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We consider a discrete model in which particles are characterized by two quantities X and Y ; both
quantities evolve in time according to stochastic dynamics and the equation that governs the evolu-
tion of Y is also influenced by mean-field interaction between particles. We allow for discontinuous
coefficients and random initial condition and, under suitable assumptions, we prove that in the limit as
the number of particles grows to infinity the dynamics of the system is described by the solution of a
Fokker-Planck partial differential equation. We provide existence and uniqueness of a solution to the
latter and show that such solution arises as the limit in probability of the empirical measures of the
system.
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1. Introduction

Interacting stochastic systems are now ubiquitous in many applications of mathematics to
physics, biology, engineering, economics, human sciences; in particular the theory of mean
field limits of interacting systems has been and is extensively used to model real life phe-
nomena, and its investigation in the last years has provided significant advances in their
mathematical comprehension. Research on applications to economics and neuroscience
have motivated an analysis of interactions that depend at the same time on some measur-
able quantity characteristic of the system at hand and on the position in the physical space
of the interacting particles (or agents in the economic interpretation).
In [1] one type of such interaction was considered, without spatial dynamics but with dis-
continuous coefficients. Here we show how the technique presented therein allows also
to deal with a system of particles whose position evolves in time and whose interaction
depends both on their position X and on some quantity Y , that could represent, for ex-
ample, electric activity in a space-time evolving electrical network or available capital in
a network of interacting economical agents. We model X and Y as variables in Rd and
Re, respectively, and we suppose that they evolve in time following stochastic dynamics
with discontinuous drift. A particular type of discontinuity is allowed also in the interac-
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tion term, see Section 2 for precise assumptions. We prove that as the number of particles
goes to infinity the system is described by the solution of a Fokker-Planck partial differen-
tial equation with discontinuous coefficients, whose solution has however some regularity
(actually the same as the law of the initial conditions). We not only show existence and
uniqueness of a solution to the Fokker-Planck equation but we also rigorously prove that it
arises as the continuum limit of the particle system. The crucial assumption is that the sets
of discontinuities of the coefficients have Lebesgue measure zero; this ensures that they
will also have zero measure with respect to the solution of the Fokker-Planck equation.
We will state our main result in Section 3 and we will prove it in Sections 4 and 5.
The classical references for the theory of Fokker-Planck equations (or their McKean-
Vlasov interpretation) corresponding to interacting particle systems are [7] and [3]; we
essentially follow the strategy outlined in the latter, using also some techniques derived
from [5] for studying the empirical density.

2. Setting of the problem

Let (Ω,F ,P) be a probability space and for n ∈ N and i = 1, . . . , n consider the system
in Rd ×Re given by

dXi,n(t) = b1
(
Xi,n(t), Y i,n(t)

)
dt+ σ1

(
Xi,n(t)

)
dW i

1(t)

Xi,n(0) = Xi
0

dY i,n(t) = b2
(
Xi,n(t), Y i,n(t)

)
dt

+
1

n

n∑
j=1

g2
(
Xi,n(t), Y i,n(t);Xj,N (t), Y j,N (t)

)
dt

+ σ2
(
Y i,n(t)

)
dW i

2(t)

Y i,n(0) = Y i0

(2.1)

where

(i) b1 : Rd × Re → Rd and b2 : Rd × Re → Re are bounded functions that are
allowed to be discontinuous on some sets F1 and F2, respectively, each with Le-
besgue measure zero;

(ii) σ1 : Rd → Rd×d and σ2 : Re → Re×e are C1
b positive functions such that both

σ1σ
∗
1 and σ2σ∗2 are uniformly elliptic;

(iii) g2 : Rd×Re×Rd×Re → Re is the product of three functions θ : Rd×Rd → R

and η1, η2 : Re ×Re → Re, i.e.

g2(x, y, x̂, ŷ) = θ(x, x̂)η1(y)η2(ŷ),

with θ bounded and uniformly continuous and η1, η2 bounded and discontinuous
each on a set of Lebesgue measure zero;

(iv) Xi
0, i ∈ N , are Rd-valued i.i.d. random variables with a law λ1 that is absolutely

continuous with respect to the Lebesgue measure and has an L2 density;
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(v) Y i0 , i ∈ N , are Re-valued i.i.d. random variables, independent of {Xi
0}, with a

law λ2 that is absolutely continuous with respect to the Lebesgue measure and has
an L2 density;

(vi) W i
1, i ∈ N , are independent d-dimensional Brownian motions, independent also

of {Xi
0} and {Y i0 };

(vii) W i
2, i ∈ N , are independent e-dimensional Brownian motions, independent also

of {W i
1}, {Xi

0} and {Y i0 }.

