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Simple Summary: Interleukin 9 (IL-9), a soluble factor secreted by immune cells, has been found in
several tumor niches where, depending on the specific tumor type, it either promotes or counteracts
tumor development. Recently, IL-9 has been implicated in the development of chronic lymphocytic
leukemia, although the underlying molecular mechanism remains unknown. Here, we summarize
the current knowledge concerning the roles of IL-9 in disease, with a focus on its implication in the
pathogenesis of chronic lymphocytic leukemia.

Abstract: Interleukin (IL)-9 is a soluble factor secreted by immune cells into the microenvironment.
Originally identified as a mediator of allergic responses, IL-9 has been detected in recent years in
several tumor niches. In solid tumors, it mainly promotes anti-tumor immune responses, while
in hematologic malignancies, it sustains the growth and survival of neoplastic cells. IL-9 has been
recently implicated in the pathogenesis of chronic lymphocytic leukemia; however, the molecular
mechanisms underlying its contribution to this complex neoplasia are still unclear. Here, we summa-
rize the current knowledge of IL-9 in the tumor microenvironment, with a focus on its role in the
pathogenesis of chronic lymphocytic leukemia.
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1. Introduction

Within the tumor microenvironment cytokines, soluble proteins that mediate cell-to-
cell communication are considered as dual players. They target immune and non-immune
cells expressing their receptors and activate signaling cascades that stimulate anti-cancer
responses. Since the discovery of the activities of the pro-inflammatory cytokines Interferon
(IFN)-α and Interleukin (IL)-2 against a number of malignancies, we have witnessed an
exponential increase in the number of clinical trials addressing both the safety and the
efficacy of cytokine-based drugs [1]. By contrast, cytokines can, in some instances, act as
potent tumor-promoting agents. Chronic signaling elicited by a number of cytokines was
found to be associated to tumorigenesis in a variety of mouse models as well as in human
diseases [2]. Cytokines act on tumor cells through downstream signaling mediators to
support cancer cell proliferation, survival, and metastatic dissemination [3]. Moreover, they
can act extrinsically on other cells within the complex tumor microenvironment, supporting
angiogenesis and the tumor evasion of immune surveillance [4]. Importantly, cytokines
also modulate cancer cell sensitivity to anti-cancer drugs, thereby contributing to protection
from cell death [5].

The relationship between cancer and the tumor microenvironment has long been a
confounding issue. Although cells surrounding or recruited to the tumoral milieu have
the weapons required to target cancer cells, they are often rewired to tumor-promoting
cells [6,7]. Subsets of immune and non-immune cells have been identified in the last two
decades as drivers of neoplastic progression: tumor-associated macrophages, neutrophils,
myeloid-derived suppressor cells, regulatory T cells (Treg) [8], and cancer-associated
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fibroblasts [9]. Many of these cells act through the secretion of cytokines, including tumor
necrosis factor (TNF)-α [10], transforming growth factor (TGF)-β [11], IL-1 [12], IL-6 [5,13],
IL-9 [14,15], and IL-10 [16]. Additionally, in solid tumors that are breast, colon, lung, and
kidney cancer, and in hematologic malignancies, tumor cells themselves secrete cytokines
to sustain a pro-tumorigenic inflammatory loop [17,18]. Regardless of their cellular source,
these immune mediators control the efficient communication between neoplastic cells and
bystander cells, and guide the tumor microenvironment to establish a favorable milieu to
support tumorigenesis.

A profound modulation of the tumor microenvironment characterizes chronic lym-
phocytic leukemia (CLL), with altered functions of innate and adaptive immune elements
and non-immune cells that favor leukemia onset and evolution and affect therapeutic
responses [19]. Among these elements, secreted cytokines stand out through their ability
to hamper tumor-directed immune responses and to consequently induce an immunosup-
pressive pro-survival environment for tumor cells. CLL B cells secrete a large variety of
cytokines (extensively reviewed in [17]), which contribute to the altered cytokine balance
observed in this leukemia and can be related to the clinical course of the disease [17],
both by supporting the growth of the leukemic clone [20] and by hampering apoptotic
programs [21]. IL-9, one of the most recent entries in the list of cytokines with effects on
CLL, is secreted by several immune cells in many disease contexts where it shows both
anti-tumoral [22] and pro-tumoral effects [23] that depend on the specific tumor subtype.
The molecular mechanisms underlying the pro-tumoral activities of IL-9 in CLL pathogene-
sis are still a matter of debate and deserve to be discussed. In this review, we will examine,
in detail, IL-9 and its functions as a soluble mediator of immune responses, focusing on its
role in the pathogenesis of CLL.

