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Introduction

My research activity during the PhD course focussed on the investigation the molecular
mechanism of muscle contraction in striated muscle, with the aim of providing a theoretical
framework that could contribute to the definition of the mechanokinetic parameters
underlying the performance of the half-sarcomere, the functional unit of the striated
muscle, making use of the innovation provided by a simplified and controlled experimental
setup that employs a myosin–based synthetic machine. In each sarcomere, the ∼ 2 µm
structural unit of the striated muscle cell, force and shortening are generated by the cyclical
ATP-driven interactions of two bipolar arrays of motor protein myosin II, extending from
the thick filament, with the nearby actin-containing thin filaments. Different isoforms of
the myosin motor in the skeletal muscles account for the different functional requirements
of the slow muscles (primarily responsible for the posture) and fast muscles (responsible
for breathing and voluntary movements). Despite the bulk of data characterising the
mechanokinetics of muscles at the cellular level, the definition of the corresponding
parameters at a molecular level is still incomplete. Inferring their definition from
experiments on cells and tissues is complicated because of the structural organisation of
the molecular motors in the three-dimensional lattice of the sarcomere. Moreover, cellular
level studies cannot resolve the details of the motor-coupling mechanism, which is also
difficult to isolate from the contribution of the other cytoskeleton and regulatory proteins.
On the other hand, the collective dynamics of molecular motors working in ensemble is
not revealed by single molecule experiments on purified proteins. To clarify the molecular
basis of the differences in the performance of slow and fast skeletal muscle, we investigated
the isoform-dependent mechanokinetic parameters with a bottom-up approach, employing
a Dual Laser Optical Tweezers, either in position or in force clamp, to record the output
of a unidimensional synthetic machine containing the minimum number of pure myosin
isoform molecules needed to reproduce the collective action of muscle myosin II in
the muscle cell. In physiological ATP concentration, the nanomachine reproduces the
steady force and constant velocity shortening, characteristic of the isometric and isotonic
contractions of the sarcomere in vivo. The implementation of a custom length clamp
control allows us to minimize the high compliance typical of the optical trap experimental
setup: by increasing the trap stiffness up to values similar to what myosin motors are
subjected to in situ, the rate of force development to the steady state value, as well as
the force fluctuations around the isometric value (plateau), are the direct expression of
the attachment-force generation and detachment of the myosin motors. A three-state
stochastic model has been developed to reproduce and characterise the dynamics of
the small ensemble of myosin motors performing isometric contractions in physiological
ATP concentration. Accounting for the role of the force fluctuations stemming from the
discrete nature of the investigated system, allowed us to characterise the development
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and the probability distribution of the force exerted by a single myosin isoform. Through
a process of reverse engineering, it was possible to recover isoform-dependent single motor
properties from the analysis of the dynamics of the force of the whole ensemble. In
fact, data fitting of the time series of the experimental force of the ensemble provided
a self-consistent estimate of all the mechanokinetic properties of the motor ensemble,
including the motor force, the fraction of actin-attached motors, and the rate of transition
through the attachment-detachment cycle. Inferring the properties of a single molecular
motor from the analysis of the dynamics of the ensemble could pave the way to study the
emergent mechanokinetic properties of an ensemble of myosin molecules purified from
animal models or human biopsies, and of unknown isoforms, mutant and engineered
myosin motors.
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Chapter 1

Introduction to muscle

contraction

1.1 Elements of muscle contraction

In the following sections we introduce and review the current knowledge concerning
the structure of striated (skeletal and cardiac) muscle and the molecular mechanism of
muscle contraction.

1.1.1 The structure of the skeletal muscle

Skeletal muscle is composed of cylindrical multinucleated cells, the myocytes, of diameter
ranging in 30− 200 µm, running along the entire length of the muscle. The composition
of each cell is extremely complex with various level of hierarchical structural organisation,
Figure 1.1. In a single fibre the contractile components are organised in hundreds of
myofibrils, cylindrical structures with a diameter of ∼ 1 µm, arranged in bundles enclosed
by a membrane called the sarcolemma, and running in parallel along the length of the
fibre. In the fibre the myofibrils are immersed in a cytoplasmic fluid, the sarcoplasm,
along with the mitochondria and the sarcoplasmic reticulum involved in the regulation of
the internal calcium concentration that controls the contraction-relaxation cycle. In the
myofibril the contractile proteins, actin and myosin, are arranged in filaments and, along
with other accessory and regulatory proteins, constitute the ∼ 2 µm long sarcomere, the
structural unit of the striated muscle. Thousands of sarcomere are connected in series
throughout the muscle fibre.
The striated appearance of muscle under the light of the microscope is due to the
alternating pattern of light and dark bands. Electron microscopy revealed that such
appearance results from the regular alternation of the myosin-containing thick filaments
(with a diameter of 12 nm), and the actin-containing thin filaments (with a diameter of
8 nm). Each sarcomere presents a highly organised structure, detailed in the following
(see Figure 1.2). Two consecutive Z lines define the edges of the sarcomere. The thick
filament, originating from the M line at the centre of the sarcomere, and the thin filaments,
extending from the Z line at the end of the sarcomere, are partially overlapped. The
dark appearance of the A bands results from the presence of both the thick and the
thin filaments, while the central portion of the A band, called the H band, contains only
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Figure 1.1: The different levels of organisation of the skeletal muscle
structure.
A. From skeletal muscle to the myofibril. B. The structure of the sarcomere, thick
myosin-containing filaments in red and thin actin-containing filaments in orange. C.
Details of the myofilaments structure, with the contractile, regulatory and structural
proteins. D. Cross-sections at different positions along the sarcomere, revealing the
lattice organisation.

thick filaments, hence the slightly lighter colour. The lighter appearance of the I bands
at the edges of the sarcomere results from the presence of only thin filaments. During
fibre shortening the extension of the A band, defined by the length of the thick filament,
remains constant, while the I bands and the H band shorten. This is the indication of
the fact that the shortening occurs due to the relative sliding of the thin past the thick
filaments towards the centre of the sarcomere, increasing the overlap between filaments,
and not by a change in their length [1, 2]. As shown in Figure 1.1 D, cross-sections of
vertebrate myofibrils reveal that thick and thin filaments are organised into a double
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Section 1.1. Elements of muscle contraction

Figure 1.2: Electron microscopy images of the striated appearance of the
myofibrils at two different sarcomere lengths.
Top. Sarcomere length 2.6 µm. Bottom. Sarcomere length 2.1 µm. Sarcomere
length contraction occurs with the shortening of I and H bands width without any
change in the A band. (Figure from W.J. Germann, C.L. Stanfield, Principles of
human physiology, Benjamin-Cummings Pub Co)

hexagonal lattice: in the overlap zone of the A band each thick filaments is surrounded
by 6 thin filaments, and each thin filaments by three thick filaments, while cross-section
through the I bands or the H band shows only the presence of the thin or the thick
filament array respectively. At each Z line thin filaments are arranged in a tetragonal
pattern, and each thin filament is connected with four other thin filaments from the
subsequent sarcomere.
After this brief summary of the structure of a striated muscle cell we will introduce the
functionality of the myofibril.

1.1.2 The thick filament and the myosin motors

The functional unit of the striated muscle cell is the half-sarcomere (hs). In the half-
sarcomere myosin motors work in parallel as independent force generators, as the linear
relation between the force developed during isometric contractions and the degree of
filament overlap demonstrates [3]. A myosin molecule is a two-headed dimer consisting of
six polypeptides: two heavy chains and two pairs of light chains, one for each heavy chain:
one of regulatory light chains (RLC) and one of essential light chains (ELC). Each light
chain is around one tenth of heavy chain’s molecular weight. The N-terminal portion of
the heavy chains forms two globular heads, each one of them associated with two light
chains, while the C-terminal portion of the heavy chains interacts with each other forming
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Figure 1.3: Schematic representation of the myosin II molecule.
Myosin II molecule consists of two heavy chains and two pairs of light chains.
Following proteolytic digestion heavy chains can be split in a globular portion (S1)
and a tail (consisting of S2 and LMM). HMM is composed of S1 and S2 fragments.
The S2 and LMM portions are arranged in a coiled-coil structure. Figure from
(Hooper and Thuma, 2005)

a long double α-helix rod, or tail. The heavy chains can be enzymatically cut in two
fragments, the light meromyosin (LMM), comprising a large part of the tail region, and
the heavy meromyosin (HMM), consisting of two more portions, subfragments S1 ans S2.
Subfragment S1, also known as the head, corresponds to the N-terminal globular part of
the myosin molecule, and contains both the site for the hydrolysis of ATP that fuels the
motor work, and the actin-binding site. The head domain sequence is strongly conserved
among different myosin types. Subfragment S2, the neck, is a flexible α-helical coiled
coil rod that links the head to the LMM on the thick filament backbone. See Figure
1.3 for reference. The thick filament is a 800 nm long bipolar structure, constituted by
the polymerisation of the LMM in two antiparallel arrays, starting from the centre of
the sarcomere, with the heads pointing towards the end of the sarcomere. On the thick
filament, myosin heads are arranged in crowns along a three-stranded helix. Each crown
is made of three pairs of heads, emerging at 14.3 nm intervals along the filament, with an
angle of 120 ◦C between consecutive crowns. This results in an axial periodicity along the
filaments of 42.9 nm. Taking into account that 100 nm of thick filament at the centre of
the sarcomere are constituted exclusively by the overlap of antiparallel LMM, the number
of myosin heads in the half-thick filament is (800 − 100)/(6 × 14.3) = 294. The thick
filaments contains also accessory proteins involved in the organisation of the filament
structure and in the regulation of motor activity [4]. Such proteins are myosin-binding
protein C and titin, a gigantic protein that spans the whole length of the half-sarcomere
in the I band from the Z line to the tip of the thick filament, and, in the A band, lying
on the surface of the thick filament, up to the M line.
We define the working stroke as the conformational change in the actin-attached myosin
motor responsible for the force generation and the filament sliding in rigor (ATP-free). A
structural model of the myosin motor has been defined, with atomic resolution, with X ray
crystallography. The S1 head is constituted by an N-terminal nucleotide-binding region,
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a central region consisting of an upper domain and a lower actin-binding domain, and a
C-terminal segment. The nucleotide-binding and the actin-binding regions constitute the
motor domain, or catalytic domain (CD). The C-terminal portion, a α-helix connecting
the head to the S2 α-helix, is called light chain binding domain (LCD), as it is associated
to the regulatory and essential light chains. The comparison between the myosin head
crystallographic structure in rigor (corresponding to the end of the working stroke) and a
construct of S1 complex with non-hydrolysable ATP analogue, putatively corresponding
to the beginning of the working stroke [5, 6], made it possible to estimate the movement
related to the execution of the working stroke. According to the crystallographic model
the working stroke consists in ∼ 70◦ tilting of the LCD about the fulcrum at the basis
of the CD, that is firmly attached to the actin filament. The LCD acts as a lever arm
that amplifies the movement of the head-rod junction up to 11 nm axial displacement
between the CD and the thick filament backbone (tilting lever arm model) [7].

1.1.3 The structure and the regulation of the thin filament

The thin filament consists primarily of monomers of globular actin (G-actin), constituted
by two lobes separated by a deep cleft. In the presence of ATP, under physiological
conditions, G-actin monomers spontaneously polymerize forming a filamentous actin
(F-actin). The thin filament is composed by two F-actin strands coiled around each
other in a double right-handed helix, with a half-periodicity of 36.5 nm [8]. Since actin
monomers are asymmetrical, and they are all oriented in the same direction, the actin fil-
ament has a polarity with two distinguishable ends: a rapidly polymerizing end (“barbed”
or (+) end), and a slow polymerizing one (“pointed” or (−) end). All actin subunits
are oriented with their cleft, that contains the ATP binding site, towards the (−) end.
In the sarcomere, the (+) end is anchored to the Z line at the sarcomere edge, while
the (−) end extends towards the M line. Binding sites for myosin occur every 5.5 nm
along the same strand of an actin filament, and myosin movement along the actin occurs
only towards the (+) end, so that the actin filament slides in the direction of the (−)
end, towards the M line. Structural studies performed on insect flight muscles provided
evidence for myosin heads binding preferentially to “target zones” on the actin filament
[9, 10]; rabbit skeletal myosin II was described to have target zones every 36 nm along
actin [11], that is what expected from binding along one face of the actin filament with
minimal azimuthal reorientation. In the striated muscle of vertebrates the thin filament
is not only composed of F-actin: the filament unit also includes two regulatory proteins
that allow the interaction between actin and myosin with presence of Ca2+. One of
these proteins, the tropomyosin (Tm), is a rod-like coiled-coil dimer that lies along the
α-helix of actin filaments, forming a polymer that lays along the actin filament that lays
from (−) to (+) end. Every tropomyosin molecule covers seven actin monomers and
each tropomyosin dimer can bind one troponin complex, the other regulatory protein.
The troponin complex (Tn) consists of three subunits: the calcium-binding troponin
C (TnC), the actin-binding inhibitory troponin I (TnI) and the tropomyosin-binding
troponin T (TnT) [12]. TnC consists of two globular N-terminal and C-terminal regions
connected by a long helix [13], and acts as a Ca2+ sensor in muscle regulation. The
C-terminal domain contains sites with high affinity for Ca2+ and sufficient for Mg2+, so
that in relaxed conditions they are normally occupied by Mg2+, while the N-terminal
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CHAPTER 1. INTRODUCTION TO MUSCLE CONTRACTION

domain has low affinity sites but is highly selective for Ca2+ [14]. In the absence of
Ca2+, tropomyosin position covers the potential myosin-binding sites on actin. Upon
depolarization of the cell membrane, Ca2+ is released from the sarcoplasmic reticulum,
and binds the troponin C, inducing structural changes in the N-terminal domain that
result in the exposure of hydrophobic residues, that strengthen TnI/TnC binding [15],
and weaken TnI/actin interactions [16, 17]. The consequent interaction of TnI with
TnT and Tm, and the remodelling of TnT, cause an azimuthal movement of Tm on
the thin filament that exposes binding sites on actin, allowing the attachment of myosin
crossbridges, and enabling cyclic interaction between actin and myosin.

1.1.4 The chemo-mechanical acto-myosin ATPase cycle

The basic principles of the force-generating crossbridge cycle in striated muscle have been
elucidated on the basis of structural, mechanical, biochemical data [18–25]. Steady force
and shortening in muscle contraction are the result of asynchronous cyclic interactions
between myosin motors and actin, driven by adenosine triphosphate (ATP) hydrolysis on
the catalytic site of the myosin motor. In this respect myosin is an enzyme capable of
converting chemical energy into mechanical energy.
Molecular motors can be classified as processive or nonprocessive, depending on whether
they can continuously slide along their track for a long distance by undergoing many
ATP hydrolysis cycle, or they detach from their track at the end of each ATPase cycle.
The myosin II motor of muscle is classified as nonprocessive. This implies that each
myosin II motor domain spends most of its ATPase cycle time detached from actin, while
other motors are driving filament sliding. This results in an efficient way of operation
for a motor working in an ensemble. The production of force and shortening in striated
muscle is therefore the result of asynchronous cyclic interactions of myosin motors with
actin filaments in each half-sarcomere.
The model that defines the biochemical steps of ATP hydrolysis cycle of the actin-myosin
complex was suggested in 1971 by Lymn and Taylor, with fast solution kinetic studies
[20]. The cycle can be schematically described as follows (see Figure 1.4). In the absence
of ATP, the myosin head extending from the thick filament is tightly bounded to an
actin monomer on the nearby overlapping thin filament. As soon as an ATP molecule is
available it rapidly binds to a myosin head, reducing myosin affinity to actin, and the
acto-myosin complex dissociates (M−ATP + A). The binding of ATP and the detachment
from actin promote a structural change with a tilt of the LCD, the lever arm (a recovery
stroke). ATP is hydrolysed into ADP and Pi (M−ADP−Pi), which increase again the
affinity for the actin. Binding of the myosin head to an actin monomer causes the
reduction of the affinity between myosin and ATP hydrolysis products, which are then
released: Pi is released first, then ADP. In the absence of actin, the Pi release is the
limiting step of the ATP hydrolysis cycle. The release of Pi from actin-bound myosin
is associated with a large drop in the free energy and thus is the step associated with
the working stroke, which may be more or less modulated by the loading condition.
The working stroke thus result either in force generation or sliding motion between the
thin and thick filaments, depending on the mechanical condition (isometric or isotonic
contractions). In the acto-myosin complex the rate of ADP release increase with the
execution of the working stroke. Following ADP release, another ATP binds to myosin,
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Section 1.1. Elements of muscle contraction

Figure 1.4: Schematic diagram of the chemo-mechanical cycle of the
myosin motor during its interaction with the actin filament. The HMM
fragment of the myosin molecule is a dimer with each monomer made by the sub-
fragment 1 (S1 or head containing the motor domain (red) and the light chain
domain (the lever arm, violet)) and the subfragment 2 (S2 or tail, green) extending
from the myosin filament backbone (blue). For simplicity, only one S1 and S2 are
represented here. The myosin·ADP·Pi complex attaches to actin (white circles)
(a), forming the cross-bridge, which triggers the tilting of the lever arm and Pi
release with generation of force and actin filament sliding. If the mechanical load
sufficiently high it opposes the filament sliding, and the tilting of the lever arm
causes the increase of the strain in the system, represented here by the distortion
of the lever arm (b). If the load is sufficiently low (c) tilting of the lever arm
causes actin filaments sliding (yellow arrow), keeping the strain low. ADP release
from and ATP binding to the motor domain cause myosin detachment from actin.
ADP release is slower at high load, (b) → (d), and becomes faster at lower load
(c) → (d). Hydrolysis of ATP in the detached head and reversal of the lever arm
tilting (recovery stroke, (d) → (e)) completes the cross-bridge cycle. The absence of
ATP causes the cycle to stop before detachment so that all motors stay attached to
actin (rigor).

and the cycle restarts. During isometric contractions the muscle does not produce any
mechanical power in spite of active crossbridge cycles, while the working stroke produces
only the stretching of the elastic components, see Figure 1.4, state (b) . Calorimetric
studies demonstrated that a very small enthalpy change occurs upon ATP hydrolysis,
with ADP and Pi remaining in the myosin catalytic site, and that the largest enthalpy
change occurs with the release of Pi [26]. The large enthalpy change measured in solution
studies indicates that Pi release is associated with the execution of the working stroke.
ADP release can occur either from the strained state or in the state at the end of the
working stroke, when the load opposing the stroke is low. The ADP release rate is
conformation dependent thus is the rate-limiting step during muscle contraction at high
load. This explains how both ATPase rate and energy liberation rate increase with the
reduction of load. Recent in situ experiments suggest that the working stroke and the
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release of Pi are independent processes, even if the rate constant of Pi release increases
with the progression of the working stroke [27, 28].
Due to the myosin II organization in array in the bipolar thick filament, steady force and
shortening are generated by cyclic interactions between actin and each myosin motor,
which is mechanically coupled to the other motors via the thick filament backbone. This
arrangement allowed myosin II to evolve toward very rapid interactions with actin to
prevent a motor at the end of the stroke to resist to the action of the others, consequently,
the the fraction of the ATPase cycle spent by myosin in the bound state, the duty ratio
r, must be small and reduce with the reduction of the load and the increase of shortening
velocity. The duty ratio drops from 0.3 in isometric conditions to 0.05 in unloaded
conditions, which implies that no more than 5% of motors are attached to actin at any
moment [29, 30]. Myosin II organization in array provides that, after detaching from
actin, the motor remains in the proximity of the thin filament, while the actin sliding
continues because of the action of the other motors. Consequently, a motor keeps moving
along the actin filament during the same ATPase cycle so that the sliding distance per
molecule of ATP hydrolysed is more than one order of magnitude larger than the sliding
promoted by its interaction with actin alone. More precisely, if the sliding distance
accounted by the working stroke d is ∼ 10 nm, the relative distance achieved during its
ATPase cycle is D = d/r = 10nm/0.005 = 200 nm.

