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Abstract
Purpose  To assess the safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of cetrelimab (JNJ-63723283), 
a monoclonal antibody programmed cell death protein-1 (PD-1) inhibitor, in patients with advanced/refractory solid tumors 
in the phase 1/2 LUC1001 study.
Methods  In phase 1, patients with advanced solid tumors received intravenous cetrelimab 80, 240, 460, or 800 mg every 
2 weeks (Q2W) or 480 mg Q4W. In phase 2, patients with melanoma, non-small-cell lung cancer (NSCLC), and microsatel-
lite instability–high (MSI-H)/DNA mismatch repair-deficient colorectal cancer (CRC) received cetrelimab 240 mg Q2W. 
Response was assessed Q8W until Week 24 and Q12W thereafter.
Results  In phase 1, 58 patients received cetrelimab. Two dose-limiting toxicities were reported and two recommended phase 
2 doses (RP2D) were defined (240 mg Q2W or 480 mg Q4W). After a first dose, mean maximum serum concentrations (Cmax) 
ranged from 24.7 to 227.0 µg/mL; median time to Cmax ranged from 2.0 to 3.2 h. Pharmacodynamic effect was maintained 
throughout the dosing period across doses. In phase 2, 146 patients received cetrelimab 240 mg Q2W. Grade ≥ 3 adverse 
events (AEs) occurred in 53.9% of patients. Immune-related AEs (any grade) occurred in 35.3% of patients (grade ≥ 3 in 
6.9%). Overall response rate was 18.6% across tumor types, 34.3% in NSCLC, 52.6% in programmed death ligand 1–high 
(≥ 50% by immunohistochemistry) NSCLC, 28.0% in melanoma, and 23.8% in centrally confirmed MSI-H CRC.
Conclusions  The RP2D for cetrelimab was established. Pharmacokinetic/pharmacodynamic characteristics, safety profile, 
and clinical activity of cetrelimab in immune-sensitive advanced cancers were consistent with known PD-1 inhibitors.
Trial registrations  NCT02908906 at ClinicalTrials.gov, September 21, 2016; EudraCT 2016–002,017-22 at clinicaltrialsreg-
ister.eu, Jan 11, 2017.

Keywords  Monoclonal antibody PD-1 inhibitor efficacy · Non-small-cell lung cancer · Melanoma · Colorectal cancer · 
Microsatellite instability–high · Pharmacokinetics/pharmacodynamics

Introduction

The development of immune checkpoint inhibitors led to 
improved outcomes and expanded opportunities for tar-
geted combination therapies in numerous tumor types [1]. 

The programmed cell death protein-1 (PD-1) is an immune 
checkpoint receptor that regulates adaptive T cell immu-
nity. PD-1 is expressed on activated CD4+ and CD8+ T cells 
and suppresses T cell function when bound to its ligands, 
programmed death ligand 1 (PD-L1) and 2 (PD-L2). In the 
tumor microenvironment, PD-1 activity can suppress tumor 
immunosurveillance and development of adaptive immune 
responses [1, 2]. Hence, blocking PD-1 receptor–ligand 
interactions can enhance antitumor immune responses to 
tumor cells.
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Monoclonal antibody PD-1 inhibitors such as pembroli-
zumab [3, 4], nivolumab [5, 6], and cemiplimab [7, 8] have 
been approved by the US Food and Drug Administration and 
the European Medicines Agency based on durable responses 
in immune-sensitive cancers. Other PD-1 inhibitors have 
been approved for various cancer treatment indications in 
different geographic regions.

Several biomarkers have been identified to be predictive 
of response to PD-1 antagonists. Nivolumab and pembroli-
zumab have demonstrated higher response rates in solid 
tumors in which > 1% of cells are PD-L1 + by immunohis-
tochemistry (IHC) compared with tumors with < 1% PD-L1 
positivity [9–11]. Tumor cells deficient in mismatched DNA 
repair systems (dMMR) are responsive to these agents and 
microsatellite instability (MSI) has proven to be a marker 
for dMMR [12–15].

Cetrelimab is a fully human immunoglobulin G4 mono-
clonal antibody inhibitor of PD-1. The in vitro binding affin-
ity to the human PD-1 extracellular domain for cetrelimab 
is KD = 1.72 nM [16] compared with pembrolizumab at 
KD = 29 pM [17, 18] and nivolumab at KD = 3.06 nM [18, 
19]. Like nivolumab and pembrolizumab, cetrelimab com-
pletely inhibits binding of PD-1 to PD-L1 and PD-L2. All 
three PD-1 inhibitors have demonstrated dose-dependent 
induction of interferon (IFN)-γ, tumor necrosis factor-α, and 
interleukin (IL)-4 upon cytomegalovirus (CMV) stimulation 
of CMV-reactive T cells from peripheral blood of CMV-
responsive donors or CD4+ T cells that were activated by 
stimulation with allogeneic, major histocompatibility com-
plex–mismatched, dendritic cells [18, 20]. Like nivolumab 
[20] and pembrolizumab [18], cetrelimab achieved tumor 
growth inhibition of MC38 tumors implanted on human 

PD-1 knock-in mice (companion paper by DeAngelis et al. 
in this issue of Cancer Chemotherapy and Pharmacology).

The first-in-human phase 1/2 LUC1001 study was 
designed to evaluate the safety, pharmacokinetics, pharma-
codynamics, and clinical activity of cetrelimab in patients 
with advanced solid tumors.

Materials and methods

Study design

LUC1001 (NCT02908906, EudraCT 2016–002,017-22) was 
an open-label, multicenter phase 1/2 study of cetrelimab 
(Fig. 1) initiated in Nov 2016. LUC1001 was conducted in 
accordance with the International Council for Harmonisa-
tion Good Clinical Practice Standards and the Declaration 
of Helsinki. The protocol was approved by institutional and 
ethics committees. All patients provided written informed 
consent.