2. The Intracellular Signaling Pathways Activated by IL-9

Identified in the late 1980s, the pleiotropic cytokine IL-9 was initially found to act as a
growth factor for T lymphocytes and mast cells [24]. In the next decade, it became clear that
IL-9 is secreted by a number of cell subsets, including the effector T helper (Th) 2 and Th17
cells, regulatory T cells (Tregs), the type 2 innate lymphoid cells (ILC2s), and natural killer
(NK) T cells [24]. A milestone in our understanding of IL-9 biology was reached in 2008
when Veldohen and colleagues reported that a new CD4+ T-cell subset, named Th9, that
differentiates starting from either naïve T cells in the presence of IL-1β, IL-4, and TGF-β,
or from Th2 cells in the presence of TGF-β alone [25], was endowed with the specific
ability to secrete high amounts of IL-9 [26]. Recently, other cell populations were found to
secrete IL-9, including Tc9 [27], a cytotoxic T cell (CTL) population that differentiates in a
microenvironment enriched in IL-9 and that shows a modified expression profile of typical
CTL molecules, such as the lytic enzyme granzyme B, the transcription factors Eomes and
T-bet, and the pro-inflammatory cytokine IFN-γ [28]. In human peripheral blood, one of
the major sources of IL-9 is represented by Vδ2 T cells, the main cell subpopulation of
the γδ T cell subset [29]. Indeed, in the presence of TGF-β and IL-15, antigen-stimulated
Vδ2 T cells secrete large amounts of IL-9 [30]. Finally, IL-9-producing mucosal mast cells
(MMC9), distributed around the microvasculature of the intestinal mucosa [31], participate
in allergic diseases and promote food allergy mediated by IgE [32,33], mainly by secreting
a variety of cytokines, including IL-9 [34].

