cornflower (Centaurea cyanus L., Asteraceae), a threatened arable weed, under laboratory conditions.
We investigated various parameters, including germination percentage (GP%), mean germination
time (MGT), germination rate index (GRI), germination energy (GE%), fresh and dry weight (mg) of
seedlings, and radicle length (mm) under biochar treatments at different concentrations: 0% (control),
0.1%, 0.2%, 0.5%, 1%, and 2%. Our findings revealed a significant increase in GP, GE, and GRI at
biochar concentrations of 0.5% and 1%. MGT slightly increased at 0.1% biochar. Seedling fresh
weight was unaffected by biochar application, whereas seedling dry weight exhibited a significant
increase at 0.5% biochar. Radicle length showed a substantial increase under 0.1% biochar on day one,
and was significantly higher at 0.2% and 1% biochar on day two. However, by day three, no more
statistically significant differences in radicle length were observed between biochar-treated diaspores
and controls (i.e., biochar had positive effects only in the first stages). These results suggest that the
application of biochar at intermediate concentrations (0.5% and 1%) overall provides the most benefit
to the germination and seedling growth of C. cyanus.

Keywords: arable plant; biodiversity; bio-based product; not-target plant; segetal plant; sustainable
agriculture

1. Introduction

The intensification of agricultural practices that followed the green revolution of the
1950s’ caused great changes in the plant diversity of arable lands [1,2]. In Europe, many
arable weed species that were once common and widespread began to disappear from
agroecosystems, to the point that they are now very rare or locally extinct [3,4]. Intensive
fertilization practices and broad herbicide application are among the main reasons for the
decline of arable weed diversity. By increasing nutrient availability in the soil, fertilization
favored generalist and highly competitive species over more specialized and rare arable
weeds in agroecosystems, while herbicides tended to remove any wild species that could
compete with the crop [4–8]. These practices resulted in significant shifts in arable plant
communities, both in terms of a decrease in species richness and in terms of species
turnover [9,10].
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Despite their role as crop competitors, the ecological importance of arable weeds in
agroecosystems is widely acknowledged, since they provide many ecosystem services [11,12].

There is evidence that species-rich arable weed communities with a high evenness
can mitigate crop yield loss, as opposed to arable weed communities dominated by few
competitive species [13]. Moreover, they are of high importance for the maintenance of
pollinator networks in agricultural landscapes, with benefits for both the environment and
agricultural productivity [14]. Based on such evidence, the need for their conservation
became more and more relevant to plant scientists. Thus, the search for fertilizers that
support crop growth without negatively affecting biodiversity is critical [15]. Biochar has
been proposed as a promising, more sustainable fertilizer option [16–19], and it is currently
approved as a soil improver in Italian organic agriculture [20].

Biochar is the solid fraction derived from the pyrolysis (i.e., heating in the absence
of oxygen) of organic materials, mostly plant-derived, such as wood or crop residues [21].
The production process of biochar involves heating the biomass at relatively low temper-
atures, typically between 350 and 700 ◦C [22–25]. Since it is rich in carbon, biochar has a
crucial environmental role when added to the soil, being able to store atmospheric carbon
(sequestration) and improve physical soil properties like porosity and aeration, as well as
chemical soil properties like cation-exchange capacity [26,27]. However, due to its chemical
characteristics, and especially to its known Na release and high pH (>8), the recommended
biochar dose to be added to agricultural soils should not exceed 15% by weight, or it could
lead to undesirable effects on plant growth and development [28]. As regards its use to
boost germination, lower concentrations are used, usually lower than 5% [29–31].

In recent years, the use of biochar in agriculture has been highly investigated, es-
pecially in relation to increasing crop yield and quality [32,33]. Moreover, it improves
plant resistance to abiotic stress, such as salinity [34,35], drought [36,37], and hydrocarbon-
contaminated soils [38,39]. While evidence suggests that biochar enhances growth and
yield in cultivated plants [32,33], there is currently a lack of knowledge regarding its poten-
tial effects on arable weed diversity within agroecosystems. This topic could be relevant for
biodiversity conservation in agroecosystems, since biochar, in addition to crops, may inter-
act also with arable weeds, both in the germination phases and during seedling emergence
and early growth stages, which are the main critical phases of a plant’s life cycle [40,41].
So far, research on the influence of biochar on seed germination has focused primarily
on forest [29,42,43] and crop plant species [30,31,44], with contrasting results, since these
studies showed that the effects of biochar application have ranged from positive to negative,
depending on the species tested.