1.1.5 Scaling factors of the mechanical parameters of the striated mus-

cle from the tissue to the molecular level

In the previous Section we described the coupling between biochemical, structural and
mechanical steps in the generation of force and shortening by the myosin motor in the
half-sarcomere. The efficiency and control of this process is optimized by the assembly of
the contractile proteins (actin and myosin), and regulatory proteins into highly ordered
structures on different levels of hierarchical organization [31]. The ordered repetition of
the sarcomere along and across the myocyte produces a magnification factor between
the mechanical properties of the sarcomere and those of the muscle, while the relevant
parameters that define the muscle performance (force, shortening velocity, power, energy
rate) remain the same, provided the normalisation due to the scale factor. Specifically, the
force generated in each of the two half-sarcomere is directly proportional to the overlap
degree between the thick and the nearby thin filaments, as the number of available myosin
motors working in parallel in each half-thick filament scales down with the reduction of
the overlap. The force exerted by the two half-sarcomeres is not additive, and it must
be the same as they are arranged in series. Accordingly, the force remains the same
throughout the whole chains of half-sarcomeres along the whole myofibril. Myofibrils
are orderly packed inside the myocyte, as well as myocytes inside the tissues. Therefore,
given a constant structure of the half-sarcomere, different muscles generate different
forces in relation to their cross-sectional area (CSA), and the force per CSA of vertebrate
striated muscle is relatively constant, around 200− 300 kNm−2. Since there are about
5 × 1014 thick filaments per square metre in the striated muscle, each thick filament
exerts a force of 400 − 600 pN. With 294 myosin motors on each thick filament, the
average force per motor would be around 1.4 − 2 pN. However, during the isometric
contraction r ∼ 0.3, meaning that only 1/3 of motors are attached to actin at the same
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time. The average force exerted by an attached motor can therefore be estimated to be
4− 6 pN. Throughout a myofibril the half-sarcomeres are arranged in series, so that their
changes in length results to be additive. The working range of sarcomere length in vivo,
for most vertebrate striated muscles, is between 2.4 and 2 µm, so that against loads lower
than the isometric force, the active shortening spans to 20% of the sarcomere resting
length. Considering a length of 1.1 µm for the half-sarcomere, this means a shortening of
200 nm. Accordingly, for a muscle fibre, the shortening will be the product of 200 nm
times the number of half-sarcomeres in series along the cell.

1.1.6 The force-velocity relation and the maximum power

In isometric contraction, the tilt of the lever arm raises the force exerted by the half-
sarcomere, increasing the strain of all the elastic elements (see Figure 1.4, state (b)).
When the load is lower than the maximum steady force exerted under isometric conditions
T0 (that is conventionally expressed as force per cross-sectional area of the contractile
material, in kNm−2), lever arm tilting results in relative filament sliding with a reduced
strain in the elastic components (see Figure 1.4, state (c)). The shortening velocity V is
inversely proportional to the force T (force-velocity relation, T −V [32]). At physiological
concentrations of ATP, ADP release is the rate-limiting step for motor detachment from
actin (step (b)/(c) → (d)). The rate of ADP release is conformation-dependent, increasing
during steady shortening when motors at the end of the working stroke would become
negatively strained. This explains the increased rate of energy liberation Ė (and the
underlying ATP hydrolysis rate, φ) when the load is reduced and the shortening speed
is increased [18, 32–38]. Faster detachment of negatively strained (compressed) motors
prevents the ones at the end of their working stroke to oppose positively strained motors,
a requirement for the maximisation of the efficiency of an array of motors working in
parallel.
The power P (the product T × V ) exerted by the contracting muscle varies according
to the mechanical conditions: P is zero in the isometric contraction, when T = T0
and when V = 0, is again zero during shortening at the maximum velocity V0 when
T = 0, and attains a maximum for loads around 1/3 T0 (or V = 1/4 V0). During an
isometric contraction and during shortening at the maximum velocity, the whole energy
consumption is liberated as heat, so that the mechanical efficiency ε which is the ratio of
power over the rate of energy liberation (ε = P/(P + Ḣ), where Ḣ is the rate of heat
production), is zero. In the isometric contraction the rate of energy liberation accounting
for the steady force T0 (denoted Ė0) is minimum and corresponds to the rate of heat
production Ḣ0 [32].

1.1.7 Different performance of fast and slow skeletal muscle isoforms

The performance of different types of skeletal muscles depends on the myosin II isoform
expressed in the muscle cells. Skeletal muscle of different mammalian species contains
four major myosin heavy chain isoforms [39]:

– a slow isoform: β-MHC (MHC-1)

– three fast isoforms: IIa-MHC, IIb-MHC, IIx-MHC (MHC-2)
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and three major myosin light chain isoforms:

– a slow isoform: MLC1s

– two fast isoform MLC-1f, MLC-3f

Differential distribution of the MHCs isoforms defines four major fibre types (containing
a single MHC isoform), and a number of intermediate hybrid fibre populations containing
two isoforms: β-IIa, IIa-IIx, and IIx-IIb. Both MHC and MLC isoforms determine the
maximum shortening velocity of skeletal muscle fibres.
Specifically, slow muscles, which are involved primarily in maintenance of posture and are
characterised by the dominant presence of the isoform 1 of Myosin Heavy Chain (MHC−1
isoform), exhibit lower shortening speed at any given load, thus develop lower power
and consume ATP at a lower rate than fast muscles which are involved in movement
and are characterised by the dominant presence of the isoforms MHC-2A, -2B or -2X
isoforms [40]. Strikingly, the functional difference between slow and fast isoforms is due
to a difference of only 20% in the amino-acid composition.
During an isometric contraction, when the power is zero, the rate of energy consumption
accounting for the steady force T0 is measured by the rate of heat production (Ḣ0) [32].
Ė0 has been found ∼ 5-fold larger in fast muscles than in slow muscles [41–44]. The
underlying rate of ATP hydrolysis at T0 can be obtained from Ė0 by dividing it by the
energy liberated per molecule of ATP hydrolysed (∆GATP = 60 kJmol−1 in mammalian
muscle according to [45]). In this way the energetic cost of the isometric force in the
intact muscle can be compared with that in the demembranated fibres, in which the rate
of energy liberation is determined by measuring the rate of ATP hydrolysis. A further
normalisation for the concentration of myosin motors in the mammalian muscle (0.18mM,
[42]) gives the rate of ATP hydrolysed per myosin motor φ. In demembranated fibres
of rat fast muscle [46, 47], rabbit [48, 49] and human muscle [50] at 12 ◦C, φ is 5-fold
(or more) larger than in slow muscle, in agreement with muscle measurements. In both
fast muscles [41–44] and fast demembranated muscle fibres [46–49] T0 is either similar or
at max 1.5-fold larger than in slow muscles and muscle fibres. Thus the tension cost of
the isometric contraction Ė0/T0 results to be systematically larger in fast muscles by on
average 5-fold (with a minimum of 3-fold). The justification for the elevated tension cost
of the fast muscle can be only partly found in the intrinsic larger actin-activated myosin
ATPase in solution, which for the fast myosin is twice that of the slow myosin [51].

1.2 From in situ to in vitro studies of muscle myosin II

Since the ordered arrangement of myosin motors in the sarcomere is of fundamental
importance for the efficiency of the skeletal muscle, until a few years ago the mechanical
properties of myosin II as a collective motor could be described only in situ, where
the preserved filament lattice allows for a proper description of the functionality of
the contractile proteins. However, the bulk of data characterising the energetics of
slow and fast muscles at cell and tissue levels, first of all the ∼ 5-fold larger isometric
tension cost, leaves open the question of the underlying molecular mechanism. Inferring
the definition of the molecular mechanism from cell and tissue is complicated by the
scaling factors related to the structural organisation of the molecular motors in the
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three-dimensional lattice, the co-presence of different isoforms in the same muscle and
even in the same muscle fibre and the possible confounding contribution of the other
sarcomeric (cytoskeleton and regulatory) proteins. Even assuming that the tension cost is
solely related to intrinsic properties of the motor isoform, the question remains about the
role played by the differences in the mechanokinetic properties of the motor, as the force
developed in a single motor interaction or the fraction of the ATPase cycle time each
motor spends attached (the duty ratio) while working in situ in the half-sarcomere of the
striated muscle. In situ studies with demembranated fibres, from frog and mammalian
muscle, it was possible to investigate the coupling between mechanical and chemical steps
[27, 28, 52], but the physiological responses at the sarcomere level are less consistent
in these studies, mainly due to the loss of sarcomeric order. For these reasons, the
development of in vitro techniques, as the in vitro motility assay (IVMA) [53, 54],
constituted a fundamental advance for the study of the chemomechanical properties of
the motor proteins. This method, however, presents both conceptual and methodological
shortcomings: the properties emerging from the sarcomeric array arrangement of myosin
II are lost, as well as the possibility to control the load.
Single molecule mechanics have been extensively employed for the study of motor proteins;
in particular, combined with single molecule fluorescence, they can be used to define
how force and movement are related to structural changes within the motor, or how
they are coupled to a given step in the ATP hydrolysis cycle [55, 56]. Optical trapping
techniques have been extensively employed to study the mechanics of motor proteins
working in the nanometer-piconewton scale [22, 57]. In laser trap experiments, a focused
laser beam is used to trap dielectric particles, with an index of refraction higher than
the surrounding medium, in a three-dimensional potential well centred near the focal
point [58]. A relevant feature of this method is that for a few hundreds of nanometers
displacement from the equilibrium position, the optical trap displays virtual Hookean
spring properties, so that the force exerted on the trapped particle can be measured by
following bead displacement from its equilibrium position in the trap centre. Further
details on the Optical tweezers setup can be found in Appendix A. The maximum force
attainable within the linear response region is ∼ 50 pN (with a laser power of 100mW),
and the force resolution is approximately 0.1 pN. In optical tweezers experiments the
protein of interest is typically associated to a trapped microscopic bead (of silica or
polystyrene), and is brought into contact with a partner to exploit their interaction.
A special configuration of the laser trap developed to study the mechanics of myosin
II is the Three-Bead Assay (TBA) [22]. In this setup the laser is split in two optical
traps, each holding a bead attached to one end of an actin filament, that is suspended
over a myosin motor attached to a third fixed bead. Due to its very low duty ratio,
muscle myosin II spends only a small fraction of the ATPase cycle time attached to the
actin filament, and TBA configuration is essential in preventing the myosin molecule
from flying away under thermal agitation when it is detached during its fast intermittent
interactions with actin. The actin-myosin interactions are detected from noise reduction
of the bead position signal due to the increased stiffness of the system, and while this
method allowed the measurements of single myosin-actin interactions [22, 59, 60], it is
generally inadequate to measure the force and the load dependence of the movement,
because the force development during a single myosin-actin interaction is affected by the
large compliance of the optical trap. Moreover, single actin-myosin events can be detected
only if the duration of actin attachment (and therefore the duty ratio) is increased by
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Figure 1.5: Schematic representation of the myosin-based nanomachine.
The array of myosin motors (in blue) is deposited on the surface of a pulled glass
pipette carried by a piezoelectric nano-positioner, and interacts with an actin
filament (in red, length ∼ 10 µm) attached with the correct polarity, via gelsolin
(in yellow), to a polystyrene bead trapped in the focus of the Dual Laser Optical
Tweezers. Figure from [61].

reducing the ATP concentration down to ∼ 50 µM (two orders of magnitude lower than
the in situ physiological value, 2mM), which prevents performing kinetic studies in
physiological conditions.
This brief introduction to single molecule mechanics studies, which generated impressive
advancement in the knowledge of the mechanism of unconventional myosins and non-
myosin motors (like kinesin or dynein), highlights three major limits for the possibility
to be used to study myosin II from skeletal muscle. First of all there is an intrinsic
impossibility to detect the cooperative effects derived from the arrangement of myosin II
in ensemble. Secondly, the impossibility to measure isometric force or the displacement
when the load is high, due to the low duty ratio of the motors, and to the high intrinsic
compliance of laser trap measurements. Lastly, the need to prolong the time of interaction
between actin and myosin to be able to detect it, achieved by lowering ATP concentration
to sub-physiological values, alters the kinetics of the process. Specifically, while under
physiological conditions ATP binding and detachment are very fast, when the ATP is
very low the kinetics of the process is dominated by the second order rate constant for
ATP binding.
These limitations can be overcome by studying the mechanical properties of myosin II in
a synthetic nanomachine, in which an array of myosin II motors purified from skeletal
muscle, interacts with a single actin filament attached with the correct polarity to a bead
trapped in the focus of a Dual Laser Optical Tweezers (DLOT), which, unlike the single
laser trap, has the dynamic range of force and movement adequate for myosin working in
arrays [61] (see Figure 1.5).
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1.3 The functional differences between slow and fast myosin

isoforms investigated with the synthetic sarcomere-like

nanomachine

The definition of the emergent properties of the half-sarcomere became recently acces-
sible by exploiting the DLOT technique for mechanical measurement on a nanomachine
made by a small ensemble of myosin motors interacting with an actin filament [61]. The
nanomachine allows the performance of the half-sarcomere (the generation of steady
force and shortening), to be mimicked in vitro by an ensemble of pure myosin isoforms
interacting with the actin filament, without the confounding effects of other sarcomeric
proteins and higher hierarchical levels of muscle organisation. In the nanomachine a small
number of HMM fragments extending from the functionalised surface of a micropipette,
carried on a three-way nanopositioner acting as a length transducer, interact with an
actin filament attached, with the correct polarity, to a bead trapped by the DLOT, acting
as a force transducer. In solution with physiological ATP concentration the two motors
of each dimer act independently [61]. Under this condition, myosin motors, after entering
in contact with the actin filament, establish continuous interactions underpinning force
development to a steady maximum value (equivalent to the force generated by the muscle
in isometric contraction). In the original design [61] the system was operated either in
position clamp to reproduce the isometric contraction, or in force clamp to reproduce
isotonic contraction. The major limitation of the nanomachine working in position clamp
was the large trap compliance in series with the motor array, two order of magnitude
larger than the native compliance in series with the half-sarcomere. As a consequence,
each addiction-subtraction of force by individual motor attachment-detachment induce
substantial sliding undermining the condition of independent force generators of the
motors in the native half-sarcomere. Therefore, in position clamp, the kinetics of the
attached motors is influenced by the push-pull experienced when actin slides away-toward
the bead for the addition-subtraction of the force contribution by a single motor (see
[61], Supplementary Figure 7). In the experiments described in this work the system
has been implemented to operate in length clamp. In length clamp mode the sliding
between the actin filament and the motor array caused by force generating interactions
is eliminated because any movement of the bead is counteracted by the movement of
the nanopositioner. This protocol, that will be detailed in the next Chapter, allows the
condition of the motors as independent force generators in the array to be recovered, and
the rate of development of the steady isometric force as well as the force fluctuations
superimposed on the steady force are direct expression of attachment/force-generation
and detachment of the myosin motors. In the following Chapters we will show how the
data collected from slow and fast myosin isoforms are used to feed a stochastic model
providing a self-consistent estimate of all the relevant mechanokinetic parameters of the
isometric performance of the motor ensemble: the force of a motor f0, the fraction of
actin-attached motors r, and the rate of transition through the attachment-detachment
cycle φ, without assumptions from cell mechanics and solution kinetics as in previous
studies [61–63].
The combined experimental and theoretical achievements reported in this Thesis set the
stage for any future study on the emergent mechanokinetic properties of an ensemble of
myosin molecules, either engineered or purified from mutant animal models or human
biopsies.
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Chapter 2

Mechanical experiments

2.1 Methods: skeletal muscle HMMs

In this Section we present the methods and setup adopted for the mechanical experi-
ments performed with the synthetic nanomachine powered by different HMMs purified
from different mammalian skeletal muscle.

2.1.1 Preparation of proteins

Adult male rabbits (New Zealand white strain), provided by Envigo, were housed at Cen-
tro di servizi per la Stabulazione Animali da Laboratorio (CeSAL, University of Florence),
under controlled conditions of temperature (20±1)◦C and humidity (55±10)%, and were
euthanised by injection of an overdose of sodium pentobarbitone (150mg kg−1) in the
marginal ear vein, in accordance with the Italian regulation on animal experimentation
(Authorisation 956/2015-PR) in compliance with Decreto Legislativo 26/2014 and EU
directive 2010/63. Three rabbits were used for the experiments. HMM fragments of
myosin were purified from rabbit soleus and psoas muscles as reported previously in
[61, 62], The functionality of the purified motors was always preliminarily checked with
in vitro motility assay. Actin was prepared from leg muscles of the rabbits according
to [64], and polymerised F-actin was fluorescently labelled by incubating it overnight
at 4 ◦C with an excess of phalloidin-tetramethyl rhodamine isothiocyanate [65]. For
the mechanical measurements in the nanomachine, the correct polarity of the actin
filament was pursued by attaching the (+) end of the filament to a polystyrene bead
(3 µm diameter) (Bead-Tailed Actin, BTA, [66]) with either the Ca2+-sensitive capping
protein gelsolin [61] or the Ca2+ insensitive gelsolin fragment TL40 (Hypermol, Germany)
[62, 63]).

2.1.2 Mechanical apparatus

The nanomachine allows the performance of the half-sarcomere (specifically the generation
of steady force and shortening), to be reproduced by an ensemble of pure myosin isoforms
interacting with the actin filament without the confounding effects of other sarcomeric
proteins and higher hierarchical levels of organisation of the muscle. The mechanical
apparatus, described in detail in [61], is depicted in Figure 2.1: HMM fragments of
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Figure 2.1: Block diagram of the system for nanomachine mechanics.
HMM fragments (blue) deposited on the functionalised lateral surface of a pulled
micropipette (cyan) are brought to interact with the actin filament (red) attached
with the correct polarity (+) via gelsolin (yellow) to the bead trapped in the focus
of the DLOT (pink). Force generation produces the movement of the bead away
from the focus of the DLOT. The switch selects the feedback signal that, together
with the command (black), feeds the summing amplifier Σ that drives the piezo
nanopositioner: in position clamp (red) the feedback signal is the position of the
nanopositioner x carrying the support for the myosin array; in force clamp (green)
the feedback signal is the force (F , calculated as the product of the stiffness of the
trap (e) times the change in position of the bead xbead); in length clamp (blue) the
feedback signal is the change in the distance L between the position of the bead and
the myosin array support.

myosin were deposited randomly on the lateral surface of a glass pipette pulled to a final
diameter of ∼ 3-4 µm and functionalised with nitrocellulose 1% (w/v). The glass pipette
was mounted in the flow chamber and carried on a three-way piezoelectric nanopositioner
(nano-PDQ375, Mad City Lab, Madison WI, USA) that acts as a displacement transducer,
and was brought to interact with an actin filament attached with the correct polarity to a
bead trapped in the focus of a Dual Laser Optical Tweezers (DLOT) that acts as a force
transducer. The DLOT system has a dynamic range for both force (0−200 pN, resolution
0.3 pN) and displacement (0 − 75 µm, resolution 1.1 nm) adequate for the measuring
the output of the nanomachine. The buffer solutions used for all the experiments are
already reported in [61] and contained physiological concentrations of ATP (2mM) unless
differently specified. 0.5% methylcellulose was added to the running buffer in order
to inhibit the lateral diffusion of F-actin [30] and minimise the probability of loss of
acto-myosin interaction. The concentration of HMM from soleus and psoas muscle used
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Figure 2.2: Power density spectrum of the system. Superimposed power den-
sity spectrum either in position clamp (red circles interpolated by the red Lorentzian
curve), or in length clamp with the array of actin attached motors in rigor from
both fast muscle (violet circles and curve) and slow muscle (cyan circles and curve).
The upper −3 dB frequency fc is: 59± 3Hz (red), 31± 6Hz (violet) and 17± 3Hz
(cyan). The area delimited by thinner lines indicates the confidence limits.

for the experiments was defined by the concentration at which the number of rupture
events in rigor attained a saturating value.
This mechanical apparatus can be operated either in position clamp (to reproduce iso-
metric contractions, Figure 2.1, red branch), when the feedback signal is the position
of the nanopositioner carrying the motor array (x), or in force clamp (to reproduce
isotonic contractions, Figure 2.1, green branch), when the feedback signal is the force
(F ), calculated as the product of the stiffness of the trap (e) times the change in position
of the bead in the laser trap (xbead). Recording of the nanomachine performance in
true isometric condition, however, cannot be achieved in position clamp, due to the
large trap compliance (∼ 4 nmpN−1), which implies both several tens of nanometres
movement to develop the maximum steady force and blunting of the force of individual
attachment-detachment events (Supplementary Figure 7 in [61]). To eliminate the trap
compliance the system has been implemented with a length clamp (blue branch in Figure
2.1), which uses as a feedback signal the change in distance (L) between the position of
the actin attached bead in the laser trap (xbead) and that of the nanopositioner (x), so
that the movement of the bead with the force change is counteracted by the movement of
the nanopositioner. In this way the effective trap compliance is reduced to 0.2 nmpN−1.
In length clamp the frequency response of the system is reduced by the propagation time
of the mechanical signal through the loop from the force transducer to the nanopositioner,
which also includes the array of actin attached myosin motors. The power density spec-
trum (PDS) of the system, measured with sinusoidal oscillations at different frequencies,
changes depending on the selected feedback mode: in position clamp the PDS shows
an upper −3 dB frequency (or corner frequency fc) of 59Hz (Figure 2.2, red); in length
clamp, when the feedback loop is closed with the array of actin-attached myosin motors
in rigor, fc decreases to 32Hz with HMM from fast muscle (violet) and to 17Hz with
HMM from slow muscle (cyan). The mass of the system (m) is the same with either
isoform array thus the different corner frequency between the two nanomachines should
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almost in part depend on the different stiffness of the two arrays in rigor.
The architecture of the machine (with the length of the motor array much shorter than
the length of the overlapping actin filament) implies that, for a given HMM concentration,
the measured number of rupture events does not significantly change from experiment to
experiment, therefore there is no need to normalise the mechanical response obtained in
different experiments at physiological [ATP] by the actin filament length.
All the experiments were conducted at room temperature (24 ◦C).