Patients

All patients enrolled in LUC1001 were required to be 
aged ≥ 18  years, with metastatic or unresectable solid 
tumors, and had progressed on or been deemed ineligible 
for standard antitumor therapy. Patients were required to 
have Eastern Cooperative Oncology Group performance 
status ≤ 1 and to have had no prior treatment with PD-1/
PD-L1 inhibitors.

Patients with any solid tumor except lymphoma were 
eligible to enroll in the phase 1 part of LUC1001. Tissue 
sample collection for PD-L1 testing was optional in phase 

Fig. 1   LUC1001 study design. 
Unless specified, route of 
administration was IV. PK/PD 
Cohort 2a included 12 patients 
who received the lyophilized 
formulation; all other cohorts 
received the frozen liquid 
formulation. CRC​ colorectal 
cancer, MSI-H microsatellite 
instability–high, NSCLC non-
small-cell lung cancer, PK/PD 
pharmacokinetics/pharmaco-
dynamics, Q2W every 2 weeks, 
Q4W every 4 weeks, IV intrave-
nous, PD-L1 programmed death 
ligand 1, SC subcutaneous
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1 but mandatory in phase 2. The phase 2 part of LUC1001 
was initially designed to enroll patients with histologically 
or cytologically confirmed stage III or IV PD-L1+ [≥ 1% 
PD-L1+ on tumor cells assessed centrally with the 22C3 
antibody (Dako Omnis; Agilent, Santa Clara, CA) or local 
testing] non-small-cell lung cancer (NSCLC), melanoma, 
or colorectal cancer (CRC), as well as renal cell carcinoma, 
bladder cancer, small-cell lung cancer (SCLC), and gastric/
esophageal cancer. The protocol was amended to limit phase 
2 recruitment to PD-L1-high (≥ 50% PD-L1+ on tumor 
cells) NSCLC, melanoma, and MSI-high (MSI-H)/dMMR 
CRC determined by local or central testing. MSI-H status 
was centrally confirmed retrospectively using the Promega 
fluorescent PCR-based MSI Analysis System v1.2 (Pro-
mega Corporation, Madison, WI). For both PD-L1 status in 
NSCLC and MSI-H status in CRC, only central testing data 
were used in this analysis.

Study treatments

Phase 1 included five dose-escalation cohorts and three phar-
macokinetics/pharmacodynamics cohorts; patients received 
intravenous (IV) 80, 240, 460, or 800 mg every 2 weeks 
(Q2W) or 480 mg Q4W doses of cetrelimab (Fig. 1). Addi-
tionally, feasibility of subcutaneous (SC) administration of 
cetrelimab was, and continues to be, explored. SC injec-
tion was administered by slow manual push. All patients in 
phase 1 and 2 received a frozen liquid formulation except 
pharmacokinetics/pharmacodynamics Cohort 2a, in which 
12 patients received the lyophilized formulation at 480 mg 
Q4W, and pharmacokinetics/pharmacodynamics Cohort 3 
(SC cohort), in which six patients received the lyophilized 
formulation by SC injection. The first IV infusion was deliv-
ered over 60 min. If the 60-min infusion was well tolerated, 
subsequent infusions could be delivered over 30 min.

Because of limited information due to the small sample 
size, pharmacokinetic data in the SC cohort are not reported 
here; these patients were included with the appropriate 
tumor-specific groups in efficacy assessments and with the 
IV 480 mg Q4W dose group in safety assessments.

Dose escalation

Decisions about dose escalation were based on the rate of 
dose-limiting toxicities (DLTs) observed during the first 
28 days on treatment. DLTs were defined as toxicities of 
grade 5, grade 4 (including neutropenia lasting ≥ 7 days 
and thrombocytopenia of any duration), or grade ≥ 3 [with 
the exception of asthenia, fever, constipation, fatigue that 
improves in ≤ 7  days, nausea lasting for ≤ 7  days with 
standard of care, vomiting or diarrhea lasting ≤ 3 days with 
standard care, tumor flare (local pain, irritation, or rash at 
known or suspected tumor sites) that improves in ≤ 7 days, 

aspartate aminotransferase/alanine aminotransferase (AST/
ALT) elevation lasting < 7 days, laboratory abnormalities 
not requiring hospitalization and deemed not clinically sig-
nificant by the investigator, and thrombocytopenia without 
clinically significant bleeding]. ALT/AST elevations meet-
ing Hy’s law criteria and immune-related toxicities requiring 
treatment in excess of corticosteroids were included in the 
DLT definition.

Cohort expansion

The clinical activity and safety of cetrelimab at the chosen 
RP2D in three tumor-specific groups (NSCLC, melanoma, 
and MSI-H/dMMR CRC) were assessed in phase 2 to con-
firm the selected doses.

Study endpoints

The primary endpoints were the safety and tolerability, 
and overall response rate (ORR) of cetrelimab. Secondary 
objectives included assessment of pharmacokinetics, phar-
macodynamics, immunogenicity, and efficacy by the investi-
gator, including the clinical benefit rate (CBR), progression-
free survival (PFS), overall survival (OS), and duration of 
response (DOR). Selected biomarkers were examined for 
potential association with pharmacodynamic modulation of 
cetrelimab.

Safety assessments

Safety assessments included the frequency and severity of 
treatment-emergent adverse events (TEAEs) and immune-
related adverse events (irAEs), infusion-related reactions 
(IRRs), vital sign measurements, clinical laboratory values, 
and electrocardiograms. The severity of AEs was assessed 
using the National Cancer Institute Common Terminology 
Criteria for Adverse Events v4. irAEs and IRRs were des-
ignated by the investigators. Investigators were instructed 
to consider all events of an inflammatory nature immune 
related in the absence of a clear alternative etiology.

