
Received 13 October 2022, accepted 9 November 2022, date of publication 14 November 2022, date of current version 21 November 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3222346

A General Framework for Accelerator
Management Based on ISA Extension
ELHAM CHESHMIKHANI 1, BIAGIO PECCERILLO 1, ANDREA MONDELLI2,
AND SANDRO BARTOLINI1
1Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy
2Huawei Technologies Research & Development (UK) Limited, CB4 0FY Cambridge, U.K.

Corresponding author: Elham Cheshmikhani (e.cheshmikhani@unisi.it)

This work was supported by the Huawei Technologies Research and Development (U.K.) Ltd.

ABSTRACT Thanks to the promised improvements in performance and energy efficiency, hardware
accelerators are taking momentum in many computing contexts, both in terms of variety and relative
weight in the silicon area of many chips. Commonly, the way an application interacts with these hardware
modules has many accelerator-specific traits and requires ad-hoc drivers that usually rely on potentially
expensive system calls to manage accelerator resources and access orchestration. As a consequence, driver-
based interfacing is far from uniform and can expose high latency, limiting the set of tasks suitable
for acceleration. In this paper, we propose a uniform and low-latency interface based on Instruction Set
Architecture (ISA) extension. All the previous studies that proposed extensions, were deeply tailored to
address a single accelerator. One of the biggest disadvantages of those methods is their inability to scale.
Adding more of these accelerators to one System-on-Chip (SoC) would result in ISA bloat, increasing power
consumption and complexifying the decoding phase proportionally. Our proposed framework consists of
a six-instruction ISA extension and the corresponding architectural support that implements the interface
abstraction and the reservation logic at the hardware level. Our proposal allows controlling a broad class
of integrated accelerators directly from the CPU. The proposed framework is ISA-independent, which
means that it is applicable to all the existing ISAs. We implement it on the gem5 simulator by extending
the RISC-V ISA. We evaluate it by simulating three compute-intensive accelerators and comparing our
interfacing with a conventional driver-based one. The benchmarks highlight the performance benefits
brought by our framework, with up to 10.38x speed up, as well as the ability to seamlessly support
different accelerators with the same interface. The speed up advantage of our technique diminishes as
the granularity of the workloads increases and the overhead for driver-based accelerators becomes less
important. We also show that the impact of its hardware components on chip area and power consumption
is limited.

INDEX TERMS Accelerators, domain-specific architectures, heterogeneous systems, ISA extension,
RISC-V.

I. INTRODUCTION AND MOTIVATION
Domain-specific architectures or accelerators have recently
emerged as a primary driving force of computer architec-
ture [1], [2]. They are specialized hardware components

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudipta Roy .

located outside of a general-purpose CPU,1 interacting
with them to accelerate particular tasks, usually improving
non-functional metrics such as throughput and efficiency.

1We consider an accelerator as a ‘‘separate architectural substructure’’,
in accordance with the definition expressed by Patel and Hwu in [3]. Some
authors refer to these as ‘‘loosely-coupled accelerators’’, in opposition to
‘‘tightly-coupled accelerators’’, which are functional units inside the core [2],
[4], [5], [6].

120702
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 10, 2022

https://orcid.org/0000-0003-3737-683X
https://orcid.org/0000-0002-4998-0092
https://orcid.org/0000-0001-5161-9311


E. Cheshmikhani et al.: General Framework for Accelerator Management Based on ISA Extension

Their strengths may derive from more efficient forms of
parallelism, local/optimized memories and ad-hoc datapaths,
reduced fetch and decode overhead, and support for ad-hoc
data types [1], [7]. In the last years, accelerators have been
commonly integrated into Systems on a Chip (SoCs) –mainly
for mobile applications [8], [9], desktop workstations [10],
[11], data-centers [10], [12], [13], and High-Performance
Computing (HPC) systems [14].

Accelerators can be interconnected with the rest of the
system in several ways [2], depending on their level of
integration (e.g., integrated on chip, near-memory, discrete
card) and their form factor. On-chip accelerators in SoCs
usually communicate with other components through a Net-
work on Chip (NoC) or a bus with a standard interface such
as Advanced Microcontroller Bus Architecture (AMBA) [2],
[15]. Discrete cards are usually shipped as PCIe cards, and
thus implement the PCIe standard or others built on top
of it such as Cache Coherent Interconnect for Accelerators
(CCIX) [16] or Compute Express Link (CXL) [17].

From a software perspective, the offload model dictates the
typical CPU-accelerator interaction, with sensible parts of an
application offloaded to the accelerator [2], [18], [19]. This is
generally achieved by invoking accelerator-specific API calls
from the user application, triggering data movements to/from
and computations on the accelerator. At a lower level, these
API calls interact with device drivers that may live in user-
space and/or kernel space, reaching the accelerator through
MMIO techniques. These usually need some involvement
from the Operating System (OS), which is responsible for: a)
managing accelerator resources, b) orchestrating concurrent
accesses from different processes to the accelerator, and c)
taking care of virtual-to-physical address translation needs,
or at least assisting the accelerator in this task [6].

Although this approach is the most common to commu-
nicate with accelerators, it exposes some limitations. First,
the latency associated with core-accelerator interactions is
typically high, compared to the rate of processor/core oper-
ations. It involves reaching an accelerator out of the cores,
and this requires drivers/OS intervention. It poses a constraint
to the size of offloadable tasks, since the whole offloading
process is convenient only when the required computation
time can amortize the interaction overhead, which can reach
up to hundreds of thousands of CPU cycles [4]. Second, the
interaction between cores and accelerators needs to be man-
aged by the application developer and/or interfacing libraries,
through SW-abstraction layers and OS support. This can
hamper the compiler’s capability to directly manage, orches-
trate, and optimize integrated accelerators usage, which - for
instance - is conversely consolidated for special functional
units (e.g., vector units in modern processors).

In this paper, we present a general ISA extension for inte-
grated accelerators. It targets the shortcomings listed above
and can efficiently support a wide variety of accelerators
with the same instructions, i.e., without the requirement of
extending the ISA for each of them. It requires the addition
of a thin hardware layer in the accelerators and the necessary

transistors to interpret and execute the proposed instructions
in the cores. Furthermore, we discuss our proposal as backed
by a special NoC, but other solutions using the memory
hierarchy are also possible.

Our proposal provides significantly lower latency than the
driver-centric solution commonly adopted thanks to the pro-
posed HW support, and makes accelerator management more
compatible with the compiler activities and optimizations.