Thus, understanding the effects of biochar addition on the plants spontaneously grow-
ing in arable fields (i.e., on non-target species) is crucial for a comprehensive exploration
of its impact on agroecosystem biodiversity and the development of ecologically friendly
crop-management practices. Germination is the initial and fundamental step in the growth
of plants, setting the stage for their subsequent development and survival [45–47]. Despite
the increasing interest in biochar as a sustainable agricultural amendment, there is a signifi-
cant gap in the literature regarding its influence on the germination and early growth of
non-target plant species in arable fields. To the best of our knowledge, this specific aspect
has not been previously studied. This research represents the first effort to address this
gap, offering novel insights into the ecological consequences of biochar application from
the first stages of plant development, and contributing valuable knowledge to the global
discourse on sustainable agriculture.

Cornflower (Centaurea cyanus L.; Asteraceae) is one of the most iconic and once
widespread arable weeds in Europe [3]. It is very important for pollinators, producing both
floral and extrafloral nectar [12]. Due to its high specialization to live among winter cereal
crops, and to its vulnerability to intensive agricultural practices, it is an effective indicator
of environmental quality in arable ecosystems [48–50]. Moreover, it is widely appreciated
as an ornamental plant, and it is one of the most common components of seed mixtures in
wildflower strips [51,52]. Despite its wide distribution, both in the wild and in cultivation,



Environments 2024, 11, 189 3 of 12

as many other strictly arable weeds, it is undergoing a steep decline in the agricultural
landscapes of Europe due to modern agricultural practices, with chemical fertilization
being one of the main reasons for its disappearance [4].

For the reasons described above, in this study, we used the threatened arable weed
C. cyanus to assess the effects of biochar (0.1%, 0.2%, 0.5%, 1%, and 2%) application on the
germination and seedling development of non-target plants in arable land. We hypoth-
esized that the application of biochar would increase the seed germination and seedling
early growth of C. cyanus, and that these positive effects would be stronger at the lowest
concentrations of biochar.

2. Materials and Methods
2.1. Biochar

The biochar used in our experiment (BioDea®) was produced (by BioEsperia srl,
Arezzo, Italy) through pyrolysis at temperatures ranging from 600 to 650 ◦C, using a
mixture of agricultural woody residues, (i.e., Castanea sativa Mill., Robinia pseudoacacia L.,
Fraxinus ornus L., Alnus glutinosa (L.) Gaertn., and Quercus robur L.). Subsequently, the
biochar was mechanically collected, resulting in a product with minimal ash content and a
high concentration of organic carbon. Finally, the biochar was finely ground and put into
an aqueous solution to allow for its application by fertigation in crop fields. The chemical
characteristics of the used biochar are reported in Table 1.

Table 1. Physicochemical characteristics of the used biochar.

N (%) <0.4
K (mg kg−1) 3020
P (mg kg−1) 340
Ca (mg kg−1) 9920
Mg (mg kg−1) 852
Na (mg kg−1) 291
C from carbonate (%) <0.1
C (%) 68.7
WHC (%) 23.5
EC (mS cm−1) 110
pH 9.9
Hash content (%) 4.6
H/C 0.2

N: nitrogen; K: potassium; P: phosphorus; Ca: calcium; Mg: magnesium; Na: sodium; C: carbon; WHC: water
holding capacity; EC: electrical conductivity.

2.2. Experimental Design

Achenes of C. cyanus harvested in spring 2023 were provided by the Agro-Botanical
Garden of the University of Cluj-Napoca, Romania. The achenes were subjected to surface
sterilization by immersing them in a 3% sodium hypochlorite (NaClO) solution for two
minutes, followed by a thorough washing with deionized H2O, as suggested by Maresca
et al. [53]. Subsequently, a Whatman N1 filter (Whatman International, Maidstone, UK)
was placed inside each Petri dish and then saturated with the treatment solutions. The
experimental scheme of the study is described in Figure 1. Biochar was applied at five
concentrations: 0% (control), 0.1%, 0.2%, 0.5%, 1%, and 2%. Five Petri dishes (statistical
replicates) were prepared for each treatment, with 20 achenes placed in each dish, following
a design usually adopted for germination tests under laboratory conditions [54–56]. The
Petri dishes were placed in complete darkness inside a growth chamber at a constant
temperature (18 ± 2 ◦C) and relative humidity (70%).