Pharmacokinetics and receptor occupancy

Blood samples were collected for pharmacokinetic analyses 
on the day of dosing both pre-infusion (within 2 h) and at 
the end of infusion (EOI) for the first ten doses in cohorts 
receiving Q2W dosing. After Dose 1 and Dose 9, additional 
blood samples were collected at 2 h (EOI + 2 h) and 6 h 
(EOI + 6 h) post infusion as well as on Days 2, 4, and 8 in 
the cohorts receiving Q2W dosing. After Dose 1 and Dose 
5 in cohorts receiving Q4W dosing, additional samples were 
collected at EOI + 2 h and EOI + 6 h post infusion as well as 
on Days 2, 4, 8, 15, and 22. In the SC cohort, blood samples 
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were collected for the sentinel SC dose at the following 
time points: pre-injection (within 2 h), post injection (PI), 
PI + 2 h, and PI + 6 h, as well as on Days 2, 4, 8, 15, 22, 29, 
and 36. Samples were also collected at the end-of-treatment 
(EOT) visit (≤ 30 days after the last dose) and first survival 
follow-up visit (~ 12 weeks after the last dose).

Serum cetrelimab concentrations were measured using a 
validated electrochemiluminescence immunoassay method. 
As previously mentioned, two drug product formulations 
were tested at the 480 mg Q4W dose.

Individual pharmacokinetic parameters were calculated 
using noncompartmental analysis (NCA) and descriptive 
statistics were provided. A two-compartmental disposition 
population pharmacokinetic (popPK) model with first-order 
elimination and zero-order IV infusion rate, parameterized 
in terms of clearance (CL), volume of central compartment 
(V1), intercompartmental CL (Q), and volume of peripheral 
compartment (V2), was used to describe the pharmacoki-
netics of cetrelimab from both phase 1 and phase 2 parts 
of LUC1001. Interindividual variability (IIV) was imple-
mented on CL, V1, and V2, with random-effects correlation 
estimated between CL and V1. IIV was also included on 
residual error to allow for patient-level variations in residual 
error. Additionally, popPK modeling and simulations were 
performed using data from all dose cohorts to explore mul-
tiple phase 2 dosing regimens targeting comparable pharma-
cokinetic profiles and exposures similar to nivolumab and 
pembrolizumab.

Fresh whole blood was collected from all patients in 
phase 1 and from the first 40 patients in phase 2 for evalua-
tion of PD-1 receptor occupancy (RO) on circulating CD3+ 
T cells by flow cytometry analysis. During phase 1, Dose 1 
samples were taken on Day 1 before infusion and 2 h after 
EOI and on Day 8; Dose 2 samples were taken on Day 1 
before infusion and at EOI. Samples for Dose 3 were taken 
on Day 1 before infusion, and for Dose 9 on Day 1 before 
infusion and at EOI. Dose 10 samples were drawn on Day 
1 at EOI and at EOT. During phase 2, blood samples were 
taken before infusion on Dose 1 and Dose 5.

Pharmacodynamics and biomarkers

Ex vivo staphylococcal enterotoxin B (SEB) stimulation 
of IL-2 production by peripheral blood mononuclear cells 
was conducted to evaluate cetrelimab pharmacodynamic 
modulation [21]. Briefly, whole blood samples were diluted 
1:10 with RPMI 1640 medium (Catalog #111,875,093, 
Thermo Fisher Scientific, Waltham, MA) followed by a 
4-day incubation with 100 ng/mL of SEB and 10 µg/mL of 
cetrelimab or isotype control. The ratio of IL-2 expression 
levels between the isotype and cetrelimab ex vivo-treated 
blood samples was then calculated to assess the degree of 

pharmacodynamic modulation, with a ratio of 1 indicating 
maximum T cell activation.

Serum levels of IFN-γ-inducible protein 10 (IP10) and 
IL-2 receptor alpha chain (IL2Ra) were measured by Meso 
Scale Discovery (MSD) for all patients with one pretreat-
ment and at least one post-treatment sample collection.

Immunogenicity

Serum samples were screened for anti-drug antibodies bind-
ing to cetrelimab and the titer of confirmed positive samples 
was reported.

Efficacy assessments

Tumor response was assessed by the investigators per 
Response Evaluation Criteria In Solid Tumors (RECIST) 
v1.1 [22] every 8 weeks (± 2 weeks) until Week 24, after 
which assessments were made every 12 weeks (± 2 weeks). 
Patients were allowed to continue treatment with study drug 
beyond initial radiologic tumor progression determined on 
the basis of the RECIST criteria. This allowance took into 
account the observation that some patients can have a tran-
sient tumor flare (i.e., pseudo-progression) in the first few 
months after the start of immunotherapy but can develop 
subsequent disease response. Patients were advised to con-
tinue study treatment at the discretion of the treating physi-
cian while waiting for confirmation of disease progression 
if they were clinically stable as defined by the following 
criteria: (1) absence of clinical signs and symptoms indicat-
ing disease progression; (2) clinical disease progression not 
requiring immediate therapeutic intervention; (3) no decline 
in Eastern Cooperative Oncology Group performance status; 
and (4) absence of progressive tumor at critical anatomical 
sites (e.g., cord compression) requiring urgent alternative 
medical intervention. Patients who were deemed clinically 
unstable could discontinue study treatment prior to repeat 
imaging for confirmation of progressive disease.

ORR was defined as the percentage of patients with 
complete response (CR) + partial response (PR). CBR was 
defined as the percentage of patients with CR + PR + stable 
disease lasting ≥ 24 weeks [23]. PFS was defined as the time 
from first dose of cetrelimab to progressive disease or death 
due to any cause. OS was defined as the time from first dose 
of cetrelimab to death due to any cause. DOR was defined 
as the time from initial response of CR or PR to progressive 
disease or death due to underlying disease.