Our proposal is built around six instructions, which are
added to the RISC-V instruction set. The essence of our
solution can be distilled in the following major contributions:

• A general ISA extension for a wide variety of integrated
accelerators, which is independent of the specific fea-
tures of each of them while allowing their effective and
low-latency usage;

• A limited architectural support for our ISA extension
that allows reducingOS involvement in accelerator man-
agement through a distributed HW reservation mecha-
nism of accelerators;

• Avoiding ISA bloating, which is particularly dangerous
in the case of fixed-size instruction sets, and promoting
easy scalability, as newly-introduced accelerators can
be seamlessly supported;

• Efficient use of die-area and power, since the same ISA
extension and micro-architecture can effectively interact
with many accelerators;

• Design independence, as the proposed instructions do
not dictate the design choices of the accelerator man-
ufacturer, as many accelerators can be made compati-
ble with our proposal using a thin hardware interfacing
layer.

The rest of the paper is organized as follows:
Section II summarizes the state-of-the-art in this field.
Section III describes our proposed ISA extension frame-
work. Section IV illustrates experimental results and, finally,
Section V presents our conclusions.

II. RELATED WORK
This section sums up the main previous work proposing an
extension of the processor ISA to facilitate CPU-accelerator
interaction. We classify these studies into two groups: first,
the studies that provide customized ISA extensions to use
dedicated accelerators and functional units, which are the
vast majority; and second, the ones proposing general ISA
extensions to support multiple accelerators.

The authors of [20] discuss the trend toward graph com-
putation and graph pattern mining in graph processing SoCs.
They propose IntersectX, a vertically designed accelerator to
increase both data movement and computation performance.
The accelerator targets graph processing by the means of
newly added instructions to the ISA. The ISA extension
intrinsically operates on a sparse vector (stream), to directly
work with added stream value processing units. They also
provide a new compiler to generate new ISA-based graph
pattern mining implementation.

VOLUME 10, 2022 120703



E. Cheshmikhani et al.: General Framework for Accelerator Management Based on ISA Extension

Some works extend the MIPS ISA to support more spe-
cial functions in the processor [21], [22] or navigation-data
processing [23]. In [24] and [25], RISC-V and MIPS ISAs
are extended for cryptography co-processors, respectively.
Another work presents TIGRA, a Tightly Integrated, Generic
RISC-VAccelerator interface [26]. It provides a custom logic
accelerator with access to the necessary internal signals of
the processor. TIGRA is controlled with custom RISC-V
instructions expressed in the R-type format.

A mixed-signal accelerator in-SRAM for Machine
Learning workloads, named PROMISE, is proposed in [27].
A comprehensive ISA is proposed to target the main machine
learning operations. 48-bit VLIW instructions are used to
specify up to four sequential operations. The authors provide
also a compiler that translates high-level Julia code into an
ISA-based PROMISE binary.

In Jain et al. [28], design an in-memory accelerator based
on Spin-Transfer Torque Magnetic RAM (STT-MRAM).
A modification to the on-chip bus architecture and an exten-
sion to the ISA is required to achieve integration with a
general-purpose system. They perform simple logical and
arithmetic operations like XOR, NOT, AND, and ADD on
pairs of address lines.

A tightly-coupled RISC-V accelerator is presented in [29],
wherein an out-of-order floating-point unit is implemented
for the processor. In [30], an ARM ISA extension is proposed
for improving public-key cryptography performance instead
of using co-processor/accelerator as a usual solution. The
authors choose ARM ISA as it is widely used for embedded
applications.

In Liu et al. [31], extend the vector ISA to accelerate
Machine Learning operations. In [32], Mazzola presents
Xpulpimg, an extension of the RISC-V instruction set
including domain-specific instructions for Digital Signal Pro-
cessing (DSP). Xpulpimg combines signal processing func-
tionalities with Snitch to leverage its already high level of
parallelism.

Xuantie-910, an industrial 64-bit embedded RISC-V pro-
cessor from Alibaba T-Head division is presented in [33].
It is based on the RV64GCV ISA and it features cus-
tom extensions for arithmetic operations, bit manipula-
tion, loads/stores, TLB and cache operations. They deploy
Xuantie-910 FPGA implementation in the data centers of
Alibaba Cloud to accelerate blockchain transactions.

All the previous works fall in the first category, as the
proposed extensions target a single accelerator or special
function unit. Such approaches have the impossibility of
scaling as their biggest downside. In fact, adopting more
than one of these proposals in a SoC would lead to ISA
bloat, increasing power consumption and complexity of the
instruction decode phase proportionally with the number of
supported accelerators. Also, the addition of a new accelera-
tor would need further instructions and changes at the micro-
architecture level. Conversely, our proposal aims at targeting
a vast set of accelerators, making them controllable with the
same instructions.

FIGURE 1. Architectural aspects of the proposed framework.

There are also a few works that fall into the second cat-
egory and extend the ISA for general accelerators. ARM
Coprocessor Interface [34] defines instructions to interact
with up to 16 coprocessors. These are tightly coupled with
the processor cores: they share fetch and execute control
logic with the cores, so they need core’s and coprocessor’s
pipelines to be synchronized. Thus, this proposal is more
suitable for functional units, as it would not adapt to the
‘‘offload model’’ adopted by modern accelerators, in which
the processor instructs an accelerator to perform a task that
could last even thousands of clock cycles and is usually
notified of the task completion by an interrupt.

In Cong et al. [4], discuss hardware architectural support
for accelerator-rich CMPs, in which a SoC hosts a multi-core
processor and many accelerators connected by a large NoC.
They propose a central structure to be added to the chip
named Global Accelerator Manager (GAM), so to filter,
manage, and route accelerator-oriented instructions coming
from the cores. The cores ask for accelerator availability to
the GAM providing a description of the functionality that
the required accelerator should implement and an estima-
tion of the time they need it. With respect to our proposal,
we do not need a central structure that could act as a bot-
tleneck in the system. Moreover, we do not require users to
know upfront an estimation of the time expected to perform
a task.

III. PROPOSED ISA-EXTENSION FRAMEWORK
Themain architectural aspects of the proposed framework are
presented in this section. Then, we describe each of the six
proposed instructions in detail and their intended usage.

