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Abstract

Optimal control deals with optimization problems in which
variables steer a dynamical system, and its outcome con-
tributes to the objective function. Two classical approaches
to solving these problems are Dynamic Programming and the
Pontryagin Maximum Principle. In both approaches, Hamil-
tonian equations offer an interpretation of optimality through
auxiliary variables known as costates. However, Hamiltonian
equations are rarely used due to their reliance on forward-
backward algorithms across the entire temporal domain. This
paper introduces a novel neural-based approach to optimal
control, with the aim of working forward-in-time. Neural net-
works are employed not only for implementing state dynam-
ics but also for estimating costate variables. The parameters
of the latter network are determined at each time step using a
newly introduced local policy referred to as the time-reversed
generalized Riccati equation. This policy is inspired by a re-
sult discussed in the Linear Quadratic (LQ) problem, which
we conjecture stabilizes state dynamics. We support this con-
jecture by discussing experimental results from a range of op-
timal control case studies.

Introduction
Optimal control (Lewis, Vrabie, and Syrmos 2012) offers
a wide framework to set up optimization problems that are
concerned with the steering of a dynamical system in some
parsimonious way. It is therefore clear that its scope is quite
large and it intersects many areas such as, for instance, pure
math, natural sciences and engineering. Being the optimiza-
tion problem objective defined on the solution of a system
of ODEs over a certain temporal horizon [t0, T ], it has a
global-in-time nature. Indeed, classical approaches to op-
timal control such as the Pontryagin Maximum Principle
(see (Gamkrelidze, Pontrjagin, and Boltjanskij 1964; Gi-
aquinta and Hildebrandt 2013)) and dynamic programming
(see (Bardi, Dolcetta et al. 1997)) both characterize solu-
tions in terms of a boundary problem for some differential
conditions (usually a PDE in dynamic programming and a
system of ODEs with the Pontryagin maximum principle).
This means that, in general, the algorithms to find solutions
require iterative forward/backward approaches to glue the
local-in-time computations of the differential equations with
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the boundary conditions at opposite sides of the temporal in-
terval.

In many instances of control problems, where either the
complexity of the model is high and/or the temporal hori-
zon could be very long, as it could happen for instance in
Reinforcement Learning (Sutton and Barto 2018; Bertsekas
2019) or Lifelong Learning (Betti et al. 2022; Mai et al.
2022), these methods are unfeasible and we usually need
to resort to different control strategies. A typical approach
is that of using Model Predictive Control (Garcia, Prett, and
Morari 1989) (also known as receding horizon control), with
a real-time iteration (RTI) scheme for solving the online op-
timization problem (Diehl, Bock, and Schlöder 2005). The
necessity of finding optimization procedures that only ex-
ploit forward (in time) computations is an especially sensi-
ble matter within the machine learning community, where
the possibility of performing a backpropagation through the
entire temporal horizon (backpropagation through time) is
considered to be extremely implausible from a biological
point of view (Hinton 2022) and in some cases prohibitively
costly.

In this work we present a novel approach that makes use
of Hamilton Equations giving an estimate of the costate
function through a neural-network computation, working
forward-in-time. The basic idea of our approach is to esti-
mate the parameters of this network by means on an indi-
rect usage of the Hamilton equations. Recently, in (Jin et al.
2019), the possibility of exploiting Hamiltonian equations
for learning system dynamics and controlling policies for-
ward in time has been investigated. In this paper, the authors
introduced Pontryagin Differentiable Programming (PDP)
to efficiently compute the gradients of the state trajectory
with respect to the system parameters using an auxiliary con-
trol system. This approach differs from the method proposed
in this paper by the fact that, instead, in the present work, we
use Hamilton equations indirectly for defining an optimiza-
tion problem for the temporal variations of the model pa-
rameters. In doing so, we are basically defining a dynamic
on the parameters that estimate the costate in a similar man-
ner as we would do with the Riccati equation in the Linear
Quadratic control problem. We conjecture that the resulting
time-reversed dynamics will lead to a stabilizing effect on
the state equation, hence opening the possibility to use this
method forward-in-time.
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This approach has been inspired by the possibility of us-
ing optimal control techniques in the continual online learn-
ing scenario recently proposed in (Betti et al. 2022) to for-
mulate a class of lifelong problems using the formalism of
control theory. For this reason, throughout the paper we as-
sume that the dynamical system that defines the evolution of
the state is also expressed by a neural model, in the form of
a continuous time recurrent neural network (Zhang, Wang,
and Liu 2014). The authors in (Betti et al. 2022) proposed a
method to enforce stability by pushing the costate dynamic
to converge to zero, and hence directly interfering with the
dynamics prescribed by Hamilton equations. Conversely, we
directly leverage on Hamilton equations to devise a stabiliz-
ing policy for the system.