Statistical analysis

Dose escalation and recommended phase 2 dose iden-
tification were guided using a modified continual reas-
sessment method, which was based on the probability 
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of dose-limiting toxicities by a two-parameter Bayes-
ian logistic regression model and escalation with over-
dose control principle. The sample size estimation of 
180 patients for the overall study population in the dose 
expansion part of this study was based on the ability to 
detect a 79.0% success rate if the true ORR is 15.0% 
and 15.7% if the true ORR is 10.0% by Bayesian power, 
or a 43.2% success rate if the true ORR is 15.0% and 
1.3% if the true ORR is 10% by Bayesian double crite-
ria. The all-treated population, defined as patients who 
received ≥ 1 dose of cetrelimab, was the basis for both 
safety and efficacy analyses. Subpopulations of patients 
with NSCLC, melanoma, and CRC were analyzed indi-
vidually. The ORR is presented with 2-sided 95% exact 
Clopper–Pearson confidence intervals (CIs). Time-to-
event endpoints and corresponding 95% CIs were esti-
mated using Kaplan–Meier methodology.

Results

Patients

At clinical data cutoff on Jul 1, 2019, the all-treated popula-
tion comprised 204 patients (58 in phase 1 and 146 in phase 
2). Median age was 60.0 years (range, 23.0–86.0 years) and 
56.9% were male (Table 1). The majority of patients (70.1%) 
had previously received ≥ 2 regimens.

RP2D determination

Cetrelimab 240 mg Q2W and 480 mg Q4W resulted in the 
same total dose, while demonstrating sufficient pharmacoki-
netics/pharmacodynamics coverage to ensure RO saturation 
throughout the dosing interval. Therefore, the RP2D for 
cetrelimab may be administered as either 240 mg Q2W or 
480 mg Q4W; 240 mg Q2W was selected as the RP2D for 
the phase 2 part of the study.

Table 1   Demographics and disease characteristics at baseline (all-treated population)

BC bladder cancer, CRC​ colorectal cancer, dMMR DNA mismatch repair deficient, ECOG PS Eastern Cooperative Oncology Group perfor-
mance status, MEL melanoma, MSI-H microsatellite instability–high, NSCLC non-small-cell lung cancer, RCC​ renal cell carcinoma, SCLC 
small-cell lung cancer
a Any other type of advanced or refractory solid tumor malignancy, except lymphoma, that was metastatic or unresectable (e.g., breast cancer, 
prostate cancer, or pancreatic adenocarcinoma)

NSCLC 
n = 35

MEL n = 50 BC n = 4 RCC n = 2 SCLC n = 12 MSI-H /
dMMR 
CRC n = 48

Gastric/
esophageal 
n = 16

Othera 
n = 37

Total N = 204

Median 
age, years 
(range)

64.0 (47.0–
79.0)

60.5 (23.0–
86.0)

64.0 (56.0–
79.0)

71.0 (66.0–
76.0)

63.0 (46.0–
80.0)

59.5 (29.0–
81.0)

62.0 (44.0–
82.0)

53.0 
(27.0–80.0)

60.0 
(23.0–86.0)

Sex, n (%)
 Male 29 (82.9) 29 (58.0) 3 (75.0) 1 (50.0) 8 (66.7) 20 (41.7) 10 (62.5) 16 (43.2) 116 (56.9)
 Female 6 (17.1) 21 (42.0) 1 (25.0) 1 (50.0) 4 (33.3) 28 (58.3) 6 (37.5) 21 (56.8) 88 (43.1)

ECOG PS, n (%)
 0 13 (37.1) 29 (58.0) 2 (50.0) 0 (0) 3 (25.0) 27 (56.3) 8 (50.0) 20 (54.1) 102 (50.0)
 1 22 (62.9) 21 (42.0) 2 (50.0) 2 (100.0) 9 (75.0) 21 (43.8) 8 (50.0) 17 (45.9) 102 (50.0)

Previous cancer therapy
 Surgery/

proce-
dure

20 (57.1) 49 (98.0) 4 (100.0) 1 (50.0) 3 (25.0) 48 (100.0) 11 (68.8) 36 (97.3) 172 (84.3)

 Radio-
therapy

19 (54.3) 20 (40.0) 0 1 (50.0) 11 (91.7) 14 (29.2) 7 (43.8) 22 (59.5) 94 (46.1)

 Systemic 
therapy

35 (100.0) 37 (74.0) 4 (100.0) 2 (100.0) 12 (100.0) 48 (100.0) 16 (100.0) 37 (100.0) 191 (93.6)

Number of prior lines of regimens, n (%)
  0 0 (0) 13 (26.0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 13 (6.4)
  1 18 (51.4) 12 (24.0) 1 (25.0) 1 (50.0) 6 (50.0) 2 (4.2) 3 (18.8) 5 (13.5) 48 (23.5)
  2 12 (34.3) 15 (30.0) 2 (50.0) 0 (0) 4 (33.3) 19 (39.6) 6 (37.5) 8 (21.6) 66 (32.4)

   ≥ 3 5 (14.3) 10 (20.0) 1 (25.0) 1 (50.0) 2 (16.7) 27 (56.3) 7 (43.8) 24 (64.9) 77 (37.7)
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Safety