2.2 Mechanical performance of the nanomachine powered

by slow and fast myosin isoforms

In this Section we present the mechanical experiments that has been conducted
employing the nanomachine powered by slow and fast myosin isoforms to investigate the
molecular basis of the muscle contraction.

2.2.1 Estimate of the number of HMM molecules available for the

interaction with the actin filament.

The number N of motors on the micropipette surface able to interact with the actin
filament is initially determined by measuring the number of mechanical rupture events
when the motor array is brought to interact with the actin filament in ATP-free solution,
as in [61]. Following the formation of rigor bonds between the HMM-coated support and
the actin filament (panel 1 in Figure 2.3 a), the HMM support is moved away from the
actin filament, first by 1-2 µm in the direction orthogonal to the plane of the support, in
order to raise a force from the trapped bead to the first bound HMM at an angle greater
than 30◦ with the plane of the support, and then in the direction parallel to the plane, at
constant velocity, to pull the motors away from the actin filament diagonally. This allows
the first bonded HMM to undergo a pulling force that is higher than the axial component
shared among the other motors. In this way the myosin–actin bonds brake one at a
time and the attached motors cannot bind back once detached. Moreover, following each
detachment the force drops because the length of actin filament segment between the
bead and the next attached motor is transiently increased. Thus an additional pull is
necessary to get to the next rupture event, the occurrence of which will vary in time
according to the distance between the two neighbouring motors. With HMMs purified
from soleus muscle the number of rupture events per interaction (Figure 2.3 b) attains a
saturating value of 7.9± 1.1 (n = 8), with [HMM] used to coat the pipette of 0.2mg l−1.
A similar saturating value of rupture events, 8.1± 1.4 (n = 8), is obtained for the HMM
purified from psoas muscle with a [HMM] of 0.1mg l−1 (Figure 2.3 c). Notably, similar
saturating values of [HMM] and number of rupture events (8.1 ± 1.2) were found for
the psoas motors in the previous study in which an optical fibre etched to the same
diameter was used as support [61]. In 2mM [ATP] each head of an HMM dimer works
independently and thus the number of available motors is twice the number of HMM
ruptures: N = 16± 2 and N = 16± 3 for the soleus and psoas respectively.
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Figure 2.3: Estimating the number of HMMs available for actin interac-
tion from rigor rupture events in ATP-free solution. a. 1. Formation of
the rigor bonds between the HMM array and the actin filament. 2. The motor
support is moved away first in the direction (z) perpendicular to the plane of the
actin-myosin interface and then in the direction (x) parallel to the plane, as in-
dicated by the arrow. Panel modified from [61]. b. Force (Fx, lower record) of
an ensemble of soleus HMMs in response to the movement of the nanopositioner
away from the actin filament in the x direction (upper record, velocity 50 nm s−1).
The small vertical bars indicate the rupture events (force drop complete in less than
50ms), the last of which corresponds to complete detachment of the actin filament.
c. Records with the same protocol applied to an ensemble of psoas HMM.

2.2.2 Isometric force development by the nanomachine powered by

slow and fast myosin motors.

The experiment starts in position clamp, because, for the system to operate in length
clamp, it is necessary that first the feedback loop is closed by the establishment of
actin-myosin interactions. When an array of motors from the slow soleus muscle is
brought to interact with a bead-tailed actin filament in solution with 2mM ATP (Figure
2.4a), the establishment of continuous ATP-driven actin-myosin interactions causes the
force (F , blue trace) to rise pulling on the actin filament, which in position clamp (HMM
support position x = 0, red trace), slides in the shortening direction (∆L, black trace,
negative for shortening) due to the trap compliance (phase 1). A steady maximum force
F0 of ∼ 12 pN is attained with a shortening of ∼ 55 nm. The control is switched to
length clamp in correspondence of the vertical dashed line separating phase 1 and 2. The
switch time is marked by the increase in noise of the force trace as a consequence of the
reduction of the compliance in series with the motor system. In fact, in length clamp
the force change generated in each individual attachment and detachment is no longer
dissipated in filament sliding against the large in series trap compliance. A shortening
of ∼ 500 nm completed within ∼ 700ms is superimposed on the steady isometric force
in correspondence of the second vertical dashed line to drop and keep the force at zero
(phase 3). When actin filament sliding stops (third vertical dashed line) force starts to
redevelop towards F0 (phase 4) with just a minimum delay, indicating that the motor
array was able to cope with the imposed 500 nm shortening maintaining continuous
interactions under zero load. The extent of shortening minus the amount taken by the
trap compliance, (500− 55 = 445 nm), divided by the time passed from the imposition
of the shortening to the start of force redevelopment (0.88 s) gives an estimate of the
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velocity of unloaded shortening V0 of 0.5 µms−1. Force redevelopment in length clamp is
much faster than the original force rise in position clamp and occurs in truly isometric
conditions, as the movement of the bead due to trap compliance is counteracted by a
corresponding movement of the nanopositioner in the lengthening direction (red trace,
∼ 55 nm), that keeps ∆L = 0 (black trace). Notably, the force redevelopment following
a 500 nm release attains the same F0 value as that attained during the original rise in
position clamp thanks to the architecture of the machine, in which the dimension of
the motor array remains constant independently of the amount of reciprocal sliding [61].
The isometric value of the force obtained from 33 records shows a Gaussian distribution
with centre 10.5 pN (Figure 2.4 b). The rate of force redevelopment in length clamp
only depends on the attachment/detachment kinetics of myosin motors in isometric
conditions. Force redevelopment is roughly exponential, and its time course is quantified
by the rise time tr (the time from 10% to 90% of F0). The rise time estimated on the
record (Figure 2.4 c, black) obtained by averaging the 6 traces from as many experiments
(grey) is tr = 238± 13ms. The time constant τ of the underlying exponential force rise
of the soleus powered nanomachine is τ = tr/2.2 = 108 ± 5ms, and the rate of force
development, a is a = 1/τ = 9.3 ± 0.5 s−1. The sequence of events accompanying the
interaction of the array of motors purified from psoas muscle with the actin filament is the
same as for the soleus motors (Figure 2.4 d). The force develops in position clamp (phase
1), while the actin filament slides in the shortening direction due to the trap compliance.
A steady isometric force F0 (15.9 pN), is attained with a shortening of 70 nm. In the 47
records of the psoas HMM F0 shows a Gaussian distribution with centre 17 pN (Figure
2.4 e). Following the switch to length clamp, a rapid shortening of ∼ 500 nm is imposed
so that the force drops to zero. The shortening in this case is just sufficient to drop
the force to zero, given the much faster shortening velocity afforded by the fast motor
array, so that, as soon as the actin filament sliding stops (third vertical dashed line), V0,
calculated by the extent of shortening minus the amount taken by the trap compliance,
(500− 70 = 430 nm), divided by the time passed from the imposition of shortening to the
start of force redevelopment (0.22 s), is 1.95 µms−1 (3.9 times larger than that of slow
muscle). It must be considered, however, that V0 in this case is somewhat underestimated,
as most of the shortening occurs with force greater than zero. Force redevelopment in
length clamp (phase 4) occurs with a rate that is not influenced by the trap compliance
and thus is the expression of the kinetics responsible for the transition to the steady
force F0 by the fast isoform array. A rise time of tr = 77 ± 4ms is estimated on the
record (black in Figure 2.4 f) obtained by averaging the traces from 7 experiments (grey).
The corresponding time constant is τ = tr/2.2 = 35.0 ± 1.8ms and the rate of force
development is a = 1/τ = 28.6± 1.4 s−1.
The −3 dB upper frequency characterising the force rise fc = 0.35/tr is 4.5± 0.2Hz.
Two main aspects emerge from these measurements on the synthetic machine operating
in length clamp conditions. The first is that the rate of force redevelopment, which
only depends on the attachment/detachment kinetics of myosin motors in isometric
conditions, is three times slower in the soleus powered nanomachine than in the psoas
powered nanomachine. The second point is that the force fluctuations around the average
value displayed by the force record at the steady state are stemming from individual
attachment/detachment events.
Both pieces of information will be used to feed the stochastic model described in the next
Chapter.
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Figure 2.4: Caption in the next page.
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Figure 2.4: Active force generation by the nanomachine powered by slow
(soleus) and fast (psoas) myosin motors.
a - c. Slow myosin array. a. Force (F , blue trace), movement of the nanopositioner
carrying the motor array (∆x, red trace) and relative sliding between the motor
array and the actin filament (∆L, black trace) during the actin myosin interaction.
Phase 1: following the establishment of the contact between the actin filament
and myosin motors, the force rises in position clamp to the maximum isometric
value (F0 ' 12 pN), with the simultaneous sliding of the actin filament by ∼ 55 nm
toward the shortening direction to load the trap compliance. Phase 2: the switch to
length clamp (marked by the first vertical line) is followed by the increase in force
fluctuations superimposed on F0. Phase 3: force drops to zero in response to a
rapid shortening of ∼ 500 nm imposed in length clamp (start marked by the second
vertical line) with actin filament sliding under zero force. Phase 4: following the
end of the imposed shortening (marked by the third vertical line) force redevelops
in length clamp with the nanopositioner moving by ∼ 55 nm to counteract the trap
compliance and keep the filament sliding at zero. b. Frequency distribution of F0.
Data are plotted in classes of 1 pN and fitted with a Gaussian (continuous line)
with centre 10.5 pN and standard deviation σ = 1.8 pN. c. Time course of force
redevelopment after rapid shortening (black trace) averaged from 6 records from
as many experiments (grey traces). The red line is the single exponential fit to
measure tr (the time elapsed from 10%, horizontal thin dashed line, to 90%, thick
horizontal dashed line, of F0 recovery). d - f . Fast myosin array. d. F , ∆x and
∆L, defined and colour coded as in a. Phases 1 - 4 as described in panel a. e.
Frequency distribution of F0 plotted in classes of 2 pN and fitted with a Gaussian
(continuous line) with centre 17 pN and standard deviation 3 pN. f . Time course
of force redevelopment after rapid shortening (black trace) averaged from 7 records
from as many experiments (grey traces). The red line is the single exponential fit
to measure tr labelled as in c.
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Chapter 3

Modelling the mechanical output

of the nanomachine

In the previous Chapter we showed that the frequency response of the DLOT-nanopositioner
system operated in length clamp is adequate to record the mechanical output of the
nanomachine powered by an ensemble of either fast and slow HMMs.
In this Chapter we proceed to detail a stochastic model in which each molecular motor
exists in three possible states (or motor configurations): one detached state and two
different force-generating attached states. Such model has been developed to investigate
the performance of a small ensemble of muscle myosin II, and thus characterise the
mechanical output of the nanomachine.
In the last Section of this Chapter we will present the procedure adopted to feed the
recorded time series of the fluctuations of the force exerted by the ensemble around the
isometric steady state into the stochastic model.
Fitting the experimental records allows a self-consistent estimate of the relevant mechanoki-
netic parameters of the system, including the force exerted by a single myosin motor
and the average number of attached motors in the stationary state, without assumptions
from cell and solution kinetic studies.
The application of such procedure to experimental data sets obtained employing the
mechanical apparatus detailed in the previous Chapter, will be the topic of Chapter 5.

3.1 The formalism of the master equation

As detailed in the previous Chapter, the implementation of the length clamp mode
allows to recover the condition of myosin motors as independent force generators in the
array. Therefore we consider an ensemble of N independent ATP-fuelled molecular motors
interacting with an actin filament in isometric conditions. Each motor can be found in
one of the three possible configurations, the detached state D, the attached low force-
generating state A1, or the attached high force-generating state A2. The corresponding
kinetic scheme for a single motor, which exemplifies the possible transitions between
distinct allowed motor configurations is:

D
k1−−−⇀↽−−−−
k−1

A1
k2−−−⇀↽−−−−
k−2

A2
k3−−−→ D (3.1)
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The kinetic rate constants kj , j ∈ {1,−1, 2,−2, 3} represent the probability per unit of
time for the reaction j to occur, and are expressed in s−1. In Appendix B we investigated
a general version of the model in which the attached configurations are space-dependent.
The state of the physical system constituted by the ensemble of motors, at any time t is
characterised by the vector n(t) =

(

nD(t), n1(t), n2(t)
)

whose entries specify the number
of molecular motors in each of the considered configurations. Specifically, nD stands for
the number of motors in the state D, n1 is the number of motors in the state A1 and
n2 denotes the number of motors in the state A2. Motors in the same configuration are
referred in the following as belonging to the same population. The system admits the
obvious conservation law N = nD + n1 + n2 where N stands for the total number of
motors in any of the considered states. Accounting for the above relation enables one to
employ just two scalar (discrete) entries to photograph the state of the system, namely
n(t) =

(

n1(t), n2(t)
)

.
Under the Markov hypothesis, the stochastic dynamics of the scrutinised system is ruled
by a master equation which sets the evolution of the probability P (n, t) of finding the
system in the state specified by the vector n at time t. The master equation accounts
for the balance of opposing contributions: on the one side the transitions towards the
reference state (the associated terms bearing a plus sign). On the other, the transitions
from the reference state (terms with a minus). The master equation can be cast in the
general form:

∂P (n, t)

∂t
=
∑

n
′ 6=n

[

T (n|n′)P (n′, t)− T (n′|n)P (n, t)
]

(3.2)

where T (n′|n) represent the transition rates from the state n to a new state n′, compatible
with the former. In the following, to identify the arrival/departure state n′ we solely
highlight the individual component of the vector n that changes due to the considered
reaction. The explicit expression for the transition rates, as stemming from the chemical
equations that define the stochastic single molecule dynamics (3.1), takes the following
form:

ATTACHMENT T1 = T (n1 + 1|n) = k1
nD
N

= k1

[

1− 1

N
(n1 + n2)

]

DETACHMENT T−1 = T (n1 − 1|n) = k−1
n1
N

CONVERSION T2 = T (n1 − 1, n2 + 1|n) = k2
n1
N

CONVERSION T−2 = T (n1 + 1, n2 − 1|n) = k−2
n2
N

DETACHMENT T3 = T (n2 − 1|n) = k3
n2
N

(3.3)
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The governing master equation can be hence written in the following explicit expression:

∂P (n, t)

∂t
= T (n|n1 − 1)P (n1 − 1, t)− T (n1 + 1|n)P (n, t)+

+ T (n|n1 + 1)P (n1 + 1, t)− T (n1 − 1|n)P (n, t)+
+ T (n|n1 + 1, n2 − 1)P (n1 + 1, n2 − 1, t)− T (n1 − 1, n2 + 1|n)P (n, t)+
+ T (n|n1 − 1, n2 + 1)P (n1 − 1, n2 + 1, t)− T (n1 + 1, n2 − 1|n)P (n, t)+
+ T (n|n2 + 1)P (n2 + 1, t)− T (n2 − 1|n)P (n, t) .

(3.4)

3.2 The deterministic limit

From the master equation one can readily derive the mean field equations that
governs the deterministic dynamics for the fraction (in the following also referred to
as the continuous concentrations) of the molecular motors in configurations A1 and A2.
We define the averaged fraction of the molecular motors in states A1 and A2 in the
continuous limit as:

y =
〈n1〉
N

=
1

N

∑

n

n1P (n, t)

z =
〈n2〉
N

=
1

N

∑

n

n2P (n, t)

(3.5)

In the large system size limit, the master equation (3.4) yields the following set of first
order ordinary differential equations for the self-consistent evolution of the mean field
concentrations:



















dy

dt
= k1 −

(

k1 + k−1 + k2
)

y −
(

k1 − k−2

)

z

dz

dt
= k2 y −

(

k−2 + k3
)

z

(3.6)

Equations (3.6) can be studied at equilibrium by computing the associated fixed points
obtained imposing the conditions:

dy

dt
= 0;

dz

dt
= 0;

A straightforward calculation returns the equilibrium concentrations:






















y∗ =
( k1
k1 +G

) k−2 + k3
k2 + k−2 + k3

z∗ =
( k1
k1 +G

) k2
k2 + k−2 + k3

(3.7)

where:

G =
k−1(k−2 + k3) + k2k3

k2 + k−2 + k3
. (3.8)
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Figure 3.1: Temporal behaviour of the mean field concentrations of mo-
tors in different configurations. The solid yellow line is the evolution of motors
in the detached configuration D (yellow); the solid red and blue lines are the evo-
lution of motors in the configuration A1 and A2 respectively. The dotted lines
correspond to the values of the equilibrium fixed points for the concentrations x∗,
y∗, z∗ .

We define the duty ratio r as the fraction of motors in an attached state (or the fraction
of the ATPase cycle time a motor spends attached). In terms of the rate constants of the
model, it can be computed as:

r = y∗ + z∗ =
k1

k1 +G
. (3.9)

The temporal evolution of the mean field concentrations of the different populations of
motors is described by the set of ordinary differential equations (3.6): these equations can
be numerically integrated, for a representative choice of the kinetic rate constants, and the
solutions are shown in Figure 3.1 for an ensemble of fixed size N = 16 molecular motors.
In the specific case displayed in the Figure, the system evolves from an initial condition
with all the motors detached from actin at t = 0; after a transient, the concentration
of the motors in the various populations approach their equilibrium fixed points x∗, y∗,
z∗ as calculated in equations (3.7). The motors population dynamics in terms of the
rate constants of the model is particularly complicated also due to the coupling between
different configurations. In order to obtain a more manageable expression that will be
useful in the analytical description of the force exerted by the ensemble of motors, a
straightforward calculation can be performed to show that z∗ ' r = k1

k1+G and y∗ � 1,
when k−2/k2, k3/k2 � 1. In practical terms, under this operating assumption, which for
the mammalian skeletal muscle myosin under consideration is approached at temperature
T ' 24 ◦C, motors are solely found in state A2. Since this is the relevant setting for the
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Section 3.2. The deterministic limit

specific case study, in the next Section we will discuss a useful approximation for the
motors population dynamics.