A. ARCHITECTURAL ASPECTS OF THE PROPOSED
FRAMEWORK
We assume that n accelerators can be connected to m cores
within an ad-hoc on-chip interconnection (e.g., a simple bus
for few accelerators or a ring-based interconnect for more,
as shown in Figure 1) and the proposed solution does not
impose specific requirements to the interconnection. Inves-
tigation of the design of such dedicated bus or Accelerator
Network On Chip (ANoC) is beyond the scope of this work.
In this regard, Figure 1 illustrates a reference SoC with an
m-core processor connected to the network with n acceler-
ators. Some registers, buffers, comparators, and queues are

120704 VOLUME 10, 2022



E. Cheshmikhani et al.: General Framework for Accelerator Management Based on ISA Extension

FIGURE 2. Request ACMs generated by the execution of different instructions. In this example, they are organized in 64-bit packets.

needed to support the proposed instruction set extension.
They can be added to the accelerator architecture or provided
as a thin interface layer towards an existing accelerator. Every
accelerator has an immutable accelerator ID (accId), which
can be assigned by the SoC designer. The register file of the
processor cores is unmodified, and information used to inter-
act with the accelerators (e.g., data, addresses, commands,
etc.) is stored in general-purpose registers.

We define the messages exchanged between the cores
and the accelerators as Accelerator-Core Messages (ACMs).
There are two kinds of ACMs: a) request ACM, and b)
response ACM. Request ACMs are sent to the accelerator
on the ANoC when an accelerator-oriented instruction is
executed on the core. They have the purpose of informing the
accelerator about a task that the user wants to demand to the
accelerator. Response ACMs flow in the opposite direction,
and are sent from an accelerator to the caller core in response
of a request ACM. This response contains a return value
that will be written in a register on the core upon message
reception. Figure 2 shows the request ACMs associated with
the proposed instructions, which will be discussed in-depth
in the next subsection. Without loss of generality, we adopt a
sample format organized in indexed 64-bit packets.

Every ACM contains the parameters needed by the ANoC
to route the message, and by the accelerator to execute
the intended operation. The first byte, inst, identifies the
instruction that has been executed on the core, and thus the
task that is demanded to the accelerator. The instruction
operands are added to the message in different positions.
Between these, the operand accId is common to all the
instructions, and is added to every ACMs in the eight least
significant bits of the first packet. When an ACM is sent
through the ANoC, every accelerator’s comparator compares
its ID to the accId contained in the ACM. If there is a match,

the carried instruction is executed on that accelerator. Should
the user provide a non-existent accId, an exception would
be generated on the core.

The process originating the communication is identified
through a process specific identifier (procId), which is writ-
ten in the ACM by the processor. This value is never provided
by the user for security reasons: a malevolent program could
provide the process identifier of another running process,
causing harm to that one. Thus, this value is read from the
Control and Status Registers (CSRs). It can be any value
uniquely identifying the running process, e.g., the pointer to
the page table.

For some messages, also a coreId is added to the request
ACM. It is used to identify the core where the instruction
generating the ACM transmission is executed. Similar to
procId, it is not provided by the user but automatically
retrieved within each core.

Accelerators are equipped with a reservation queue. It is a
FIFO queue storing the procIds of the reservation requests
received by the accelerator. The head of the queue is consid-
ered the owning process, while the others are waiting to own
the accelerator.

Although our configuration can work with other schemes,
here we assume that accelerators access the memory system
by having a direct connection to the shared L3 cache, which
is a common choice for on-chip accelerators [2], and might
take advantage of a Direct Memory Access (DMA) module
to load the required operands and store results.

As we will explain in the next section, we assume each
accelerator is able to perform different operations, that can
be specified with the opId parameter, which is provided by
the user as an operand of the EXEC instruction. A specific
accelerator capability set needs to be mapped to different
opIds that need to be shared between accelerator interface

VOLUME 10, 2022 120705



E. Cheshmikhani et al.: General Framework for Accelerator Management Based on ISA Extension

TABLE 1. The proposed RISC-V R-type instructions. Unused operands are grayed out and set to zero. ‘‘Request’’ and ‘‘Response’’ specify the data carried
by request ACMs and response ACMs, respectively.

logic and applications (e.g., lightweight user-space driver
and/or run-time system).

The opId value triggers a multiplexer connected to the
accelerator ALU, as shown in Figure 1, and determines the
operation to execute. When the accelerator starts executing,
it sets a Flip-Flop (busy-FF). It is reset after completion,
and its value can be read by the calling process any time
to be informed about the execution state. When the busy-FF
is reset, the accelerator can be released. When released, the
owning process is pulled from the head of the reservation
queue.

The hardware infrastructure described here needs to be
added to an existing SoC for our proposal to work. Section IV
shows that the impact of these additions is inconsequential.

B. ISA EXTENSION IN DETAIL
In this section, we present our ISA extension proposal based
on the RV64I instruction set with Zicsr instructions [35].
It consists of six R-type instructions, which permit man-
aging integrated accelerators: RESERVE, CHECK, TRANS-
FER, EXEC, ISBUSY, and RELEASE. All their operands are
interpreted as general-purpose register operands holding the
necessary data. However, although in this paper we propose
a RISC-V implementation, the proposed instructions can be
potentially implemented in other ISAs.

Each instruction invocation causes a request to be sent
through the ANoC in the form of an ACM. Carried data
include an instruction identifier, some values retrieved from
processor registers, a procId, and a coreId in some cases.
These two values are read from the CPU hardware registers
and not explicitly provided by the user for security reasons.
Every instruction has an accId operand that indicates the
recipient accelerator and is used to determine the request
target. If accId denotes a nonexistent accelerator, an illegal
instruction error is raised.

All the proposed instructions are asynchronous, except
CHECK and ISBUSY instructions. With this term, we denote
instructions with no destination register operands, that do not
need a response ACM to be sent back to the core. These
instructions are executed on the core, a request ACM is
sent, and they are committed on the core side. Conversely,
synchronous instructions (i.e., CHECK and ISBUSY) have a
destination register operand that needs to be set with a value
carried by a response ACM, coming from an accelerator.
They are committed only when a response ACM is received

back and the value is written in the destination register. For
this reason, synchronous instructions’ request ACM carry a
coreId that uniquely identifies the core where they are exe-
cuted, so the response ACM can be delivered to the right core.
From an out-of-order execution perspective, no special care
is needed for these instructions apart from the ordinary Read
after Write (RAW) dependency management of their result:
since they have output registers, successive instructions hav-
ing such register as input are blocked until the synchronous
instruction is committed. Table 1 shows the instructions, their
operands, and the data carried by both request ACMs and
response ACMs.

1) RESERVE INSTRUCTION
RESERVE <accId>
In order to work safely with an accelerator in a multi-

process environment, the applicant process (identified by
procId) needs exclusive ownership. This is achieved
through the RESERVE instruction, which reserves the
requested accelerator (identified by accId) to the calling
process. The RESERVE success or failure depends on the
state of the accelerator, which is based on the Finite State
Machine (FSM) depicted in Figure 3.