During the phase 1 dose escalation, two DLTs were reported. 
Both events were considered serious and possibly treat-
ment related. One patient with NSCLC receiving 240 mg 
Q2W experienced a DLT of grade 3 pleural effusion that 
resulted in treatment interruption. This patient received 
seven additional cetrelimab doses after treatment inter-
ruption before cetrelimab treatment was discontinued due 
to disease progression. A second patient with metastatic 
thymoma receiving 800 mg Q2W experienced a DLT of 
grade 5 myasthenia gravis, 16 days after receiving Dose 1. 
Prior treatment for thymoma included four lines of chemo-
therapy or investigational compounds, radiation for phrenic 
nerves and pericardial infiltration, and extensive surgical 
procedures of hemidiaphragm and ipsilateral pericardium 
excision, left hemithorax pleurectomy, left thoracotomy, 
myoplasty, pericardial and diaphragmatic replacement, pros-
thesis placement, tumor resection (thymoma), and postero-
lateral thoracotomy. The symptom for myasthenia gravis was 
grade 4 dyspnea and antiacetylcholine receptor antibody was 
positive. The patient received methylprednisolone 60 mg 
(1 mg/kg) twice daily and ipratropium bromide, along with 
noninvasive ventilation; however, diaphragmatic sequelae 

from multiple chest surgeries limited supportive respiratory 
therapy options.

The most frequently reported TEAEs (occurring 
in > 15.0% of patients) were asthenia (25.5%), fatigue 
(21.1%), dyspnea (21.1%), pyrexia (19.6%), diarrhea 
(19.1%), anemia (18.6%), nausea (17.6%), decreased 
appetite (17.6%), cough (17.2%), and back pain (15.7%). 
Approximately two-thirds of patients (67.2%) experienced 
TEAEs deemed possibly treatment related (Table 2). Seri-
ous treatment-related TEAEs occurred in 10.8% of patients 
and grade ≥ 3 treatment-related TEAEs occurred in 13.7%.

Twenty-one patients (10.3%) died within 30 days of their 
last cetrelimab dose. For 17 patients, the primary cause of 
death was disease progression. AEs were the primary cause 
of death for four patients and one of those AEs (the DLT of 
myasthenia gravis) was considered treatment related. Dysp-
nea was the cause of death in two patients and acute heart 
failure in one patient. Fifteen patients (7.4%) experienced 
TEAEs leading to death.

The safety profile at the RP2D (240 mg Q2W IV) was 
similar to that in the overall all-treated population, with seri-
ous and grade ≥ 3 TEAEs that were considered treatment-
related occurring in 12.3% and 14.8%, respectively. Treat-
ment-related TEAEs at a dose of 240 mg Q2W resulted in 

Table 2   Summary of TEAEs (all-treated population)

Patients with > 1 record are counted only once at corresponding rows
Q2W every 2 weeks, Q4W every 4 weeks, TEAE treatment-emergent adverse event

80 mg Q2W n = 4 240 mg Q2W n = 162 460 mg Q2W n = 4 480 mg Q4W n = 28 800 mg Q2W n = 6 Total N = 204

Any TEAEs, n (%)
 Any 4 (100.0) 158 (97.5) 4 (100.0) 27 (96.4) 6 (100.0) 199 (97.5)
 Treatment related 2 (50.0) 115 (71.0) 3 (75.0) 13 (46.4) 4 (66.7) 137 (67.2)

Serious TEAEs, n (%)
 Any 3 (75.0) 79 (48.8) 3 (75.0) 12 (42.9) 5 (83.3) 102 (50.0)
 Treatment related 0 (0) 20 (12.3) 0 (0) 0 (0) 3 (33.3) 22 (10.8)

Grade ≥ 3 TEAEs, n (%)
 Any 2 (50.0) 87 (53.7) 2 (50.0) 14 (50.0) 5 (83.3) 110 (53.9)
 Treatment related 0 (0) 24 (14.8) 0 (0) 2 (7.1) 3 (33.3) 28 (13.7)

TEAEs leading to treatment interruption, n (%)
 Any 2 (50.0) 85 (52.5) 4 (100.0) 5 (17.9) 4 (66.7) 100 (49.0)
 Treatment related 0 (0) 47 (29.0) 1 (25.0) 1 (3.6) 3 (50.0) 52 (25.5)

TEAEs leading to dose reduction, n (%)
 Any 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
 Treatment related 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

TEAEs leading to withdrawal, n (%)
 Any 0 (0) 17 (10.5) 0 (0) 1 (3.6) 1 (16.7) 19 (9.3)
 Treatment related 0 (0) 11 (6.8) 0 (0) 0 (0) 1 (16.7) 12 (5.9)

TEAEs leading to death, n (%)
 Any 0 (0) 13 (8.0) 0 (0) 0 (0) 2 (33.3) 15 (7.4)
 Treatment related 0 (0) 0 (0) 0 (0) 0 (0) 1 (16.7) 1 (0.5)
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dose interruptions in 29.0% of patients and discontinuation 
in 6.8%.

AEs of clinical interest

Immune-related AEs were reported by the investigator 
for 35.3% of patients (72/204). The most common irAEs 
were hypothyroidism (6.9%), asthenia (4.4%), diarrhea 
(3.4%; assumed to be immune related based on response to 
empirical steroid treatment), rash (2.9%), hyperthyroidism 
(2.9%), dyspnea (2.9%), pruritus (2.5%), and pneumonitis 
(2.5%). Grade ≥ 3 irAEs were reported for 6.9% of patients 
(14/204). Pneumonitis was the only grade ≥ 3 treatment-
emergent irAE that occurred in two patients (1.0%); all other 
grade ≥ 3 irAEs occurred in a single patient (0.5%). One 
patient receiving 240 mg Q2W experienced serious autoim-
mune colitis and discontinued study treatment.

IRRs were reported for 14.2% of patients (29/204). 
Median time to onset of first IRR was 15 (range, 1–148) 
days and median time to resolution of first IRR was 1 (range, 
1–5) day. The majority of IRRs occurred after the first two 
doses. Two patients (1.0%) experienced grade ≥ 3 IRRs and 
one patient discontinued study treatment due to a grade 3 
IRR of hypertension.