As a member of the γ-chain family of cytokines, IL-9 binds to IL-9R, a heterodimeric
surface receptor composed of a common γc chain and an IL-9Rα-specific chain that pro-
vides the ligand-binding domain [35]. The two receptor monomers associate preferentially
following IL-9 binding, as demonstrated by the fact that in the absence of IL-9, only small
amounts of IL-9Rα (approximately 25%) are associated with the γc subunit, while in the
presence of IL-9, the percentage of heterotypic receptor complexes increases [36], indicating
a marked dimerization activity operated by the cytokine ligand. The two molecular compo-
nents of the IL-9 receptor play distinct roles in intracellular signaling. Upon IL-9 binding,
IL-9Rα and the γc chain form a heterocomplex that undergoes conformational changes
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that allow recruitment of the intracellular tyrosine kinase Janus kinase (JAK) 1 to the
consensus intracellular membrane-proximal BOX1 motif of IL-9Rα [37], while the γc chain
interacts with JAK3 (Figure 1) [38]. IL-9-induced receptor dimerization then promotes the
cross-phosphorylation of JAK1 and JAK3 [39]. Although this upstream signaling module is
shared by all other members of the γc chain family of cytokines (interleukins 2, 4, 7, 15 and
21), the downstream signaling is cytokine-specific. The IL-9R-associated phosphorylated
forms of JAK1 and JAK3 mediate the phosphorylation of receptor tyrosine residues, which,
in turn, act as docking sites for downstream signaling molecules containing Src homology
2 (SH2) domains. These include the transcription factors Signal Transducers and Activators
of Transcription (STAT), the Insulin Receptor Substrate (IRS), and adaptors mediating
the activation of the Mitogen-Activated Protein Kinase (MAPK) pathways [40]. A single
phosphorylated tyrosine residue (tyrosine 367) in the cytoplasmic tail of IL-9Rα transduces
IL-9 signaling to STAT proteins [39]. The amino acids flanking tyrosine 367 specificate
binding to STAT1, STAT3, and STAT5, leading to the formation of STAT1 homodimers,
STAT5 homodimers, and STAT1–STAT3 heterodimers [41], which then translocate to the
nucleus to initiate de novo gene expression (Figure 1). In hematopoietic cells, IL-9 was
also found to activate IRS-1 and IRS-2 [42], large molecules containing both individual
residues and domains that mediate their interaction with signal transduction components,
including a protein tyrosine-binding (PTB) domain and several phosphorylatable serine,
threonine, and tyrosine residues [43]. Following IL-9 stimulation, JAK1 associates with and
phosphorylates IRS-1 [27], which, in turn, interacts with SH2-containing signaling proteins
such as the p85 regulatory subunit of Phosphatidylinositol-3 Kinase (PI3-K). Active PI3-K
then activates downstream signaling molecules such as Akt, which, in turn, phospho-
rylates Bcl2-associated Agonist of cell Death (BAD), thereby preventing apoptosis [40]
(Figure 1). Weak activation of the MAPK pathway was also reported in lymphoid and
mast cell lines stimulated with IL-9 [44]. The adaptors SH2-domain-containing (Shc) and
growth factor receptor-bound-protein 2 (Grb2) both participate in this signaling pathway,
which leads to the activation of Son of Sevenless (SOS), the GTP exchange factor for the
small GTPase Ras, and to the activation of the MAPKs ERK1/2. How Shc and/or Grb2 are
recruited to the IL-9 receptor has, as yet, not been elucidated, although a role for additional
adaptors was proposed [40]. This signaling module was recently found to be related to
the pathogenesis of pediatric T-cell acute lymphoblastic leukemia (T-ALL). Ksionda and
colleagues reported that overexpression of the Ras Guanyl exchange factor (GEF) RasGRP1
(Ras guanine nucleotide-releasing protein 1) in T-ALL cells makes them highly sensitive to
IL-9, which is, therefore, able to strongly stimulate the Ras-mediated signaling pathways,
enhancing leukemic cell proliferation and survival [45] (Figure 1).

As for all signaling modules, the IL-9-dependent signaling pathways need to be nega-
tively regulated through inhibitory mechanisms. Suppressor of Cytokine Signaling (SOCS)
3 [46], Protein Inhibitors of Activated STATs (PIAS), and the SH2-containing phosphatase
SH-PTP2 [47] hamper IL-9 signaling by (i) blocking the activation of the STATs (SOCS3),
(ii) impairing binding of STAT dimers to their specific DNA target sequences (PIAS), and
(iii) dephosphorylating the receptor phosphatase SH-PTP2 [48]. Downregulation of the
IL-9-bound surface IL-9R followed by polyubiquitination and proteasomal degradation of
both IL-9Rα [49] and the γc chain [50] was also previously reported as a means of definitely
turning off IL-9 signaling [40].
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Figure 1. IL-9 Signaling Pathways. IL-9 binds to the heterodimeric receptor IL-9R and recruits the
Janus kinases JAK1 and JAK3. The phosphorylated JAKs activate the STAT1 and STAT5 homodimers
and the STAT1:STAT3 heterodimer, which translocate into the nucleus and bind DNA to control
gene expression. JAK1 also activates IRS-1, which, in turn, activates the PI3-K/Akt-dependent
anti-apoptotic pathway, and the Ras/MAPK signaling pathway that controls gene expression.

3. Implications of IL-9 Secretion in Disease

IL-9Rα is expressed on hematopoietic cells, which include Th17, Treg, CTLs, B cells,
mast cells, and dendritic cells (DCs) [51]. It is also expressed on non-hematopoietic cells
such as airway and intestinal epithelial cells, smooth muscle cells, and keratinocytes [52].
Due to this broad expression pattern, a variety of cell types are sensitive to IL-9 secretion in
the microenvironment with effects (extensively reviewed in [51]) that include the following:
(i) the stimulation of Th17 differentiation and proliferation; (ii) the enhancement of the
suppressive activities of Treg; (iii) the modulation of CTL cytotoxicity; (iv) the activation
and proliferation of mast cells, ILCs, and DCs; and (v) the promotion of memory B cell
development and antibody-dependent responses [51]. Moreover, IL-9-stimulated cells,
in turn, secrete cytokines that exert both autocrine stimulation and feedback stimulatory
loops on IL-9-producing cells themselves [51].

