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BTK and PLCG2 remain unmutated in one-third of patients with CLL
relapsing on ibrutinib
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KTH Royal Institute of Technology, Stockholm, Sweden; 9Università Vita-Salute San Raffaele, Milan, Italy; 10Division of Hematology, Department of Translational Medicine, University
of Eastern Piedmont, Novara, Italy; 11Department of Medicine, Hematology and Clinical Immunology, University of Padua, Italy; 12Molecular Pathology Unit, A.O.U Città della
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Key Points

• One-third of patients
with CLL relapsing on
ibrutinib do not carry
BTK/PLCG2
mutations, even with a
0.1% sensitivity.

• Additional mechanisms,
such as del(8p), EGR2
and NF-κB pathway
mutations, may be
cooperating in
determining progression
on ibrutinib.
Patients with chronic lymphocytic leukemia (CLL) progressing on ibrutinib constitute an

unmet need. Though Bruton tyrosine kinase (BTK) and PLCG2 mutations are associated

with ibrutinib resistance, their frequency and relevance to progression are not fully

understood. In this multicenter retrospective observational study, we analyzed 98 patients

with CLL on ibrutinib (49 relapsing after an initial response and 49 still responding after ≥1
year of continuous treatment) using a next-generation sequencing (NGS) panel (1%

sensitivity) comprising 13 CLL-relevant genes including BTK and PLCG2. BTK hotspot

mutations were validated by droplet digital polymerase chain reaction (ddPCR) (0.1%

sensitivity). By integrating NGS and ddPCR results, 32 of 49 relapsing cases (65%) carried at

least 1 hotspot BTK and/or PLCG2 mutation(s); in 6 of 32, BTK mutations were only detected

by ddPCR (variant allele frequency [VAF] 0.1% to 1.2%). BTK/PLCG2 mutations were also

identified in 6 of 49 responding patients (12%; 5/6 VAF <10%), of whom 2 progressed later.

Among the relapsing patients, the BTK-mutated (BTKmut) group was enriched for EGR2

mutations, whereas BTK-wildtype (BTKwt) cases more frequently displayed BIRC3 and

NFKBIEmutations. Using an extended capture-based panel, only BRAF and IKZF3mutations
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lymphoid panel NGS data (CRAM files) are available via Figshare at https://doi.
org/10.17044/scilifelab.19721998.

The online version of this article contains a data supplement.
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showed a predominance in relapsing cases, who were enriched for del(8p) (n = 11; 3 BTKwt).
mut wt
27 JUNE 20
Finally, no difference in TP53 mutation burden was observed between BTK and BTK

relapsing cases, and ibrutinib treatment did not favor selection of TP53-aberrant clones. In

conclusion, we show that BTK/PLCG2 mutations were absent in a substantial fraction (35%)

of a real-world cohort failing ibrutinib, and propose additional mechanisms contributing to

resistance.
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Introduction

The first-in-class Bruton tyrosine kinase (BTK) inhibitor ibrutinib
covalently binds to BTK,1,2,3 and has demonstrated efficacy in both
treatment-naïve and relapsed/refractory chronic lymphocytic leu-
kemia (CLL).4-7 Although the majority of patients with CLL obtain
long-lasting responses, the following 3 main reasons for ibrutinib
discontinuation have emerged: intolerance (~25% of patients),
and, particularly among relapsed/refractory patients, Richter
transformation (10%), and CLL progression (~20%).8,9 Several
studies have identified BTK and/or PLCG2 gene mutations in
the majority (up to 100%) of patients with CLL relapsing on ibru-
tinib,10-13 even several months before clinical relapse.10,13 Muta-
tions preferentially occurred at the cysteine 481 residue resulting in
the replacement of cysteine by serine (p.C481S) or arginine
(p.C481R). Mutations at this site lead to abrogation of the covalent
binding of ibrutinib, with only transient inhibition of the mutant
protein.10,11 In contrast, multiple, though less frequent, mutations
within the downstream signaling molecule PLCG2 usually result in
a gain-of-function, promoting B cell receptor (BcR) signaling
despite BTK inhibition.10,11,14 Additional mechanisms of resistance
to ibrutinib have been proposed such as the loss of TRAIL-R
expression because of del(8p),15-17 whereas mutations of individ-
ual genes (eg, EIF2AK3, EP300, KMT2D)15 have been occa-
sionally reported.

The proportion of CLL cells carrying mutations within the BTK/
PLCG2 genes varies considerably, with some cases showing a
very low clonal burden, hence challenging their proposed contri-
bution to resistance.18 Thus, a comprehensive understanding of
the prevalence and relevance of these mutations in relation to
response to ibrutinib will help better refine the mechanisms driving
resistance and identify other potential key driver mutations or
pathways. In particular, it remains to be established whether these
mutations also occur in patients who continue to respond to
ibrutinib. Insight into these issues may aid in the validation of pre-
dictors of relapse to assist treatment decisions, and in the design
of novel treatment modalities to ultimately prevent relapse and
disease progression.