Under these assumptions it is well known that, for every fixed N ∈ N , system (2.1) has a
strong solution, that is unique in the sense of pathwise uniqueness (this can be proved for
example using the techniques in [8] or [2]; see also [4]).

Remark 2.1. One can consider also different sets of assumptions for the system (2.1); for
example the results herein apply with simple modifications also in the following cases:

(a) b1 ≡ 0, σ1 ≡ 0; this case was treated in [1];
(b) σ1 ≡ 0 and b1 Lipschitz with sublinear growth;
(c) g2(x, y; x̂, ŷ) = θ(x, x̂)η(y, ŷ) where η is such that for every y the set of discon-

tinuity of η(y, ·) has Lebesgue measure zero and for each ŷ the function η(·, ŷ) is
uniformly continuous.

Remark 2.2. Our results are also valid when system (2.1) is to be solved in D × E with
D (resp. E) a d- (resp. e-) dimensional cube with periodic boundary conditions and the
coefficients also share the required periodicity. In this case one has to choose properly the
set of test functions and the family of mollifiers used in proposition 5.3.

For a function f : Rd ×Re → R, f(x, y) = f(x1, . . . , xd, y1, . . . , ye) we will denote
by ∂xf the gradient of f with respect to the variable x = (x1, . . . , xd) ∈ Rd and by ∂yf its
gradient with respect to the variable y = (y1, . . . , ye) ∈ Re. Similarly divy f will denote
the divergence of f with respect to y. The symbols ∇, ∇2 and div will instead be used
when differentiation is performed with respect to all variables. We will use the symbol
〈·, ·〉 for the duality product between probability measures and test functions. Finally we
will sometimes write a . b if there exists C ≥ 0 such that a ≤ Cb.

3. Main result

If we denote by S(n)(t) the empirical measure of the solution
(
Xi,n(t), Y i,n(t)

)
i=1,...,n

to
system (2.1) at times t, namely

S(n)(t) =
1

N

n∑
i=1

δXi,n(t),Y i,n(t) ,

by W i, i = 1, . . . , n, the d+ e-dimensional Brownian motions

W i(t) =
(
W i

1(t),W i
2(t)

)
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and introduce, just for convenience of notation, the functions

σ(x, y) =

(
σ1(x) 0

0 σ2(y)

)
b(x, y) = (b1(x, y), b2(x, y))

we then have, for any test function ϕ ∈ C2
b (Rd ×Re) with compact support,

d〈S(n)(t), ϕ〉 =

=
1

n

n∑
i=1

∇ϕ
(
Xi,n(t), Y i,n(t)

)
· b
(
Xi,n(t), Y i,n(t)

)
dt

+
1

n

n∑
i=1

∂yϕ
(
Xi,n(t), Y i,n(t)

) 1

n

n∑
j=1

g2
(
Xi,n(t), Y i,n(t), Xj,n(t), Y j,n(t)

)
dt

+
1

n

n∑
i=1

∇ϕ
(
Xi,n(t), Y i,n(t)

)
· σ
(
Xi,n(t), Y i,n(t)

)
dW i(t)

+
1

2n

n∑
i=1

Tr
[
σ
(
Xi,n(t), Y i,n(t)

)
σ
(
Xi,n(t), Y i,n(t)

)∗∇2ϕ
(
Xi,n(t), Y i,n(t)

)]
dt

= 〈S(n)(t), b · ∇ϕ〉dt+ 〈S(n)(t), 〈S(n)(t), g2(x, y, ·, ·)〉∂yϕ〉dt

+ 〈S(n)(t),
1

2
Tr
[
σσ∗∇2ϕ

]
〉dt+ dM (n)