The paper is organized as follows. In Section we describe
the class of dynamical models that we take into account,
Section is devoted to the formulation of the control prob-
lem and contains a short review of the main results from
optimal control that will be used in the reminder of the pa-
per. Section constitutes the core part of the contribution and
it is where we introduce the time-reversed generalized Ric-
cati equation. Section contains the experimental observa-
tions that have been organized in three different case studies,
while conclusions and ideas for future work are the subjects
of Section .

Continuous Time State Model
Let us focus on models that depend onN parameters, whose
values at time t are yielded by α(t), and that are based on an
internal state x(t) of size n which dynamically changes over
time. We consider a classic state model

x′(t) = f(x(t), α(t), t), t ∈ (t0, T ] (1)

where f : Rn ×RN × [t0, T ] → Rn is a Lipschitz function,
t 7→ α(t) is the trajectory of the parameters of the model,
which is assumed to be a measurable function, and T is the
temporal horizon on which the model is defined; t0 ≥ 0.
We assume that the p-components output of the model is
computed by a fixed transformation of the state, π : Rn →
Rp, usually a projection of class C∞(Rn;Rp). The initial
state of the model is assigned to a fixed vector x0 ∈ Rn, that
is

x(t0) = x0. (2)
Let us now pose A := {α : [t0, T ] → RN :
α is measurable}.
Definition 1. Given a β ∈ A, and given an initial state x0,
we define the state trajectory, that we indicate with t 7→
x(t;β, x0, t0), the solution of (1) with initial condition (2).

The goal of this work is to define a procedure to estimate
with a forward-in-time scheme an approximation of the op-
timal control parameters α.1 Notice that the explicit time de-
pendence t of Eq. (1) is necessary to take into account the
provision over time of some input data to the model. In the
next section, we will give a more precise structure to such
temporal dependence.

1The meaning of optimality will be described in details in Sec-
tion

Neural State Model
We implement the function f of Eq. (1) by a neural net-
work γ, where the dependence on time t is indirectly mod-
eled by a novel function u(t), that yields the d-dimensional
input data provided at time t to the network. Formally,
for all ξ ∈ Rn, for all s ∈ [t0, T ] and all a ∈ RN ,
f(ξ, a, s) := γ(ξ, u(s), a), where, for all fixed a ∈ RN ,
the map γ(·, ·, a) : Rn × Rd → Rn is a neural network and
u : [t0, T ] → Rd is the input signal, being u ∈ BV ((t0, T ))
an assigned input map of bounded variation2. More directly
we can assume that we are dealing with a Continuous Time
Recurrent Neural Network (CTRNN) (see (Zhang, Wang,
and Liu 2014)) that at each instant estimates the variation
of the state based on the current value of the state itself and
on an external input. The network γ(·, ·, a) represents the
transition function of the state. In this new notation, the dy-
namic of the state, given by Eq. (1) together with Eq. (2), is
described by the following Cauchy problem for x:{

x′(t) = γ(x(t), u(t), α(t)), for t ∈ (t0, T ]

x(t0) = x0.
(3)

To help the reader in giving an initial interpretation to the
parameters α, at this stage it is enough to assume that α
could basically represent the weights and the biases of the
network γ. Similarly, the state x could be imagined as the
usual state in a CTRNN. However, there are still some steps
to take before providing both α and x the exact role we have
considered in this paper. First, we need to define the way α
participates in an optimization problem, defining a control
problem whose control parameters are α. This will be the
main topic of the next Section , where we will start from the
generic state model of the beginning of Section , and then
cast the descriptions on the neural state model γ—Section .
When doing it, we will also reconsider the role of α in the
context of the neural network γ, due to some requirements
introduced by the optimization procedure over time.