To this end, we designed a multicenter international retrospective
study, coordinated by the European research initiative on CLL
(ERIC), aimed at investigating, in a “real-world” setting, the pres-
ence of recurrent gene mutations in BTK/PLCG2 and other genes
of interest by targeted next-generation sequencing (NGS) in
patients with CLL failing ibrutinib, and in a cohort of patients who
have maintained a response to ibrutinib and remain on therapy for
at least 12 months after ibrutinib initiation.
23 • VOLUME 7, NUMBER 12
Methods

Patient enrollment and sample collection

Ninety-eight patients with CLL treated with ibrutinib from 21 insti-
tutions were included and assigned to 1 of the 2 following groups:
relapsed (n = 49; patients progressing after an initial response) and
responders (n = 49; patients who maintained a response to ibru-
tinib for ≥1 year) (Table 1). Patients in both groups received full-
dose ibrutinib without >14 days interruption. Progression and
response were defined according to the international workshop on
CLL 2008 criteria19; primary refractory cases and patients with
Richter transformation were excluded. Paired samples at baseline
(at the time of treatment initiation) and progression or ≥1 year after
therapy initiation, were available for 50 patients (19 relapsed and
31 responders). Informed consent was obtained in accordance
with the declaration of Helsinki and ethical approval was granted by
local review committees.

A total of 151 samples were analyzed, obtained from peripheral
blood mononuclear cells (PBMC) (n = 143), bone marrow (BM)
(n = 7) and 1 baseline sample derived from formalin-fixed paraffin-
embedded lymph node tissue. For 3 patients, both BM and PBMC
samples obtained at relapse were analyzed.

The fraction of tumor cells by flow cytometry was ≥80% in 79% of
all samples in the study. B cells were purified from peripheral blood
using a negative-selection immunodensity method (RosetteSep
Human B Cells, StemCell Technologies) or from viable frozen
PBMCs using a positive-selection method (>95% purity) (EasySep
Human CD19 Positive Selection Kit II, StemCell Technologies).

Genomic DNA (gDNA) was extracted using Maxwell 16 Blood
DNA Purification kit (Promega) for samples with >1×106 cells;
QIAamp DNA Micro kit (Qiagen) for cases with cells numbers
ranging from 5 × 104 to 1 × 106; NucleoSpin Tissue XS kit
(Macherey-Nagel) for cases with <5 × 104 cells. The gDNA con-
centration was determined using Qubit (ThermoFisher) and integ-
rity was assessed on Agilent 4200 TapeStation (Agilent
Technologies).

NGS

HaloPlex panel: a previously published custom Agilent HaloPlex
high sensitivity panel design20 was modified using the Agilent
SureDesign software (https://earray.chem.agilent.com/suredesign/).
The custom probes were designed to target the coding exons or
hotspot regions of 13 genes of interest in CLL (ATM, BIRC3, BTK,
EGR2, FBXW7, MYD88, NFKBIE, NOTCH1, PLCG2, POT1,
SF3B1, TP53, and XPO1) (supplemental Table 1). Libraries were
prepared using 50 ng of high-quality gDNA input, following the
IBRUTINIB RESISTANCE IN CLL 2795

https://earray.chem.agilent.com/suredesign/


Table 1. Clinical characteristics of patients included in the study

Characteristics

Relapsed

cases

(n = 49)

Responders

(n = 49)

Entire

cohort

(n = 98) P value

Median age, y (range) 66 (33-86) 68 (46-85) 67 (33-86) ns

Male:female 32:17 31:18 63:35 ns

Median number of previous therapies 2 1 2 ns

Unmutated IGHV, n (%) 28/35 (80) 29/41 (70.7) 57/76 (75) ns

del(11q), n (%) 14/45 (31) 10/44 (22.7) 24/89 (26.9) ns

del(17p), n (%) 21/46 (45.6) 21/46 (45.6) 42/92 (45.6) ns

TP53 mutation, n (%) 13/27 (48.1) 8/38 (21) 21/65 (32.3) .03

TP53 aberrations (del(17p) and/or TP53 mutations),
n (%)

25/46 (54.3) 23/46 (50) 48/92 (52.2) ns

Best response to ibrutinib

PR/PR-L 44/49 35/49 79/98 ns

CR 5/49 14/49 19/98 ns

Median duration of ibrutinib treatment, (range) (mo) 36 (6-68) 44 (18-87) 40 (6-87) ns

Follow-up

Median follow-up, (range) (mo) 43 (8-84) 46 (18-87) 44 (8-87) ns

Median overall survival, (95% CI) (mo) 58 (36-80) NR NR P < .001

Dead, n (%) 25 (51) 5 (10.2) 30 (30.6) P < .001

CI, confidence interval; CR, complete response; ns, not significant; NR, not reached PR, partial response; PR-L, partial response with lymphocytosis.
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manufacturer’s instructions. Paired-end sequencing (150 bp reads)
was performed on a NextSeq instrument (Illumina, Hayward, CA).

Lymphoid panel: DNA samples were analyzed using a custom-
designed, capture-based gene panel, GMS Lymphoid panel
(Twist Bioscience), including 252 genes, selected based on their
relevance in lymphoid malignancies.21,22 The panel also included
genome-wide backbone probes for copy-number analysis. Library
preparation and sequencing were performed as described in
supplemental Data.

Bioinformatics analysis

HaloPlex panel (refer to supplemental Data): FASTQ files were
preprocessed by Agilent SureCallTrimmer (v4.0.1) , aligned to the
GRCh37 human reference genome using bwa-mem (v0.7.16) and
postprocessed using Samtools (v1.8). The Agilent LocatIt tool
(v4.0.1) was applied for processing of molecular barcode infor-
mation. Pisces (v5.2.10.49) was used for detection of single
nucleotide variants and small insertions/deletions (indels) (1%
VAF). Variants were annotated with population variation databases
and Cosmic (v85) using VEP23 (v91) and SnpEFF (v4.3). Pysam-
stats (v1.1.2) was used for detailed investigation of mutations at
codon 481 of the BTK gene and at selected PLCG2 hotspots
(“per base” analysis).