If the accelerator state is Idle, the accelerator is reserved to
procId and its state transits to Reserved. If the accelerator
is not Idle, it means that there is already a process owning
it. This can be the same as procId, and in that case the
instruction has no effect. Another possibility is that procId
is not the owning process, but it is already waiting in the
reservation queue. Also in that case, the instruction has no
effect. Conversely, if the accelerator is already reserved to
another process and procId is not waiting in the reservation
queue, the reservation request is enqueued into the reservation
queue, and is discarded only if the queue is full.

2) CHECK INSTRUCTION
CHECK <ret>, <accId>
The CHECK instruction checks the reservation state of the

requested accelerator accId with respect to procId. It is
used to check the outcome of a previous RESERVE instruc-
tion, which can be one of these three values: ‘‘0’’ (Reserved)
if the accelerator is owned by procId; ‘‘1’’ (Enqueued)
if a reservation request is present in the reservation queue;
and ‘‘2’’ (Missing) if no request is in the queue, i.e., no

120706 VOLUME 10, 2022



E. Cheshmikhani et al.: General Framework for Accelerator Management Based on ISA Extension

FIGURE 3. Finite state machine of a generic accelerator providing k-ary
operations.

request was previously sent or the queue was full when it was
received.

CHECK is synchronous: the accelerator is responsible for
sending a response to the right core containing the output
value. When received, this is written into the<ret> register
and the instruction is committed.

3) TRANSFER INSTRUCTION
TRANSFER <size>, <accId>, <vptr>
Once the accelerator is reserved, the process identified by

procId can start commanding tasks to it. If a TRANSFER
with a procId that differs from the one owning the acceler-
ator is received, the instruction is ignored.

Accelerated tasks, in general, will require processing
some input data to produce output data. The TRANSFER
instruction is used to indicate both input and output mem-
ory buffers located in the main memory to the accelera-
tor. Buffers are not necessarily arrays of scalar elements
(e.g., floats, integers, etc.), but can be any data structure.
In general, buffers are memory regions that hold data that
will be used as inputs in the accelerated tasks or memory
regions that will be used to store the output produced by
the accelerated tasks. Invoking a TRANSFER does not nec-
essarily start a data transfer between accelerator and main
memory, but is used to communicate a memory region to
the accelerator that may be used later to load/store data
from/to.

Depending on the arity of the operations performed by
the accelerator, multiple TRANSFERs may be necessary
to indicate all the involved buffers. For instance, a ternary
operation would need two TRANSFERs to specify the input
buffers and one to specify the output one. Figure 3 shows
the FSM associated to an accelerator implementing k-ary
operations. The first TRANSFER instruction (i.e., the first
reception of request ACM containing a TRANSFER inst)
causes the accelerator state to change from Reserved to T1.
Based on the number of needed input and outputs, the state of
the accelerator goes through T2, . . . ,Tk−1 and reaches Ready
state after k TRANSFERS.

Each buffer is specified with two operands: a virtual
address (vptr) and size. vptr is translated into a physical
address (pptr) in the core, by searching the CPU’s TLB.
pptr is transmitted to the accelerator with the associated
size, as shown in Figure 2. Then, the accelerator will use
the DMA to connect to the L3 cache and retrieve the data
contained in the buffer or store data to it.

Conceptually, if the received (pptr, size) pair indicates
an input buffer, the accelerator can adopt an eager approach
and start loading data immediately, or a lazy one and start
loading data when execution is triggered, accommodating the
scheme to different requirements and accelerators. In any
case, the FSM regulating the accelerator functioning and how
the communicated buffers are interpreted (i.e., whether input
or output) is part of the accelerator programming interface
and should be known by the programmer.

When the last TRANSFER is received (i.e., in Tk−1 state)
the accelerator has enough information to retrieve all the
needed data to perform its k-ary task and knows where the
produced output should be stored. It enters the Ready state
and waits for an EXEC instruction to start execution.

The proposed scheme is suitable for a vast class of acceler-
ators. Trivially, it can support accelerators proposing one or
more operations with the same -arity. However, this constraint
can be easily removed if the logic considers any state Th as
a ‘‘Ready’’ state for h-ary operations – thus, even operations
with different -arity can be supported by the same accelerator.

4) EXEC INSTRUCTION
EXEC <accId>, <opId>

In the proposed scheme, the TRANSFER operation is sep-
arated from the execution so that the data transfer can take
place independently and transfer-computation can overlap,
allowing double-buffering, streaming, and pipelining tech-
niques, accommodating different possible execution strate-
gies that an accelerator could be able to implement.

The EXEC instruction starts the computation of a spe-
cific operation on the accelerator, identified by a numeric
ID (opId). accId and opId are read from the source
registers, procId is added as usual by the circuitry to let
the accelerator determine the legitimacy of the request.

If TRANSFER is managed by the accelerator with an eager
policy, the latter already started loading data and can start
execution as soon as it completes its transfers. Conversely,
if TRANSFER is managed lazily, data loading begins at this
moment. In any case, when its source operands are ready, the
selected accelerated computation is started.

When done, it stores the result in the TRANSFER-specified
destination buffer (or buffers). Since a computation on the
accelerator can last potentially several clock cycles, this
instruction is designed as asynchronous, and the core does
not wait for its completion. To check its completion state,
ISBUSY instruction is used.

5) ISBUSY INSTRUCTION
ISBUSY <ret>, <accId>

VOLUME 10, 2022 120707



E. Cheshmikhani et al.: General Framework for Accelerator Management Based on ISA Extension

TABLE 2. System configuration details.

The ISBUSY synchronous instruction is used to check the
completion of an operation on the accelerator accId. From
a caller’s perspective, it can be naturally included in a polling
mechanism, that has the advantage of not needing additional
access chips, is high-speed, and is relatively simple to pro-
gram. On the other hand, an interrupt-based alternative would
need OS intervention, more complex hardware/software, and
would be slower. In any case, for instance, dedicated threads
for checking execution completion, and inter-thread synchro-
nization mechanisms, can be flexibly adapted to various soft-
ware and timing requirements.

The ISBUSY instruction has two operands: accId to
identify the accelerator and a destination register. Same as
CHECK, the output is written in this register when the
response arrives from the accelerator. procId is added in
the ACM to avoid a process enquiring about another process’
computation, collecting information that it should not be
allowed to have.