Pharmacokinetics

The pharmacokinetics of cetrelimab were linear and dose 
proportional across IV doses of 80, 240, 460, and 800 mg 
Q2W, with moderate variability after the first dose (Fig. 2a 
and Online Resource 1). The shape of the serum concen-
tration–time profile was similar for all patients receiving 
cetrelimab 480 mg IV Q4W regardless of whether the drug 
product had been formulated as frozen liquid or lyophilized 
(Online Resource 2). Data from patients receiving 480 mg 
Q4W IV were pooled and analyzed (Online Resource 1).

Pharmacokinetic exposures [Cmax, trough concentration 
(Ctrough), AUC over a dosing interval (τ) (AUC​τ)] increased 
after each repeated IV dose until steady state appeared to be 
reached after four doses with the Q4W schedule and seven 
doses with the Q2W schedule (Fig. 2b). After multiple IV 
doses of 240 mg Q2W and 480 mg Q4W cetrelimab, the 
steady-state accumulation ratios for these pharmacokinetic 
exposures were approximately 2.0- to 3.5-fold (Online 
Resource 3 and Online Resource 4).

The mean Ctrough of 240 mg Q2W (66.9 µg/mL) was 
higher than the mean Ctrough of 480 mg Q4W (48.2 µg/mL). 
The t½ calculated from NCA of steady-state pharmacokinetic 
data from the 480 mg Q4W groups (22.4 days) was consist-
ent with the predicted t½ via popPK modeling (25.0 days). 
At Dose 9 of 240 mg Q2W during phase 2, the mean accu-
mulation ratios of the Ctrough and Cmax were 2.86 and 1.84, 
respectively (n = 68). Both mean accumulation ratios were 

similar to those observed for 240 mg Q2W in phase 1 (3.29 
and 2.05, respectively; n = 3).

Body weight and albumin were identified as two of the 
significant covariates for CL and body weight was identified 
as a significant covariate for V1 (data on file).

Immunogenicity

The overall prevalence of anti-cetrelimab antibodies was 
1.7% (3/182 patients with available data); 2.2% of patients 
in the phase 2 part of the study who were treated with IV 
cetrelimab 240 mg Q2W developed anti-cetrelimab antibod-
ies (3/134 patients with available data). Anti-cetrelimab anti-
bodies did not appear to affect cetrelimab pharmacokinetics 
(Online Resource 5).

Pharmacodynamics

Biomarker expression

In the all-treated population, IP10 concentration was sig-
nificantly increased (P = 0.012) over baseline on Day 43 
(Online Resource 6). Significant elevation of IL2Ra chain 
was observed on Day 43 in patients with stable disease 
(P = 0.0006) and progressive disease (P < 0.0001), but not 
in patients with CR or PR following treatment with 240 mg 
Q2W cetrelimab.

Receptor occupancy

PD-1 RO saturation was achieved at the first time point when 
RO samples were collected, 2 h post-EOI. Similar levels of 
PD-1 RO saturation on CD3+ T cells were observed across 
all dose levels throughout treatment and at the EOT visit 
after cetrelimab discontinuation (Fig. 3a).

Ex vivo pharmacodynamics modulation

Cetrelimab treatment induced maximum IL-2 expres-
sion (stimulation ratio = 1) across all doses (240 mg Q2W, 
480 mg Q4W, 800 mg Q2W) tested (Fig. 3b), indicating 
that maximal inhibitory activity of PD-1 was achieved and 
maintained throughout the dosing period across all doses, 
extending to 30 days after cessation of cetrelimab treatment.

Efficacy

In the all-treated population from both phases of LUC1001, 
the ORR was 18.6% (38/204) and the CBR was 31.3% 
(64/204). Six patients (2.9%) had CR, 32 (15.7%) had PR, 
and 36 (17.7%) had stable disease. Median PFS was 2.8 
(95% CI 1.9–3.7) months and median OS was 17.8 (95% CI 
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11.9–22.6) months (Online Resource 7 and Online Resource 
8).

Non‑small‑cell lung cancer cohort

Of 35 patients with NSCLC in phase 1 and phase 2 included 
in the clinical analysis, 71.4% were diagnosed with adeno-
carcinoma, 22.9% with squamous cell carcinoma, 1 with 
large-cell carcinoma, and 1 with “other.” At screening, 

94.3% of patients had stage IV NSCLC, and 97.1% had pre-
viously received chemotherapy. Mutation status was known 
for 15 patients (42.9%): a KRAS mutation was identified in 
3 patients (8.6%), an EGFR mutation in 3 (8.6%), and other 
mutations in 9 (25.7%). Nineteen patients (54.3%) expressed 
high levels of PD-L1 and would have been eligible to receive 
PD-1 inhibitor therapy in clinical practice.