Lymphoid panel: BALSAMIC24 was applied to analyze the FASTQ
files and for somatic variant calling (10% VAF) and copy-number
aberration detection, as described in supplemental Data.

Droplet digital polymerase chain reaction (ddPCR)

One hundred sixteen samples included in the HaloPlex analysis
were analyzed with ddPCR with a sensitivity of 0.1% at the BTK
2796 BONFIGLIO et al
hotspot C481S (c.1442G>C and c.1441T>A), according to the
manufacturer’s instructions, using Bio-Rad reagents and equip-
ments (refer to supplemental Data).

Statistical analysis

Continuous variables were analyzed using the median and range
(minimum, maximum). Categorical variables are presented as per-
centage of total number of patients with available information.
Correlation of variables with disease outcome were evaluated in
univariate analysis with nonparametric tests (Chi-square and Fisher
Exact test in case of categorical variables, Mann-Whitney and
Kruskal-Wallis test in case of continuous variables). Time-to-
progression (TTP, time between ibrutinib initiation and docu-
mented progression or last follow-up) and overall survival (time
between ibrutinib initiation and last follow-up or date of death) were
estimated using the Kaplan-Meier Product Limit estimator and log-
rank test.

Results

Patient clinical characteristics

Characteristics of the 98 eligible patients are described in Table 1.
The study population was enriched for patients with high-risk fea-
tures consistent with a heavily pretreated population (median
number of previous therapies 2; range, 1-6), with only 17 patients
receiving ibrutinib as first-line treatment (13 responders; 4
relapsed). No significant differences between relapsed and
responders subgroups were identified, except for a higher per-
centage of TP53 mutations in relapsed cases (48% vs 21%, P =
.03). All patients obtained at least a partial response with
lymphocytosis (PR-L) on ibrutinib, with those in the relapsed group
27 JUNE 2023 • VOLUME 7, NUMBER 12
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progressing after a median of 34 months (range, 5-66). The median
duration of treatment was 44 months (range, 18-87) in the
responders and 36 months (range, 6-68) in the relapsed cases.

Detection of hotspot BTK and PLCG2 mutations by

HaloPlex NGS analysis and validation by ddPCR

By applying our standardized bioinformatics pipeline (1% sensi-
tivity), a total of 38 hotspot BTK mutations were detected in 24 of
49 relapsed patients (49%), with 7 of 24 (29%) carrying ≥2 hot-
spot BTK mutations (Table 2). The VAF of the individual BTK
mutations differed considerably (range, 1.8%-79.5%; median,
16.8%; not sex-normalized). In 6 of 24 patients (25%), BTK
mutations were present at low-VAF only (<10%), whereas in 4 of
24 patients (16.7%), low- and high-VAF BTK mutations co-
occurred (Table 2).

Samples from 47 of 49 relapsed patients (95.9%) were analyzed
by ddPCR targeting BTK hotspot mutations as well. This analysis
confirmed all NGS-detected BTK p.C481S mutation(s), with both
tests reporting similar VAFs for the majority of mutations (Table 2).
Discrepancies were observed in 3 patients (#1, #2, #24), who
harbored a p.C481S mutation stemming from 2 different nucleo-
tide substitutions (c.1441T>A and c.1442G>C) with very different
VAFs, thus the discordance likely being the result of cross-reactivity
in the ddPCR assays because of the strong positivity of the major
clone.

The ddPCR assay identified additional BTK p.C481S low-VAF
mutations (range, 0.1%-2.4%) in 16 relapsed patients (Table 2).
Ten of them carried also a major BTK-mutated clone identified by
both standard NGS and ddPCR analysis and hence were already
classed as BTK mutated; in 5 of 11 of these samples the additional
BTK mutation(s) were confirmed by per base NGS reanalysis
(Table 2). In the remaining 6 patients, wildtype by standard NGS
analysis (1% sensitivity), the ddPCR assay identified low-VAF BTK
mutations (range, 0.1%-1.2%; 5/6 <1%), which were confirmed by
per base NGS reanalysis in 4 of 6 samples. In addition, in 1 of
these patients (#29), 2 additional low-VAF mutations were
retrieved by per base NGS analysis only (Table 2). Samples from
BM and peripheral blood at the time of relapse were available for 3
patients (#7, #15 and #20). The BTK p.C481S mutation was
found in both the BM and PBMC sample from all 3 cases (Table 2),
with a higher VAF detected in the PBMC in case #7 and #15, and
with similarly low levels in patient #20, though only detected by
either per base NGS analysis or ddPCR in the PBMC sample.

A per base NGS reanalysis was performed for PLCG2 gene as
well at selected hotspots, to detect mutations with VAF <1%.
Twelve relapsed patients harboring BTK mutation(s) also carried
hotspot PLCG2 mutation(s). In 4 of them (#3, #6, #10 and #20),
carrying BTK mutations at low-VAF only (<10%), multiple PLCG2
mutations with VAFs in the range of 0.2% to 32.7% were present
(Table 2). Among the 25 of 49 relapsed patients (51%) negative
for BTK mutations, only 2 cases (#2 and#26) carried hotspot
PLCG2 mutations (Table 2).