The result can be either ‘‘0’’ or ‘‘1’’ to indicate that the
requested accelerator is free or busy, respectively, or an error
code to inform the caller of a previous error (i.e., non-existent
opId requested in EXEC instruction). The process can read
the destination register to implement its logic depending on
the job completion state.

6) RELEASE INSTRUCTION
RELEASE <accId>
When the process has finished its work and does not

need the accelerator anymore, it can release it through the
RELEASE instruction. As in the RESERVE case, accId
is used to identify the accelerator and procId to identify
the calling process. When the accelerator is released, it is
assigned to the first process in the reservation queue and sets
to the Reserved state. If the queue is empty, it enters the Idle
state.

A RELEASE request is executed immediately only if the
accelerator is not busy. If it is busy, the accelerator is released
as soon as it completes the execution.

IV. EXPERIMENTAL RESULTS
To evaluate our framework, we implement the proposed ISA
extension framework on gem5 full-system simulator [36]
modeling a quad-core RISC-V processor with 3-level on-chip
caches. Table 2 lists the details of the system configuration.

To conduct our experiments, we extend the simulator
with specific SimObjects representing accelerators and the

ANoC. The ANoC is connected to the CPU cores through
request-response port pairs, where the cores can push com-
mands that cause request ACM sending, and the interconnect
can respond with response ACMs. The ANoC is also con-
nected to the accelerators to deliver packets coming from the
cores and retrieve packets addressed to the cores. Accelera-
tors are also connected to the memory systemwith other ports
that are used to load/store data. The additional instructions in
our proposal require specific classes representing them, the
extension of the decoding phase to associate opcodes, and
the extension of the execution stage of the CPU pipeline to
implement the interaction with the ANoC.

We integrate four different accelerators in the simulated
environment in order to demonstrate the flexibility of the
proposed approach both at ISA level and at HW-support level:

Vector A vector accelerator that performs the most com-
mon vector floating-point operations (e.g., add,
mul, dot-product, reduce-sum, etc.) on
vectors, with a variable number of lanes;

FFT An FFT accelerator that calculates the Fast Fourier
Transform of an input array of complex floating-
point numbers;

CryptoA cryptographic accelerator that encrypts/decrypts
an input array;

Conv A convolutional accelerator that calculates the con-
volution between two floating-point tensors of vari-
able size.

All the modeled accelerators receive requests from the
CPU via the 64-bit ANoC discussed before. They access the
memory hierarchy through a load-port and a store-port con-
nected to the L3 cache, and they work according to a three-
stage load-execute-store pipeline in a strip mining fashion.

As a baseline comparison, we implement a driver-based
solution, which is the most widespread method to communi-
cate with accelerators [2], [4]. Then, we compare our proposal
and the generally-used driver-based interfacing from a perfor-
mance standpoint in the case of four benchmarks. We select
various computation-intensive workloads to elucidate the dif-
ferences.

We experimentally measured the latency associated with
a driver-controlled accelerator by implementing and bench-
marking a classic core-accelerator interaction mediated by
a Linux driver, and found that it is about 9000 clock
cycles. The driver is organized into two main components:
a user-space driver and a kernel-space one. The former pro-
vides a convenient API that is intended to be used in user

120708 VOLUME 10, 2022



E. Cheshmikhani et al.: General Framework for Accelerator Management Based on ISA Extension

TABLE 3. Convolutional accelerator.

FIGURE 4. Vector accelerator. Speedup of our proposal (ISA) VS a driver-based interface. Two benchmarks with five workload sizes (128, 1K, 8K, 64K, 512K
elements) are executed. The number of lanes of the accelerator is varied between 16 and 1024.

code. The latter, which is invoked by the former, imple-
ments the necessary kernel-space functions to interact with
the device file. The programmer willing to communicate
with the accelerator must invoke an API function provided
by the user-space driver. In its body, this function calls a
write operation on the device file, whose implementation is
provided by the kernel-space driver as a file operation [37],
[38]. Here, concurrent accesses from different processes are
serialized through OS semaphores, and the intended com-
mand is delivered to the accelerator by memcpying data on
a memory-mapped region of the accelerator (e.g., its control
registers).

Our proposal does not need the traversing of all these
layers and can work with no driver in the middle. Since we
map accelerator-oriented commands on user-space instruc-
tions, these can be directly invoked in user code with
inline assembly. Concurrent commands are serialized by the
ANoC, and no reservation logic needs to be implemented
by the kernel because we move the reservation queue and
its management in the hardware layer. Thus, the interac-
tion latency of our proposal is dominated by the execu-
tion time of our instructions, the interconnection and the

proposed accelerator interfacing logic, which are all taken
into account in the simulator. The interconnection latency,
in particular, is set to 16 cycles, and includes three contribu-
tions: the time spent in the core-network interface, the time
spent in the accelerator-network interface, and the routing
time.

Table 3 lists the latencies adopted to simulate the accel-
erators. These latencies can be divided in two groups:
those related to the interpretation of the commands
received as request ACMs, generated as a product of an
accelerator-oriented instruction execution; and those related
to the execution of the accelerated task in the accelerator. For
those in the first group, we assign the same latencies to all
the accelerators. For those in the second group, we adopt
latencies associated to real accelerators from the literature.
The vector accelerator is modeled after the RISC-V vector
functional unit described by Ramírez et al. [39]. The FFT
accelerator is modeled as described by Chen et al. in [40].
The cryptographic accelerator is modeled according to the
description by Good and Benaissa in [41]. Finally, the con-
volutional accelerator is modeled as a single DaDianNao
chip [42].

VOLUME 10, 2022 120709



E. Cheshmikhani et al.: General Framework for Accelerator Management Based on ISA Extension

TABLE 4. Tensor dimensions of the convolutional layers of LeNet-5,
AlexNet, and ResNet CNNs. H, W, C, and N represent height, width,
number of channels, and number of filters, respectively.

Figure 4 shows the performance of two benchmarks exe-
cuted on the Vector accelerator. These are dot-product,
which calculates the dot-product between two vectors, and
pathfinder, a graph-traversal benchmark from the Rodinia
Benchmark Suite [43]. For both, the workload varies
from 128 to 512K double elements. The figure compares
the performance obtained with our proposed interface with a
conventional driver-based one, showing the speedup of our
proposal with respect to the driver-based solution. The work-
load size and the number of lanes supported by the accelerator
are varied.

Accelerator FFT calculates the Fast Fourier Transform
of arrays of complex numbers. Figure 5 shows the per-
formance of a benchmark in which an array of complex
elements is offloaded to the accelerator, transformed, and the
output stored in main memory. The figure shows the speedup
of our proposed interface with respect to a driver-based one,
varying the workload size from 256 to 1M elements.