The median follow-up was 15.7 (range, 0.3–25.4) months. 
In all 35 patients, the ORR was 34.3% and the CBR was 

Fig. 2   Mean (± SD) serum concentration–time curves a after the first cetrelimab dose, b after repeated cetrelimab doses. a Frozen and lyophi-
lized drug product pooled
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Fig. 3   Pharmacodynamic effects of cetrelimab. a Mean (± SD) of 
PD-1 receptor occupancy over time. PD-1 receptor occupancy was 
measured by percent molecules of equivalent soluble fluorochrome 
(MESF) CD3+ in plasma by visit and dose level in the receptor occu-
pancy analysis set. PD-1 receptor occupancy increased to 100% at all 
IV dose levels studied within 2 h post dose and remained at saturation 

at all time points during multiple doses). b Ratio of staphylococcal 
enterotoxin B (SEB)–stimulated interleukin-2 production in periph-
eral blood mononuclear cells treated with isotype versus cetrelimab. 
EOI end of infusion, EOT end of treatment, IV intravenous, PD-1 
programmed cell death protein-1, Pre predose, Q2W every 2 weeks, 
Q4W every 4 weeks
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51.4%. In the subgroup of 19 patients with PD-L1-high 
(≥ 50% PD-L1+) tumors, the ORR was 52.6% and the CBR 
was 73.7%. The overall median duration of treatment was 7.0 
(range, 0.0–24.7) months for all treated patients and longer 
[10.7 (range, 1.0–24.7) months] among patients with PD-L1 
high tumors. Median DOR could not be estimated, because 
there was an insufficient number of progression events at 
data cutoff. For all treated patients, median PFS was 7.4 
[95% CI 2.43–not estimable (NE)] months and the median 
OS was 22.4 (95% CI 9.95–NE) months (Online Resource 
7 and Online Resource 8). Response and duration of treat-
ment for individual patients are shown in Online Resource 
9 and Fig. 4.

Melanoma cohort

Fifty patients with melanoma enrolled in phase 1 and phase 
2 combined, including six with uveal melanoma. Of these, 
37 (74.0%) had previously received systemic treatment. 
Prior treatments included ipilimumab (38.0%), BRAF/MEK-
targeted therapy (26.0%), IFN (24.0%), and chemotherapy 
(36.0%). All patients had stage IV melanoma at screening 
except one patient (2.0%) with stage III. BRAF mutations 
were found in 19 patients (45.2%) and PD-L1 status was 
positive (> 1%) for 8 (16.0%) patients. The median dura-
tion of follow-up for all patients was 16.6 (range, 0.7–25.1) 
months. The overall median duration of treatment was 5.5 
(range, 0.0–25.0) months for all treated patients.

In all 50 patients, the ORR was 28.0% and the CBR was 
46.0%. The six patients with uveal melanoma had progres-
sion as best response. Among the eight patients who were 
PD-L1+ (PD-L1 IHC ≥ 1%), the ORR was 50.0% and the 
CBR was 75.0%. Median DOR and OS could not be esti-
mated (Online Resource 7). The median PFS for all treated 
patients was 5.4 (95% CI 2.73–9.95) months (Online 
Resource 8). Response and duration of treatment for indi-
vidual patients are shown in Online Resource 10 and Fig. 4.

MSI‑H/dMMR CRC cohort

Of 48 patients with CRC enrolled in phase 1 and 2, 21 were 
centrally determined to be MSI-H by IHC. Twelve patients 
were normal (microsatellite stable) by central laboratory 
and nine could not be evaluated by the central laboratory 
because of lack of control sample or insufficient tumor 
sample. Twenty-seven patients (56.3%) were dMMR by 
local laboratory. Overall, MSI-H testing was highly vari-
able, with ~ 50.0% concordance between local and central 
laboratories. At screening, all patients with CRC had stage 
IV disease, and all had received prior systemic therapy; 46 
patients (95.8%) received chemotherapy and one (2.1%) 
received BRAF/MEK-targeted therapy.

Patients with MSI-H CRC had a median treatment dura-
tion of 9.9 (range, 0.0–16.1) months, while the all-treated 
CRC population had a median treatment duration of 2.4 
(range, 0.0–19.9) months. The median follow-up was 12.1 
(range, 0.3–24.3) months for the all-treated population and 
12.3 (range, 0.9–16.3) months for those with MSI-H CRC.

In all 48 patients with CRC, the ORR was 16.7% and the 
CBR was 37.5%. In patients with MSI-H CRC, the ORR 
was 23.8%, with PR being the best overall response for all 
five. The CBR was 61.9% in the MSI-H group. Median 
DOR and OS could not be estimated (Online Resource 8). 
Response and duration of treatment for individual patients 
with CRC are shown in Online Resource 11 and Fig. 4. The 
median PFS for all treated patients with CRC was 2.1 (95% 
CI 1.84–7.26) months (Online Resource 7).

Discussion

In this first-in-human, phase 1/2 study, the safety, pharma-
cokinetics, pharmacodynamics, and biomarkers of cetreli-
mab were thoroughly characterized in PD-1/PD-L1 inhibi-
tor–naïve patients with advanced or refractory solid tumors. 
Detailed characterization of cetrelimab monotherapy is 
essential for the selection of dosing regimens to accommo-
date potential schedules of combination partners. In phase 
1 of LUC1001, cetrelimab was well tolerated across the IV 
doses of 80, 240, 460, or 800 mg Q2W or 480 mg Q4W. The 
safety profile of cetrelimab was consistent with that of other 
anti-PD-1 antibodies. As expected with immune checkpoint 
inhibitors, immune-related AEs were observed and they 
were managed with corticosteroids and treatment interrup-
tion. Only two DLTs occurred during the dose-escalation 
phase. Across phases 1 and 2, although 137 patients (67.2%) 
experienced TEAEs deemed possibly treatment related, most 
were managed by dose interruption, and only 12 patients 
(5.9%) experienced treatment-related AEs resulting in treat-
ment discontinuation. No unexpected safety signals were 
observed. The prevalence of IRRs was higher for cetrelimab 
(14.2%), as reported by the investigators, compared with 
that reported for pembrolizumab (0.2%) and nivolumab 
(6.4%) [24–26]. Notably, the majority of cetrelimab IRRs 
were grade 1–2 and occurred after the first two doses. Other 
studies with cetrelimab using the lyophilized formation have 
not reported high frequencies of IRRs [27].