Taking all analyzes together, 65% of relapsed patients carried at
least 1 hotspot mutation in BTK and/or PLCG2, with 12 of 30
(40%) carrying BTK-mutated clone(s) at a VAF <10%, of which 6
at a VAF ≤1.2% (Table 2). No hotspot mutations in BTK or PLCG2
were detected in any of the matched baseline samples.
27 JUNE 2023 • VOLUME 7, NUMBER 12
Only 3 of 49 responders (#33, #34 and #35) carried the BTK
p.C481S substitution at varying allelic frequencies (19.5%, 4.4%
and 2.7%, respectively). Two of them (#33 and #34), progressed 6
and 15 months after sampling, respectively, and were also found to
harbor PLCG2 hotspots mutations at low VAFs (Table 2). The third
patient (#35) remained in response at last follow-up (10 months
after sampling) and carried no detectable PLCG2 mutation.

All BTK mutations detected by NGS in the 3 responsive patients
were confirmed by ddPCR at similar VAFs. In patient #34, the
ddPCR assay detected an additional BTK-mutated (BTKmut) minor
subclone (VAF 0.2%) not confirmed by the NGS per base rean-
alysis; however, another small subclone (VAF 0.7%) was detected
by the NGS per base reanalysis (Table 2).

In addition, samples at time point ≥1 year for 43 of 46 responders,
wildtype for BTK as assessed by standard NGS analysis, were also
analyzed by ddPCR. In 3 of 43 patients (#36, #37, #38) a
p.C481S mutation was found at very low VAF (0.4%-1.2%)
(Table 2) and was not detected by the NGS per base reanalysis.
These 3 patients have maintained a response to ibrutinib at 26, 31
and 33 months after sampling.

Taking all analyzes together, 6 of 49 responders (12%) carried a
hotspot mutation in BTK/PLCG2, with 5 of 6 cases (83%)
harboring BTK mutations at a VAF <10%.

Finally, 9 mutations with a VAF <10% and lying outside the known
hotspot regions within BTK (n = 4) and PLCG2 (n = 5) were
detected, the majority of which had not been reported previously
(Table 3). Six of them were found in 5 relapsed patients, all of
whom harbored a hotspot mutation in BTK/PLCG2 genes
(Table 3), whereas 3 were observed in responders, with 2 of them
having no detectable hotspot mutation (Table 3).

Mutational profiling of the relapsed and responsive

cohort

We next investigated the frequency of mutations within the 11
additional genes included in the HaloPlex panel. A total of 415
somatic mutations were detected; no significant difference in the
average number of mutations per case in the relapsed vs respon-
sive cohort was observed (4.6 vs 3.9, respectively). The VAF range
spanned from 1.4% to 100%, however, half of all variants were
found at allelic frequencies <10% (203/415; 48.9%)
(supplemental Table 2).

Aside from mutations in BTK and PLCG2, the most frequently
mutated genes in the relapsed patients at progression were: TP53
(29/49, 59%), ATM (14/49, 29%), EGR2 (10/49, 20%), SF3B1
(9/49, 18%), NOTCH1 (8/49, 16%) and BIRC3 (6/49, 12%), and
in the responsive patients at ≥1 year sampling after therapy initi-
ation: TP53 (22/49, 45%), ATM (12/49, 24%), BIRC3 (7/49,
14%), SF3B1 (6/49, 12%) and NOTCH1 (6/49, 12%) (Figure 1).
Two relapsed and 9 responsive patients (without BTK/PLCG2
mutations) did not carry mutations in any genes tested. Combining
FISH and mutational data, 32 of 49 of the relapsed patients (65%)
displayed TP53 aberrations compared with that of 28 of 49 of the
responsive patients (57%). Along the same lines, 19 of 49
patients (39%) in the relapsed cohort carried an ATM alteration
(mutation and/or deletion) vs 21 of 49 (43%) in the responsive
cohort.
IBRUTINIB RESISTANCE IN CLL 2797



Table 2. BTK and PLCG2 hotspot mutations in relapsed and responsive cohorts, assessed by both HaloPlex NGS and ddPCR analysis

Patient ID Cohort

% CD19+ in

sample

BTK hotspot mutations PLCG2 hotspot mutations

Coding DNA

description

Protein

description

Standard NGS

VAF (%)

Per base NGS

VAF (%)

ddPCR

VAF (%)

Coding DNA

description

Protein

description

Standard NGS

VAF (%)

Per base NGS

VAF (%)

Time on ibrutinib

at sampling (months)