Control Problem
Suppose now that we want to use the model described in
Eq. (1) paired with Eq. (2) to solve some task that can be
expressed as a minimization problem for a cost functional
α 7→ C(α). We recall the notation x(t;α, x0, t0), introduced
in Def. (1), to compactly indicate the state x and all its de-
pendencies as a solution of Eq. (1) with initial values (2).
The cost functional has the following form:

Cx0,t0(α) :=

∫ T

t0

ℓ(α(t), x(t;α, x0, t0), t) dt, (4)

where ℓ(a, ·, s) is bounded and Lipshitz ∀a ∈ RN and
∀s ∈ [t0, T ]. The function ℓ is usually called Lagrangian
and it can be thought as the counterpart of a classic machine-
learning loss function in control theory. Because the term
x(t;α, x0, t0) in Eq. (4) depends on the variables α through

2Here the space BV (t0, T ) is the functional space of functions
of bounded variation, see (Ambrosio, Fusco, and Pallara 2000).
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the integration of a first-order dynamical system, the prob-
lem

min
α∈A

Cx0,t0(α) (5)

is a constrained minimization problem which is usually de-
noted as control problem (Bardi, Dolcetta et al. 1997), as-
suming that a solution exists.

A classical way to address problem (5) is through
dynamic programming and the Hamilton-Jacobi-Bellman
equation (Bardi, Dolcetta et al. 1997), that will be the key ap-
proach on which we will build the ideas of this paper, paired
with some intuitions to yield a forward solution over time.
We briefly summarize such classical approach in the follow-
ing. The first step to address our constrained minimization
problem is to define the value function or cost to go, that is
a map v : Rn × [t0, T ] → R defined as

v(ξ, s) := inf
α∈A

Cξ,s(α), ∀(ξ, s) ∈ Rn × [t0, T ].

The optimality condition of the cost C then translates into
an infinitesimal condition (PDE) for the value function v
(see (Bardi, Dolcetta et al. 1997)); such result can be more
succinctly stated once we define the Hamiltonian function
H : Rn × Rn × [t0, T ] → R

H(ξ, ρ, s) := min
a∈RN

{ρ · f(ξ, a, s) + ℓ(a, ξ, s)}, (6)

being · the dot product. Then the following well-known re-
sult holds.
Theorem 1 (Hamilton-Jacobi-Bellman). Let us assume that
D denotes the gradient operator with respect to ξ. Further-
more, let us assume that v ∈ C1(Rn × [t0, T ],R) and that
the minimum of Cξ,s, Eq. (5), exists for every ξ ∈ Rn and
for every s ∈ [t0, T ]. Then v solves the PDE

vs(ξ, s) +H(ξ,Dv(ξ, s), s) = 0, (7)

(ξ, s) ∈ Rn × [t0, T ), with terminal condition v(ξ, T ) = 0,
∀ξ ∈ Rn. Equation (7) is usually referred to as Hamilton-
Jacobi-Bellman equation.

Proof. See appendix A of (Betti et al. 2023).

The result stated in Theorem 1 gives a characterization of
the value function; the knowledge of the value function in
turn gives a direct way to construct a solution of the prob-
lem defined in Eq. (5) by a standard procedure called syn-
thesis procedure (Evans 2022; Bardi, Dolcetta et al. 1997),
for which we summarize its main ingredients. The first step
is, once a solution of Eq. (7) with the terminal condition
v(ξ, T ) = 0, ∀ξ ∈ Rn is known, to find an optimal feedback
map S : Rn × [t0, T ] → RN defined by the condition

S(ξ, s) ∈ argmin
a∈RN

{Dv(ξ, s) · f(ξ, a, s) + ℓ(a, ξ, s)}. (8)

Once a function S with such property is computed, the sec-
ond step is to solve

x′(t) = f(x(t), S(x(t), t), t), for t ∈ (t0, T ),

with initial condition x(t0) = x0, and call a solution of this
equation x∗. Then the optimal control α∗ is directly given
by the feedback map:

α∗(t) = S(x∗(t), t). (9)

Hamilton Equations There exists another route that can
be followed to face the problem of Eq. (5), and that does
not directly make use of Hamilton-Jacobi-Bellman equa-
tion (7). Such a route, that we will exploit in the rest of
the paper, mainly rely on an alternative representation of the
value function which is obtained through the the method of
characteristics (Courant and Hilbert 2008) and which basi-
cally makes it possible to compute the solution of Hamilton-
Jacobi-Bellman equation along a family of curves that sat-
isfy a set of ordinary differential equations (ODEs). This ap-
proach is also equivalent (see (Bardi, Dolcetta et al. 1997))
to the Pontryagin Maximum Principle (Giaquinta and Hilde-
brandt 2013). Let us define the costate p(t) := Dv(x(t), t)
and consider the following system of ODEs known as
Hamilton Equations,

x′(t) = Hρ(x(t), p(t), t); t ∈ (t0, T ]

p′(t) = −Hξ(x(t), p(t), t); t ∈ (t0, T ]

x(t0) = x0;

p(T ) = 0,

(10)

being Hρ and Hξ the derivatives of H with respect to its
second and first argument, respectively. Given a solution to
Eq. (10), we can find a solution of Eq. (7) with the appropri-
ate terminal conditions (see (Bardi, Dolcetta et al. 1997)).
More importantly, this means that instead of directly find-
ing the value function v, in order to find the optimal control
α∗ we can solve Eq. (10) to find p∗ and x∗ and then, as we
describe in Eq. (9) and (8), choose