3.2.1 Effective model for the dynamics of the molecular motors in the

high force-generating configuration

Let us assume that the population of motors in configuration A1 is negligible as compared
to those in state A2. It is therefore legitimate to solely focus on the dynamics of species
A2, thus yielding a compact, though effective, descriptive model that we here introduce.
We consider the original set of o.d.e. for the fractions of motors in the configurations A1

and A2 in the mean field framework (3.6). These equations can be drastically simplified
by performing a self-consistent elimination of the variable y. To this end we set dy/dt = 0
in the first of equations (3.6) to eventually express y as a function of z. This procedure is
customarily invoked to carry out the so called adiabatic elimination, which proves correct
when there is a clear separation of time scales between co-evolving variables. Although
this is not a priori the case for the system at hand, we will postulate the validity of the
aforementioned condition and operate with the ensuing approximation that, as we shall
prove at the end of this Section, will materialise in an accurate interpretative framework.
Plugging the expression for y as a function of z into the second of equations (3.6), and
solving the ensuing differential equation readily yields:



















































dy

dt
= 0 −→ y∗ =

k1 + z (k−2 − k1)

k1 + k−1 + k2

dz

dt
= k2

k1 + z (k−2 − k1)

k1k + k−1 + k2
− z (k−2 + k3) =

=
k1 k2

k1 + k−1 + k2
− z

[

k−2 + k3 −
k2 (k−2 − k1)

k1 + k−1 + k2

]

= b− az

(3.10)

which immediately yields solution:

z(t) =
b

a

(

1− e−at
)

=

=
k1

k1 +G

k2
k2 + k−2 + k3

(

1− e
−
[

k−2+k3+
k2 (k1−k−2)

k1+k−1+k2

]

t

)

=

= z∗
(

1− e−at
)

(3.11)

where a and b are positive quantities, self-consistently defined by the latter equality and
G defined in (3.8).
This latter condition matches the homologous estimate for the equilibrium fraction of
motors in A2 derived from the original two dimensional model and reported in equations
(3.7).
This approximation corresponds to a simplified reaction scheme:

D
β−−⇀↽−−
γ

A2
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where β and γ represent the unknown rate constants that respectively quantifies the
effective probability per unit time of attachment and detachment of a motor from actin.
This scheme corresponds to the following mean field equation for the concentration of
the population in configuration A2:

d

dt

(n2
N

)

= β
(

1− n2
N

)

− γ
n2
N

By computing the stationary solution for the above model, i.e. by imposing the condition:
dn2
dt

= 0, yields the equilibrium solution:

n2
N

∗
=

β

β + γ

that allows the identification: β = b and γ = a−b with a and b defined by equation (3.11).
Through parameter a, we have also access to a closed estimate for the characteristic time
scale of the exponential evolution of z, i.e. the rate of the force development. Let us
notice that a is indeed the inverse of the time constant of the development of the steady
force, τ as defined in the experiment, hence a = 2.2/tr.
According to this simplified scheme, the effective rate of ATP consumption can be esti-
mated as the flux φ of motors through the cycle per unit time. This equals to the rate of
motors in A2 detaching from the actin, in formula φ = z∗(a− b).
As anticipated, the validity of the adiabatic elimination was postulated even in the
absence of a clear time scales separation of the dynamics of the system. Here we test the
validity of this approach, for the investigated initial conditions in reproducing the correct
time scale of the dynamics of the fraction of motors in A2. In Figure 3.2 it is shown the
evolution of the concentration of the motors in the force generating configuration A2,
with an initial condition with all the motors detached from the actin, from which it is
possible to estimate the time scale upon which the stationary state is approached.
This solution will prove of interest, in the aim of devising a proper fitting scheme to be
challenged against both synthetic and experimental data.

3.3 Solution of the stochastic dynamics at finite size

We now turn back to consider the stochastic dynamics of the system at finite size N ,
so as to account for the role played by finite size fluctuations. To quantify the contribution
as stemming from the intimate graininess of the investigated system, we ought to solve
the master equation (3.4) that implements the microscopic dynamics described by the
chemical equations (3.1), and doing so to access the probability of finding the system
in any of the allowed states at a generic time t. This is achieved as discussed in the
following.
Firstly we remark that the solution of the master equation, i.e. the probability distribution
P (n; t) ≡ P (n1, n2; t), can be written as a vector P (t) of dimension (N+1)×(N+1). This
latter returns the probability at time t, of finding the system in the state characterised by
n1 motors in configuration A1 and n2 motors in configuration A2. Here, n1 and n2 can
in principle assume every integer values in the range [0, N ], i.e. a total of N + 1 values
each. Observe however that the populations of motors in the configurations A1 and A2,
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Figure 3.2: Validation of the adiabatic approximation. In red (solid and
dashed lines) the evolution of the concentration of motors in configuration A1, in blue
(solid and dashed lines) the evolution of the concentration of motors in configuration
A2. The solid lines represent the numerical integration of the dynamical system
without any approximation, the dashed lines correspond to the integration of the
dynamical system when the adiabatic approximation is adopted. The approximation
allows to reproduce the correct the time scale at which the concentration of motors
in A2 reaches the stationary state.

must satisfy the obvious constraint that reflects the conservation law, i.e. n1 + n2 ≤ N .
A simple way to express the condition above is to consider that for each possible value of
n1, n2 can assume values in the range [0, N − n1]. This readily implies that the total
number of possible states of the system is identically equal to M = (N + 1)(N + 2)/2.
The number of allowed states are hence smaller than what anticipated above. Indeed the
non trivial entries of P (t) are M = (N + 1)(N + 2)/2. We will consequently focus on the
non trivial elements of vector P (t) which we shall denote as Pm(t) with m = 1, . . . ,M .
For the relevant setting of N = 16 molecular motors, instead of (N + 1)× (N + 1) = 289
configurations we only have M = 153 possible states that can be eventually visited by
the system, and that we explicitly list in Table 3.1. The master equation (3.4) can be
written in an equivalent matrix notation:

dP (t)

dt
= Q̃ P (t) in components: Ṗm(t) =

M
∑

l=1

Q̃mlPl(t)

and, upon time discretisation:

P (t+∆t) = Q P (t) (3.13)
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Table 3.1

m ∈ [1, 153] (n1, n2)

1 (0, 0)
2 (0, 1)
...

...
17 (0, 16)
18 (1, 0)
...

...
33 (1, 15)
34 (2, 0)
...

...
150 (14, 2)
151 (15, 0)
152 (15, 1)
153 (16, 0)



















q = 0











q = 1

...

}

q = 15
}

q = 16

(3.12)

where ∆t is a microscopic timescale that we have selected for a uniform resampling of
the stochastic dynamics. Matrix Q has dimension M ×M , it is stochastic and reads:

Q = W∆t+
(

1−
∑

i

Wij∆t δij
)

. (3.14)

The entries of the matrix Q can be computed from the transition rates of the underlying
master equation. Let us focus on the generic element Wlm that enters the definition of
matrix Q. Assume in particular index m to label the reference initial state, while index l
identifies the state that can be eventually reached through the chemical dynamics. Five
possible types of transitions exist, organised in q = N + 1 blocks, which corresponds to
the selected value of n1, while n2 can freely varies within [0, N − n1]:

l1 = mmax(q + 1) + n2 + 1

l2 = mmax(q)− nmax
2 + n2 + 1

l3 = mmax(q)− nmax
2 + n2 + 2

l4 = mmax(q + 1) + n2

l5 = m− 1

where we denote mmax(q) the largest possible index as associated to block q, for the
selected choice of m; while nmax

2 stands the largest values that can eventually take the
discrete variable n2. Hence:

nmax
2 = N − n1

mmax(q + 1) = mmax(q) +N + 1− n1
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The non trivial elements Wm,l are hence:

Wl1,m ≡ T (n1 + 1, n2|n1, n2) =
k1
N

(

N − n1 − n2
)

{

n2 ∈
[

0, nmax
2 − 1

]

n1 ∈
[

0, N − 1
]

Wl2,m ≡ T (n1 − 1, n2|n1, n2) =
k−1

N
n1

{

n2 ∈
[

0, nmax
2

]

n1 ∈
[

1, N
]

Wl3,m ≡ T (n1 − 1, n2 + 1|n1, n2) =
k2
N
n1

{

n2 ∈
[

0, nmax
2

]

n1 ∈
[

1, N
]

Wl4,m ≡ T (n1 + 1, n2 − 1|n1, n2) =
k−2

N
n2

{

n2 ∈
[

1, nmax
2

]

n1 ∈
[

0, N − 1
]

Wl5,m ≡ T (n1, n2 − 1|n1, n2) =
k3
N
n2

{

n2 ∈
[

1, nmax
2

]

n1 ∈
[

0, N
]

Given the above structure, it is possible to identify for every choice ofm, the corresponding
combination of n1 and n2, and associate the m−component of vector P (t) to a specific
state (n1, n2). That is possible because the mmax(q) are in fact the partial sums of the
finite sequence:

mmax(q) =

q
∑

i=0

N + 1− i i ∈ {0, . . . , N}

for q = 0, . . . , N .
For a given m, we thus identify the index q that matches the relation:

mmax(q) ≥ m

and then set:
{

n1 = q

n2 = m−mmax(q − 1)− q
(3.15)

The stationary solution of the stochastic dynamics, i.e. the stationary probability
distribution P ST, defines the kernel of the M ×M matrix Q and can be hence computed
as the eigenvector of Q associate with the null eigenvalue.
It is also possible to compute the general solution of the master equation (3.13) at any
step time t. This can be formally cast in the form:

P (t) = QtP (0)

Denote the right eigenvector of Q, associated to eigenvalue λ(i), as
∣

∣ψ(i)
〉

, and assume
〈

χ(i)
∣

∣ to label the corresponding left eigenvector. In formulae:











Q
∣

∣ψ(i)
〉

= λ(i)
∣

∣ψ(i)
〉

i = 1, . . .M
〈

χ(i)
∣

∣Q = λ(i)
〈

χ(i)
∣

∣
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The general solution at time t for the m-component can be expressed in a closed form as:

Pm(t) =
(

Q
)t
Pm(0) =

M
∑

i=1

(

λ(i)
)t
∣

∣

∣
ψ(i)

〉〈

χ(i)
∣

∣

∣
Pm(0) (3.16)

where Pm(0) is the probability distribution at time t = 0.
From the knowledge of the exact solution, at any time t, and recalling the mapping
(3.15), it is possible to extract the marginal probability distribution for motors in one of
the two configuration A1 or A2. This is accomplished by formally defining the marginal
probabilities P (n1; t) and P (n2; t):

P (n1, t) =
∑

n2

P (n1, n2, t)

P (n2, t) =
∑

n1

P (n1, n2, t)
(3.17)

that allows us to calculate the average number of motors in one specific configuration as:

〈n1(t)〉 =
N
∑

n1=1

n1P (n1, t)

〈n2(t)〉 =
N
∑

n2=1

n2P (n2, t) .

We are now presenting the details of the numerical simulations of the considered popula-
tion dynamics, obtained via the celebrated Gillespie algorithm [67, 68]. This algorithm
allows to numerically simulate a single stochastic orbit of the considered dynamics (work-
ing with the same rate constants as assumed in the the mean field simulations), generating
a time series of the evolution of the macroscopic (discrete) fractions of motors, whose
probability distribution are the solution of the master equation (3.13). A typical solution
for the fractions of the various populations i.e. nD(t)/N , n1(t)/N , n2(t)/N for finite N
is displayed in Figure 3.3. As expected the stochastic trajectories fluctuate around the
corresponding deterministic orbit (solid lines). The observed fluctuations are a material
imprint of the inherent discreteness of the simulated system.
The stationary probability distribution of fluctuations can be numerically accessed

from individual stochastic simulations, by averaging over a large set of independent
stochastic realisations. In Figure 3.4 the stationary state distribution of the fluctuations
(i.e. the fluctuations displayed around the deterministic fixed point, once the initial
transient has faded away) is depicted for the force-generating populations A1 and A2,
and compared to the analytical solution obtained from the governing master equation, i.e.
the marginal probability distributions P ST

1 and P ST
2 , via the procedure discussed above.

The agreement is satisfying and testifies on the correctness of the proposed analytical
treatment.
Let us now recall the relevant setting for the examined system, for which it is reasonable
to assume that the population of motors in configuration A1 is negligible as compared to
those in state A2. It is therefore legitimate to solely focus on the dynamics of species A2,
thus yielding a compact, though effective, descriptive model. The marginal probability ρq
to find q ≤ N motors in A2 can be extracted from the stationary probability distribution
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Figure 3.3: Stochastic simulations obtained with the Gillespie algorithm.
Temporal behaviour of the concentrations of the three populations of motors in each
configuration: D (yellow line), A1 (red line), A2 (blue line), for a small ensemble
of size N = 16. The black solid lines represents the deterministic evolution of the
concentrations.

P ST, the stationary solution of the master equation. This is done by summing the
elements of P ST that refer to the selected q, and that account for all possible partitioning
of the remaining N − q motors among configurations D and A1.
In the next section we will turn to discussing the isometric force as exerted by the pool of
interacting molecular motors, arranged in different classes as dictated by the stochastic
model here outlined.

3.4 From the population dynamics to the characterisation

of the force

With the knowledge of the motors population dynamics we are now able to characterise
the force exerted by a small ensemble of molecular motors in isometric conditions. This
is obtained by combining the contributions from each individual motor of the collection:
motors in the configuration A1, each exerting a force f1 and motors in A2, each exerting
a force f2. The experimental set-up of the nanomachine is characterised by the fact
that HMMs are deposited on the surface with a random orientation with respect to the
actin filament. As a consequence, we assume that the intensity of the force exerted by a
motor depends on the binding angle θ, as measured from the correct in situ orientation.
Depending on the specific orientation of the molecule, the force progressively decreases
up to a minimum value that can be set as 0.1f0 [55]. In particular, the force of a single
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Figure 3.4: Checking the theory predictions vs. stochastic simulations.
Comparison between the stationary probability distributions of the fractions of motors
in the force-generating configurations as obtained from the simulated dynamics and
the stationary state solution of the master equation. Normalised histograms (light
coloured lines with symbols) refers to the populations of motors in configurations A1

(in red) and A2 (in blue), as obtained from the simulated dynamics for a suitable
choice of the kinetic parameters. Dark coloured lines stand for the homologous
marginal distribution as derived from the stationary solution of the master equation.

motor can change within a bounded interval: the largest value of the force f0 is exerted
when the motor orientation is correct (corresponding to the in situ orientation). Then,
in accordance with [62] (see Supplementary Figure 2a) we postulate that the exerted
force f1 is a random variable, uniformly distributed within the interval I1 =

[

−f0, f0
]

.

Similarly, the force f2 is randomly extracted from the interval I2 =
[ f0
10 , f0

]

.

3.4.1 Mean field analysis

Let us focus initially on the average force exerted by the small ensemble of motors. The
mean field average force exerted by the ensemble of myosin motors, at any time t can be
written as:

〈F (t)〉 = 〈n1(t)〉 〈f1〉+ 〈n2(t)〉 〈f2〉 = 〈n2(t)〉 〈f2〉 (3.18)

given that 〈f1〉 = 0 since the interval I1 is symmetric with respect to zero. In the
stationary state, 〈F (t)〉 converges to the asymptotic plateau value F0, and thus:

F0 = Nz∗
11

20
f0
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where use has been made of the self-consistent condition 〈f2〉 = (11/20)f0. If we recall
that z∗ ' r, for the case here examined we are left with the final expression:

rf0 =
1

N

20

11
F0 . (3.19)

We observe that the experimental value of the stationary force exerted by a pool of N
motors acting in the state A2, solely constrains the product of f0 and r. That is, on
deterministic means, we cannot access a direct estimate of the maximum force exerted
by an individual motor f0, and the associated duty ratio of the ensemble r, but just
constraint this latter pair to fall on a hyperbole, set by F0. Accounting for the fluctuations
superimposed on F0, and thus by properly gauging the stochastic component of the
dynamics, enables us to resolve the above degeneracy.

3.4.2 On the role of fluctuations

To take full profit from the available experimental information and to improve on the
deterministic handling of the recorded data, we consider the dynamics of the system
at finite N , so as to account for the role played by finite size fluctuations. To quantify
the contribution as stemming from the intimate graininess of the investigated system,
we ought to solve the master equation (3.13), focusing in particular on the stationary
state probability distribution P ST. As discussed in the previous Section, we are in a
position to solve exactly the stochastic model in its stationary state, and thus get a closed
expression for P ST, as function of the parameters of the model. This knowledge will be
used to compute P (F ), the probability distribution of the total force F , exerted by the
ensemble in isometric conditions. Remark that P (F ) is ultimately shaped by the kinetic
constants of the model (namely, k1, k−1, k2, k−2, k3) and also reflects the maximum force
f0, as applied by individual motors. Recall also that N is directly determined by the
protocol of counting of the rupture events in ATP-free solution detailed in Chapter 2
(see Figure 2.3).
In the next Chapter we will construct an inverse procedure to recover information on the
underlying parameters, by confronting the predicted distribution of the force P (F ) to
the homologous curve obtained from the experimentally recorded data. In particular we
will prove that, by exploiting the information content as stemming from the fluctuations,
it is eventually possible to unambiguously determine both f0 and r.

The knowledge of the stationary marginal probabilities (ρ0, ρ1, ρ2, ..., ρN ) calculated at
the end of the previous Section opens up the perspective to calculate the non-equilibrium
stationary state distribution of the force F exerted by the ensemble of motors.
To work along these lines we shall assume that the contribution to the force (including
fluctuations) of the motors in the state A1 is always negligible. This assumption is
motivated by the fact that, for the experimental setting here explored, only a tiny
fraction of motors is found to populate state A1, at any time t. In the next Section we
will relax this working assumption so as to provide a rigorous theoretical framework that
extends to account for the relevant setting where the population of A1 motors is instead
significant in size.
Let us focus on q ≤ N distinct motors in state A2. As postulated earlier, each motor can
exert a constant random force f , uniformly spanning the assigned interval I2. For each
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Figure 3.5: Many body stationary force probability distributions. The
probability distributions Πq(f) are plotted for q = 1, 2, 3, 4.

choice of q, we can compute the distribution of the forces Πq(f) applied by the selected q
motors, by combining independent and identically uniformly distributed random variables
drawn for the interval of pertinence I2. Functions Πq(f) need to be combined together
with proper weighting factors that reflect the stationary probability ρq of having exactly
q motors in the force-generating state A2, namely:

P (F ) = ρ1Π1(f) + ρ2Π2(f) + · · ·+ ρ16Π16(f) =

N
∑

q=1

ρq Πq(f) .

where use has been made of the fact that Π0 = 0.
The obtained profiles are reported in Figure 3.5 for the relevant case N = 16 and for
q = 1, 2, 3, 4. In Figure 3.6 the global distribution of fluctuations is depicted for a specific
choice of the parameter f0 and the rate constants of the model. The general analytical
characterization of the probability distribution of the force of an ensemble of motors in
two different force-generating configurations is provided in the following.

3.4.3 Analytical characterisation of the force probability distribution

As mentioned, the fluctuations of the force around the average value stem from finite
size corrections. To estimate the probability distribution P (F ) we focus on q ∈ [1, N ]
force-generating distinct motors and postulate that each of them can exert a uniform,
randomly selected force f . For each choice of q, one can compute the distribution of
the force Πq(f) exerted by the q motors. This is a particular case of the more general
problem of calculating the probability distribution for the total force exerted by all the

36



Section 3.4. From the population dynamics to the characterisation of the force

Figure 3.6: Theoretical distribution of force fluctuations. Probability density
function P (F ) as resulting from the sum of the Πq(f), for q = 1, . . . , N weighted
with the stationary solution of the master equation for a system of N = 16. The
adopted parameters are: f0 = 6 pN , k1 = 30 s−1, k−1 = 500 s−1 k2 = 2000 s−1

k−2 = 100 s−1 k3 = 10 s−1.

n1 and n2 molecular motors in the force-generating configurations A1 and A2. Here
we discuss the problem under this general perspective. To this end we denote by f1
the random force uniformly distributed in the interval I1 and exerted by the motors in
configuration A1 and by f2 the one extracted from the interval I2, exerted by the motors
in the configuration A2.
As suggested in [69] we are dealing with the problem of finding the probability distribution
of the sum of n random variables Yi, for i = 1, . . . , n each of them uniformly distributed
in the interval [bi, ci]. In our case we have only two classes of variables Yi: the ones
relative to the forces exerted by motors in the configuration A1, and those relative to the
forces exerted by motors in the configuration A2, so that:

n
∑

i=1

Yi =

n1
∑

i=1

Yi +
n
∑

i=n1+1

Yi

and:

Yi =



















f1 and [bi, ci] = [−f0, f0] if i = 1, . . . , n1

f2 and [bi, ci] =

[

f0
10
, f0

]

if i = n1 + 1, . . . , n

(3.20)

We can observe that the probability distributions of the sum of the variables Yi is the
same as the probability distribution of the sum of the variables Xi = Yi − bi, which are
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defined in the intervals [0, ai], where ai = ci − bi.
Introduce the sum s:

s =

n
∑

i=1

Xi

with n ≥ 2. Then the distribution of the sum as defined above reads [69]:

Πn(s;n1, n2) =
1

(n− 1)!