Accelerator Crypto encrypts/decrypts arrays of data using
the NIST AES standard. It uses the AES128 configuration,
with a 128-bit key and encryption/decryption of 128-bit
blocks. Figure 6 shows the performance of a benchmark in
which an array of 256 up to 1M bytes is offloaded to the
accelerator, encrypted, and the result is retrieved. Also in this
case, we show the speedup of our proposed interface with
respect to a driver-based one.

Accelerator Conv calculates the convolution between two
tensors of single-precision floating-point values. Figure 7
shows the performance speedup of our proposal with respect
to the driver-based solution, in the case of a single benchmark
in which the convolution between two tensors is calcu-
lated. The workloads are characterized by the dimensions
of the tensors involved. These dimensions reflect those
used in the convolutional layers of three popular Convolu-
tional Neural Networks (CNNs): LeNet-5 [44], AlexNet [45],
and ResNet [46]. Table 4 lists the sizes associated to
each layer.

FIGURE 5. FFT accelerator. Speedup of our proposal (ISA) in comparison
with a driver-based interface. One benchmark with seven workload sizes
(256, 1K, 4K, 16K, 64K, 256K, 1M elements) is executed.

FIGURE 6. Crypto accelerator. Speedup of our proposal (ISA) in
comparison with a driver-based interface. One benchmark with seven
workload sizes (256, 1K, 4K, 16K, 64K, 256K, 1M AES128 blocks) is
executed.

The figures describe a similar scenario. For workloads with
small and medium granularity, the weight of communication
and management (C&M in the following) dominates the
total execution time. Since our proposal permits a signifi-
cantly lower C&M overhead, we reach up to 10x speedup
in our favor with respect to a classic driver-based solution.
Our advantage gets smaller when the workload granularity
becomes larger, since the execution time grows accordingly,
while the C&M cost remains constant independently of the
workload size. C&M gets diluted in the total runtime for the
biggest workloads, ultimately becoming negligible. In those
cases, our solution is on par with a driver-based one, with a
speedup that is approximately 1×.

From another point of view, a little sensitivity to the num-
ber of lanes can be observed in Figure 4 for both dot-product
and pathfinder. In general, a higher number of lanes reduces
the computation cost and increases the relative weight of
interface overhead, giving a slightly higher speedup in our
favor. This phenomenon is especially evident for pathfinder
with a workload of 8192 elements, with the speedup growing
from 3.19× with 16 lanes up to 4.24× with 1024 lanes.
Overall, the performance advantage given by our proposal

is more evident for smaller workloads. However, hardware

120710 VOLUME 10, 2022



E. Cheshmikhani et al.: General Framework for Accelerator Management Based on ISA Extension

FIGURE 7. Convolutional accelerator. Speedup of our proposal (ISA) VS a driver-based interface. We execute a single convolution between two tensors.
The tensor dimensions are those used in the convolutional layers of three popular CNNs: LeNet-5, AlexNet, and ResNet.

acceleration is less palatable for extremely small workloads,
since a pure CPU implementation may be competitive: it
would not leverage the high-performance, high-efficiency
special-purpose hardware to perform ad-hoc calculations as a
dedicated accelerator, but it would have the advantage of not
requiring expensive data migrations towards the accelerator
and back. Considering dot-product, which is the benchmark
where the performance advantage of a dedicated accelera-
tor over the CPU is smaller, the proposed ISA-based accel-
erated version becomes more convenient than a CPU-only
implementation for workloads with around 1200 elements
and greater. Conversely, for the driver-based version, the
same happens for workloads with around 8500 elements and
greater. Thus, our proposal performs better than the two
alternatives (i.e., CPU-only and driver-based acceleration) in
the middle ranges, where the granularity of tasks delivered
to the accelerator are large enough to justify an accelerated
implementation, but not so large to make a driver-based solu-
tion as convenient as our proposal. Therefore, our proposal
proves fundamental to enable the opportunity of hardware
acceleration, effectively decreasing the workload size thresh-
old at which hardware acceleration becomes amenable to gain
performance, and breaking even with driver-based accelera-
tion for tasks with the larger granularity.

We estimate the area and power consumption overheads
besides performance. The proposed framework architecture
(shown in Figure 1) added a reservation queue with four
32-bit entries for every accelerator. It also requires three
32-bit registers as the status register and buffers. One bit for
busy Flip-Flop is also needed. Besides, a control unit includes
a few multiplexers, decoders, and registers. Therefore, the
proposed framework contains at most 1K bits. On the other
hand, each accelerator can provide at least a local memory
with a size of 256KB or more. Compared with the total area
an accelerator can obtain, the added area of these modules
and circuits is negligible (less than 1%). From the power
consumption perspective, the overhead is proportional to the
number of transistors added on the chip to implement the

hardware portion of our proposal. Since we have shown that
they are less than 1% for each accelerator, the power increase
is modest. However, from an energy perspective, their addi-
tion causes a significant reduction in communication time
with respect to a driver-based solution, and thus the total
dissipated energy decreases accordingly.

V. CONCLUSION
In this paper, we presented a RISC-V based ISA extension to
manage the interaction between general-purpose cores and a
vast class of on-chip accelerators. Its main purpose is to move
the communication and management logic from the usual
driver-layer to the ISA and HW support as to gain in latency
and generality. We presented the proposed six instructions
and described the required architectural support. These can
be utilized by the programmer to easily manage and exploit
the accelerators without OS intervention.

We evaluated our proposal in gem5, using some bench-
marks offloading work to four quite different accelerators
to prove generality: one for simple vector operations, one
for FFT, one for AES128 encryption/decryption, and one
for tensor-tensor convolution. Comparison against a canon-
ical driver-based solution demonstrated that our proposal is
faster for every working set due to the significantly smaller
overhead. The advantage is more evident for small work-
loads, reaching up to 10.38x, and is particularly amenable
for middle workloads, where accelerated implementations
based on our proposal score better performance than both a
driver-based solution and a CPU-only one.

The core-side and accelerator-side controller logic are
almost the same as standard interfaces and require a modest
addition to the chip area (i.e., less than 1% on accelerator-
side). These additional transistors can increase power con-
sumption, but the communication time savings are such that
the total dissipated energy decreases.

These results demonstrate that our proposed solution
can be adopted to effectively improve the management

VOLUME 10, 2022 120711



E. Cheshmikhani et al.: General Framework for Accelerator Management Based on ISA Extension

of integrated accelerators, reducing latency, providing a
common interface for a broad variety of accelerators, and
widening the range of workloads for which acceleration is
advantageous.