α∗ ∈ argmin
a∈A

{p∗(t) · f(x∗(t), a, t) + ℓ(a, x∗(t), s)}. (11)

While the problem reformulated in this way appears to be
significantly more tractable, having traded a PDE for a sys-
tem of ODEs, the inherent difficulty of solving a global-in-
time optimization problem remains and can be understood
as soon as one realizes that Eq. (10) is a problem with both
initial and terminal boundary conditions. From a numerical
point of view, this means that in general an iterative proce-
dure over the whole temporal interval is needed (for instance
shooting methods (Osborne 1969)), making this approach,
based on Hamilton equations, unfeasible for a large class of
problems when the dimension of the state and/or the length
of the temporal interval is big. Finding a forward approach to
deal with this issue will be the subject of Section , while our
next immediate goal is to bridge the just introduced notions
to formalize the role of α in our neural-based approach.

Controlling the Parameters of the Network
Let us now bridge the just described notions with the neural-
based implementation γ of the state model, as we have al-
ready discussed in Section . In this section, we will give a
detailed description of the state variable x(t) associated to
the neural computation and we will discuss the specific in-
stance of the controls α(t) we consider, that are both related
to the parameters of net γ.

We consider a digraph G = (V,E) and, without loss of
generality, let us assume that V = {1, . . . ,m}. Remember
that given a digraph, for each i ∈ V we can always define
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two sets ch(i) := {j ∈ V : (i, j) ∈ E} and pa(i) := {j ∈
V : (j, i) ∈ E}. The digraph becomes a network as soon
as we decorate each arc (j, i) ∈ E with a weight wij(t) and
each vertex i ∈ V with a neuron output yi(t) and a bias
bi(t), for every temporal instant t ∈ [t0, T ]. Then the typical
CTRNN computation can be written as

y′i(t) = −yi(t) + σ
( ∑

j∈pa(i)

wij(t)yj(t) + bi(t)

+
d∑

j=1

kij(t)uj(t)
)
,

(12)

where kij(t) is a component of the weight matrix associated
with the input u and σ : R → R is an activation function.
In general, when dealing with optimization over time, we
want to be able to impose a regularization not only on the
values of the parameters of the network, but also on their
temporal variations; as a matter of fact, in many applica-
tions one would consider preferable slow variations or, if
the optimization fully converged, even constant parameters
of the network. For this reason it is convenient to associate
the control variables α with the temporal variations (deriva-
tives) of the network’s parameters. The classic learnable pa-
rameters (weights and biases) of the network can be con-
sidered as part of the state x, together with the neuron out-
puts y. This requires (i.) to extend the neural state model of
Eq. (3), in order to provide a dynamic to the newly intro-
duced state components, and (ii.) to take into account the
novel definition of α. Formally, the state at time t becomes
x(t) = (y(t), w(t), b(t), k(t)) and γ is only responsible of
computing the dynamic of the y-portion of it. 3 The state
model of Eq. (3), involving all the components of x above,
is then,

y′(t) = γ(y(t), u(t), w(t), b(t), k(t))

w′
ij(t) = ωij(t), (j, i) ∈ E

b′i(t) = νi(t), i ∈ V

k′ij(t) = χij(t), i ∈ V and j = 1, . . . , d.

(13)

We can finally formalize the control variables4 α(t) =
(ω(t), ν(t), χ(t)), that, when paired with the previous sys-
tem of equations, allows us to view such a system as a neural
state model in the form x′(t) = f(x(t), α(t), t), coherently
with Eq. (1) and (3). Due to the definition of α, a quadratic
penalization in α amounts to a penalization on the “veloci-
ties” of the parameters of the network.

Time-Reversed Generalized Riccati Equation
As we briefly discussed in Section , the approach to prob-
lem (5) based on Hamilton equations is not usually com-
putationally feasible, mostly due to the fact that it involves
boundary conditions on both temporal extrema t0 and T .

3We have overloaded the symbol γ: in Eq. (3) was defined as
the transition function of the whole state, here only of the y part.

4To avoid a cumbersome notation we will denote with the name
of a state variable or control variable without specifying any index
simply the list of those variables.