Taking into consideration the plethora of IL-9 targets and their multiple and mul-
tifaceted roles in immune responses, the effects of IL-9 release are so different that they
can even be opposed. Depending on the disease context, IL-9 exerts either stimulatory
or suppressive effects on immune responses. IL-9 was initially studied in allergic dis-
eases, where it exerts a detrimental pro-inflammatory activity by promoting the expression
of the Th2-related chemokines CCL17 and CCL22, known to be associated with allergic
inflammation [53]. Moreover, mast cell-derived IL-9 enhances the susceptibility to IgE-
mediated experimental food allergy [32,33]. Th9 cells, through their IL-9-elevating activity,
also contribute to the pathogenesis of autoimmune-related diseases, such as rheumatoid
and psoriatic arthritis, systemic vasculitis, systemic lupus erythematosus, and systemic
sclerosis [52,54]. The overexpression of IL-9 and IL-9Rα in interstitial fluids and tissues
isolated from patients with autoimmune diseases has been related to the degree of tissue
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inflammation [52,55,56]. It is noteworthy that IL-9 expression also ameliorates the out-
comes of some types of autoimmune diseases. Notably, it exerts an anti-inflammatory
activity in both multiple sclerosis and experimental autoimmune encephalomyelitis (EAE),
inflammatory diseases of the central nervous system whose pathogeneses are mainly re-
lated to the activity of Th17 cells [57]. In these diseases, IL-9 suppresses the secretion of
Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) by CD4+ T cells, thereby
reducing autoimmune neuroinflammation [58]. IL-9 has also a remarkable implication in
pathogen clearance. It was reported that it helps in the clearing of parasites by promoting
the recruitment and proliferation of mast cells [24]. Moreover, by markedly decreasing the
production of the inflammatory mediators TNF-α, IL-12, and IFN-γ and concomitantly
inducing the production of the anti-inflammatory cytokine IL-10, it confers resistance to
infections of the lethal pathogen Pseudomonas aeruginosa [59].

4. The Pro- and Anti-Tumoral Functions of IL-9

Wan and colleagues recently defined IL-9 as a “double-edged sword” in tumor im-
munity [25]. On the one hand, it promotes tumor development by enhancing tumor
cell proliferation and blocking their apoptotic program; on the other hand, it mediates
anti-tumoral immunity by fueling both adaptive and innate immune responses [25]. The
current idea is that IL-9 exerts opposite effects on tumor development according to the
type of neoplastic cell and to its microenvironmental niche [17]. In the majority of solid
tumors, among which melanoma stands out [60], IL-9 acts as an anti-tumoral factor both
by promoting apoptosis of tumor cells and by activating innate and adaptive anti-tumoral
immunity. Th9 cells fight against tumors thanks to their ability to secrete high amounts of
IL-9, as demonstrated by the fact that IL-9 deletion abolishes the Th9-mediated anti-tumor
effects [25,28,61]. In a mouse model of pulmonary melanoma, Th9 cells promote the se-
cretion of CCL20 by epithelial cells, thereby promoting the CCR6-dependent recruitment
of DCs to the tumor microenvironment, with subsequent tumor antigen delivery to the
draining lymph nodes and CD8+ T cell priming, eventually triggering a potent CTL-killing
activity [61]. IL-9R−/− mice show increased tumor growth, while, on the other hand, injec-
tion of recombinant mouse IL-9 into melanoma-bearing mice inhibits tumor growth [62].
The fact that melanoma growth is hampered by tumor-specific Th9 cell administration,
an effect reverted by anti-IL-9 antibodies [62], supports a major anti-tumoral role of IL-9
in this type of cancer. In addition, Th9 cells can also directly kill tumor cells by secreting
granzyme B. Pharmacological inhibition of granzyme B activity significantly attenuates
the cytotoxic activity of Th9 cells against B16F10 melanoma cells [62]. Th9 cell-derived
IL-9 and IL-21 further enhance the ability of CTL and NKT cells to secrete IFN-γ, thereby
promoting tumor cell killing [63]. An exception is represented by metastatic lung cancer, a
solid tumor where Th9 and Th17 lymphocytes induce metastatic spreading through IL-9
secretion, thereby strongly favoring tumor metastasis [64].