1

(a1)n1(a2)n2

[

sn−1 +

n
∑

k=1

(−1)k

(

∑

Jk

(

s−
k
∑

l=1

ajl

)

+

)n−1 ]

(3.21)
where we adopted the notation: (f)+ = max{0, f}.
From this expression it is possible to compute the probability distribution for the sum of
the variables of our interest:

n
∑

i=1

Yi =

n
∑

i=1

(

Xi + bi

)

=

n
∑

i=1

Xi +

n1
∑

i=1

bi +

n
∑

i=n1+1

bi = s+ n1b1 + n2b2

where b1 = −f0 and b2 =
f0
10 .

If we consider just one class of variables Yi, meaning if we consider only the forces exerted
by one of the two force-generating populations of motors, the distributions Πn can be
computed as a specific case of the generalisation of the Irwin-Hall distribution, [70], the
uniform sum distribution. These refer to the sum of n random variables xi, each of them
defined in the interval [a, b] and take the form:

Πn(x) =
1

b− a
g(y;n) with: y =

x− na

(b− a)
(3.22)

where:

g(y, n) =
1

2(n− 1)!

n
∑

k=0

(−1)k
(

n

k

)

(y − k)n−1 sgn(y − k) .

When considering only one population of motors in one of the two force-exerting con-
figurations, nj where j can be j = 1 or j = 2, the probability distribution associated
with such an ensemble is P (Fj) with Fj = njfj and it is given by the expression (3.22)
where n = nj and x = fj . The general case of an ensemble constituted by two different
populations of force-generating motors requires the use of the expression (3.21) with
n = n1 + n2 and s = F1 + F2 = n1f1 + n2f2.

3.4.4 Simulating the stochastic force generated by a small ensemble of

motors

We are now in the position to simulate also the temporal series of the force of the ensemble.
This is obtained by assigning to each individual motor the force that it is able to exert,
based on its configuration (as stipulated by the stochastic dynamics), and following the
prescriptions described in the previous Section. In Figure 3.7 (a) is displayed the time
series of the force exerted by motors of populations A1 and A2, when we impose an
initial condition with all the motors detached from the actin, for a specific choice of the
parameters. The empirical probability distribution of the force of the ensemble at the
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(a) (b)

Figure 3.7: a. Force development as obtained by averages of stochastic simulations.
The trajectory has been obtained averaging over 100 independent simulated trajec-
tories. The force is measured in pN and it is exerted by a collection of N = 16
molecular motors with a suitable choice of the kinetic parameters. b. Probability
distribution of the force of the ensemble. The histogram has been obtained from a
single time series of the force of the ensemble at the isometric plateau, obtained via
the Gillespie algorithm. The force is measured in pN and it is exerted by a collection
of N = 16 molecular motors with a suitable choice of the kinetic parameters.

isometric plateau, for a specific set of parameters, can be obtained from a time series of
F (t); the resulting histogram of the force fluctuations is shown in Figure 3.7 (b).
By accessing the temporal evolution of the force, including the fluctuations around

the equilibrium value, we can recover key information on the underlying structural and
kinetic parameters. This task corresponds to solve an inverse problem, from the observed
time series of the force of the ensemble back to the relevant parameters. The details of
this reverse engineering procedure for parameter estimation it is presented in details in
the next Chapter.

3.5 The fitting strategy for parameters estimation

In this Section we present the strategy adopted to estimate the relevant parameters
of the model. We will construct an inverse procedure to recover information on the
underlying parameters, by confronting the predicted distribution of the force P (F ) to the
homologous curve recorded experimentally. In particular we will prove that, by exploiting
the information content as stemming from the fluctuations, it is eventually possible to
unambiguously determine both f0 and r.
In the following we validate in detail the procedure against synthetically generated data
based on the stochastic model introduced in the previous sections.

3.5.1 Inverse scheme validation on synthetic data

By accessing the temporal evolution of the force, including the equilibrium fluctuations,
one can aim at recovering some information on the underlying structural and chemical
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Figure 3.8: Fitting procedure of the synthetic data obtained for the force
development. The force development of the synthetic data obtained with the
stochastic simulations (blue noisy trajectory, measured in pN , exerted by a collection
of N = 16 molecular motors, with parameters T0 = 22.9 pN and a = 54.7 s−1) has
been fitted with the solution of the mean field effective model (yellow line).

parameters. This corresponds to solving an inverse problem, from the observed force
back to the relevant parameters, that we shall formalize hereafter. We begin by focusing
on the average force profile, hence disregard the impact of finite size fluctuations. As
mentioned in Section 3.2.1, the time evolution of the recorded force can be approximated
by an effective, two-parameters model. These parameters - respectively denoted F0, the
mean value of the force exerted by the ensemble once the isometric plateau has been
reached, and a, the rate of the force development - can be estimated via a direct fit, as
shown in Figure 3.8 Having accessed to preliminary estimated values for the average force
at the stationary plateau F0 and for the rate of isometric force development a, one can
then set forth to characterise the other kinetic parameters by analysing the distribution
of the fluctuations of the force around the asymptotic plateau. To this end we note that
f0, following equation (3.19) in the framework of the effective model, can be written as:

f0 =
20

11

F0

N

a

b
(3.23)

where a is constrained to the value determined by the parameters estimation performed
on the force development trajectory, while b = k1k2/(k1+k−1+k2) as defined by equation
(3.11).
Armed with the above knowledge, we can proceed further by comparing the probability
density function of the force fluctuations P (F ) as obtained analytically, to the homologous
histogram computed from the stochastic simulations (the empirical distribution of the
force P̄ (F )). The former is adjusted to the latter by modulating the free parameters k1,
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Figure 3.9: Fitting procedure of the synthetic data obtained for the force
fluctuations at the isometric plateau. The probability density function of the
force as obtained from the stochastic simulations (blue bars) is compared to the
fitted profile (yellow line).

k−1, k2, k−2 and k3, for a fixed choice of N (here set to the correct value, namely the
value assumed in the simulations, N = 16). The fit is based on a simulated annealing
algorithm to optimise the loss function:

L = |P̄ (F )− P (F )|2 (3.24)

where | · | represents the usual L2 norm. The results of the fitting via inverse scheme
is shown in Figure 3.9. Testing the method against synthetic data generated in silico
enables us to conclude that, the force of a correctly oriented motor and the duty ratio
of the ensemble, i.e. parameters f0 and r = k1/(k1 + G), can be correctly estimated,
as it follows from inspection of Table 3.2. Also the estimated b and a (recomputed

Table 3.2: Estimated parameters via the inverse scheme fed with simu-
lated data.
Errors are below 10−3 if not explicitly provided.

F0 (pN) f0 (pN) r a (s−1) b (s−1) φ(s−1)

True 22.9 6.0 0.46 54.7 23.7 13.43
parameters

Estimated 22.7 6.1 0.46± 0.03 54.8 23.5 13.42
parameters
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Figure 3.10: Results of the optimisation procedure for the parameters
estimation. The parameters estimation has been performed in the framework
of the effective model and the results are identified by the yellow symbols (Mean
values and standard deviations are obtained from different replica of the stochastic
optimization algorithm). The estimated values are compared with the parameters
adopted in the stochastic simulations of the dynamics (blue solid line).

from the best fitted values for the kinetic constants) are pretty close to their nominal
values as imposed in the simulations. Remarkably φ, the rate of motors completing
the interacting cycle with the actin, is also correctly recovered. Figure 3.10 shows the
graphic comparison between the results of the optimisation procedure for the parameters
estimation performed under the assumptions of the effective model, and the values of
the parameters adopted in the stochastic simulations of the dynamics (these latter are
referred to as true parameters, as they are imposed in the simulation and thus known
with infinite precision). The symbols refers to the mean and SD of the duty ratio r, the
force of a single motor f0, the rate φ and the two parameters a and b that describe the
dynamics of the system in the deterministic limit. The blue line represents the value
of the corresponding parameter adopted in the simulations. In Figure 3.11 it is shown
the parameters estimation in the plane (f0, r), where the solutions resulting from the
analysis of the force of the ensemble in the deterministic framework are represented by
the solid line, while the symbols shows the value of the parameter f0 and r that can be
estimated by taking into account the fluctuations of the force of the ensemble.
The above analysis refers to a fixed value of N , the size of the system that we assumed
(from the experiment results shown in Figure 2.3) to be N = 16. In principle the correct
value of N is not a priori known. To overcome this intrinsic limitation, one could repeat
the analysis by varying N and recording the parameters estimated as follows the fitting
scheme. Here, we will consider the simplified setting where a and b are frozen to the
values determined for N = 16 (so that z∗ remains unchanged). This is implemented by
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Figure 3.11: Parameters estimates in the reference plane (f0, r). The
symbol follows from the integrated fitting strategy that accounts for fluctuations.
The solid line is the hyperbole populated with the degenerate mean field, hence
deterministic solutions. Remark that the fitted symbol is close but not on top of
the hyperbole. The observed deviation is eventually due to the residual population
y∗ that is adequately estimated via the generalised fitting strategy base on the
stochastic description. The error is obtained from different replica of the stochastic
optimisation algorithm.

removing two parameters from the pool of quantities to be fitted. Specifically k−1 and
k3 are constrained to match two constitutive relations, that involve k1, k2 and k−2, in
addition to a and b. The parameters to be fitted are hence k1, k2 and k−2, while k−1,
k3 and f0 can be self-consistently determined from the their best fit values. Notice that
f0 is expected to change as a function of N as specified by relation (3.23). The result
of the analysis are reported in Figure 3.12: the fitting procedure converges (with the
requested limit of precision) only over a finite range of values of N , centred around the
value adopted when performing the simulations. This observation implies that we are in
a position to obtain a reasonable estimate for the interval of pertinence of N , as follows
the procedure outlined above.
The introduced theoretical framework and the ensuing fitting strategy, thoroughly vali-
dated against synthetic data, can be hence applied to the analysis of the experimental
data so to yield a self-consistent estimate of the underlying mechanokinetic parameters.

In this Chapter we have presented a combined experimental and theoretical approach
that could set the basis for future studies on the emergent mechanokinetic properties of
the half-sarcomere-like arrangement of any myosin motors, either engineered or purified
from mutant animal models or human biopsies. In Section 3.5 we showed that the
inverse scheme adopted to estimate the underlying parameters of the dynamics is able to
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Figure 3.12: Checking f0 against N . The parameter f0 is estimated as a
function of N (solid line) applying the inverse scheme to the simulated data. The
symbols refers to the best fit value of f0 as determined for different choices of N .

provide an accurate estimate for the force of a single molecular motor with the correct
orientation, and the duty ratio of the ensemble of motors. This achievement has been
made possible by combining the exact solution of the master equation to express the
marginal probability distribution for the populations of force generating motors A2 and
the Irwing-Hall probability distributions for the uniform sums distributions to describe
the probability distribution of the force of the ensemble. However the definition of
the underlying kinetic rate constants of the dynamics remains uncertain due to the
multiple possible combinations of these microscopic parameters that results in the same
macroscopic ensemble behaviour. The analysis presented has been carried out under the
assumption that the contribution of the motors in state A1, to the force exerted by the
ensemble, is negligible. The assumption has been motivated by the fact that, for the
experimental setting explored in Chapter 2, only a tiny fraction of motors is found to
populate state A1, at any time t, given the fact that all experiments were conducted at
room temperature. In order to generalised the proposed theoretical conceptualisation of
the model, in the next Chapter 4 we will present and discuss a more general formulation
of the analytical problem of the description of the probability distribution of the force
exerted by an ensemble of motors that can be found in two different force-generating
configurations, by explicitly taking into account the contribution of motors in population
A1, that becomes relevant for experimental data acquired at lower temperatures. This
new approach will employ two different strategies. On the one hand the distribution
of the force of the ensemble will be treated as random sum distributions instead of
Irwing-Hall distributions: this will prove useful given that random sum distributions
converge to normal distributions in the context of pertinence. On the other hand the
master equation can be treated in the Gaussian noise approximation, also known as the
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Van Kampen approximation, that provides an useful expression when the concentrations
of the motors populations are sufficiently different from zero. These two approximations
will prove essential in order to obtain more manageable expressions to be implemented
in a revised version of the fitting scheme for parameters estimation.
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Chapter 4

Model generalisation

In the previous Chapter we developed a fitting procedure to analyse data recorded
in experiments conducted at room temperature on HMMs purified from two different
mammalian skeletal muscles. The results of the application of this approach to the
experimental data will be provided and discussed extensively in Chapter 5. Under such
experimental conditions it is reasonable to assume that the contribution of motors in
configuration A1 to the force of the ensemble is negligible.
The contributions of motors in low force configuration become relevant when the array
of motors performs at lower temperatures (around T ' 12 ◦C).
In this Chapter we present a generalisation of the theoretical approach, that allows us to
take into account the force contributions of molecular motors in configuration A1. The
fitting strategy can be hence generalised to account for data sets recorded at different
temperatures. The structure of the Chapter is the following: in Section 4.1 we present
the approximation of the analytical form of the probability distribution P (F ) of the force
exerted by an ensemble made of two different force-generating motor states; in Section
4.2 we implement the procedure to account for the temperature dependency of the kinetic
rates, while in Section 4.3 we propose an alternative approach for the solution of the
population dynamics, that involves the Gaussian noise approximation. The advantage of
this last approach consists in the fact that it allows to obtain an explicit expression for
the probability distribution of the motors populations, which does not require to solve
the master equation, therefore yielding a more straightforward (and less time consuming,
from the computational point of view) fitting procedure.
The aim for this general formalisation would be to estimate not only the force of a single
correctly oriented molecular motor f0 and the duty ratio r of the ensemble, but also
to improve on the estimate for the order of magnitude of the kinetic rates that govern
the dynamics of the system. The kinetic parameters were in fact not properly resolved
with the previous fitting scheme, due to the multiple microscopic combinations of rate
constants that result in the same macroscopic behaviour of the ensemble, and thus in
the same estimation for parameters like the single motor force or duty ratio. Combining
synthetic data that reproduce the evolution of the force of the ensemble of motors at
different temperatures provides a way to constrain the microscopic evolution to reveal
the underlying kinetic parameters of the dynamics.



CHAPTER 4. MODEL GENERALISATION

4.1 Force exerted by an ensemble of myosin motors in two

force-generating configurations

The analysis develops from the deterministic description of the interactions between
the force-generating populations of motors in the ensemble, and then moves to the
stochastic description in order to account for the fluctuations of the total force. The aim
is to provide a theoretical description of the probability distributions of the force fluctua-
tions around the isometric plateau that will be employed in the parameter estimations
presented at the end of the Section.

4.1.1 The mean field evolution

We recall the expression of the set of differential equations for the evolution of the
fractions of attached motors y(t) and z(t), already defined in Section 3.2 of Chapter 3:



















dy

dt
= k1 −

(

k1 + k−1 + k2
)

y −
(

k1 − k−2

)

z

dz

dt
= k2 y −

(

k−2 + k3
)

z

(4.1)

The system can be written as: ẋ = Jx+ b where x = (y, z), bT = (k1, 0) and J is the
jacobian matrix of the linear system (that does not depend on the concentrations):

J =

(

−(k1 + k−1 + k2) −k1 + k−2

k2 −(k−2 + k3)

)

(4.2)

We denote with θ1,2 the eigenvalues of the matrix. The corresponding eigenvectors are
v1,2. The solution of the system is:











y(t) = y∗ + c1e
θ1tv11 + c2e

θ2tv21

z(t) = z∗ + c1e
θ1tv12 + c2e

θ2tv22

(4.3)

where:






















y∗ =
( k1
k1 +G

) k−2 + k3
k2 + k−2 + k3

z∗ =
( k1
k1 +G

) k2
k2 + k−2 + k3

(4.4)

are the equilibrium fixed points of the system and we the expression of G, defined in
Chapter 3, is recalled here for the sake of simplicity: G = (k−1(k−2 + k3) + k2k3)/(k2 +
k−2 + k3) .
The constants c1,2 can be computed by imposing the initial conditions of interest. In the
following we will assume x(t = 0) = (0, 0), that readily yields:























c1 =
1

det(V )

(

−y∗v2,2 + z∗v2,1
)

c2 =
1

det(V )

(

y∗v1,2 + z∗v1,1
)

(4.5)

48



Section 4.1. Force exerted by motors in two force-generating configurations

where we have defined the matrix:

V =

(

v1,1 v2,1
v1,2 v2,2

)

.

Focusing on the equilibrium solution of the mean field dynamics we can quantify the so
called duty ratio r, i.e. the average fraction of attached motors, that results in the same
expression founded in Chapter 3, Section 3.2: r = y∗ + z∗ = k1

k1+G with G defined above.
Let us consider now the force exerted by the ensemble of N motors. As already recalled
in Chapter 3, the myosin fragments available for interaction with the actin are deposited
on a support with random orientation, and this reflects in the force exerted by each
individual motor. In particular we have assumed that the force applied by motors in
configuration A1 is uniformly distributed in the interval I1 = [−f0, f0], while the force
exerted by motors in A2 is uniformly distributed in the interval I2 = [f0/10, f0]. Hence,
the average force exerted by motors in configuration A1 is zero (〈f1〉 = 0). We can thus
conclude that the average force F0, exerted by the collection of examined motors at the
isometric plateau, is:

F0 = 〈n1〉 〈f1〉+ 〈f2〉 〈f2〉 = N
(

〈f1〉 y∗ + 〈f2〉 z∗
)

= N 〈f2〉 z∗ . (4.6)

4.1.2 Stationary solution of the master equation

Let us focus on the stochastic evolution of the populations of motors. The dynamics of
the system under scrutiny is governed by a master equation that quantifies the probability
associated to each possible state of the system. The master equation can be cast in the
general form (3.2), where T (n|n′) stand for the transition rates which follow the kinetic
scheme (3.1).
In order to obtain the theoretical expression for the probability distribution of the force
exerted by an ensemble composed of n1 motors in configuration A1 and n2 motors in
configuration A2, as a function of the system’s parameters, we perform the following
steps:

1. We solve the master equation in the stationary state to obtain P (n1 = q1, n2 = q2)

2. We define the total force produced by the active motors at any time t. This latter
depends on the number of motors in each force-generating configurations, namely:

Fn1,n2(t) =

n1(t)
∑

i=0

f i1 +

n2(t)
∑

i=0

f i2 (4.7)

where f i1 and f i2 are, for all i ∈ {0, . . . , nj} for j = {1, 2}, random variables with
uniform probability distributions U(−f0, f0), and U(f0/10, f0) respectively.
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3. We fix q1 and q2 in {0, . . . , N} and define the total force exerted by an ensemble
made of q1 motors in state A1 and q2 motors in state A2:

Fq1,q2 =

q1
∑

i=0

f i1 +

q2
∑

i=0

f i2 (4.8)

This force is distributed as the sum of q1 i.i.d variables f i1, uniformly distributed
in [−f0, f0], and q2 i.i.d variables f i2, uniformly distributed in [f0/10, f0], therefore
that it is distributed as the sum of two Irwing-Hall distributions (IH) Φ(q1;−f0, f0)
and Φ(q2; f0/10, f0).