More dramatically, Hamilton equations are not generally
stable. Consider, for instance, the following example of a
widely known control problem:
Example 1 (Linear Quadratic Problem). The Scalar Lin-
ear Quadratic problem is obtained by choosing f(ξ, a, s) =
Aξ + Ba and ℓ(a, ξ, s) = Qξ2/2 + Ra2/2 with Q and R
positive and A ∈ R, B ∈ R. In this specific case, it turns
out that the Hamiltonian can be computed in closed form:
H(ξ, ρ, s) = Qξ2/2−B2ρ2/(2R)+Aξρ. Hence, the Hamil-
ton equations of Eq. (10) become x′(t) = −B2p(t)/R +
Ax(t) and p′(t) = −Qx(t) − Ap(t). The solution of such
system, for general initial conditions, have positive exponen-
tial modes exp(ωt) with ω =

√
A2 +B2Q/R, that obvi-

ously generates instabilities.
However, it turns out that the LQ problem of Example 1

can be approached with a novel solution strategy, which
yields stability and is the key element we propose and ex-
ploit in this paper to motivate our novel approach to forward-
only optimization in neural nets. We can in fact assume that
the costate is estimated by p(t) = µ(x(t), θ(t)), that is de-
fined by µ(ξ, ϑ) = ϑξ, ∀(ξ, ϑ) ∈ R2. In other words, in
this example at each time instant t the costate p(t) is a linear
function of the state x(t) with parameter θ(t). By the def-
inition of the costate, this is equivalent to assume that the
value function v is a quadratic function of the state. We then
proceed as follows:
1. We randomly initialize θ(0) and set x(0) = x0;
2. At a generic temporal instant t, under the assumption

that p(t) = µ(x(t), θ(t)), we consider the condition
p′(t) = dµ(x(t), θ(t))/dt with p′ computed with the LQ
Hamilton equation (10):

µξ(x(t), θ(t)) · x′(t) + µϑ(x(t), θ(t)) · θ′(t)
=−Qx(t)−Aθ(t)x(t).

Solving this for θ′(t) we obtain the Riccati equation:
θ′(t) = (B2/R)θ2(t)− 2Sθ(t)−Q;

3. We change the sign of the temporal derivative in the Ric-
cati equation

θ′(t) = −(B2/R)θ2(t) + 2Sθ(t) +Q, (14)

and we use it with initial conditions to compute t 7→ θ(t);
4. Finally, we compute the control parameter using

Eq. (11), where the optimal costate is replaced with its
estimation given with the network µ.

As it is known, Riccati equation must be solved with ter-
minal conditions; in our case, since we do not have any ter-
minal cost, the optimal solution would be recovered impos-
ing the boundary condition θ(T ) = 0. Solving this equa-
tion with initial conditions, however, does not have any in-
terpretation in terms of the optimization problem (differ-
ently from the forward solution of the costate in Hamilton
equations). Instead, let us set for simplicity t0 = 0 and de-
fine Φ: t ∈ [0, T ] → s ∈ [0, T ], with s := T − t, so
that if we let θ̂ := θ ◦ Φ−1, we have ∀s ∈ [0, T ] that
θ̂(s) = θ(Φ−1(s)) = θ(T − s). This time, θ̂ will satisfy
exactly Eq. (14). The solution of this equation with initial
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condition θ̂(0) = 0 can be found explicitly by standard tech-
niques:

θ̂(s) =
R

B2
λ1λ2

eλ1s − eλ2s

λ2eλ1s − λ1eλ2s
,

with

λ1,2 = A±
√
A2 +

QB2

R
.

This solution has the interesting property that as T → ∞
and s → ∞ with s < T we have that θ̂(s) → λ1R/B

2

which is the optimal solution on the infinite temporal hori-
zon. The transformation Φ defined above acts on the tempo-
ral domain [0, T ] and implements a reversal of time, that we
can also denote as t → T − t. Given a trajectory on [0, T ],
applying a time reversal transformation to it (as we did for
the parameter θ) entails considering the trajectory in which
the direction of time is reversed. The dynamics that we ob-
serve while moving forward with this new temporal variable
are the same dynamics that we would observe when starting
from T and moving backward in the original variable. This
comment should also give an intuitive justification of why
we could trade final conditions with initial conditions when
this transformation is applied.