ϕ (t) ; (3.1)

here we used the notation

〈S(n)(t), 〈S(n)(t), g2(x, y, ·, ·)〉∂yϕ〉

=

∫
D×E

∂yϕ(x, y)S(n)(t)( dx, dy)

∫
D×E

g2(x, x̂, y, ŷ)S(n)(t)( dx̂, dŷ) . (3.2)

Thanks to the independence of the W i’s and to the boundedness of σ and ∇ϕ, it is not
difficult to show that the term

M (n)
ϕ (t) =

∫ t

0

1

n

n∑
i=1

σ
(
Xi,n(t), Y i,n(t)

)
∇ϕ

(
Xi,n(s), Y i,n(s)

)
dW i(s) (3.3)

is a martingale satisfying E
[

supt

∣∣∣M (n)
ϕ (t)

∣∣∣2 ]→ 0 as n→∞.

The above computation suggests that if the empirical measure S(n)(t) converges as n
goes to infinity, its limit µ(t) should be a measure onRd×Re satisfying (in weak sense) the
partial differential equation that is obtained formally integrating by parts Eq. (3.1), namely

∂tµ(t) =
1

2
Tr
[
∇2 (σσ∗µ(t))

]
− div(bµ(t))

− divy

(
µ(t)

∫
g2(·, ·, x̂, ŷ)µ(t)( dx̂, dŷ)

)
. (3.4)
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The paper is devoted to the rigorous proof of this last statement, as formulated in The-
orem 3.1 below.

To simplify further our notation we introduce the differential operator A and the
measure-dependent differential operators B and L; they act on twice differentiable test
functions ϕ with all derivatives bounded as

Aϕ(x, y) =
1

2
Tr
[
σ(x, y)σ∗(x, y)∇2ϕ(xy)

]
, (3.5)

B(µ)ϕ(x, y) = b(x, y) · ∇ϕ(x, y) + ∂yϕ(x, y) ·
∫
Rd×Re

g2(x, y, x̂, ŷ)µ(x̂, ŷ) , (3.6)

L(µ)ϕ(x, y) = B(µ)ϕ(x, y) +Aϕ(x, y) . (3.7)

Let us denote by Pr1 = Pr1(Rd ×Re) the set of Borel probability measures on Rd ×Re
with bounded first moment, endowed with the 1-Wasserstein metricW1.
We say that a function µ = {µ(t)}t ∈ C ([0, T ]; Pr1) is a weak solution of (3.4) if

〈µ(t), ϕ〉 = 〈µ(0), ϕ〉+

∫ t

0

〈µ(s), L(µ(s))ϕ〉ds (3.8)

for every t ∈ [0, T ] and for every test function ϕ ∈ C2
b (Rd ×Re) with compact support.

Our main result is:

Theorem 3.1. Let (i)- (vii) hold and let µ0 be the measure λ1×λ2 onRd×Re. The partial
differential equation (3.4) has a unique weak solution µ in the space C ([0, T ]; Pr1) such
that µ(0) = µ0. The measure-valued function µ is the limit in probability of the empirical
measures of the system (2.1) and it has an L2 density.

4. Uniqueness

Uniqueness can be proved using similar arguments as in [1]; we only sketch the strategy
here, as details can be easily worked out.
The total variation distance between Borel probability measures ν and ξ on Rd × Re is
defined as

TV (ν, ξ) := sup
ϕ∈Bb
‖ϕ‖∞≤1

|〈ν, ϕ〉 − 〈ξ, ϕ〉| (4.1)

where Bb denotes the space of bounded Borel functions on Rd × Re. For any µ1, µ1 ∈
C ([0, T ]; Pr1) the map t 7→ TV (µ1(t), µ2(t)) is Borel and bounded on [0, T ].
The second order operator A defined in (3.5) generates a strongly continuous semigroup
P (t) of integral operators with C2 densities p(t), acting on bounded Borel functions on
Rd ×Re. As a consequence any weak solution µ of (3.4) is also a mild solution, that is, it
satisfies, for every t ∈ [0, T ] and every test function ϕ, the equation