4. We hence define the probability density function of the force of the ensemble
composed of n1 motors in state A1 and n2 motors in state A2 as:

P (Fn1,n2 = F) =
N
∑

q1,q2=0

P (Fq1,q2 = F)P (n1 = q1, n2 = q2) (4.9)

5. We now assume that P (n1 = q1, n2 = q2) 6= 0 sse q1, q2 � 1 .

6. Further, we recall that an IH distribution for the sum of n i.i. uniformly distributed
variables in the interval (0, 1) ui ∼ U(0, 1), can be approximated by a Gaussian
distribution G(µ, σ2) for sufficiently large n:

Φ(n; 0, 1)
n�0−−−→ G

(

µ =
n

2
, σ2 =

n

12

)

. (4.10)

Label j = {1, 2} the two populations of motors. We seek at expressing the variables
f ij ∼ U(a, b) in terms of the variables ui ∼ U(0, 1).
If ui ∼ U(0, 1), then fi = a− (b− a)ui ∼ U(a, b), and:

n
∑

i=1

f i =

n
∑

i=1

a− (b− a)ui = na− (b− a)

n
∑

i=1

ui

with:
n
∑

i=1

ui ∼ Φ(n; 0, 1)
n�0−−−→ G

(

µ =
n

2
, σ =

n

12

)

. (4.11)

We obtain that the sum of n i.i. uniformly distributed variables f i in the interval
(a, b) is distributed (in the limit of large n) as a Gaussian distribution:

G(f i) = 1

b− a

exp

(

−
(f

i−na
b−a − n

2 )
2

2 n
12

)

√

2π n
12

=
exp
(

− (f i−µ)2

2σ2

)

√
2πσ2

(4.12)

with parameters:














µ = na− n

2

(

b− a
)

=
n

2

(

b+ a
)

σ2 =
n

12

(

b− a
)

(4.13)
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Section 4.1. Force exerted by motors in two force-generating configurations

7. Under the hypothesis 5, each IH distribution (one for each of the two populations
of motors) can be approximated with a Gaussian distribution G(µj , σ2j ) with known
parameters:

q1
∑

i=0

f i1 ∼ Φ(q1; a1, b1)
q1�0−−−→ G(µ1, σ21)







µ1 = 0

σ21 =
1

3
q1f

2
0

(4.14)

and

q2
∑

i=0

f i2 ∼ Φ(q2; a2, b2)
q2�0−−−→ G(µ2, σ22)



















µ2 =
11

20
q2f0

σ22 =
27

400
q2f

2
0

(4.15)

Therefore P (Fq1,q2 = F) is a sum of two independent Gaussian distributions
G(µi, σ2i ), which results in a Gaussian distribution with parameters:

Fq1,q2 ∼ G(µF , σ2F )



















µF = µ1 + µ2 =
11

20
q2f0

σ2F = σ21 + σ22 =
(1

3
q1 +

27

400
q2
)

f20

(4.16)

8. In conclusion the probability distribution of the force of an ensemble of n1 motors
in A1 and n2 motors in A2 takes the following expression:

PFn1,n2
(F) =

N
∑

q1,q2=0

G
(

µF (q1, f0), σ
2
F (q1, q2, f0)

)

P (n1 = q1, n2 = q2) (4.17)

with P (n1 = q1, n2 = q2) stationary solution of the populations master equation
(3.4).

4.1.3 Fitting procedure

We have derived an explicit expression for the theoretical probability distribution of
the force exerted by two different force-generating populations of motors working in
ensemble. We are now presenting the fitting procedure adopted to perform a parameters
estimation on synthetically generated stochastic trajectories, under different temperature
conditions. In order to take into account the contribution of motors in population A1, we
must consider the solution of the deterministic model obtained in the previous Section
(without the adiabatic approximation exploited in the previous Chapter).
We will combine the deterministic and stochastic solution of the dynamics as follows. We
consider the theoretical expression of the probability distribution of the force exerted
by the ensemble of motors (4.17), and the solution of the mean field dynamics in the
form (4.3), and compute their distances (mean square error) to the histogram of the
isometric force at the plateau, and to the force development respectively, both obtained
from synthetically generated stochastic data.
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(a) (b)

Figure 4.1: Result of the fitting procedure on the force development and
on the probability distribution of the force obtained from the stochastic
simulations of the dynamics.
a. The trajectory of the force has been obtained averaging over 600 independent
simulated trajectories. The force is measured in pN and it is exerted by a collection
of N = 20 molecular motors with a suitable choice of the kinetic parameters and
the force of a single motor f0. b. Comparison of the empirical distribution of the
force (histogram, in blue) and the analytical one P (F ) (line, in red).

Adjusting the kinetic parameters to minimize these distances we provide an estimation
of the force of a single molecular motor and of the duty ratio of the ensemble; the
results of the fitting procedure of the force development and the force distribution at
the isometric plateau are shown in Figure 4.1. From the inspection of Table 4.1 it
can be appreciated that the estimates of f0, r and φ are in good agreement with the
values of the corresponding parameters set adopted to generate the synthetic data. The
optimisation procedure is quite stable with respect to these parameters, as suggested
by the small standard deviations obtained from different independent realisation of the
fitting procedure. On the other hand, the values of the kinetic parameters ki are not
resolved in a satisfactory way by the optimisation as can be appreciated in Figure 4.2.
This is due to the large degeneration of possible kinetics solutions corresponding to the
same stationary distribution P (F ).
In the following Section we propose a procedure to extract kinetics information by
considering the effect of temperature on the performance of the motors: including the
temperature dependence guarantees a more reliable and robust parameter estimation
strategy, allowing for a more precise gauge of the kinetic rates ki.
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Section 4.1. Force exerted by motors in two force-generating configurations

Figure 4.2: Estimated parameters from the synthetic data.
The solid blue line represents the true parameters of the simulated dynamics, the
symbols (mean ± SD) are obtained with the optimization procedure on simulated
time series of the force of the ensemble. Both axes are plotted in log scale.

Table 4.1: Estimated parameters via the inverse scheme fed with simu-
lated data.
The parameters are: the force of a single motor f0, the duty ratio of the ensemble
r and the rate of transition through the attachment–detachment cycle φ. Mean
and standard deviations are computed from different independent realisation of the
optimisation procedure.

F0 (pN) f0 (pN) r φ(s−1)

True 12.8 3.0 0.68 20
parameters

Estimated 12.8 3.19± 0.15 0.60± 0.06 21± 2
parameters
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4.2 Temperature dependence of the system’s parameters

We consider two data sets that simulate the behaviour of the ensemble at different
temperatures. We are going to show how it is possible to improve the robustness of the
fitting scheme and provide an estimation of the order of magnitude of the kinetic rate
constants of the dynamics. In order to be able to improve on the estimation of the kinetic
parameters of the system we consider the temperature dependence of the probability
per time unit associate to each transition between motor’s configurations. Based on
Arrenhius’ theory of activated kinetic processes, the dependence of the reaction constants
on the temperature of the system is assumed to be of the form:

ki(T2) = ki(T1)Q
T2−T1
10

◦
C

i (4.18)

for each reaction constant k1, k−1, k2, k−2, k3, and where Qi is the temperature coefficient
Q10 for the i−th reaction. In the following we will indicate as k(T ) the set of kinetic rates
at temperature T . Another assumption, in accord with [71], would be that the magnitude
of the force of a single molecular motor is not affected by the temperature changes,
meaning that the force of a single molecular motor in configuration A1 and A2 would
be uniformly distributed in the intervals I1 = [−f0, f0] and I2 = [f0/10, f0] respectively,
where f0 is the force of a single correctly orientated motor at both temperature T1 and
T2. With the previous assumptions we implemented the Gillespie algorithm to generate
synthetic data sets for a system composed by N molecular motors, working at two
different temperatures T1 and T2. We will exploit both the mean field solution of the
dynamics and the probability distribution of the force of the ensemble of motors working
at two different temperatures to perform a parameters estimation that allows to predict
the order of magnitude values of the kinetic constant of the dynamics as well as the force
of a single correctly oriented motor. The duty ratio of the ensemble can be computed
following the relation (3.9).

4.2.1 Fitting procedure for data at different temperature

We consider two data sets of synthetically generated time series of the force of an ensemble
constituted by a fixed number of N molecular motors, at two different temperatures T1
and T2, with T1 = 14 ◦C and T2 = 34 ◦C. The fitting procedure described in Section 4.1.3
has been applied to both the data sets to estimate the force of a single correctly oriented
motor f0 and the kinetic constants k(T1). The kinetic constants k(T2) at temperature T2
has been calculated with the relations (4.18), where we assumed the following values for
the Q10 factors: Q1 = Q−1 = Q3 = 1.8, Q2 = 4.6 and Q−2 = 2.5. These values have been
suitably chosen to mimic the temperature dependent performance of typical mammalian
skeletal muscles as for described in [72]. The results of the fitting procedure performed
on synthetic data with different temperature parameters T1 and T2 are shown in Figure
4.3, while the estimated parameters, compared with the ones assumed in the simulations
of the dynamics (and labelled as ”true parameters”), are listed in the Tables 4.2 and 4.3,
and represented in Figure 4.4 in linear scale axes. A comparison between the results of
the two procedures is shown in Figure 4.5, where the results obtained by analysing a
single data sets are marked in red, while the results of the procedure that involves two
different data sets at different temperature parameters are marked in black. From Figure
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(a) (b)

Figure 4.3: Result of the fitting procedure on the force development and
on the probability distribution of the force obtained from the stochastic
simulations of the dynamics.
The relevant parameters of the simulations are: N = 20, f0 = 3, T1 = 14 ◦C and
T2 = 34 ◦C, while the values of the Q10 factors are listed in the text, and the kinetic
constants are: k = (70, 10, 100, 20, 50). a. The trajectory of the force has been
obtained averaging over 600 independent stochastic simulations. b. The histogram
of the force of the ensemble at the isometric plateau is fitted against the analytical
profile, via a self–consistent optimisation procedure which aims at estimating the
kinetic parameters and the force of a single motor f0.

4.5 it is possible to see an improvement of the results for the average values of the kinetic
constants (obtained from independent iterations of the stochastic fitting), compared with
the values obtained when we analyse only a single data set. Figure 4.6 displays the
plane (f0, r), where the solutions of the mean field dynamics are represented by the two
hyperbolae, the one above corresponding to the data set with the lower temperature T1,
while the symbols are the results of the analysis of the probability distribution of the
force fluctuations around the isometric plateau, exerted by the ensemble of motors.
In the next Section we propose a further simplification of the fitting procedure that
involve an approximated expression for the motors probability distribution.

Table 4.2: Estimated parameters via the inverse scheme fed with simu-
lated data.

F0 (pN) f0 (pN) r

True 12.8 3.0 0.68
parameters

Estimated 12.8 3.19± 0.4 0.68± 0.08
parameters
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Figure 4.4: Estimated parameters from the synthetic data. The solid blue
line represents the true parameters of the simulated dynamics, the symbols (mean
± SD) are obtained with the optimisation procedure that employs two force data
sets at different temperature parameters. The results shown are relative to the data
set at the temperature T1 = 14 ◦C.

Table 4.3: Estimated parameters via the inverse scheme fed with simu-
lated data. The kinetic parameters k are all expressed in (s−1).

k1(T1) k−1(T1) k2(T1) k−2(T1) k3(T1)

True 70 10 100 20 50
parameters

Estimated 69± 9 9± 8 100± 2 21± 9 51± 8
parameters
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Figure 4.5: Comparison between different procedures.
The solid blue line represents the true parameters of the simulated dynamics, the red
symbols (mean ± SD) refers to the results of the optimisation procedure conducted
with a single data set at temperature T1, while black symbols (mean ± SD) are
obtained with the optimisation procedure on two simulated time series of the force
of the ensemble at different temperatures T1 and T2.
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Figure 4.6: Estimated (f0, r) from the synthetic data.
The symbol (mean ± SD) represents the solution of the optimisations procedure for
the force of a single motors f0, and the duty ratio of the ensemble r. The solid
line represents the expression of the duty ratio of the ensemble as it follows from
the mean field model, with the mean field solution for y∗ expressed as a function
of the estimated kinetic parameters of the system. The dashed line represent the
duty ratio as previously estimated without taking into account the contribution of
the motors in configuration A1.
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Section 4.3. Gaussian noise approximation for the motors populations

4.3 Gaussian noise approximation for the motors popula-

tions

We are now exploring another useful approximation of the dynamics of the stochastic
system. We are interested in an expression for the probability distribution of the
populations dynamics, that involves the Gaussian noise approximation carried out on the
master equation that describes the evolution of the probability distribution associated
with the microscopic states of the system. We observe that the marginal stationary
solutions of the master equation P ST(n1) and P

ST(n2), depicted in Figure 3.4 resemble
normal distributions when the values of the fractions of motors are sufficiently far from
the boundaries, i.e. for n1/N, n2/N � 0 and n1/N, n2/N � 1. We then consider the
probability distribution of the total force of the ensemble:

PFn1,n2
(F) =

N
∑

q1,q2=0

PFq1,q2
P (n1 = q1, n2 = q2) (4.19)

where PFq1,q2
(F) ≡ G

(

µF = µ(q1, f0), σ
2
F = σ2(q1, q2, f0)

)

is the Gaussian distribution

obtained in Section 4.1. In order to carry out the Gaussian noise approximation for
the populations of motors we define the discrete number of motors in configuration j as
nj = Nxj where xj is the ”discrete” concentration of the motors in configuration j. Now
we can express the stationary solution of the master equation in terms of the concentra-
tions variables: P (n1 = q1, n2 = q2) = P (Nx1 = q1, Nx2 = q2) or P (x1 = q1

N , x2 = q2
N ).

In the limit xj � 1 it is possible to perform a system size expansion of the master equation,
a perturbative approach named the Van Kampen approximation [73], in order to obtain a
linear Fokker-Planck equation for the probability distribution of the fluctuations, around
the mean field solution, associated with the concentration of the two force-generating
motors populations. The stationary solution of the Fokker-Planck equation (i.e. the
solution calculated when 〈x〉 = x∗), written in terms of the concentration of motors is a
bivariate Gaussian distribution, centred on the mean field solution of the dynamics of
the system. The standard calculations carried out to obtain the Fokker-Planck equation
and its solution from the master equation will be explicitly obtained in the next Section.
This solution can be inserted in equation (4.19) as an expression for P (n1 = q1, n2 = q2)
to be adopted instead of the exact solution of the master equation, which can be compu-
tationally expensive to be used in the fitting procedure. The results of the parameters
estimation on synthetic data sets will be presented in the last Section of this Chapter.

4.3.1 Details of the Van Kampen expansion

To quantify the statistics of the fluctuations around the stationary state we consider
the master equation in the form (3.4) and we perform an expansion in the system size
N . The first order of the expansion (1/

√
N) results in the means field equations for the

populations of motors, while the second order of the expansion (1/N) yields a Fokker-
Planck equation for the probability distribution of the finite size fluctuations around the
stationary state, for each populations of motors. Following the Van Kampen hypotheses,
when the system size is large but finite N � 1, the discrete concentrations n1/N and
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n2/N will differ from the mean field fractions of motors by a contribution of magnitude
1/
√
N (as follows from the Central Limit Theorem):

n1(t)

N
= y∗(t) +

ξ√
N

and
n2(t)

N
= z∗(t) +

η√
N

(4.20)

where y∗ and z∗ are defined in equation (4.3), and ξ and η are the fluctuations associated
with the number of motors in A1 and A2 respectively.
To simplify the notation we recall that the number of motors in the actin-attached
configurations at the time t is indicated by n(t) = (n1(t), n2(t)), and we define the vector
containing the fractions of attached motors:

x = (y, z) therefore x∗ = (y∗, z∗) (4.21)

The associated fluctuations will be defined as: λ = (ξ, η).
These stochastic variables have a probability distribution Π(λ, t) defined by the following
expression:

Π(λ, t) ≡ P
(

n; t
)

= P
(

y +
ξ√
N
, z +

η√
N

; t
)

(4.22)

according to the Van Kampen hypothesis (4.20).
The time evolution of the probability distribution Π(λ, t) is characterised by deriving the
previous expression in respect of time:

∂P

∂t
=

1

N

∂Π

∂τ
− 1√

N

2
∑

i=1

∂Π

∂λi

dxi
dτ

=

=
1√
N

(∂P

∂t

)

1/
√
N
+

1

N

(∂P

∂t

)

1/N
+O(N−3/2)

(4.23)

where we separated the two contributions of magnitude 1/
√
N and 1/N .

To calculate these two contributions we write the master equations in terms of step
operators ε±i defined by their action:

ε±i T (ni|ni)P (ni, t) = T (ni ± 1|ni ± 1)P (ni ± 1, t) (4.24)

and, recalling the expressions for the transition rates (3.3) defined in Chapter 3 we obtain:

∂P (n, t)

∂t
=(ε−1 − 1)T1P (n, t) + (ε+1 − 1)T−1P (n, t) + (ε+1 ε

−
2 − 1)T2P (n, t)+

+ (ε−1 ε
+
2 − 1)T−2P (n, t) + (ε+2 − 1)T3P (n, t) .

(4.25)

We now expand both the step operators and the transition rates up to the second order
(N), in the limit 1/

√
N � 1. Observing that:

ni ± 1 = ±1 +N
(

xi +
λi√
N

)

= ±1 +Nxi +
√
Nλi
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we get:

ε±i ≈ 1± 1√
N
∂λi

+
1

2N
∂2λi

+O(N−3/2)

ε±i ε
∓
j ≈ 1∓ 1√

N
∂λj

+
1

2N
∂2λj

± 1√
N
∂λi

− 1

N
∂λi

∂λj
+

1

2N
∂2λi

+O(N−3/2) ≈

≈ 1+
1√
N

(±∂λi
∓ ∂λj

) +
1

2N
(∂2λi

− ∂2λj
+ 2∂2λiλj

)

and for the transition rates:

T1 ≈ k1

[

1− y − z − (ξ + η)√
N

]

and T−1 ≈ k−1

(

y +
ξ√
N

)

T2 ≈ k2

(

y +
ξ√
N

)

and T−2 ≈ k−2

(

z +
η√
N

)

T3 ≈ k3

(

z +
η√
N

)

Substituting these expressions in the master equation (4.25) and comparing the results
with the equation (4.23), we find that the first term on the right hand side (the leading
order of the expansion) coincides with the set of differential equations that governs the
mean field dynamics of the system (3.6). The second term on the right hand side results
to be:

(∂P

∂t

)

1/N
=
∂Π

∂t
=− ∂ξ(A1Π(λ; t))− ∂η(A2Π(λ; t)) +

1

2

[

∂2ξ2(B11Π(λ; t))+

+ ∂2η2(B22Π(λ; t)) + ∂ξ∂η(B12Π(λ; t)) + ∂η∂ξ(B21Π(λ; t))
]

where A(λ) =MλT . Matrices M and B, respectively the drift matrix and the diffusion
matrix are:

M =





−(k1 + k−1 + k2) −(k1 − k−2)

k2 −(k−2 + k3)



 (4.26)

which coincides in the deterministic limit, with the jacobian matrix of the system (4.2),
and:

B =





k1(1− y − z) + (k−1 + k2)y + k−2z −k2y + k−2z

−k2y + k−2z k2y + (−k2 + k3)z



 (4.27)

which is a symmetric and positive definite matrix.
The previous expression can be written as standard Fokker-Plank equation in the form:

∂Π(λ, t)

∂t
= −

∑

i=1

∂

∂λi

[

Ai(λ)Π(λ, t)
]

+
1

2

2
∑

i,j=1

∂2

∂λi∂λj

[

Bij(λ)Π(λ, t)
]

. (4.28)

The Van Kampen approximation allowed us to decouple the deterministic and the
stochastic dynamics of the system, which results in local fluctuations around the mean
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field stationary state. Summarising, the second order in
√
N of the expansion yields a

Fokker-Planck equation for the probability distribution of the fluctuations, associated
with the populations of motors in the actin-attached configurations. The general solution
of the Fokker-Planck equation (4.28) [73], is a bivariate Gaussian distribution, that can
be characterised by its moments. Performing the standard calculations, the equation that
describes the time evolution of he first moment of the distribution is, for each component,
the linear differential equation is:

d 〈λi〉
dτ

=
2
∑

k=1

Mik 〈λk〉 = 〈Ai〉 (4.29)

or, in components:

˙〈ξ〉 = 〈A1〉 =
2
∑

k=1

M1k 〈λk〉 = (k1 + k−1 + k2) 〈ξ〉 − (k1 − k−2) 〈η〉

˙〈η〉 = 〈A2〉 =
2
∑

k=1

M2k 〈λk〉 = k2 〈ξ〉 − (k−2 + k3) 〈η〉
(4.30)

that implies that for ˙〈λ〉 = 0 we have 〈λi〉 = 0 for i = 1, 2, accordingly with the Van
Kampen ansatz.
For the second moment of the distribution we obtain the following set of differential
equations, for the diagonal components:

d
〈

λ2i
〉

dτ
= 2

2
∑

k=1

Mik 〈λiλk〉+Bii = 2 〈λiAi〉+Bii (4.31)

and for the off-diagonal ones:

d 〈λiλj〉
dτ

=

2
∑

k=1

(

Mik 〈λjλk〉+Mjk 〈λjλk〉
)

+
1

2
Bij +

1

2
Bji =

= 〈ξjAi〉+ 〈ξiAj〉+
1

2
(Bij +Bji)

(4.32)

or, in components:

˙〈ξ2〉 = 2
2
∑

k=1

M1k 〈ξλk〉+B11
˙〈η2〉 = 2

2
∑

k=1

M2k 〈ηλk〉+B22

˙〈ξη〉 =
2
∑

k=1

M1k 〈ηλk〉+M2k 〈ξλk〉+B12

(4.33)

where B12 = B21.