Neural Costate Estimation
The main contribution of this work is the proposal of a novel
method to find a forward approximation of the costate tra-
jectory by making use of an additional Feed-forward Neural
Network (FNN) to predict its values. We assume that the
costate p is estimated by a FNN µ(·, ·, ϑ) : Rn × Rd → Rn

with parameters ϑ ∈ RM and then we generalize steps 1–4
that we employed in the LQ problem in the previous subsec-
tion as follows: 5

1. We randomly initialize the parameters of the network µ
to the values θ(0) and select an initial state x0. This al-
lows us to compute µ(x0, θ(0)) and in turn x′(0), using
Hamilton equations with µ(x0, θ(0)) in place of p(0).6

2. At a generic temporal instant t, we assume to know x(t)
and θ(t), we compute x′(t) = Hρ(x(t), µ(x(t), θ(t)), t)
and define the loss function (see Remark 2)

Ωt(ϕ) :=
1

2
∥µξ(x(t), θ(t)) · x′(t) + µϑ(x(t), θ(t)) · ϕ

+Hξ(x(t), µ(x(t), θ(t)), t)∥2 +
ε

2
∥ϕ∥2.

(15)

We choose δθ(t) ∈ argminϕ∈RM Ωt(ϕ) by performing
a gradient descent method on Ωt.

5Here we have assumed, mainly to avoid unnecessary long
equations, that the µ(·, ϑ) take as input only the state; however,
more generally its domain could also be enriched with the input
signal u. Indeed, in the experimental section we will show some
case-studies where this is the case.

6Due to the fact that the controls enters in the state equation
linearly (see Eq. (13)) if the Lagrangian is quadratic in the controls,
like in Eq. (17), then the Hamiltonian (6) can be computed in closed
form.

3. We numerically integrate the equation

θ′(t) = −δθ(t) (16)

with an explicit Euler step, in order to update the values
of θ. We denote this equation (see Remark 4) the time-
reversed generalized Riccati equation.

4. Finally, we compute the control parameter using Eq. (11)
where the optimal costate is replaced with its estimation
given with the network µ.

Remark 1. Notice that the assumption that the costate is
computed as a function of the state is consistent with its def-
inition in terms of the value function p(t) = Dv(x(t), t).
The only real assumption that we are making is that the ex-
plicit temporal dependence in Dv(x(t), t) is captured by the
dynamic of the parameters θ(t) of the network µ.
Remark 2. The loss function Ωt defined in Eq. (15)
is designed to enforce the consistency between the fol-
lowing two different estimates of the temporal varia-
tions of the costate: i. the one that comes from the
explicit temporal differentiation of dµ(x(t), θ(t))/dt =
µξ(x(t), θ(t)) ·x′(t)+µϑ(x(t), θ(t)) · θ′(t) and ii. the esti-
mate −Hξ(x(t), µ(x(t), θ(t)), t) obtained from the Hamil-
ton equations.
Remark 3. Eq. (16) prescribes a dynamics for the parameters
θ that can be interpreted as a time reversal transformation
t 7→ T − t on the dynamics of the parameters of the net-
work µ induced by Hamilton equations (see Remark 2). Our
conjecture is that this prescription implements a policy that
induces stability to the Hamilton equations (see Section ).
Remark 4. Notice that in the LQ case described in the
previous section, Eq. (16) indeed reduces to Eq. (14). In-
deed, if µ(ξ, ϑ) = ϑξ and ε ≡ 0 we have that for LQ
argminϕ∈RM Ωt(ϕ) = {(B2/R)θ2(t)−2Sθ(t)−Q}, hence
δθ(t) = (B2/R)θ2(t)− 2Sθ(t)−Q. In this case the equa-
tion θ′(t) = +δθ(t) would be exactly the Riccati equation
with the correct sign.

Experiments
In the previous sections, we have presented our proposal
within the framework of a continuous time setting. In the
subsequent segment of our study, which is dedicated to ex-
perimentation, we employ explicit Euler steps of magnitude
τ to approximate the differential equations. The number of
time steps will be denoted as nT . Moreover, we assume that
the gradient descent procedure mentioned in Sec. is charac-
terized by a number of iterations niter and a learning rate λ.
In appendix B of (Betti et al. 2023) we report a summarizing
algorithm of all the procedure presented so far. In order to
provide a proof-of-concept of the ideas of this paper, we an-
alyze the capability of our forward-optimization procedure
of solving three different tasks with neural estimators: (a)
tracking a reference signal, (b) predicting the sign of an in-
put signal and (c) classifying different wave-shapes provided
as input signal. The experiences of this section are based on
a shared definition of the Lagrangian function ℓ of Eq. (4),
which consists of a penalty term on the tracking quality of
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Figure 1: Tracking of a sinusoidal target signal using a recur-
rent network γ of 2 neurons. Black dashed line: target signal,
continuous green line: response of γ. The recurrent network
has no input and the target is a sine wave with frequency
0.001 Hz.