IL-9 also exerts anti-tumoral activity in gastric cancer, as demonstrated by the fact
that it inhibits both the proliferation and migration of the gastric cancer cell line SGC-7901
in vitro [65]. Moreover, in a cohort of 453 gastric cancer patients, high IL-9 expression was
found to be associated with increased numbers and elevated killing activities of CD8+-
infiltrating T lymphocytes (TILs), enhanced efficacy of anti-programmed cell death 1 (PD-1)
immunotherapy based on the monoclonal antibody Pembrolizumab, and increased overall
survival [22]. IL-9 also exerts a strong anti-tumor response in colon cancer [66]. Notably,
IL-9 quantification by immunohistochemistry and quantitative real-time PCR in tissue
specimens of colon cancer patients showed a strong correlation between IL-9 expression
and disease progression, with the better prognosis shown by patients with the highest
levels of IL-9 in cancer tissues [66]. Furthermore, Th9 cells play an anti-tumoral role in
breast cancer. Th9 cells, which are significantly increased in the peripheral blood of breast
cancer patients [67], act via the secretion of both IL-9 and IL-21, which promotes cytotoxicity
of tumor-specific CTLs [68].
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As opposed to solid tumors, where IL-9 acts as a protective soluble molecule in
the tumor microenvironment, IL-9 mainly exerts a pro-tumoral effect in hematologic
malignancies. The pro-proliferative and anti-apoptotic activities of IL-9 in hematologic
neoplasias result from its ability to trigger the JAK/STAT pathways [69], which eventually
stimulate neoplastic cell accumulation and promote disease progression [17]. Moreover,
IL-9 protects neoplastic cells from dexamethasone-induced apoptosis [70].

Enhanced expression of IL-9 and IL-9Rα is detectable in biopsies and sera from patients
with Hodgkin’s lymphoma, anaplastic large cell lymphoma [71,72], and nasal NK/T-cell
lymphoma [73,74]. Wang and colleagues reported elevated serum levels of IL-9 in B cells
from non-Hodgkin’s lymphoma and diffuse large B-cell lymphoma (DLBCL) patients [75],
along with high levels of IL-9R expression in tumoral tissues that correlate with adverse
prognostic markers of the disease [76]. Moreover, they showed that neutralizing anti-IL-9 or
anti-IL-9R antibodies significantly inhibit tumor growth in mouse models of lymphoma [75].
They more recently demonstrated that high serum levels of IL-9 in DLBCL patients correlate
with prolonged survival and reduced sensitivity to chemotherapeutic drugs of neoplastic
cells [77].

IL-9 also participates in the pathogenesis of T cell hematologic malignancies. As
mentioned above, T-ALL cells are highly sensitive to IL-9 as a result of RasGRP1 overex-
pression, which promotes Ras/MAPK signaling and enhances leukemic cell proliferation
and survival [45]. Moreover, the high levels of Th9-secreted IL-9 found in Cutaneous
T-Cell Lymphoma also participate in tumor development by reducing the oxidative stress
of leukemic cells. thereby promoting their survival [78]. Adult T-cell leukemia is an ad-
ditional example of the pro-tumoral function of IL-9. In this neoplasia, the activation of
IL-9-dependent autocrine/paracrine loops results in amplified JAK/STAT signaling and
enhanced tumor cell survival and proliferation [79].

5. IL-9 Acts as a Pro-Tumoral Soluble Factor in Chronic Lymphocytic Leukemia (CLL)

Chronic lymphocytic leukemia (CLL) is a strikingly heterogeneous hematologic ma-
lignancy, both molecularly and clinically. It is characterized by the accumulation of mature
monoclonal B lymphocytes with a CD19+/CD5+/CD23+ phenotype in the bone marrow, pe-
ripheral blood, and lymphoid tissues [80], where malignant B cells receive key proliferation
and survival signals by immune and non-immune microenvironmental cells [81]. Notably,
CLL B cells and the tumor microenvironment dynamically co-evolve not only through
direct cell–cell contact, but also through massive and unbalanced secretion of cytokines,
growth factors, and extracellular vesicles, thereby paving the way to the establishment of a
pro-inflammatory and immunosuppressive microenvironment [82].