1 Relapsed 99 c.1442G>C p.C481S 79.5 79.5 85.0 c.3418G>A p.D1140N 3.9 3.9 46

c.1441T>A p.C481S 2.6 2.6 11

c.1442G>A p.C481Y ND 0.5 not tested

c.1441T>C p.C481R ND 0.3 not tested c.2977G>T p.D993Y ND 0.9

c.3422T>A p.M1141K ND 0.4

2 Relapsed >90 c.1441T>A p.C481S 53.4 53.7 65 c.2978A>G p.D993G 7.9 7.8 12

c.1442G>C p.C481S 12.8 12.8 30.7 c.2977G>T p.D993Y 4.8 4.8

3 Relapsed 85 c.1442G>C p.C481S 2.7 2.7 2.8 c.3418G>A p.D1140N ND 0.4 36

c.1441T>A p.C481S 2.4 2.5 2.2 c.3422T>G p.M1141R ND 0.3

4 Relapsed unknown c.1441T>C p.C481R 40.3 40.1 not tested None None NA NA 17

5 Relapsed >90 c.1442G>C p.C481S 32.0 32.0 32.7 None None NA NA 47

c.1441T>A p.C481S ND ND 0.9

6 Relapsed unknown c.1442G>C p.C481S 6.1 6.1 7.1 c.3412_3414del p.1138_1138del 13.0 13.0 11

c.1441T>A p.C481S ND ND 0.5 c.2543T>G p.L848R 9.3 9.3

c.3422T>A p.M1141K 2.0 2.0

c.3418G>A p.D1140N ND 1.0

c.3422T>G p.M1141R ND 1.7

7-BM Relapsed >95 c.1442G>C p.C481S 7.1 7.1 8.0 c.2978A>G p.D993G ND 0.8 9

7-PBMC >95 c.1442G>C p.C481S 23.3 23.3 18.2 c.2978A>G p.D993G ND 1.3

8 Relapsed >95 c.1442G>C p.C481S 31.2 31.2 29.6 c.3422T>G p.M1141R 4.0 4.0 15

c.1441T>A p.C481S ND ND 0.3

9 Relapsed 85 c.1442G>C p.C481S 33.2 33.2 35.6 None None NA NA 43

10 Relapsed 95 c.1442G>C p.C481S 7.8 7.8 10.0 c.2977G>T p.D993Y 32.7 32.7 40

c.1441T>A p.C481S ND ND inconclusive c.2977G>C p.D993H 2.0 2.0

c.2978A>G p.D993G ND 1.3

c.3418G>A p.D1140N ND 0.6

11 Relapsed 95 c.1442G>C p.C481S 42.7 42.8 41.6 c.2535A>T p.L845F ND 0.8 43

c.1441T>A p.C481S ND 0.8 2.2 c.2977G>C p.D993H ND 0.7

12 Relapsed 94 c.1442G>C p.C481S 62.5 62.5 62.7 c.2977G>C p.D993H ND 0.2 16

13 Relapsed 90 c.1442G>C p.C481S 17.9 17.9 18.0 None None NA NA 32

c.1441T>A p.C481S ND ND 0.2

14 Relapsed 85 c.1442G>C p.C481S 5.8 5.8 6.8 None None NA NA 41

c.1441T>A p.C481S ND 0.7 1.0

15-PBMC Relapsed 70 c.1442G>C p.C481S 41.9 41.8 43.8 c.2535A>C p.L845F NA 0.7 37

c.1441T>A p.C481S ND 0.5 0.7 c.2535A>T p.L845F NA 0.7

BTK hotspots VAFs were not sex-normalized.
ND, not detected; NA, not available.
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Table 2 (continued)

Patient ID Cohort

% CD19+ in

sample

BTK hotspot mutations PLCG2 hotspot mutations

Coding DNA

description

Protein

description

Standard NGS

VAF (%)

Per base NGS

VAF (%)

ddPCR

VAF (%)

Coding DNA

description

Protein

description

Standard NGS

VAF (%)

Per base NGS

VAF (%)

Time on ibrutinib

at sampling (months)

15-BM 38 c.1442G>C p.C481S 11.5 11.5 13.2 None None NA NA

c.1441T>A p.C481S ND ND 0.1

16 Relapsed 35 c.1442G>C p.C481S 3.0 3.0 not tested None None NA NA 56

17 Relapsed unknown c.1442G>C p.C481S 61.6 61.5 66.3 None None NA NA 42

c.1441T>A p.C481S ND ND 0.3

c.1442G>A p.C481Y ND 0.5 not tested

18 Relapsed 99 c.1442G>C p.C481S 15.7 15.7 17.2 c.2535A>T p.L845F NA 0.3 62

c.1441T>A p.C481S ND 0.1 0.2

c.1442G>A p.C481Y ND 1.4 not tested

19 Relapsed unknown c.1441T>A p.C481S 37.9 37.9 50.3 None None NA NA 34

c.1442G>C p.C481S 23.4 23.4 39.2

20-BM Relapsed 66 c.1442G>C p.C481S 2.3 2.3 2.2 c.3412_3414del p.1138_1138del 2.7 2.7 34

c.2535A>C p.L845F 3.4 3.4

c.2535A>T p.L845F 2.7 2.6

c.1442G>A p.C481Y ND 0.2 not tested c.2977G>C p.D993H 1.7 1.7

c.1993C>T p.R665W ND 0.8

c.2120C>T p.S707F ND 0.3

c.3418G>A p.D1140N ND 0.7

c.3422T>A p.M1141K ND 0.7

c.3422T>G p.M1141R ND 0.2

20-PBMC 92 c.1442G>C p.C481S ND 1.4 1.8 c.3412_3414del p.1138_1138del 12.7 12.7

c.2535A>C p.L845F 2.5 2.5

c.2535A>T p.L845F 2.0 2.0

c.2977G>C p.D993H 1.8 1.8

c.1993C>T p.R665W ND 0.9

c.3418G>A p.D1140N ND 0.4

c.3422T>A p.M1141K ND 0.6

c.3422T>G p.M1141R ND 0.6

21 Relapsed unknown c.1441T>C p.C481R 51.8 51.7 not tested None None NA NA 42

c.1442G>C p.C481S 5.5 5.5 7.2

c.1441T>A p.C481S 1.8 1.8 2.7

c.1442G>A p.C481Y 2.8 2.8 not tested

c.1443C>A p.C481 2.2 2.2 not tested

22 Relapsed 73 c.1442G>T p.C481F 33.5 33.5 not tested None None NA NA 38

c.1442G>C p.C481S 4.8 4.8 8.6

BTK hotspots VAFs were not sex-normalized.
ND, not detected; NA, not available.
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Table 2 (continued)