From the time of sowing until the end of the experiment (9 days after sowing), digital
images of each Petri dish were acquired every 24 h with a digital scanner (Bookeye 5 V2,
Image Access GmbH, Wuppertal, Germany), without altering the growing conditions of
seedlings. Each digital image was used to record the following daily: (i) the number of
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germinated seeds, and (ii) their radicle length. To retrieve this information, each digital
image was uploaded into the Fiji/ImageJ software (v. 1.54 h), following the method
reported by Fedeli et al. [57,58]. We summed up radicle lengths in each Petri dish to obtain
a daily cumulative radicle length. On the last day of the experiment (9 days after sowing),
the fresh weight of each seedling was determined using a precision balance, after which the
seedlings were placed in an oven for 48 h at 80 ◦C [59]. At the end of the indicated period,
the dry weight of each seedling was determined through the same precision balance.
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2.3. Germination Parameters

Based on the retrieved data, we calculated the following parameters related to germi-
nation performance:

1. Germination percentage (GP), calculated according to Czabator [60] (Equation (1)):

GP(%) =
Total germinated seeds

Total number o f tested seeds
× 100 (1)

2. Mean germination time (MGT), calculated according to Ellis and Roberts [61] (Equation (2)):

MGT =
∑

j
i = 1 ni × di

N
(2)

where ni is the number of seeds germinated on the ith day, di is the ith number of days
from the beginning of the test, N is the total number of seeds germinated at the end of
the experiment, and j is the total number of days of the experiment.

3. Germination rate index (GRI), calculated according to Fowler [62] (Equation (3)):

GRI = ∑
Gn

Dn
(3)

where Gn is the number of germinated seeds, and Dn is the number of days since the
beginning of observations.

4. Germination energy (GE), calculated according to Czabator [60] (Equation (4)):

GE(%) =
Number o f germinated seeds at 4 DAS

Total number o f tested seeds
× 100 (4)

where DAS is the number of days after sowing.
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2.4. Data Analysis

To test for significant effects of biochar application, observation day, and their interac-
tion on the GP and radicle length of C. cyanus seedlings, we carried out a Permutational
Univariate Analysis of Variance based on Euclidean distance matrices. The percentage data
were log(x + 1) transformed, and the other values were square-root transformed to improve
normality. Using the same analysis, we tested the effect of biochar on MGT, GRI, GE,
and fresh and dry weight. The following settings were used for all tests: 999 unrestricted
permutations of raw data; α = 0.05. Significant terms were then investigated using post hoc
pairwise comparisons, with the PERMANOVA t-statistic, and 999 permutations to test for
significant differences between the treatments. We also made comparisons between days
within biochar concentration. All the analyses were performed using the PERMANOVA
routine in the program PRIMER v.6, including the add-on package PERMANOVA+. PER-
MANOVA accurately computes a suitable pseudo-F statistic for each term in the model,
applicable to both multivariate and univariate datasets. Additionally, the permutation
method avoids many of the assumptions inherent in parametric statistics [63,64].

3. Results and Discussion

Different biochar concentrations had significant, but contrasting, effects on some of the
germination parameters, on dry weight, and radicle length. In particular, we highlighted
the significant effects of biochar on GP, MGT, GRI, GE, dry weight, and radicle length,
while fresh weight was not affected. We also highlighted a significant interaction between
the day and biochar on GP (Table 2).

Table 2. PERMANOVA results showing the effect of biochar, day of observation, and their interaction
on germination percentage (GP) and radicle length and the effect of biochar on mean germination
time (MGT), germination rate index (GRI), germination energy (GE), fresh weight, and dry weight.

Source of variation GP Radicle Length

df MS F df MS F

Day 8 6.96 224.94 ** 5 0.01 317.17 ***
Biochar 5 0.19 6.23 *** 5 15,867 7.70 ***

Day × Biochar 40 0.05 1.79′′ 2.5 3206.3 1.56
Residual 216 0.03 144 2059.8

Total 269 179

Source of variation MGT GRI GE

df MS F MS F MS F

Biochar 5 0.047 4.22 ** 0.01 3.16 * 0.02 7.22 ***
Residual 24 0.01 0.01 0.01

Total 29

Source of variation Fresh weight Dry weight

df MS F MS F

Biochar 5 0.01 0.34 0.01 3.41 *
Residual 24 0.03 0.01

Total 29
* = p < 0.05; ** = p < 0.01; *** = p < 0.001.

3.1. Germination Parameters

Our results showed how the response of germination parameters varies depending
on the dose of biochar applied. On the first day, there was a higher GP (mean = 6%) at
0.1% biochar. Starting as early as the third day after achene placement in Petri dishes, we
observed an increase in the GP of seeds under biochar concentrations of 0.5% and 1%. At
the end of the experiment, we highlighted an increase in GP of 56% at 0.5 biochar, and
57% at 1% biochar, compared to the control (Figure 2). Interestingly, at the highest biochar
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concentration (2%), the GP decreased back to the same levels of the control (mean = 42%),
suggesting a hormetic effect of biochar, i.e., that, although beneficial at low doses, higher
doses can have a toxic effect (Figure 2). In addition, biochar can contain and release contam-
inants that could have detrimental effects on seed germination and plant development [49].
The outcomes obtained for GP were consistent with those found for GE and GRI, for which
we also observed a statistically significant increase at biochar concentrations of 0.5% (+33%
and +39%, respectively) and 1% (+35% and 44%, respectively) (Figure 3). Concerning
MGT, we only witnessed a statistically significant increase (+25%) in seeds grown under
biochar treatment at 0.1%. These results, again, suggest a dose-dependent effect of biochar
on the germination parameters of C. cyanus, highlighting that the 0.5% biochar has the
most positive effects (Figure 3). This agrees with Solaiman et al. [65], who reported higher
germination (GP) of wheat species (Triticum spp.) at a lower biochar concentration (0.125%
vs. 0.25%). The effects of biochar on germination depend on dosage, species, and biochar
type. Pyrolysis impacts particle size, porosity, and water retention, influencing seedling
water and oxygen availability [66]. Biochar’s chemical properties, like pH and nutrient
concentration, are also crucial. For example, biochar pH can change soil pH, and nutrient
levels affect plant growth [67,68].
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3.2. Fresh and Dry Weight