REFERENCES
[1] J. L. Hennessy and D. A. Patterson, ‘‘A new golden age for computer

architecture,’’ Commun. ACM, vol. 62, no. 2, pp. 48–60, Jan. 2019.
[2] B. Peccerillo, M. Mannino, A. Mondelli, and S. Bartolini, ‘‘A survey on

hardware accelerators: Taxonomy, trends, challenges, and perspectives,’’
J. Syst. Archit., vol. 129, Aug. 2022, Art. no. 102561.

[3] S. Patel and W. M. W. Hwu, ‘‘Accelerator architectures,’’ IEEE Micro,
vol. 28, no. 4, pp. 4–12, Jul. 2008.

[4] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman, ‘‘Archi-
tecture support for accelerator-rich CMPs,’’ in Proc. 49th Annu. Design
Autom. Conf., 2012, pp. 843–849.

[5] E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, ‘‘An analysis
of accelerator coupling in heterogeneous architectures,’’ in Proc. 52nd
Annu. Design Autom. Conf., Jun. 2015, pp. 1–6.

[6] P. Vogel, A. Kurth, J. Weinbuch, A. Marongiu, and L. Benini, ‘‘Efficient
virtual memory sharing via on-accelerator page table walking in hetero-
geneous embedded SoCs,’’ ACM Trans. Embedded Comput. Syst., vol. 16,
no. 5s, pp. 1–19, Oct. 2017.

[7] W. J. Dally, Y. Turakhia, and S. Han, ‘‘Domain-specific hardware acceler-
ators,’’ Commun. ACM, vol. 63, no. 7, pp. 48–57, Jun. 2020.

[8] Huawei. (2020). Huawei Kirin 990—Rethink Evolution. [Online]. Avail-
able: https://www.consumer.huawei.com/en/campaign/kirin-990-series

[9] J. Cross. (Oct. 2020). A14 Bionic FAQ: What You Need to Know About
Apple’s 5 nm Processor. [Online]. Available: https://www.macworld.
com/article/234595/a14-bionic-faq-performance-features-cpu-gpu-
neural-engine.html

[10] NVIDIA. (2020). NVIDIA Ampere GA102 GPU Architecture. [Online].
Available: https://www.nvidia.com/content/dam/en-zz/Solutions/geforce/
ampere/pdf/NVIDIA-ampere-GA102-GPU-Architecture-Whitepaper-
V1.pdf

[11] AMD. (2019). RDNA Architecture. [Online]. Available: https://www.amd.
com/system/files/documents/rdna-whitepaper.pdf

[12] Google. (2020). Cloud Tensor Processing Units (TPUs). [Online]. Avail-
able: https://cloud.google.com/tpu/docs/tpus

[13] N. Mohammedali and M. O. Agyeman, ‘‘A study of reconfigurable accel-
erators for cloud computing,’’ in Proc. 2nd Int. Symp. Comput. Sci. Intell.
Control, New York, NY, USA, Sep. 2018, pp. 1–5.

[14] J. Dongarra and P. Luszczek, TOP500. Boston, MA, USA: Springer, 2011,
pp. 2055–2057.

[15] ARM. AMBA Overview. Accessed: Sep. 2022. [Online]. Available:
https://developer.arm.com/architectures/system-architectures/amba

[16] CCIX Consortium. CCIX Website. Accessed: Sep. 2022. [Online].
Available: https://www.ccixconsortium.com/

[17] CXL Consortium. Compute Express Link: The Breakthrough
CPU-to-Device Interconnect. Accessed: Sep. 2022. [Online]. Available:
https://www.computeexpresslink.org/

[18] NVIDIA. (Aug. 2021). CUDA C Programming Guide.
[Online]. Available: https://www.docs.nvidia.com/cuda/pdf/CUDA_C_
Programming_Guide.pdf

[19] Khronos OpenCL Working Group. (Nov. 2012). The OpenCL
Specification, Version 1.2. [Online]. Available: https://www.khronos.
org/registry/OpenCL/specs/opencl-1.2.pdf

[20] G. Rao, J. Chen, J. Yik, and X. Qian, ‘‘IntersectX: An efficient accelerator
for graph mining,’’ 2020, arXiv:2012.10848.

[21] N. Vassiliadis, G. Theodoridis, and S. Nikolaidis, ‘‘Arise machines:
Extending processors with hybrid accelerators,’’ in Proc. Int. Workshop
Appl. Reconfigurable Comput., 2008, pp. 196–208.

[22] N. P. Jachimiec, F. Martinez-Vallina, and J. Saniie, ‘‘Acceleration of finite
field arithmetic algorithms in embedded processing platforms utilizing
instruction set extensions,’’ in Proc. IEEE Int. Conf. Electro/Inf. Technol.,
May 2007, pp. 135–139.

[23] E. Liventsev, A. Silantiev, E. Primakov, and O. Telminov, ‘‘Extending
MIPSfpga instruction set for navigation data processing,’’ in Proc. IEEE
Conf. Russian Young Researchers Electr. Electron. Eng. (EIConRus), 2017,
pp. 480–484.

[24] T. Fritzmann, G. Sigl, and J. Sepúlveda, ‘‘RISQ-V: Tightly coupled
RISC-V accelerators for post-quantum cryptography,’’ IACR Trans. Cryp-
tograph. Hardw. Embedded Syst., vol. 2020, pp. 239–280, Aug. 2020.

[25] G. H. Eisenkraemer, F. G. Moraes, L. L. de Oliveira, and E. Carara,
‘‘Lightweight cryptographic instruction set extension on Xtensa proces-
sor,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Oct. 2020, pp. 1–5.

[26] D. W. Todd, ‘‘Tightly coupling the PicoRV32 RISC-V processor with
custom logic accelerators via a generic interface,’’ Ph.D. dissertation, Dept.
Comput. Eng., Clemson Univ., Clemson, SC, USA, 2021.

[27] P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi, V. Adve,
N. S. Kim, and N. Shanbhag, ‘‘PROMISE: An end-to-end design of a pro-
grammable mixed-signal accelerator for machine-learning algorithms,’’ in
Proc. ACM/IEEE 45th Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2018,
pp. 43–56.

[28] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam, ‘‘Stream-
dataflow acceleration,’’ in Proc. 44th Annu. Int. Symp. Comput. Archit.,
Jun. 2017, pp. 416–429.