Patient ID Cohort

% CD19+ in

sample

BTK hotspot mutations PLCG2 hotspot mutations

Coding DNA

description

Protein

description

Standard NGS

VAF (%)

Per base NGS

VAF (%)

ddPCR

VAF (%)

Coding DNA

description

Protein

description

Standard NGS

VAF (%)

Per base NGS

VAF (%)

Time on ibrutinib

at sampling (months)

23 Relapsed 81 c.1442G>C p.C481S 79.3 79.3 79.9 None None NA NA 37

c.1441T>A p.C481S ND 0.4 2.4

24 Relapsed 97 c.1441T>A p.C481S 47.8 47.8 69.2 None None NA NA 37

c.1442G>C p.C481S 22 22 57.9

c.1442G>A p.C481Y 4.8 4.8 not tested

c.1442G>T p.C481F 4.6 4.6 not tested

c.1441T>C p.C481R ND 0.8 not tested

25 Relapsed unknown None None NA NA NA c.2120C>T p.S707F 21.2 21.2 42

c.3412_3414del p.1138_1138del ND 0.2

26 Relapsed 75 None None NA NA NA c.3416A>G p.E1139G 3 3.2 10

27 Relapsed 74 c.1442G>C p.C481S ND 1.2 0.8 None None NA NA 5

28 Relapsed 18 c.1442G>C p.C481S ND 0.3 0.1 None None NA NA 43

29 Relapsed unknown c.1441T>A p.C481S ND 0.9 1.2 None None NA NA 33

c.1442G>C p.C481S ND 1.5 ND

c.1441T>C p.C481R ND 1.3 not tested

30 Relapsed 75 c.1442G>C p.C481S ND 0.1 0.1 None None NA NA 45

31 Relapsed 81 c.1442G>C p.C481S ND ND 0.2 None None NA NA 56

32 Relapsed 99 c.1442G>C p.C481S ND ND 0.1 None None NA NA 56

33 Responsive unknown c.1442G>C p.C481S 19.5 19.5 18.7 c.2977G>C p.D993H 2.9 2.9 32

c.2535A>C p.L845F ND 1.4

c.3419A>G p.D1140G ND 0.4

34 Responsive unknown c.1442G>C p.C481S 4.4 4.4 5.4 c.3419A>G p.D1140G 5.5 5.5 40

c.2535A>T p.L845F 3.4 2.7

c.1442G>A p.C481Y ND 0.7 not tested c.2535A>C p.L845F 2.7 2.1

c.1441T>A p.C481S ND ND 0.2

35 Responsive 98 c.1442G>C p.C481S 2.7 2.7 2.7 None None NA NA 28

36 Responsive 88 c.1442G>C p.C481S ND ND 0.4 None None NA NA 18

37 Responsive 89 c.1442G>C p.C481S ND ND 1.2 None None NA NA 37

38 Responsive 89 c.1442G>C p.C481S ND ND 0.7 None None NA NA 20

BTK hotspots VAFs were not sex-normalized.
ND, not detected; NA, not available.
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An asymmetric distribution of mutations in other genes was noted
in BTKmut vs BTKwt relapsed patients. Specifically, EGR2 was
mutated in 9 of 24 BTKmut vs 1 of 25 BTKwt patients (P < .01),
whereas BIRC3 (n = 6; P < .05) and NFKBIE (n = 3, P > .05)
mutations were only detected in the BTKwt group (Figure 1). In
contrast, TP53 mutation burden was not significantly different
between BTKmut and BTKwt relapsed cases.

In 19 relapsed patients, samples at both baseline and relapse were
available. The total number of somatic mutations at baseline was
36 (average: 1.9; range, 1-4), compared with that of 60 mutations
carried by the matched relapse samples (average: 3.2; range, 0-7),
the difference being mainly because of the appearance of BTK/
PLCG2 mutations (n = 18). In other words, for all other genes
analyzed, only a few patients acquired mutations at the relapse vs
the baseline time point, including 2 patients who gained EGR2
mutations at low allelic burdens (#5 and #30) (supplemental
Figure 1; supplemental Figure 2A). Accordingly, BIRC3 and
NFKBIE mutated patients carried mutations at both time points,
except for patient #41 who was NFKBIE mutated only at baseline
with a low allelic burden (supplemental Figure 2B,C).

Paired samples (at baseline and at time point ≥1 year) were
available for 31 patients in the responsive cohort. The total number
of somatic mutations at baseline was 70 (average: 2.3; range, 0-
10), compared with that of 84 mutations detected at time point ≥1
year (average: 2.7; range, 0-11). The frequency of mutated genes
in samples at baseline compared with that of at ≥1 year time point
was not significantly different (supplemental Figure 3).