Our results did not show any statistically significant difference in seedling fresh weight
(Figure 4). However, the dry weight of seedlings exhibited a statistically significant increase
(+19%) for seeds grown under 0.5% biochar (Figure 4). This is consistent with previous
evidence that biochar can directly influence plant growth in various ways, owing to its
physico-chemical properties [21]. It slowly releases essential nutrients for plants, such as
nitrogen, phosphorus, and potassium, which can be absorbed directly by roots [69]. Even
in the absence of a growth substrate, biochar could help retain moisture around roots,
creating a more favorable environment for growth. Additionally, biochar could influence
root respiration, improving the efficiency of energy usage, thereby facilitating growth [70].
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Although the different effects of biochar on fresh and dry weight may seem contra-
dictory, fresh weight is a measure of the total amount of water contained in the roots,
in addition to their biomass [71], so that fresh weight may not be related to dry weight.
Conversely, dry weight represents the mass of seedlings after all water has been removed,
providing a more accurate measure of the present amount of plant biomass [72,73].
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3.3. Radicle Length

Radicle length showed statistically significant differences under different biochar
concentrations only in the first days of germination. On the 1st day, we found a statistically
significant increase (+740%) in radicle length for seeds grown at 0.1% biochar. On the
2nd and 3rd days, radicle length was significantly higher (+63% and +31%, respectively)
under 1% biochar (Figure 5). Starting from the 5th day, no statistically significant difference
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in radicle length was observed anymore between the seeds grown under biochar and
those of the controls, although the radicles grown under 0.5% biochar showed a higher,
though not statistically significant, average value than those grown under all the other
concentrations (Figure 5). Thus, biochar sped up radicle development in the first growth
stages, but did not influence the final cumulative radicle length of seedlings. Previous
findings from works that investigated the effects of the addition of different types of biochar
at different concentrations (0.1% and 0.25%) on the germination and early developmental
stages of wheat showed how four of the five tested types of biochar did not affect the final
radicle length [67]. Other works highlighted that concentrations of biochar ranging within
0.1–0.3% increased the final radicle length of fodder crops [74]. These contrasting results
are due to the different species used and the type of biochar applied. Different species react
uniquely to biochar, influenced by their specific biological characteristics. Additionally, the
properties of biochar, determined by its feedstock and production methods, significantly
impact its effectiveness. Factors such as the particle size, porosity, water retention, pH, and
nutrient concentration of biochar play crucial roles in these outcomes [68].
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Figure 5. Radicle length of C. cyanus seeds. B = biochar. Different letters indicate statistically
significant differences (p < 0.05) between the different biochar concentrations.

4. Conclusions

In this work, we showed for the first time that biochar might have beneficial effects
on the germination performance and seedling development of the threatened arable weed
C. cyanus. In particular, we showed that all the tested concentrations of biochar, apart
from the highest concentration (2%), have no toxic effects, and that the 0.5% concentration
increases some germination parameters (i.e., the final GP, the GRI, and the GE) and the dry
weight of the seedlings. Overall, by looking simultaneously at the GP and the radicle-length
values of seedlings, higher values of GP were observed in the presence of 0.5% biochar,
whereas radicle length did not differ from controls. Since biochar increased dry weight
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without affecting final radicle length, we might speculate that biochar could positively
influence above-ground more than below-ground development in the early growth stages.
From an ecological perspective, the use of biochar at low concentrations might be a useful
practice to improve the biological performance of C. cyanus, both in the context of agro-
environmental schemes applied to agroecosystems and in the cultivation of the species
for ornamental purposes. Further studies are, however, necessary to evaluate the effects
of biochar on C. cyanus germination in open-field conditions, where the concentrations
of biochar used to promote crop growth are higher (2.5–5%) due to its dispersion in the
soil and consequent attenuated effect. In this context, it will be relevant to assess the
effects of biochar, considering also crop–weed and weed–weed competition and root/shoot
development, and those of different types of biochar on different arable weed species.
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