IL-2, IL-4, IL-8, IL-22, IL-23, and TNF-α all exert a frank pro-tumoral activity in
CLL by stimulating STAT and NF-κB transcription factors and enhancing tumor cell
proliferation [17]. By contrast, other cytokines exert dual and opposing activities. IL-6
activates the pro-survival transcription factors STAT3 and NF-κB in CLL [83], while, in
contrast, suppressing toll-like receptor signaling [84]. IL-15 also harbors two different and
opposing functions in CLL pathogenesis. This cytokine promotes CLL cell proliferation
and prevents apoptosis induced by surface IgM cross-linking [85], but also promotes
autologous NK cell proliferation and enhances the sensitivity of leukemic cells to the
anti-CD20 antibody Rituximab [86,87]. The implication of IL-17 in CLL remains unclear.
Its downregulation is associated with Treg expansion and disease progression in CLL [88],
but at the same time, it is upregulated, along with IL-6, in sera from CLL patients [89].

We and others recently reported the overexpression of IL-9 in leukemic cells from CLL
patients [14,15,90–92] and Eµ-TCL1 mice [15], a well-established CLL mouse model [93].
Interestingly, this enhanced expression correlates with hallmarks of aggressive disease,
such as unmutated Immunoglobulin Heavy Variable (IgHV) genes, ectopic expression
of ζ-associated protein of 70 kDa (ZAP-70), and high levels of the surface glycoprotein
CD38 [14,15,90]. Moreover, it correlates with lower overall survival of CLL patients [15].
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IL-9 is also overexpressed in sera and peripheral blood from CLL patients [92], mainly as a
result of uncontrolled secretion by Th9 cells [91].

The mechanisms regulating IL-9 overexpression in leukemic cells from CLL patients
are still a matter of debate. By treating MEC1, a cell line derived from a CLL patient [94],
with a STAT6 specific inhibitor, Chen and colleagues demonstrated that STAT6 is implicated
in the regulation of IL-9 expression [95]. In leukemic cells isolated from peripheral blood
of a small cohort of patients, Chen et al. also observed abnormal STAT3 phosphorylation
and found that a positive feedback loop activated by extracellular IL-9 leads to STAT3
phosphorylation, which then further enhances IL-9 expression [14]. Interestingly, STAT3
activation leads to the upregulation of miR-155 and miR-21 expression in CLL cells [96],
which, in turn, promote IL-9 expression [14]. Moreover, IL-9 expression is regulated by
NF-κB in T cells [97] and mast cells [98], suggesting that a similar mechanism is operational
in B cells. It is noteworthy that NF-κB is constitutively activated in CLL B cells [99], further
substantiating this hypothesis (Figure 2).

Figure 2. IL-9 expression and functions in CLL. IL-9 expression in CLL B cells is positively regulated
in the following ways: (i) by the binding of IL-4 to the IL-4 receptor IL-4R and STAT6 activation; (ii) by
the defective expression of p66Shc and the resulting low levels of intracellular ROS; and (iii) by a
positive feedback loop activated by IL-9 secreted by CLL B cells themselves, which binds IL-9R and
activates STAT3. IL-9 also acts on stromal cells, enhancing the expression of homing chemokines that,
in turn, act on CLL B cells to promote their homing to lymphoid organs. ROS: reactive oxygen species.

A recent report by Sabry and colleagues showed that high levels of circulating IL-9
and Th9 cells strongly correlate with oxidative stress in leukemic cells from CLL patients,
which, in turn, correlates with markers of unfavorable prognosis, such as abnormal im-
munophenotype and cytogenetic aberrations. These results strongly suggest the existence
of a link between Th9-secreted IL-9 and oxidant-dependent injury in CLL B cells, although
the underlying molecular mechanism remains to be clarified [91].