Additional genetic aberrations assessed by the

lymphoid panel

To investigate if additional genetic aberrations may be present in
relapsed vs responsive patients, we applied a capture-based
lymphoid panel and analyzed the mutational status of the 239
genes not included in the HaloPlex panel and the genome-wide
copy-number status in 104 gDNA samples from 72 patients (38/
49 relapsed, 34/49 responsive). We detected recurrent mutations
in ASXL1, BRAF, IKZF3, KRAS, MED12, MGA, RPS15, SPEN,
and ZFN292; however, only BRAF, and potentially IKZF3, showed
a predominance in relapsed cases (supplemental Table 3;
supplemental Figure 4). Considering that occasional patients pro-
gressing on ibrutinib15,16 have displayed EIF2AK3, EP300, and
KMT2D mutations and del(8p), we specifically looked for these
aberrations. Only 1 relapsed patient (BTKmut by ddPCR only)
carried an EP300 mutation (VAF 47.9%) at relapse, whereas 2
KMT2D mutations (VAF 28.9; 65.7%) were retrieved in 1 relapsed
BTKwt patient at relapse. EIF2AK3 was wildtype in all patients
(supplemental Table 3). Finally, del(8p) was detected in 13
patients: 11 relapsed, 4 of them BTKwt by HaloPlex analysis
(1 mutated by ddPCR only), and 2 responsive BTKwt patients
(supplemental Table 4).

TP53 clonal dynamics under ibrutinib treatment

Among 19 relapsed patients with paired samples, 7 of 19 were
TP53 wildtype at both time points (1 of them BTKmut by HaloPlex
analysis) and 12 of 19 carried a TP53 mutation at some point (7/12
with at least 1 BTK hotspot mutation detected by HaloPlex anal-
ysis). Among the 12 patients with TP53 mutation, 3 showed
IBRUTINIB RESISTANCE IN CLL 2801
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expansion (n = 2) of an existing clone or the appearance (n = 1) of
a new clone at relapse; 1 showed a reduction of an existing clone;
5 carried a stable mutant clone, at both time points. One patient
carried 3 different TP53 clones and, interestingly, 1 expanded, 1
reduced and 1 appeared at relapse (Figure 2A). In 2 patients the
clonal dynamics could not be reliably analyzed because of missing
CD19+ purity data.

Among 31 responsive patients with paired samples, 10 were TP53
wildtype at both time points and 21 of 31 carried at least 1 TP53
mutation at 1 or both time points. Among the latter, 7 patients
showed expansion (n = 2) of an existing clone or the appearance
(n = 5) of 1 or more TP53 mutations at the time point ≥1 year
(VAF<10%); 5 showed a reduction (n = 1) or the disappearance
(n = 4) of existing clones; 4 carried a stable mutant clone, with
either high (n = 1) or low (n = 3) VAF, at both time points
(Figure 2B). The remaining 5 patients carried multiple TP53
mutations at both time points, of which 4 were mainly characterized
2802 BONFIGLIO et al
by clonal stability or decrease, with the appearance of new clones
with VAF <10% in 2 of them (Figure 2B).

Correlation of NGS data with clinical outcome in

relapsed cases

Among relapsed patients, those with BTK and/or PLCG2 hotspot
mutations (n = 32, assessed by any method) experienced a longer
TTP than those without mutations (n = 17) (median TTP,
36 months; range, 5-56 vs 14.5 months; range, 5-66, respectively;
P = .053). Clinical indications of progression on ibrutinib did not
differ in the 2 subgroups with the most frequent being the pres-
ence of lymphadenopathies (22/32 in the BTK/PLCG2 mutated vs
9/17 in the BTK/PLCG2 wildtype cases), followed by anemia and/
or thrombocytopenia because of BM infiltration (7/32 vs 3/18),
splenomegaly (0/31 vs 3/18) and lymphocyte doubling time (3/31
vs 2/18). After a median follow-up of 43 months (8-84), overall
survival in the relapsed cohort was 58 months, without statistically
significant difference between the 2 subgroups.
27 JUNE 2023 • VOLUME 7, NUMBER 12
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Figure 2. TP53 clonal dynamics in the relapsed and responsive cohorts. (A) TP53 clonal dynamics in 10 mutated patients of the relapsed cohort. Each patient is
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Discussion

In this study, we performed targeted NGS in a real-world cohort of
patients with CLL relapsed on or responsive to ibrutinib treatment,
to gain further insights into the mechanisms implicated in the
emergence of resistance.

We show that up to 65% of patients relapsing on ibrutinib carried
at least 1 hotspot BTK mutation at the cysteine 481 residue, and/or
≥1 hotspot PLCG2 mutations, by integrating NGS analysis (1%
sensitivity) with more sensitive techniques such as per base NGS
analysis and ddPCR (0.1% sensitivity). This prevalence of
BTK/PLCG2 mutations is lower than those reported in most
previous studies, where the overall frequency of BTK and/or
PLCG2 mutated relapsed patients (1% VAF cutoff) was up to
100%,11-13,25 hence indicating the existence of alternative mech-
anisms of resistance. Similar to other cohorts, we found a large
proportion (40%) of relapsed BTK-mutated cases harboring hot-
spot mutation(s) with a VAF <10%, including several cases with
VAFs bordering 1%, thus questioning how such clones substan-
tially contribute to resistance. This is further complicated by the
finding that, also in the responsive cohort, we detected BTK
mutations in 6 patients (12%), of whom 3 were with low VAF
(0.4%-1.2%). Although 2 of 6 progressed 6 and 15 months after
sampling, the others remained in response (3/4 patients <2 years
after sampling). For comparison, 6 patients in the relapsed cohort
carried similar BTK clones at low VAF (0.1%-1.5%) but experi-
enced relapse.