〈µ(t), ϕ〉 = 〈µ(0), P (t)ϕ〉+

∫ t

0

〈µ(s), B(µ(s))P (t− s)ϕ〉ds . (4.2)
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Indeed if µ is a weak solution, differentiating the map s 7→ 〈µ(s), P (t− s)ϕ〉, using (3.8)
and standard properties of the infinitesimal generator and then integrating on [0, t] one finds
exactly (4.2).
Thanks to the assumptions on σ, for every bounded Borel ψ

‖∇P (t)ψ‖ . 1√
t
‖ψ‖ ; (4.3)

moreover C2
b (Rd ×Re) is closed under the action of P (t).

Let now µ1, µ2 ∈ C ([0, T ]; Pr1) be two weak (hence mild) solutions to Eq. (3.4). Thanks
to the boundedness of b and g2 and to (4.3) (recall (3.6)) we can bound the total variation
distance between any two solutions of (3.4) as

TV(µ1(t), µ2(t)) ≤ sup
ϕ∈Bb
‖ϕ‖∞≤1

∫ t

0

|〈µ1(s), [B(µ1(s))−B(µ2(s))]P (t− s)ϕ〉| ds

+ sup
ϕ∈Bb
‖ϕ‖∞≤1

∫ 1

0

|〈µ1(s)− µ2(s), B(µ2(s))P (t− s)ϕ〉| ds

.
∫ t

0

1√
t− s

TV(µ1(s), µ2(s)) ds ;

uniqueness then follows immediately from Gronwall’s lemma.

5. Existence

To prove existence we will follow a common strategy that uses tightness of the laws of the
empirical measures and continuity of the partial differential equation above with respect
to the weak convergence of probability measures (see for example [3]). However the fact
that we allow for discontinuities requires some care; we will adapt some of the techniques
already introduced in [1] for the case without dynamics in the variable X .

As the empirical measures are random processes, we can consider their law on the space
C ([0, T ]; Pr1).

Proposition 5.1. Let Q (n) be the law of S(n) on C ([0, T ]; Pr1). The family {Q (n)}n∈N
is tight.

Proof. The proof is standard. For every M > 0, R > 0, (x0, y0) ∈ Rd × Re, α ∈ (0, 1)

and q ≥ 1 such that αq > 1, the set

K(x0,y0)
M,R =

{
µ ∈ C ([0, T ]; Pr1) : sup

t∈[0,T ]

∫
Rd×Re

|(x0, y0)−(x, y)|µ(t) ( dx, dy) ≤M,∫ T

0

∫ T

0

W1 (µ(t), µ(s))
p

|t− s|1+αp
dtds ≤ R

}
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is relatively compact in C ([0, T ]; Pr1), by the Sobolev embedding and the characterization
of the 1-Wasserstein distance using Lipschitz test functions. Thanks to the boundedness of
all coefficients we have

P

(
sup
t∈[0,T ]

∫
Rd×Re

|(x0, y0)− (x, y)|S(n)(t) ( dx, dy) > M

)

≤ 1

M
E

[∣∣∣∣∣ sup
t∈[0,T ]

∫ t

0

|(x0, y0)− (x, y)|S(n)(t)( dx, dy)

∣∣∣∣∣
]

.
1

M

(
1 + E

[
sup
t∈[0,T ]

∣∣∣∣∫ t

0

σ
(
Xi,n(s), Y i,n(s)

)
dW i(s)

∣∣∣∣
])

.
1

M
;

moreover, for the same reasons

P

(∫ T

0

∫ T

0

W1

(
S(n)(t), S(n)(s)

)p
|t− s|1+αp

dtds > R

)

≤ 1

R

∫ T

0

∫ T

0

E
[
W1

(
S(n)(t), S(n)(s)

)p]
|t− s|1+αp

dtds

≤ 1

nR

n∑
i=1

∫ T

0

∫ T

0

E
[∣∣(Xi,n(t), Y i,n(t)

)
−
(
Xi,n(s), Y i,n(s)

)∣∣p]
|t− s|1+αp

dtds

.
1

R

∫ T

0

∫ T

0

|t− s|
p
2

|t− s|αp+1
dtds

.
1

R

if αp < p
2 − 1. Therefore for every ε every Q (n) gives probability less than ε to the

complement of K(x0,y0)
M,R , for M and R big enough.