[29] V. Patil, A. Raveendran, P. M. Sobha, A. D. Selvakumar, and D. Vivian,
‘‘Out of order floating point coprocessor for RISC V ISA,’’ in Proc. 19th
Int. Symp. VLSI Design Test, Jun. 2015, pp. 1–7.

[30] S. Bartolini, R. Giorgi, and E. Martinelli, ‘‘Instruction set extensions for
cryptographic applications,’’ in Cryptographic Engineering. Boston, MA,
USA: Springer, 2009, pp. 191–233.

[31] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
‘‘Cambricon: An instruction set architecture for neural networks,’’ in Proc.
ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit. (ISCA), Jun. 2016,
pp. 393–405.

[32] S.Mazzola, ‘‘ISA extensions in the snitch processor for signal processing,’’
M.S. thesis, Dept. Comput. Eng., Polytech. Univ. Turin, Turin, Italy, 2021.

[33] C. Chen, X. Xiang, C. Liu, Y. Shang, R. Guo, D. Liu, Y. Lu, Z. Hao, J. Luo,
Z. Chen, C. Li, Y. Pu, J. Meng, X. Yan, Y. Xie, and X. Qi, ‘‘Xuantie-910:
A commercial multi-core 12-stage pipeline out-of-order 64-bit high per-
formance RISC-V processor with vector extension: Industrial product,’’ in
Proc. ACM/IEEE 47th Annu. Int. Symp. Comput. Archit. (ISCA),May 2020,
pp. 52–64.

[34] ARM. (2009). ARM1176JZF-S Technical Reference Manual. [Online].
Available: https://documentation-service.arm.com/static/5e8e294
efd977155116a6ca3?token=

[35] A. Waterman and K. Asanovic. (Feb. 2020). The RISC-V Instruc-
tion Set Manual Volume I: Unprivileged ISA. [Online]. Available:
http://uglyduck.vajn.icu/PDF/GigaDevice/RISCV-Spec.pdf

[36] J. Lowe-Power et al., ‘‘The gem5 simulator: Version 20.0+,’’ 2020,
arXiv:2007.03152.

[37] LINUX Device Drivers, O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 2001.

[38] TheKernel Development Community. (2022). The Linux Kernel Documen-
tation. [Online]. Available: https://docs.kernel.org/

[39] C. Ramírez, C. A. Hernández, O. Palomar, O. Unsal, M. A. Ramírez, and
A. Cristal, ‘‘A RISC-V simulator and benchmark suite for designing and
evaluating vector architectures,’’ ACM Trans. Archit. Code Optim., vol. 17,
no. 4, pp. 1–30, Dec. 2020.

[40] X. Chen, Y. Lei, Z. Lu, and S. Chen, ‘‘A variable-size FFT hardware
accelerator based on matrix transposition,’’ IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 10, pp. 1953–1966, Oct. 2018.

[41] T. Good and M. Benaissa, ‘‘692-nW advanced encryption standard (AES)
on a 0.13-µm CMOS,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 18, no. 12, pp. 1753–1757, Dec. 2010.

[42] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, ‘‘DaDianNao: A machine-learning super-
computer,’’ in Proc. 47th Annu. IEEE/ACM Int. Symp. Microarchitecture,
Dec. 2014, pp. 609–622.

[43] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, ‘‘Rodinia: A benchmark suite for heterogeneous computing,’’
in Proc. IEEE Int. Symp. Workload Characterization (IISWC), Oct. 2009,
pp. 44–54.

[44] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[45] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ Commun. ACM, vol. 60, no. 6,
pp. 84–90, May 2017.

[46] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

120712 VOLUME 10, 2022



E. Cheshmikhani et al.: General Framework for Accelerator Management Based on ISA Extension

ELHAM CHESHMIKHANI received the B.Sc.
degree from the Iran University of Science and
Technology (IUST), in 2011, the M.Sc. degree
from the Amirkabir University of Technology
(Tehran Polytechnic), in 2013, and the Ph.D.
degree from the Sharif University of Technology
(SUT), Tehran, Iran, in 2020, all in computer
engineering. Since February 2021, she has been
a Postdoctoral Researcher with the Department of
Information Engineering and Mathematical Sci-

ences, University of Siena. Her research interests include hardware accel-
erator, RISC-V ISA design, emerging nonvolatile memory technologies,
dependability analysis, fault tolerance, and storage systems. She was a
member of the Design and Analysis of Dependable Systems (DADS) at
AUT, from 2011 to 2015. She has been a member of the Dependable
Systems Laboratory (DSL) and the Data Storage, Networks and Processing
Laboratory (DSN)with SUT, since 2015 and 2017, respectively. She received
the Best Paper Award from IEEE/ACM Design, Automation, and Test in
Europe (DATE), in 2019, during her Ph.D. career.

BIAGIO PECCERILLO is a Postdoctoral
Researcher with the Department of Informa-
tion Engineering and Mathematical Sciences,
University of Siena. His research interests include
heterogeneous architectures, hardware accelera-
tors, parallel algorithms, and productivity-oriented
high-level abstraction mechanisms. He partic-
ipated in various Research and Development
projects involving hardware accelerators, haptic
algorithms in virtual and augmented reality envi-

ronments, and pharmaceutical supply chain simulation.

ANDREA MONDELLI received the Ph.D. degree
in computer architecture. He is CPU Chief Archi-
tect with Huawei and a Principal Researcher of
cybersecurity and architecture design. He is a
Technology Manager and responsible for Huawei
research projects collaborations with European
universities. He has was a Researcher and an
Architect in various countries, such as Italy, USA,
France, China, and UK. He published multiple
manuscripts and conference papers and a book on

memory coherence protocols. His research interests include high perfor-
mance and low power CPUs. He was part of RISC-V International as the
Chair of virtual memory area.

SANDRO BARTOLINI is an Associate Profes-
sor with the Department of Information Engi-
neering and Mathematical Sciences, University
of Siena. His main research interests include
high-performance chip multi processors (CMPs),
new approaches to productive programming of
heterogeneous architectures (CPUs and GPUs),
integrated photonics for CMPs, feedback-driven
compiler optimizations for cache hierarchy perfor-
mance and low power, and hardware accelerators.

He has led and participated in various Research and Development projects.
He is an Active Member of the HiPEAC NoE. He is an Associate Editor of
the EURASIP Journal on Embedded Computing. He is the Co-Guest Edi-
tor of the Transactions on High Performance Architectures and Compilers
(Springer) journal and ACM SigArch Computer Architecture Newsletter.

Open Access funding provided by ‘Università degli Studi di Siena’ within the CRUI CARE Agreement

VOLUME 10, 2022 120713