Serum cetrelimab steady-state Ctrough for IV doses of 
cetrelimab 240 mg Q2W (66.9 µg/mL) and 480 mg Q4W 
(48.2 µg/mL) derived from the simulations, based on the 
popPK model parameters and associated interpatient vari-
ability, were similar and in range with other PD-1 inhibitors 
such as nivolumab [28–30] (56.5 µg/mL) and pembroli-
zumab [31–33] (23.3 µg/mL) at their respective approved 
clinical doses. The two cetrelimab regimens achieved the 
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same total dose exposure, while demonstrating acceptable 
safety and sufficient pharmacokinetics/pharmacodynamics 
coverage to ensure RO saturation throughout the dosing 
interval. Furthermore, the clearance of cetrelimab at steady 

state (8. 6 mL/h in the 240 mg IV Q2W group, 9.8 mL/h 
in the 480 mg IV Q4W group) was similar and in range 
with that of nivolumab [30] (9.5 mL/h) and pembrolizumab 
[33] (9.2 mL/h) at their respective approved clinical doses. 

Fig. 4   Efficacy measures in patients with a, b NSCLC (total and 
PD-L1 ≥ 50%), c, d melanoma (total and PD-L1 ≥ 1%), and e, f 
MSI-H/dMMR CRC (total and MSI-H). aORR is defined as the per-
centage of all treated patients with CR or PR. bCBR is defined as the 
percentage of all treated patients with CR, PR, or SD (≥ 24  weeks 
after first study drug). CBR clinical benefit rate, CI confidence inter-

val, CR complete response, CRC​ colorectal cancer, dMMR DNA mis-
match repair deficient, MEL melanoma, MSI-H microsatellite insta-
bility–high, NSCLC non-small-cell lung cancer, ORR overall response 
rate, PD progressive disease, PD-L1 programmed death ligand 1, PR 
partial response, SD stable disease
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The median t½ of cetrelimab was aligned between NCA 
(22.4 days) and the popPK model (25.0 days) and conforms 
to the expected behavior of enhanced neonatal FC recep-
tor–mediated recycling for IgG antibodies at around 3 weeks 
[34]. The reported terminal t½ was 25 days for nivolumab 
[28] and in the range of 14–22 days for pembrolizumab [35]. 
Based on the totality of safety, pharmacokinetics, pharma-
codynamics, biomarkers, and efficacy data, the RP2D for 
cetrelimab may be 240 mg Q2W or 480 mg Q4W. The differ-
ent dosing intervals provide flexibility in coordinating com-
bination treatment; patients only received 240 mg Q2W in 
the phase 2 study to minimize sample size.

A relatively flat dose–response relationship has been 
demonstrated for two approved PD-1 inhibitors (nivolumab 
and pembrolizumab), suggesting a relatively broad thera-
peutic window (around 1–10  mg/kg) for the anti-PD-1 
mechanism of action [28, 36, 37]. Nivolumab 480 mg Q4W 
was shown to be equivalent in clinical safety and efficacy to 
its previously approved 240 mg Q2W dosing schedule and 
has been approved as an alternate dosing schedule for most 
oncology indications in the United States [1, 24, 38]. For 
pembrolizumab, based on exposure–response modeling, the 
dosing interval has been extended to 400 mg Q6W [39] and 
longer dosing intervals may also be considered [25].

Anti-cetrelimab antibodies were detected in a small pro-
portion of patients in phase 1 (1.7%) and phase 2 (2.2%) and 
did not appear to affect the pharmacokinetics of cetrelimab. 
Therefore, available data suggest that anti-cetrelimab anti-
bodies do not impact clinical activity.

Preliminary efficacy data reported suggest that the effi-
cacy profile of cetrelimab may be consistent with known 
profiles of PD-1 inhibitors in melanoma [40–45], PD-
L1-high NSCLC [7, 11, 46–49], and MSI-H CRC [14, 15, 
50]. Focusing on these tumor types allowed for a better point 
estimate on the response rate to be observed with cetrelimab 
in the sample sizes selected for this study. Compared with all 
treated patients, ORRs were high in subgroups with tumors 
carrying predictive biomarkers. This study supports existing 
evidence that suggests MSI testing is highly variable and 
should be standardized to improve the reliability of deter-
mining MSI-H among patients with CRC [51].

In summary, the phase 1/2 LUC1001 study character-
ized the safety, pharmacokinetics, pharmacodynamics, and 
efficacy data of cetrelimab in patients for the first time to 
support cetrelimab dose schedules of IV 240 mg Q2W and 
480 mg Q4W. It is important to acknowledge that multiple 
PD-1 agents have already been approved for the treatment 
of PD-1/PD-L1 inhibitor–naïve patients with advanced or 
refractory solid tumors; cetrelimab is currently being devel-
oped to support combination studies that are ongoing. Fur-
thermore, data from the phase 1/2 LUC1001 study cannot 
be directly compared with those from other trials at this 
time due to the small sample size and study design that is 

not controlled with an active comparator. The data reported 
here are critical for understanding cetrelimab in a clinical 
setting, and these findings are consistent with results with 
other approved PD-1 inhibitors. Based on the preliminary 
antitumor activity of cetrelimab in patients with advanced 
solid tumors in LUC1001 [52], studies are ongoing to evalu-
ate the safety and efficacy of cetrelimab in combination with 
intravesical gemcitabine (TAR-200; JNJ-17000139-AAC) in 
non-muscle-invasive bladder cancer (NCT04640623) and 
in combination with erdafitinib in patients with urothelial 
carcinoma carrying FGFR alterations (NCT03473743), as 
chemotherapy or targeted therapy can release tumor neoan-
tigens and prime the tumor microenvironment for immune 
response by a PD-1 inhibitor. These studies, however, are 
required to determine the safety and efficacy of such com-
binations based on the unpredictability in treating cancer 
and delivering meaningful new treatment options to patients.
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