Let us call S̃ the space in which we seek for the (unique) solution to the partial differ-
ential equation (3.4): we set

S̃ =

{
µ ∈ C ([0, T ]; Pr1) : µ(t)� LRd×Re

with
d (µ(t))

dLRd×Re

∈ L2(Rd) for a.e. t ∈ [0, T ]

}
. (5.1)

Now for each measure µ0 ∈ Pr(Rd×Re) and each test function ϕwe define the functional
Ξϕµ0

: C ([0, T ]; Pr1)→ R as

Ξϕµ0
(µ) = sup

t∈[0,T ]

∣∣∣∣∣〈µ(t)− µ0, ϕ〉 −
∫ T

0

L(µ(s))ϕds

∣∣∣∣∣ ∧ 1 .

Approximating the discontinuous part of L with smooth functions, it is easy to see (again
thanks to boundedness) that Ξϕµ0

is measurable.
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Proposition 5.2. For every choice of a test function ϕ and a probability measure µ0 on
Rd ×Re the functional Ξϕµ0

is continuous on S̃.

Proof. Let µ ∈ S̃ and take a sequence
{
µ(n)

}
n∈N ⊂ C ([0, T ]; Pr1) such that µ(n) → µ

inC ([0, T ]; Pr1). Recalling the definition of L (see 3.7), we see that the convergence of the
terms 〈µ(n)(t)−µ0, ϕ〉 and

∫ t
0
〈µ(n)(s), Aϕ〉ds is obvious; we bring therefore our attention

on the part of L containing discontinuous coefficients.
Recall that F1 and F2 are the sets of discontinuity of the functions b1 and b2, respectively,
and let F = F1 ∪ F2. Since µ ∈ S̃ we have∫

F

µ(s)( dx, dy) = 0

for almost every s ∈ [0, T ], so that the set F { has probability 1. It follows that for almost
every s ∈ [0, T ]∫

Rd×Re

[b1(x, y)∂xϕ(x, y) + b2(x, y)∂yϕ(x, y)]µ(n)(s)( dx, dy)

converges to ∫
Rd×Re

[b1(x, y)∂xϕ(x, y) + b2(x, y)∂yϕ(x, y)]µ(s)( dx, dy)

and the convergence of the integral with respect to s follows then from the Dominated
Convergence Theorem.
It remains to discuss the convergence of the term in which g2 appears. For almost every s
we have〈

µ(n)(s),
〈
µ(n)(s), g2 (x, y, ·, ·)

〉
∂yϕ

〉
− 〈µ(s), 〈µ(s), g2 (x, y, ·, ·)〉 ∂yϕ〉

=
〈(
µ(n)(s)− µ(s)

)
, 〈µ(s), g2 (x, y, ·, ·)〉 ∂yϕ

〉
+
〈
µ(n)(s),

〈(
µ(n)(s)− µ(s)

)
2

(x, y, ·, ·)
〉
∂yϕ

〉
and the first term on the right hand side can be handled exactly as before, for it is con-
tinuous on a set of measure 1 (the complement of the set of discontinuities of η1η2). For
the second term, we fix ε > 0 and we find, by tightness, a compact set Kε such that
µ(n)(s)

(
K{
ε

)
< ε for every n and µ(s)

(
K{
ε

)
< ε as well. Therefore, recalling that

g2(x, y, x̂, ŷ) = θ(x, x̂)η1(y)η2(ŷ),〈
µ(s)(n),

〈(
µ(s)(n) − µ(s)

)
, g2 (x, y, ·, ·)

〉
∂yϕ

〉
≤ 2ε‖∂yϕ‖‖g2‖+‖∂yϕ‖‖η1‖

∫
Kε

∣∣∣〈(µ(n)(s)− µ(s)), θ(x, x̂)η2(ŷ)〉
∣∣∣µ(n)(s)( dx̂, dŷ) .