the target signal, referred to as z, and regularization terms
both on the outputs of the neurons in network γ and on the
velocities of its parameters, i.e., the control. Formally,

ℓ(a, ξ, s) =
1

2
q(π(ξ)− z(s))2 +

1

2
r1

n∑
i=p

ξ2i +
1

2
r2

N∑
i=0

a2i ,

(17)
where z(s) is the task-specific target signal at time s and
q, r1, r2 ≥ 0 are customizable constant coefficients. We re-
call that π is a fixed map that, in this case, we assume to sim-
ply select one of the neurons in the output of γ (i.e., the first
one). Basically, minimizing the Lagrangian implies forcing
the output of a neuron, π(ξ(s)), to reproduce the target sig-
nal for every s ∈ [t0, T ]. The goal of our experiences is to
find the optimal control α which minimizes the cost func-
tional defined in Eq. (4). In the following subsections we
report the results obtained for each experiment, where the
initial time step is set to t0 = 0, the outputs of the neurons
of γ at the t0 = 0 are initialized to 0, and the parameters
of both networks γ and µ start from random values. All the
experiments have been conducted using Python 3.9 with Py-
Torch 2.0.0 on a Windows 10 Pro OS with an Intel Core i7
CPU and 16GB of memory.

Case (a): tracking a target signal Let us consider the
case where the target signal is given by z(s) = sin(2πφs),
where φ = 0.001 Hz is the frequency of z, and we want the
recurrent network γ to track it. Let us choose the model of
the network γ as composed of 2 recurrent neurons fully con-
nected to their inputs, y0 and y1, with tanh activation func-
tion, following Eq. (12) (of course, in this experience there is
no u). We also downscale the −yi term by 0.5. Moreover, we
choose the network µ as a fully-connected feed-forward net,
with 1 hidden layer made up of 20 neurons with ReLU acti-
vation functions. The output layer of µ has linear activation.
With the choice of τ = 0.5 s, nT = 104 time steps, q = 104,
r1 = 103, r2 = 105, we get the results plotted in Fig. 1. The
target signal is the black dashed line, the response of γ is the
continuous green line. The number of iterations for updating
the derivatives of the weights of µ is set to niter = 100, with
a learning rate λ = 10−5 and a decay factor ε = 103. It
is possible to see how the response of γ is able to track the
target signal and the accuracy of the tracking quickly im-
proves in the early time steps. The amplitude reached by the
response of γ is affected by a slight reduction with respect
to z, due to the regularization terms in the Lagrangian func-
tion. This experiment confirms that the tracking information,
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Figure 2: Sign prediction of a sinusoidal signal using a re-
current network γ of 2 neurons. Black dashed line: target
signal, continuous green line: response of γ. The input of
the network is a sinusoidal wave with frequency 0.002 Hz.
The target to track is the sign of the input signal.
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Figure 3: Classification of wave-shapes using a recurrent
network γ of 2 neurons. Black dashed line: target signal,
continuous green line: response of γ, continuous blue line:
input signal. The input of the network is a sequence of
sines and square waves, multiplied by a smoothing factor
1− exp(−s/ψ), where ψ = 2000 s−1.

provided through ℓ, is able to induce appropriate changes in
the parameters of γ, that allow such network to follow the
signal. Notice that this signal propagates through the state-
to-costate map µ and it is not directly attached to the neurons
of γ, as in common machine learning problems.

Case (b): predicting the sign of an input signal Let
us now assume that both networks γ and µ receive as in-
put a sinusoidal signal u(s) = sin(2πφs) with frequency
φ = 0.002 Hz. The task of predicting the sign of u(s) can
be translated in a tracking control problem, where the target
signal z(s) is defined as

z(s) =

{
1, if u(s) ≥ 0

−1, otherwise.

Here, we choose the model of the network γ as in Case (a),
while the network µ has tanh activation functions in the hid-
den layer. With the choice of τ = 0.5 s, nT = 1.5 × 104

time steps, q = 105, r1 = 103, r2 = 102, we get the results
plotted in Fig. 2. The target signal is the black dashed line,
the response of γ is the continuous green line. The maxi-
mum number of iterations for updating the derivatives of the
weights of µ is again set to niter = 100, with an adaptive
learning rate λ which starts from 10−3 and a decay factor
ε = 104. Here, the adaptive strategy for λ is the one used by
the Adam optimizer. This task is clearly more challenging
than the previous one, since we ask γ to react in function of
the input u, still using the state-to-costate map µ as a bridge
to carry the information. Interestingly, also in this case, the
response of γ is able to track the target signal, correctly in-
terleaving the information from the previous state and the
current input.