We now define the vector of the second moments of the distribution as ζ =
(

〈

ξ2
〉 〈

η2
〉

〈ξη〉
)T

,

that satisfies the following equation for the time evolution:

˙〈ζ〉 = M〈ζ〉+ b (4.34)
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where b = (B11 B22 B12)
T , and M is the matrix with the following elements:

M =





2J11 0 2J12
0 2J22 2J21
J21 J12 (J11 + J22)



 (4.35)

Being interested in the solution of the previous equation for the dynamics of the fluctua-
tions around the stationary state we are interesting to solve the previous equation when
˙〈ζ〉 = 0, i.e.:

〈ζ〉 = −M−1b . (4.36)

The solution of the Fokker-Planck equation (4.28) has the explicit form:

Π(λ; t) =
exp
(

−1
2

[

(λ− 〈λ〉)TΣ−1(λ− 〈λ〉)
])

2π
√

det(Σ)
(4.37)

where 〈λ〉 = (〈ξ〉 〈η〉)T is the mean value of the vector of the fluctuations of the two
motors populations, and Σ is the covariance matrix with elements:

Σ =

(〈

ξ2
〉

〈ξη〉
〈ξη〉

〈

η2
〉

)

(4.38)

Equation (4.28) can be expressed in terms of the components of the fluctuations associated
with the two motors population as:

Π(ξ, η; t) =

exp

(

− 1
2(1−ρ2)

[

(ξ−〈ξ〉)2
〈ξ2〉 − 2ρ (ξ−〈ξ〉)(η−〈η〉)√

〈ξ2〉〈η2〉
+ (η−〈η〉)

〈η2〉

]

)

2π
√

〈ξ2〉 〈η2〉 (1− ρ2)
(4.39)

where the correlation coefficient ρ is defined as:

ρ =
〈ξη〉

√

〈ξ2〉 〈η2〉
. (4.40)

We are interested in the solution of the Fokker-Planck equation expressed for the number
of motors in the actin-attached configurations, i.e. n1 and n2, which is:

P (n1, n2) =

exp

(

− 1
2(1−ρ2)N

[

(n1−Ny∗)2

〈ξ2〉 − 2ρ (n1−Ny∗)(n2−Nz∗)√
〈ξ2〉〈η2〉

+ (n2−Nz∗)2

〈η2〉

]

)

2π
√

N2 〈ξ2〉 〈η2〉 (1− ρ2)
(4.41)

where we have exploited that 〈ξ〉 = 〈λ〉 = 0 from (4.30), ξ = (n1−Ny∗)√
N

from the Van

Kampen hypotheses (4.20) and that Σλ = Σn

N .
Before we proceed to utilise this expression in the definition of the probability distribution
of the force, we must inspect if this approximation is satisfying for the conditions under
which we performed the stochastic simulations of the system dynamics. In Figure 4.7 we
can see the 2D histogram of the stationary probability distribution P (n1, n2) obtained
from the Gillespie simulation of a stochastic trajectory (on the left), and the corresponding
function derived by the implementation of the Van Kampen approximation on the master
equation (on the right). The agreement between the two results is satisfactory when we
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(a) (b)

Figure 4.7: Checking on the Van Kampen approximation.
Probability density function P (n1, n2) associated to the stationary concentrations
of force-generating motors, (a) as obtained from stochastic simulations data, and
(b) from the analytical solution obtained via the Van Kampen approximation.

consider a set of kinetic rates that correspond to average fractions of motors that are
sufficiently different from zero in the stationary state, i.e. 〈n1〉 , 〈n2〉 � 0.
By inserting expression (4.41) in the probability distribution of the total force of the
ensemble (4.17) (replacing the exact solution of the master equation), when considering
the continuous limit for the concentrations, we find:
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The integral can be numerically evaluated and exploited to perform a fitting procedure
that does not involve the calculations needed to solve the master equation.
The results of this procedure will be presented in the next Section.

4.3.2 Fitting scheme for data at different temperatures

In this Section we show the results of the new approach that exploits the functional form
(4.42) for the probability distribution of the total force of the ensemble to perform the
parameters estimation on data sets numerically generated with different temperature
parameters for which the Van Kampen approximation can be carried out. In Figure
4.8 are shown the results of the fitting procedure on the force development and on the
probability distribution of the force of the ensemble. The average values of the parameters
obtained with this method are in good accord with the parameters adopted to generate
the simulated trajectories, as can be appreciated inspecting the results reported in Table
4.4. In Figure 4.9 it is shown the result of the fitting procedure in the plane (f0, r), where
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(a) (b)

Figure 4.8: Result of the fitting procedure on the force development and
on the probability distribution of the force obtained from the stochastic
simulations of the dynamics.
The relevant parameters of the simulations are: N = 20, f0 = 3, T1 = 10 ◦C (darker
colours) and T2 = 14 ◦C (lighter colours), while the values of the Q10 factors are
listed in the text, and the kinetic constants are: k = (70, 10, 100, 20, 50). a. The
trajectory of the force has been obtained averaging over 800 independent simulated
trajectories. b. The histogram of the force of the ensemble at the isometric plateau
is fitted against the analytical profile, via a self-consistent optimisation procedure
which aims at estimating the kinetic parameters and the force of a single motor f0.

the solutions of the mean field dynamics are represented by the two hyperbolae, the one
above corresponding to the data set with the lower temperature T1, while the dashed
blue line represents the duty ratio as previously estimated without taking into account
the contribution of the motors in configuration A1. The symbols are the results of the
analysis of the probability distribution of the force fluctuations around the isometric
plateau, exerted by the ensemble of motors.

Table 4.4: Estimated parameters via the inverse scheme fed with simu-
lated data.

F0 (pN) f0 (pN) r

True 11.6 3.0 0.70
parameters

Estimated 11.6 3.12± 0.2 0.66± 0.02
parameters
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Figure 4.9: Estimated parameters (f0, r) from the synthetic data.
The red symbol (mean ± SD) represents the solution of the optimisations procedure
for the force of a single motors f0, and the duty ratio of the ensemble r. The solid
red line represents the expression of the duty ratio of the ensemble as it follows from
the mean field model, with the mean field solution for y∗ expressed as a function of
the kinetic parameters of the system. The dashed blue line represents the duty ratio
as previously estimated without taking into account the contribution of the motors
in configuration A1.
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Chapter 5

Results and discussion

In this Chapter we present and discuss the results obtained by the combined experimental
and theoretical approach described in Chapters 2 and 3, to provide an estimate of the
relevant parameters underlying the generation of force of an ensemble of slow and fast
skeletal HMMs performing isometric contractions, at room temperature. Under this
condition it is possible to employ the theoretical approach developed in Chapter 3 which
accounts for only one population of force-generating motors. Future experimental work it
is planned to investigate the low-temperature regime, when the force of the ensemble is
significantly affected by the change in proportion of motors in different force-generating
states.

5.1 Parameters estimation on the experimental output of

the nanomachine powered by skeletal HMMs

Before applying the procedure detailed in Section 3.5 of Chapter 3 to the experimental
data and present the results we recall the relevant steps that define the envisaged fitting
strategy:

1. The first step amounts to analyse the time evolution of the force in its mean field
approximation: the asymptotic force F0 and the time scale a, as defined above, are
extracted via a direct - two parameters - fit that exploits expression 3.23.

2. We turn to study the distribution of the fluctuation of the force around the
equilibrium value. To this end we make use of P st.

3. From P st we extract the N + 1 marginal probabilities ρq, namely the probabilities
to find q ≤ N motors in the force-generating configuration A2. This is achieved by
summing over n1 = 0, . . . , N the stationary probability distribution P st .

4. We then make use of the marginal probabilities (ρ0, ρ1, ρ2, . . . , ρN ) to weight the
probability distributions Πq(f) of the force exerted by a set of q motors. These
latter are computed as generalised Irwing-Hall distributions for independent and
identically distributed random variables f drawn from the considered interval I2.
The distribution of the force is hence estimated as P (F ) =

∑N
q=0 ρqΠq(f).
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Figure 5.1: Result of the fitting procedure on the soleus HMMs ensemble
isometric force. The histogram of the soleus HMMs force at the isometric plateau
is fitted against the analytical profile, via a self-consistent optimisation procedure
which aims at estimating the unknown kinetic parameters.

5. For fixed size N (previously estimated by the counting of rupture events in ATP-free
solution, see also at the end of the ext Section where the possibility to modulate N
is accounted for) we adjust the kinetic rate constants k1, k−1, k2, k−2, k3, so as to
minimise the root mean square distance between the recorded distribution and its
analytic estimate. The best fit values are used to compute the parameter b and
thus determine the sought estimates for r and f0, as well as the rate of motors
detaching from the actin, i.e. φ.

We now proceed by applying the validated procedure to the experimental data collected
with the nanomachine powered by slow and fast myosin isoforms. As mentioned, the
number of available molecular motors (N = 16) estimated from number of ruptures in
rigor for both isoforms (Figure 2.3), is assumed as the reference value in the following,
unless otherwise specified. We interpolate the distribution of the fluctuations as recorded
experimentally, given the analytical solution obtained above. A representative example
of the fitting outcome for the soleus HMMs ensemble is reported in the Figure 5.1; the
histogram is generated from the experimental data series of the isometric force in the
stationary state (i.e. at the isometric plateau). In Figure 5.2 the results of the analysis
are plotted in the parameters plane (f0, r) (symbols and lines refer to different isoforms
according to the colour: blue for psoas, red for soleus; different tones identify different
experiments). The solid lines highlight the ensemble of distinct - though equivalent -
solutions ensuing from the average force profile, which would follow from solely inspecting
the average force profile. By accounting for the fluctuations one breaks the degeneracy
inherent to the system when analysed in its mean field version, getting just one pair
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Figure 5.2: Estimated motor force f0 and fraction of attached motors r

from the experimental data. Best fit parameters from the experimental data
sets of rabbit soleus HMMs (red symbols) and rabbit psoas HMMs (blue symbols).
Mean values and standard deviations are obtained by averaging over 20 independent
realisations of the stochastic fitting procedure for each data record. Different tones
refers to different experiments. Each solid line represents the hyperbola on which
each of the pair (f0, r) is constrained to be, according to the mean field analysis.

(f0, r) (identified by the symbol) compatible with each individual experimental curve.
The quantitative results of the fitting procedure and the parameters estimation performed
on the experimental data sets from both rabbit psoas and rabbit soleus are listed in
Table 5.1 and Table 5.2 respectively.

Table 5.1: Estimated parameters for psoas data.

Exp F0 (pN) f0 (pN) r φ(s−1)

PSO 1 16.4 5.6 0.36 6.4
PSO 2 16.1 5.8 0.34 6.1
PSO 3 20.7 7.6 0.32 6.2
PSO 4 17.7 6.9 0.32 5.9
PSO 5 19.7 8.0 0.30 5.8
PSO 6 17.0 7.0 0.30 5.8

mean± SD 17.9± 1.9 6.8± 1.0 0.32± 0.02 6.0± 0.2

In Table 5.3 is shown the quantitative comparison between the estimated mean values
and standard deviations for f0, r and φ, for both the psoas and the soleus HMMs.
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Table 5.2: Estimated parameters for soleus data.

Exp F0 (pN) f0 (pN) r φ(s−1)

SOL 1 8.7 1.8 0.55 2.25
SOL 2 10.9 2.5 0.51 2.27
SOL 3 9.1 2.2 0.49 2.29
SOL 4 13.4 3.2 0.49 2.26
SOL 5 9.7 2.3 0.48 2.34
SOL 6 9.3 2.4 0.48 2.23

mean± SD 10.2± 1.7 2.4± 0.4 0.50± 0.03 2.27± 0.04

Table 5.3: Average values of the three relevant parameters estimated by
the stochastic model.
For each parameter, the force of a motor f0, the fraction of actin-attached motors
r, and the rate of transition through the attachment-detachment cycle φ, mean ±
SD are obtained by averaging over 6 data records, for each isoform.

Estimated Parameters fast slow ratio

f0 (pN) 6.8± 1.0 2.4± 0.4 2.8
r 0.32± 0.02 0.50± 0.03 0.64

φ(s−1) 6.0± 0.2 2.27± 0.04 2.6

Let us now relax the constraint N = 16 obtained from the rigor experiments and scan the
range of N that yields convergence of the optimisation algorithm, for the imposed level
of accuracy. The results of the analysis for the soleus isoform for different system size N
is reported in Figure 5.3, where the best fit values of f0 (symbols) are plotted against
different choices of N . The histogram computed from the collection of fitted parameters
can be conceptualised as an indirect imprint of the degree of experimental variability
as associated to f0 and N . The shaded region identifies the portion of the parameters
plane where the solutions are expected to be found. Specifically, it is assumed to lay in
between the two curves:

f0N =
20

11
〈F0 ± 2∆F0〉

〈a

b

〉

Here the relative error associated with the average value of the quantity 〈a/b〉 is assumed
negligible, as compared to that stemming from the average stationary force, ∆F0. The
histogram computed from the collection of fitted parameters (each choice of symbols
refers to a different experimental series) can be conceptualised as an indirect imprint of
the degree of experimental variability as associated to f0 and N .
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Figure 5.3: f0 vs. N on the force of the soleus HMMs ensemble. The
estimated parameter f0 of the soleus HMMs is plotted as a function of the imposed
N ; each choice of symbols refers to a different experimental series. The shaded
region is drawn from the theoretical curve that resolve the dependence of f0 on N .
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5.2 Discussion

In the previous Section we used the DLOT apparatus to define the performance,
under isometric conditions, of an array of 16 myosin motors purified from either fast
(psoas), or slow (soleus), muscle of the rabbit. To eliminate the large trap compliance
and recover the condition for the motors to operate as independent force generators, as
in the native half-sarcomere, once the interaction is established the system control is
switched from position clamp to length clamp. The array of 16 motors in physiological
ATP concentration (2mM) at 24 ◦C exhibits a steady isometric force that is 17 pN for
the fast isoform, and is 10.5 pN for the slow isoform. The finding that the force exerted
by the same number of motors is 1.6-fold larger in the fast isoform disagrees with the
most common finding in muscles and muscle fibres that the isometric force normalised
for the cross sectional area of the fibre T0, is either similar or at max 1.5-fold larger in
the fast isoform [41–44, 46–50]. Notably in skinned fibres from the same rabbit muscles
from which the nanomachine motor proteins are purified, T0 in psoas at 25 ◦C has been
found 317± 14 kPa, 1.9-fold larger than T0 in soleus, 165± 12 kPa [74].
Recording the development of the steady isometric force in length clamp eliminates
the contamination of the large trap compliance, showing a roughly exponential time
course characterised by the parameter tr that is 238ms for the slow isoform and 77ms
for the fast isoform. Thus the rise of the force to the maximum steady value takes a
3-fold longer time for the slow isoform than for the fast isoform. How this emergent
property of the motor ensemble relates to the corresponding event in situ, and how it
is affected by the different isoforms, has been tested by comparing the nanomachine
output with that of Ca2+-activated skinned fibres, from the same rabbit muscles from
which the motor proteins were purified. According to the sarcomere-level mechanics for
skinned fibres developed in our laboratory, the compliance of the attachments of the
skinned fibre segment to the transducer levers is negligible. A detailed description of the
protocol adopted to obtain the rate of force development in situ is provided in Appendix
C. Turning back to consider the synthetic nanomachine under these conditions, the
force redevelopment following a fast shortening able to drop the isometric force to zero
is characterised by a rise time tr = 265 ± 15ms in soleus fibres and tr = 62 ± 5ms in
psoas fibres. Thus, the time course of force development, recorded by the nanomachine in
length clamp and its modulation by the two isoforms, are in quite satisfactory agreement
with those recorded at the cell level. The corresponding rates of force development a are
28.6 s−1 for the fast isoform and 9.3 s−1 for the slow isoform recorded by the nanomachine.
Considering that in length clamp such rate is direct expression of the sum of the effective
rate constant of attachment/force-generation and the effective rate constant of detachment
of the myosin motors, we conclude that the interaction kinetics in isometric condition is
3-fold higher in the fast isoform than in the slow isoform. The attachment/detachment
kinetics is expected to increase if the load on the motor ensemble is reduced, due to the
strain-dependent increase in rate constant of detachment, which underpins the maximum
velocity of shortening V0 attained under zero load. V0 estimated by the time taken by the
ensemble to redevelop force following a release able to drop the isometric force to zero
(Figure 2.4a, d) is 0.5 µms−1 and 1.95 µms−1 in the slow and fast HMM respectively,
showing a V0 ∼ 4-fold larger in the fast isoform. Thus, the isoform-dependent increase of
V0 is 33% larger than the increase in a and even larger if one considers that V0 of the
fast isoform is underestimated by the proportionally larger fraction of time spent for
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Table 5.4: Energetic cost of isometric contraction.
The energetic cost of isometric contraction is reported in terms of the ATP hydrolysis
rate per myosin motor φ, in slow and fast mammalian skeletal muscle, and its ratio
R for fast over slow muscle. Data from the literature (ref, in brackets) except the
last row that reports the data from the nanomachine

φ (s−1) [ref.] fast slow R

Mouse muscle 21 ◦C [41] 12.4 2.47 5.0
Mouse muscle 25 ◦C [42] 13.3 2.95 4.5
Rat muscle 27 ◦C [44] 12.5 2.3 5.4
Rat skinned fibre 12 ◦C [46] 1.28 0.25 5.12
Rabbit skinned fibre 12 ◦C [49] 1.79 0.23 7.78
Human skinned fibre 12 ◦C [50] 3.22 0.65 4.95
Nanomachine 24 ◦C 6.0 2.3 2.6