Reasonable assumptions could be that the minor mutant clone may
exert a dominant effect on the response of the overall wildtype
tumor cell population, as suggested for ibrutinib-resistant patients
27 JUNE 2023 • VOLUME 7, NUMBER 12
with either CLL26 or Waldenström Macroglobulinemia,27 though
this would not explain the detection of such mutations in
responding patients even after 2 years of follow-up. Alternatively,
resistant and mutated cells may reside in a tissue compartment not
analyzed or other mechanisms acting independently or co-
operatively may exist.

To explore the latter possibility, we characterized our cohort by
NGS for other genes associated with disease progression and
dismal prognosis.25,28 Notably, the frequency of TP53-mutated
clones in both the relapsed and responsive cohorts did not differ
significantly. However, there was a striking difference between the
2 cohorts in terms of clonal size, with the mean VAF% of TP53
mutant clones being higher in the relapsed vs the responsive
cohort, at both baseline (57% vs 19%) and relapse/≥1 year time
point (59% vs 16%), with almost all TP53 mutations in the relapsed
group having a VAF ≥10%. On the contrary, in the responsive
cohort the majority of TP53 mutations was present at a VAF <10%,
at both baseline and at ≥1 year time point. That said, it is inter-
esting to note that ibrutinib treatment did not seem to favor the
selection of TP53-aberrant clones even in the relapsed cohort, in
which the majority of clones either remained stable or decreased in
size at the time of relapse, similar to the responding cohort. This
suggests little if any direct involvement of TP53 aberrations in the
onset of ibrutinib resistance, though the presence of large TP53-
aberrant clones may give a higher propensity toward clonal evo-
lution because of genomic instability and the occurrence of
mutations in other genes or pathways ultimately responsible for
drug resistance.

In the relapsed cohort, we detected a biased distribution of other
gene mutations in BTK/PLCG2 mutated vs wildtype subgroups.
IBRUTINIB RESISTANCE IN CLL 2803
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Interestingly, the transcription factor EGR2 was almost exclusively
mutated in the BTKmut relapsed group. EGR2 is activated through
ERK phosphorylation upon BcR stimulation, thus suggesting that
EGR2 mutations might lead to a constitutively dysregulated BcR
signaling,29 cooperating with the existing BTK/PLCG2 mutations
toward ibrutinib resistance.

Conversely, BIRC3 and NFKBIE mutations in the relapsed cohort
were exclusively detected in the BTKwt vs BTKmut group (also at
baseline), pointing toward an aberrant activation of the canonical/
noncanonical NF-κB pathway as a potential mechanism leading to
earlier progression and drug escape. BIRC3 aberrations have been
suggested as predictive factors for poor response to chemo-
immunotherapy in patients with CLL.30 Our results potentially
extend the role of this gene also in shaping resistance to novel
therapies, although in the phase 3 RESONATE study progression-
free survival in patients treated with ibrutinib was not affected by
baseline BIRC3 mutational status.31 Notably, BIRC3 and/or
NFKBIE mutations were present also in a minor proportion (14%
and 12%) of the responsive patients, respectively. Longer follow-up
will be needed to ascertain if the presence of these mutations may
associate with future resistance to ibrutinib treatment.8,9

Additional genomic aberrations, including del(8p) and mutations in
EIF2AK3, EP300, KMT2D,15,16 have been reported in smaller
BTKwt patient series. By applying a capture-based panel, we
confirmed an enrichment of del(8p) in relapsing cases (11
relapsing vs 2 responsive) but with only 3 of them wildtype for BTK/
PLCG2. Moreover, although recurrent mutations were seen in
some other known CLL driver genes, only BRAF and IKZF3
mutations showed a predominance in relapsed cases. In contrast,
no clear predilection of mutations in EIF2AK3, EP300, and KMT2D
was observed in relapsing vs responsive cases.

Though the existence of additional genomic aberrations explaining
the resistance deserves further studies, it is also intriguing to
hypothesize the occurrence of “functional resistance,” in the
absence of BTK/PLCG2 mutations, because of either decreased
dependence on proximal BcR signaling or to its bypass through the
modulation of the functionality of other non-BcR immune path-
ways.32 Noteworthy, in a recent study,33 in patients with CLL
progressing on idelalisib treatment, IGF1R overexpression was
associated with progression in the absence of mutations that could
explain resistance, highlighting nongenetic mechanisms as causes
of secondary resistance.

In conclusion, although we confirm that BTK/PLCG2 mutations are
present in patients with CLL relapsing on ibrutinib, more than one-
third of them do not harbor such mutations even after high sensi-
tivity analyses. We also validate enrichment of del(8p) in relapsing
patients, mainly in combination with BTK mutations. Importantly, we
show that additional genetic mechanisms, in particular aberrant
activation of the BcR and NF-κB pathways, may cooperate in
determining progression on ibrutinib in some cases. BTK/PLCG2
mutations may appear at low frequency and can be identified also in
a small fraction of patients responding to ibrutinib for <2 years. As a
consequence, though we demonstrate the feasibility of a targeted
NGS approach to detect suchmutations in real-world, its use should
not be applied in routine clinical practice, as currently stated in the
international recommendations, till we accumulate enough evidence
on how to guide treatment decisions when a mutation in these (or
other) genes are detected before clinical progression.
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