The right hand side of this last inequality converges to 0 uniformly over Kε. Indeed η2 is
discontinuous only on a set H2 with Lebesgue measure zero; since the marginal of µ(s)
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with respect to y has an L2 density, the same argument as above, applied to
(
Rd ×H2

){
,

yields the pointwise convergence∫
Rd×Re

θ(x, x̂)η2(ŷ)µ(n)(s)( dx̂, dŷ)→
∫
Rd×Re

θ(x, x̂)η2(ŷ)µ(s)( dx̂, dŷ).

The fact that the convergence is actually uniform is a consequence of the uniform continuity
of θ, that ensures that the sequence of functions{

x 7→
∫
Rd×Re

θ(x, x̂)η2(ŷ)µ(n)(s)( dx̂, dŷ)

}
n∈N

is not only equi-bounded but also equi-continuous.

Remark 5.1. The last part of this proof is where uniform continuity in y is needed if one
considers the alternative assumption (c) in Remark 2.1.

Proposition 5.3. Take any weakly convergent subsequence of Q (n) and let Q be its limit
point. Then Q

(
S̃
)

= 1.

Proof. Let γ1 : Rd → R and γ2 : Re → R be smooth probability densities with compact
support satisfying

|∂xγ1(x) · x| . γ1(x)∀x ∈ Rd,
|∂yγ2(y) · y| . γ2(y)∀y ∈ Re,

and set γ(x, y) = γ1(x)γ2(y). Then

|∇γ(x, y) · (x, y)| . γ(x, y) ∀(x, y) ∈ Rd ×Re .

Choose a sequence
{
α(n)

}
n∈N of real numbers that converges to 0 and such that(

α(n)
)−3 ≤ n for every n ∈ N , and define mollifiers γ(n)(x, y) as

γ(n)(x, y) =
1

α(n)
γ
( x

α(n)
,
y

α(n)

)
;

finally define the empirical densities

u(n)(t)(x, y) =
(
S(n)(t) ∗ γ(n)

)
(x, y)

and denote byQ u(n)

their laws on L2(0, T ;L2(Rd×Re)). Lemmata 5.1 and 5.2 in [1] can
be applied to deduce that the family

{
Q u(n)

}
n∈N

belongs both to L2(0, T ;W 1,2(Rd ×
Re)) and to W β,2(0, T ;H−2(Rd × Re)) for some β > 0, and thus is tight in
L2(0, T ;L2(Rd ×Re)) thanks to a result by Simon [6].
Because of this fact and of Proposition 5.1 the laws

ξ(n) = L
(
S(n), u(n)

)
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are tight inC(0, T ; Pr1)×L2(0, T ;L2(Rd×Re)); ifQ is as in the statement of the propos-
ition, there must then exist a convergent subsequence ξ(nk) whose limit ξ has marginal Q
onC(0, T ; Pr1). By Skorohod’s theorem we can find, on some probability space (Ω̂, F̂ , P̂),
a sequence of random variables

(
Ŝ(nk), û(nk)

)
with law ξ(nk) that, with P̂ probability 1,

converge strongly to some random variable (Ŝ, û) such that Ŝ has law Q . We want now to
show that Ŝ has û as its density. To this end note that with P̂ probability 1 for almost every
(t, x, y)

û(nk)(t)(x, y) =
(
γ(nk) ∗ Ŝ(nk)(t)

)
(x, y).

Therefore for any ϕ ∈ C(Rd ×Re) we have, for P̂⊗L[0,t] almost every (ω, t),∫
Rd×Re

ϕ(x, y)û(t)( dx, dy) = lim
k→∞

∫
Rd×Re

ϕ(x, y)û(nk)(t)( dx, dy)

= lim
k→∞

∫
Rd×Re

ϕ(x, y)

∫
Rd×Re

γ(nk)(x− x̂, y − ŷ)Ŝ(nk)(t)( dx̂, dŷ) dxdy

= lim
k→∞

∫
Rd×Re

(∫
Rd×Re

γ(nk)(x− x̂, y − ŷ)ϕ(x, y) dxdy

)
Ŝ(nk)(t)( dx̂, dŷ)

=

∫
Rd×Re

ϕ(x̂, ŷ)Ŝ(t)( dx̂, dŷ) .