Case (c): classifying the different wave-shapes of an in-
put signal Finally, we consider the case in which both
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Figure 4: Average value of the Lagrangian function for Case
(a), (b) and (c).

networks γ and µ get as input a piece-wise defined sig-
nal characterized by two different wave-shapes. More pre-
cisely, we assume that u(s) = u1(s) = (1/2) sin(2πφs)
or u(s) = u2(s) = −(1/2)(−1)⌊2φs⌋, with frequency
φ = 0.002 Hz, in different time intervals randomly sampled
on the whole time horizon. Moreover, we multiply u(s) by a
smoothing factor 1 − exp(−s/ψ), where ψ = 2000 s−1, in
order to help the network µ learning to estimate the costate.
The task of classifying the wave-shape of u(s) can be again
translated in a tracking control problem, where the target sig-
nal z(s) is defined as

z(s) =

{
1, if u(s) = u1(s)

−1, if u(s) = u2(s).

In this case, the networks have to deal with the need of differ-
ently reacting in different time spans. We choose the models
of the networks γ and µ as in Case (b). The maximum num-
ber of iterations for updating the derivatives of the weights
of µ is again set to niter = 100, with an adaptive learning
rate λ which starts from 10−3 and a decay factor ε = 104.
The adaptive strategy for λ is the same as in Case(b). With
the choice of τ = 0.5 s, nT = 2× 104 time steps, q = 105,
r1 = 103, r2 = 102, we get the results plotted in Fig. 3. The
target signal is the black dashed line, the response of γ is
the continuous green line, the input signal is the continuous
blue line. Also in this case, the response of γ is able to track
the target signal, even if we experienced a small delay in the
tracking process that we believe to be motivated by the need
of smoothly updating the state, in order to favour the transi-
tion in switching from predicting −1 to 1 and vice-versa. In
Fig. 4 we report the average value of the Lagrangian for all
the tasks that we exposed, obtained dividing the integral of ℓ
in [0, s] by s, for each s ∈ (0, T ]. It is possible to notice that
the mean value of the Lagrangian function decreases as time
goes by, reflecting the improvement of the model in tracking
the different target signals.

Conclusions and Future Work
This paper introduced a novel theory of optimization that
points out a new perspective in the field of optimal con-
trol. The forward-in-time Hamiltonian optimization opens

0 100 200
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steps (×102)

Figure 5: Example of lack of generalization of our approach
in the wave-shape classification task. Black dashed line: tar-
get signal, continuous green line: response of γ, continuous
blue line: input signal. The target signal is provided up to
20000 steps and it is masked up to the time horizon.
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Figure 6: Example of generalization in the sign prediction
task. Black dashed line: target signal, continuous green line:
response of γ. The target is given up to 15000 steps.

up new possibilities for real-time adaptation, tracking and
control in lifelong learning scenarios. By bridging the gap
between optimal control and deep learning, this innovative
methodology paves the way for significant advancements
in the learning and adaptation capabilities of autonomous
systems in dynamic environments. The paper delved into
the theoretical foundations of forward-in-time Hamiltonian
optimization, with a particular emphasis on the concept of
time-reversed generalized Riccati equation. Future research
will focus on enhancing the learning capabilities of the
model to facilitate its application in lifelong learning tasks.

In our experiments we have shown that our proposal can
be used to efficiently solve different kinds of tracking con-
trol problems, where the target signal is always present for
each time step. It is important to emphasize that the model
is contingent upon a considerable number of parameters and
exhibits a high degree of sensitivity to their variations. Con-
sequently, tuning these parameters can be challenging. We
recall that gaining explicit generalization capabilities (i.e.,
when the target signal is not given) is not a goal pursued
within the scope of this study, but it will be the main point
of our future work. Indeed, we mention that this novel ap-
proach still has limitations in such a direction. In most of
the experiments, the response of γ is not able to generate
the target signal if we mask it after a certain number of time
steps, freezing the weights of µ up to the time horizon. An
example of this behavior can be seen in Fig. 5. However,
in Case (b) we have registered that γ is able to reproduce
the target z even if it is masked after 15000 steps, as shown
in Fig. 6. This result suggests further investigations on this
direction and we will orient our research interest on the ca-
pability of learning of our proposal, in order to apply it to
lifelong learning tasks (De Lange et al. 2021).
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