the force to drop to zero following the release (compare the records in Figure 2.4a, d).
This suggests that the fast isoform exhibits a specifically larger strain dependence of the
detachment rate constant.
The rate of development of the isometric steady force and the force fluctuations su-
perimposed on the steady force in length clamp have been exploited to implement a
three-state stochastic model which is able to fit the experimental responses, allowing
self-consistent estimates of all the relevant mechanokinetic parameters underlying the
isometric performance of the motor ensemble: the force of a single correctly oriented
motor f0, the fraction of attached motors r, and the rate of transition through the
attachment/detachment cycle φ (see Table 5.3). The force of a single correctly oriented
motor f0 of the fast isoform (6.8± 1.0 pN) is 2.8-fold larger than f0 of the slow isoform
(2.4 ± 0.4 pN), while the ensemble force F0 is only 1.6 times larger (Figure 2.4b, e).
This is in a great part explained by the different fraction of attached motors r, which
in the fast isoform (0.32 ± 0.02) is 0.64 that of the slow isoform (0.50 ± 0.03). The
corresponding number of attached motors (Nr) is ∼ 5 and ∼ 8 for the fast and the slow
isoform respectively. The average force of a single randomly oriented motor (0.55f0) is
3.7 pN for the fast isoform and 1.3 pN for the slow isoform, from which the predicted
ensemble force is (3.7× 5 =) 18.5 pN and (1.3× 8 =) 10.4 pN respectively. These values
are in quite good agreement with the observed values: 17± 3 pN for the fast isoform and
10.5± 1.8 pN for the slow isoform.
The model predicts a rate of transition of a motor through the interaction cycle, and
thus a frequency of ATP splitting per motor φ, which is 2.6 times higher for the fast
isoform (6.0 s−1) than for the slow isoform (2.3 s−1), see Table 5.3. The value of φ of the
slow isoform array is in a remarkably good agreement with that estimated on the slow
muscle of mouse and rat (2.3-2.9 s−1), as shown in Table 5.4.
On the other hand, φ for the fast isoform array is less than half of the one estimated in the
fast muscle of the same animals (12.4-13.3 s−1), Table 5.4. The same discrepancy for the
isoform-dependent increase in φ is found between the model prediction and the skinned
fibre experiments [46–50]. However, it must be noted that: (i) the absolute values of φ in
skinned fibres is 10-fold smaller than the one in the muscle for both slow and fast myosin
isoforms [46–49]; (ii) the difference can only in minor part be explained by the different
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temperature of the experiments (21-27 ◦C for the muscle and 12 ◦C for the skinned fibres),
taking into account that the temperature factor Q10 of φ is ≤ 2.5 in either preparation
[42, 50, 75]. The rate of ATP splitting φ predicted by the model for the output of the fast
isoform nanomachine is 2.5-fold larger than that predicted for the slow isoform, but still
2-fold smaller than that indicated by the energy rate measured in the fast muscle. Thus
the 5-fold larger φ of the fast isoform with respect to the slow isoform found in muscle is
only partly explained by higher rate constants of transitions through the conventional
attachment/force generation and detachment cycle operating in isometric conditions and
recorded by the nanomachine force fluctuations. The actin-activated myosin ATPase
activity in solution is 2.5 times larger in fast than in slow muscle [51], which can be
accounted for by a higher rate of ADP release (which is followed by a fast ATP binding
and detachment [76], step (c)-(d) in Figure 1.4) and/or a higher rate of the hydrolysis step
(d)-(e), and/or a higher rate of actin attachment (step (a)-(b)). In isometric contraction
at physiological ATP concentration, ADP release is the rate-limiting step for detachment
and is 10-fold slower in slow myosin than in fast myosin [76] and this may per se explain
the finding that during steady isometric force generation the duty ratio of the fast myosin
nanomachine is lower than that of the slow myosin nanomachine. However, it must be
taken into account that under isometric conditions (or high load) the transitions through
the different force-generating states of the motor (step (a)-(b)/(c) in Figure 1.4) slow
down due to the strain dependence of the transition rate [24, 77] and thus the subsequent
conformation-dependent release of ADP also gets slower [28]. As far as the difference in
φ between slow and fast myosin ensembles in isometric contraction, the finding that the
force of fast myosin is 2.5-fold higher should suggests that the equilibrium distribution
between different force-generating states is shifted toward the end of the working stroke
in the fast myosin, in this way explaining a larger flux through the detachment step
and thus the reduction in the duty ratio and the increase in φ with respect to the slow
myosin (Table 5.3). However, it must be considered that the stiffness of the myosin
motor, determined in situ with fast sarcomere-level mechanics applied to skinned fibres
from rabbit muscle, is larger in the fast muscle in proportion to the motor force, so that
the extent of the force-generating structural change is the same in either fast or slow
myosin motor [78].
In conclusion, the 2.5-fold larger isometric φ of the fast myosin isoform found with the
analysis of force fluctuations is accounted for by an intrinsic faster rate of the relevant
kinetic steps of the fast myosin isoform which underpins a 2.5-fold larger ATPase rate
in solution [51]. Instead, the 5-fold larger isometric φ of the fast isoform reported in
the literature (see Table 5.4), exceeds by a factor of 2 the one recorded by the nanoma-
chine force fluctuations at 25 ◦C and could be explained by a further kinetic adaptation
of fast myosin isoform hypothesising that, also in isometric conditions, a futile faster
actin-activated ATPase cycle is present. In terms of the kinetic scheme in [79], this cycle
implies the working stroke transition to occur in the motor undergoing weak actin-binding
interactions and does not imply strong/force-generating attachment unless the load is
reduced and the muscle shortens.
A comparison of the parameters estimated in this work with those obtained in previous
nanomechanical approaches is possible for the fast isoform purified from rabbit psoas
investigated by Yanagida’s group [55] through the microneedle manipulation technique.
In close-to-isometric conditions, obtained through a stiff microneedle, both the force of
the motor (5.9 pN) and the fraction of actin-attached motors (0.36) estimated in that
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work are in exceptional good agreement with the values calculated here from the output
of the nanomachine. A peculiar difference that makes our nanomachine unique is the
possibility to define the performances emerging from the array arrangement of the motors
in the half-sarcomere, as the force-velocity relation and the maximum power output.
The novelty of the present nanomachine application in relation to the previous ones
[61–63], is the interpretation of the output of the motor ensemble and of the isoform-
dependent differences on the basis of the mechanokinetic molecular properties of either
isoform is self-consistent way without any assumptions from cell mechanics and solution
kinetics.
The achievements of the combined experimental and theoretical approach illustrated in
this Thesis set the basis for future studies on the emergent mechanokinetic properties of
the nanomachine assembled with any other myosin motor, either engineered or purified
from mutant animal models or human biopsies.
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Conclusions

This Thesis concerns a combined experimental and theoretical study on the perfor-
mance of a synthetic nanomachine made by an ensemble of fast and slow isoforms of the
protein myosin II, the molecular motor of striated (skeletal and cardiac) muscle.
The first Chapter is an overview of the physiology of striated muscle contraction, focusing
on the sarcomere, the structural unit of the striated muscle cell. I detailed the organiza-
tion and the role of the proteins in the sarcomere, in particular the contractile proteins,
myosin and actin, the regulatory proteins on the thin actin-containing filament, troponin
and tropomyosin, as well as myosin binding protein-C and the cytoskeleton protein in the
thick filament. I also provided a brief description of the chemo-mechanical acto-myosin
ATPase cycle, responsible for the transduction of chemical energy into mechanical work, of
the characteristics of myosin II as a nonprocessive molecular motor that works efficiently
in ensemble, and of the functional differences between fast and slow isoforms of myosin
II. At the end of the Chapter I provided a brief summary of the latest experimental
techniques developed in recent years to investigate and characterise muscle myosin in
vitro, highlighting the originality, as well as the limitations, of conventional laser trap
techniques for single molecule mechanics and the privilege of our application of the Dual
Laser Optical Tweezers to measure and control the performance of an ensemble of myosin
motors interacting with an actin filament, in a half-sarcomere-like nanomachine.
The second Chapter is dedicated to the description of the methodology implied to build
the nanomachine, including the methods for purifying and assembling the proteins, the
protocol for the definition of the number of motors available for the actin interaction,
the recording and analysis of transient and steady state force responses in isometric
conditions of the nanomachine powered by either the slow or the fast myosin isoform.
In the third Chapter I introduced the theoretical background of the stochastic model
that allowed the parameters estimation for an ensemble of myosin motors performing
isometric contractions, then I described the fitting strategy for the parameters estimation,
as well as the validation of the fitting scheme on synthetically generated data.
In the fourth Chapter I presented a generalisation of the theoretical model to include the
contributions of two populations of force-generating motors, which will allow to analyse
data collected at different temperatures, when the force of the ensemble is significantly
affected by the change in proportion of motors in different force-generating states. A
fitting procedure was validated against synthetic data, and I showed that combining data
obtained at different temperatures allowed us to provide a more robust estimation of the
kinetic rate constants of the model.
In the last Chapter the fitting procedure presented in Chapter 3 was applied on experimen-
tal data recorded from the output of the nanomachine powered by an ensemble slow and
fast isoforms performing isometric contractions at room temperature, extracting for either
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isoform the intrinsic mechanokinetic parameters underlying the ensemble performance:
the force per motor, the fraction of motors attached during steady state force response
and the rate of the chemo-mechanical cycle. I then discussed the main results of this
work and their significance in relation to the data present in the literature.
In conclusion, in the Thesis it is illustrated that by combining the experimental results
obtained with a synthetic nanomachine with the stochastic model approach, it is possible
to characterise the main mechanokinetic features of the performance of fast and slow
myosin isoform, without any assumptions from in-cell and solution experiments. This
will allow the definition of the performance of unknown myosin isoforms, mutant myosins
and engineered motors.
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Appendix A

Dual Laser Optical Tweezers

In 1987 Ashkin and collaborators published the work in which they described the
device they invented, which they named Optical tweezers [58]. They found that micro-
sized particles with high indexes of refraction (such as cells, bacteria, viruses or beads)
can be trapped in an electric field gradient near the laser focus. The typical configuration
of an optical trap setup consists of a highly focused laser beam, trapping a dielectric
object (typically a polystyrene bead) towards the focus. Near-infrared wavelengths
(800−1100 nm) are commonly used for the trapping laser as they minimize the absorption
of the laser light and consequently the biological photodamage, and can be easily
incorporated into imaging systems that use visible light. For a displacement from the
equilibrium position of about 150 nm, the optical trap acts as a harmonic potential
well, pulling the bead toward the centre of the trap. Under this condition the force
is proportional to the displacement and can be measured by quantifying the bead
displacement from its equilibrium position (in the trap centre). The common trap
stiffness for optical tweezers is ∼ 0.1 pNnm−1, while the displacement measurements
have a typical accuracy of ∼ 10 nm, this results in ∼ 1 pN force measurement resolution
(under the hypothesis of Hookean spring), which can be increased by decreasing the trap
stiffness.
The piconewton force range accessible to optical traps makes them particularly useful
for the investigation of biological systems, or interactions that occur in the same range
of force, like ligand-receptor binding, protein unfolding and nucleic acids structural
dynamics. For this reason, since their implementation, optical tweezers have been utilised
to study the kinetics and the mechanical properties of single molecules, like the direct
measurements of force and displacement resulting from the interaction of a single skeletal
muscle myosin with a suspended actin filament [22].
The trapping force results from the interaction between the light impinging on the particle
and the trapped object, and the proper physical description of the phenomenon depends
on the size of the trapped particle relative to the wavelength of light used to trap it.
When the dimensions of the particles are much greater than the wavelength of trapping
laser, the trapping phenomenon can be described in terms of momentum conservation
in the context of ray optics. A beam of light interacting with the surface of a particle
with a refraction index higher than the surrounding medium is refracted or reflected and
changes its propagation direction. A change in the direction corresponds to a change in
the momentum carried by light photons, and by momentum conservation law, there is
no change in the total momentum as the particle experiences a reaction impulse equal



APPENDIX A. DUAL LASER OPTICAL TWEEZERS

Figure A.1: Schematic representation of scattering forces in a dual-beam
optical setup.
In blue, the two light beams reflected when impinging the surface of the particle.
Since the scattering forces generated at the two opposite sides of the bead have the
same amplitude but are opposite in direction, they cancel out each other out, and
the total scattering force acting on the trapped object is null. This setup gives the
system a good axial stability.

and opposite to the change in deflected rays momentum, thus pointing towards the
laser focus. If the diameter of the particle is much smaller then the wavelength of the
trapping laser, a description in terms of electric dipoles in an electric field is needed. In
Rayleigh regime the dielectric particles is a Rayleigh scatterer (with a polarizability α)
interacting with the electric field E of the light source, that induces a dipole moment in
the particle. The particle is subjected to a force proportional to its volume, towards the
focus of the trap. The resulting optical force is further decomposed into two components,
a gradient force (a trapping force in the direction of the field gradient), and a scattering
force proportional to both α and to the optical intensity gradient in the focus. This
latter is due to the reflection of the light at the surface of the particle, and tends to
push the sphere out of the trap. Therefore, in order to generate a stable trapping, the
optical trap must be designed so that the gradient component of the force pulling the
particle towards the focus exceeds the scattering component pushing it away from the
trap centre; this is usually attained by using high numerical aperture objectives, as water
or oil immersion objectives (the latter suffering from spherical aberrations reducing the
trapping performance). As a result of the balancing between the gradient force and the
scattering force, the axial equilibrium position of a trapped particle is located slightly
beyond the focal point.
An alternative optical tweezers design is the Dual Laser Optical Tweezers (DLOT) [80],
in which two separate laser beams are focused by two microscope objectives (facing each
other) to the same spot. The scattering forces generated by reflection on each side of
the bead are equal but have opposite direction, so that in this way the net scattering
force acting on the particle is zero and the axial trap stability is greatly enhanced, see
Figure A.1. For a given laser power, a higher trapping force can be generated, and lower
numerical aperture microscope objectives can be used. A disadvantage with respect to
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the single-beam design, in a Dual Laser Optical Tweezers setup the two laser beams
need to be carefully aligned (to within less than the bead diameter) and the resulting
measurements must be corrected for errors due to the drift in the relative beam alignment.
With this setup the trapping laser itself can be used to measure the force acting on the
trapped bead. The change in the direction of the light propagation, that corresponds to
the change in the momentum of the laser light due to the presence of the particle, may
be measured by imaging the bead position with a position sensitive photodiode detector
[81]. With this method, force calibration is independent of the particle size, shape and
refractive index.
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Appendix B

Spatial-dependent model for

myosin motors performing

isometric contractions

A more general, spatial-dependent model for the attachment-detachment dynamics
of the molecular motors ensemble can be formulated following the definition of spatial-
dependent configurations for the molecular motors.
We consider a spatial support that corresponds to the relative distance between the motor
and the actin monomer available for interaction.
The spatial range for possible myosin-actin interaction is L = 5nm, that means that
a molecular motor can attach itself to an actin monomer with the binding site that is
located at maximum 2.5 nm from it, forward or backward along the actin filament.
We can consider a discrete spatial variable i = {1, . . . ,Ω} where i = 1 corresponds to a
motor attached in position d = −2.5 nm and i = Ω corresponds to a motor attached in
position d = 2.5 nm.
In addition to that the random orientation of the molecular motors on their support
implies that the force that each motor exerts depends on the binding angle θ ∈ [0, π],
with θ = 0 corresponds to the correct orientation.
The possible configurations for each molecular motor are: D for a detached motor, (A1)

i)
for a motor attached in position d = i, exerting a force (f1)

i, and (A2)
i) for a motor

attached in position d = i, exerting a force (f2)
i. The state of the system at any time t is

represented by the 2Ω dimensional vector n(t), which contains the number of molecular
motors in the two force-exerting configurations:

n(t) = (n1(t),n2(t)) (B.1)

with n1 =
∑Ω

i=1 n1 and n2 =
∑Ω

i=1 n2 representing the total number of motors attached
in configurations A1 and A2 respectively, for every value of the position d. The number
of detached motors at any time nD(t) can be obtained from the conservation law:

N = nD +
Ω
∑

i=1

(ni1 + ni2).

Working in this framework implies that in principle the kinetic rate constants associated
with the microscopic transitions between microscopic configurations are spatial dependent.



APPENDIX B. SPATIAL-DEPENDENT MODEL

From the analysis of the spatial dependency of the rate constant in [61] we can see as the
kinetic rates k1, k−1, k−2, k3 are roughly constant as a function of the position d, therefore
in the following we will consider that rate constants k1, k−1, k−2, k3 so not depend on
the position d, while we assume that k2 is linear in d. A schematic representation of the
microscopic dynamics for a single motor is the following:

D
k1/ Ω−−−−−⇀↽−−−−
k−1

A1
i k2i−−−⇀↽−−−−

k−2

A2
i k3−−−→ D (B.2)

The reaction rate constants kj represent the probability for unit of time that the reaction
j is happening, and they are expressed in unit of s−1.
The master equation associated with the microscopic dynamic described by the chemical
equations (B.2) has the same form of the master equation in the non spatial case, i.e.
equation (3.2), but the state of the system is now defined by (B.1), and the terms T(n′|n)
that represent the transition rates from the state n to a new state n′are now defined as:

ATTACHMENT T(ni1 + 1|n) = k1
Ω

nD
N

=
k1
Ω

[

1− 1

N

Ω
∑

i=1

(ni1 + ni2)
]

DETACHMENT T(ni1 − 1|n) = k−1
ni1
N

CONVERSION T(ni1 − 1, ni2 + 1|n) = ki2
ni1
N

CONVERSION T(ni1 + 1, ni2 − 1|n) = k−2
ni2
N

DETACHMENT T(ni2 − 1|n) = k3
ni2
N

(B.3)

With the explicit expressions for the transition rates for all the possible reactions, the
master equation (3.2) reads:

∂P (n, t)

∂t
=

Ω
∑

i=1

[

T(n|ni1 − 1)P (ni1 − 1, t)− T(ni1 + 1|n)P (n, t)+

+ T(n|ni1 + 1)P (ni1 + 1, t)− T(ni1 − 1|n)P (n, t)+
+ T(n|ni1 + 1, ni2 − 1)P (ni1 + 1, ni2 − 1, t)+

− T(ni1 − 1, ni2 + 1|n)P (n, t)+
+ T(n|ni1 − 1, ni2 + 1)P (ni1 − 1, ni2 + 1, t)+

− T(ni1 + 1, ni2 − 1|n)P (n, t)+

+ T(n|ni2 + 1)P (ni2 + 1, t)− T(ni2 − 1|n)P (n, t)
]

The temporal behaviour of the discrete concentration of the three populations of motors
in each configuration can be obtained performing the Gillespie algorithm.
The concentration of motors in the configurations nD, n

i
1, n

i
2, in the case Ω = 10,

is shown in Figure (B.1). Employing these temporal series for the dynamics of the
concentrations of each population, it is possible to obtain the histogram of the probability
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Figure B.1: Temporal behaviour of the fractions of the three motors populations
in each configuration: nD, ni

1
, ni

2
, in the case i = 1, as obtained via the Gillespie

algorithm.

distribution associated with the subpopulations of motors in the configurations D,Ai
1

and Ai
2, in two different cases: Ω = 3 and Ω = 10, as shown in Figure (B.2). We then

consider these probability distributions for the cumulative population of motors in the
force-generating configurations n1 =

∑Ω
i=1 n

i
1 and n2 =

∑Ω
i=1 n

i
2, and we can observe

that the global populations of each state do not depend on the spatial details of the
attached motors configurations. By confronting the two types of histograms in Figure
(B.3) we can conclude that this spatial characterisation of the configurations A1 and A2

can be neglected, and simplify the characterisation of the system in order to obtain a set
of reaction constants not depending on the spatial coordination d. As a result we can
formulate the stochastic model without the spatial details.
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APPENDIX B. SPATIAL-DEPENDENT MODEL

Figure B.2: Comparison between the normalised histograms of the fractions of the

three motors populations in each state: nD

N
,

n
i

1

N
,

n
i

2

N
, as obtained from the simulated

dynamics for a suitable choice of the kinetic parameters and for Ω = 3 (grey dashed
lines) and Ω = 10 (solid coloured lines).

Figure B.3: Comparison between the normalised histograms of the fractions of
motors in the case of the spatial model (concentrations of the molecular motors
in the state D, A1 and A2 as a sum of the subpopulations in states Ai

1
, Ai

2
, for

i = 1, . . . ,Ω), and the non-spatial model.
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Appendix C

The rate of force development

measured in situ

In the following we described of the protocol adopted to obtain the rate of force
development in situ. The time course of isometric force redevelopment following a release
that drops the isometric force to 0 was determined in Ca2+-activated demembranated
fibres from the same slow and fast muscles of the rabbit used to extract the myosin
isoforms for the nanomachine. As previously described [72, 74, 78], small bundles dissected
from the two muscles were stored in skinning solution containing 50% glycerol at −20 ◦C
for 3–4 weeks and single fibres were prepared just before the experiment. A fibre segment
4-6mm long was clamped at its extremities by T-clips and mounted between the lever
arms of a loudspeaker motor and a capacitance force transducer [82]. To prevent sliding
of the ends of the fibre segment inside the clips and minimise the shortening of the
activated fibre against the damaged sarcomeres at the ends of the segment during force
development, the extremities of the fibre were fixed first with a rigor solution containing
glutaraldehyde and then glued to the clips with shellac dissolved in ethanol. Fibres were
activated by temperature jump using a solution exchange system as previously described
[72]. A striation follower [83] allowed nanometre-microsecond resolution recording of
length changes in a selected population of sarcomeres.
The composition of the solutions has been reported previously ([74], Supplementary
Table 1, 25 ◦C). The increase of interfilamentary distance following cell membrane
permeabilisation was reversed by the addition of the osmotic agent Dextran T-500 (4%
weight/volume). The rate of force development was determined on the isometric force
redevelopment recorded after superimposing on the isometric contraction of the maximally
Ca2+-activated fibre (pCa 4.5) a fast ramp shortening (5-6% of the initial fibre length)
able to drop the force to zero (see Figure C.1).



APPENDIX C. THE RATE OF FORCE DEVELOPMENT MEASURED IN SITU

Figure C.1: Time course of force redevelopment in fast and slow skinned
fibres. Force redevelopment (lower traces) and corresponding half-sarcomere short-
ening (upper traces) after a period of unloaded shortening in a skinned fibre from
rabbit psoas (black traces) and soleus (red traces) muscles. The vertical line in-
dicates the time at which the force development starts. Force is normalised for
the isometric value (T0) before the imposed large shortening (∼ 5% of the fibre
length or ∼ 60 nm per hs). Further shortening against end compliance during force
redevelopment was 29 ± 6 nm per hs (n = 4) and 19 ± 3 nm per hs (n = 11) in
fast and slow fibres respectively. T0 was 276 ± 44 kPa and 195 ± 26 kPa in fibres
from psoas and soleus respectively. Temperature, 25.2 ◦C. 4% dextran T-500 was
added to reduce the lateral filament spacing of the relaxed fibre to the value before
skinning.
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