Taking a countable dense set in C(Rd×Re), we have that the above equality holds for any
ϕ in such set. Therefore with P̂ probability 1 Ŝ has an L2 density, hence

Q (S̃) = P̂(Ŝ ∈ S̃) = 1 .

We can now give a proof of our main result, Theorem 3.1.
Consider a weakly convergent subsequence {Q (nk)}k∈N of {Q (n)}n∈N (which exists
thanks to Proposition 5.1) and let Q be its limit; let moreover H be a countable dense
subset of C2

c (Rd × Re). We have that, for ϕ ∈ H and µ0 ∈ Pr1 (writing simply C for
C ([0, T ]; Pr1)),

0 ≤ lim
n→∞

(∫
C

Ξϕµ0
dQ (n)

)2

≤ lim
n→∞

E

[
sup
t∈[0,t]

∣∣∣M (n)
ϕ (t)

∣∣∣2] . lim
n→∞

1

N
= 0,

where MN,ϕ(t) was defined in (3.3); the above inequality holds thanks to boundedness of
ϕ and σ and to independence of the Brownian motions W i.
Therefore, by the continuity of Ξ given in Proposition 5.2, we deduce that∫

C

Ξϕµ0
dQ = 0 ;

hence, for ϕ ∈ H and µ0 as above, the set of measure-valued processes µ for which
Ξϕµ0

(µ) = 0 has Q probability 1. Since H is countable and dense, this implies that, for
given µ0 ∈ Pr1(Rd ×Re), the set{

µ ∈ C ([0, T ]; Pr1) : Ξϕµ0
(µ) = 0 ∀ϕ test function

}
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has Q probability 1. By uniqueness of solutions to (3.4) we also have that Q must be a
Dirac mass concentrated on the unique solution, thus a constant. This implies that the whole
sequence {Q (n)}n∈N converges in probability to Q . Finally Proposition 5.3 ensures that
the unique solution has a density in L2. Theorem 3.1 is proved.

6. Extensions

The existence of a L2 density for the i.i.d. initial conditions Xi
0 seems not to be funda-

mental, and is used here to obtain estimates that are uniform in (x, y). One can show, re-
peating the arguments above with some refinements, that the solution of the Fokker-Planck
equation (3.4) exists and is unique also when the initial data for the dynamics of Xi,n do
not have a density but just bounded second moment. In this case one should introduce the
empirical density only with respect to y:

u(n)(t)(x, y) =

∫
Rd×Re

γ2(y − ŷ)S(n)(t)( dx̂, dŷ) ,

and note that the estimates provided by Lemmata 5.1 and 5.2 in [1] still hold, because they
are a consequence of boundedness of the coefficients and of an L2 bound on u(n)(0) only.
In this case, after passing to almost sure convergence by using Skorohod’s theorem as in
the proof of Proposition 5.3, one cannot expect that Ŝ has a joint density. However one
can repeat the argument for πyŜ, the marginal of Ŝ with respect to y, and deduce that any
limit point of any subsequence of the lawsQ (n) must give measure 1 to the set of measure-
valued functions µ whose marginal with respect to y has an L2 density. The rest of the
proof remains unchanged.

If one uses the alternative assumption (b) in Remark 2.1, then the smoothing in the
variable x given by the mollifiers γ(n) is useless. The details have to be carefully adjusted
since the is no global boundedness estimate; however it should be sufficient to exploit the
sublinear growth together with the L2 estimate on the initial conditions. A rigorous study
of this situation is left for future work. It is anyway important to notice that in this case one
will not see a second order operator in the x variable in the limit Fokker-Planck equation,
which will then take the form

∂tµt =
1

2
Tr
[
∂2y (σ2σ

∗
2µ(t))

]
− div(bµ(t))

− divy

(
µ(t)

∫
g2(·, ·, x̂, ŷ)µ(t)( dx̂, ŷ)

)
. (6.1)
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