We recently discovered that an additional mechanism is implicated in IL-9 overex-
pression in leukemic cells from CLL patients. We found that IL-9 overexpression strongly
correlates with the expression defect of the proapoptotic adaptor p66Shc that has been
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associated with CLL [15,100]. The strong inverse relationship between p66Shc and IL-
9 expression was demonstrated by the drop in IL-9 expression in CLL B cells where
p66Shc expression was reconstituted by transient transfection [15]. IL-9 overexpression
was also observable in leukemic cells from Eµ-TCL1 with overt leukemia, along with a
profound decrease in p66Shc expression, and further increased in leukemic cells from
Eµ-TCL1/p66Shc−/− mice [15], demonstrating that p66Shc participates in the control of
IL-9 expression (Figure 2). The molecular mechanism linking p66Shc to IL-9 expression
is, as yet, unknown, although we can hypothesize a role for the well-known pro-oxidant
activity of p66Shc. The p66Shc defect observed in CLL was indeed found to be related
to a substantial decrease in intracellular reactive oxygen species (ROS) [101]. The fact
that IL-9 expression decreases in CLL B cells reconstituted with wild-type p66Shc but
not with a p66Shc mutant lacking the ROS-elevating activity [15] strongly supports the
hypothesis that a still-unknown ROS-sensitive transcription factor might be responsible for
the enhanced expression of IL-9.

These findings indicate that, in the specific context of CLL, IL-9 is overexpressed not
only by Th9 cells, but also by leukemic cells themselves. Irrespective of the cells involved
in the secretion of this cytokine, the increased amount of IL-9 in the CLL tumor microenvi-
ronment has been proven to promote tumor development [14,15,90,91]. To date, the effects
of this cytokine on the immune components of the tumor microenvironment have not
been investigated. Interestingly, we showed that IL-9 acts on the stromal cells of lymphoid
organs by enhancing their secretion of the homing chemokines CCL2, CXCL13, CCL21, and
CXCL9, -10, and -11, ligands of the chemokine receptors CCR2, CXCR5, CCR7, and CXCR3,
respectively [15]. We correlated the enhanced release of homing chemokines by stromal
cells to the enhanced accumulation of CLL cells in the pro-survival and chemoprotective
lymphoid niche [80] (Figure 2). Leukemic cells from Eµ-TCL1/p66Shc−/− mice, that secrete
even higher amounts of IL-9 compared to their Eµ-TCL1 counterparts, also harbor a higher
rate of homing to lymphoid organs [101], which correlates to the enhanced secretion of
homing chemokines by stromal cells [15]. Of note, while both CXCL13 and CCL21 typically
control lymphocyte homing to secondary lymphoid organs, the CCL2 and the CXCR3 lig-
ands CXCL9, -10, and -11 have been found to guide lymphocyte homing toward extranodal
sites such as the liver and lung, which are colonized by leukemic cells in CLL patients with
highly aggressive disease presentation [102–104]. Indeed, Eµ-TCL1/p66Shc−/− mice show
a profound structural alteration of both the liver and lung as a result of high leukemic cell
homing to these sites [101]. Hence, while the potential effects of IL-9 dysregulation on
other components of the tumor microenvironment remain to be clarified, we can definitely
qualify IL-9 as a pro-tumoral cytokine in the CLL context, with both autocrine pro-survival
effects on leukemic cells, indirect pro-chemotactic effects through paracrine conditioning of
neighboring stromal cells, and long-distance effects on stromal cells far from the lymphoid
tumor microenvironment in order to generate new leukemic foci.

6. Conclusions

Accumulating evidence establishes IL-9 as a key player in disease pathogenesis, albeit
with different and sometimes opposing activities in specific disease contexts. Here, we
reviewed our current understanding of the role of IL-9 in several neoplasias, and pointed
out that it exerts protective activities on solid tumors while acting as a pro-tumoral soluble
factor in hematologic malignancies. It is noteworthy that solid and hematologic tumors
show remarkable differences in their tumor architecture. Indeed, in solid tumors, neoplastic
cells locate in the center, and the surrounding tumor microenvironment forms a barrier
that hampers immune cell infiltration, thereby protecting tumor cells from elimination.
By contrast, in hematologic malignancies tumor cells intimately associate with cellular
infiltrates of the tumor microenvironment [8]. Hence, the tight dialogue between neoplastic
cells and the microenvironment in hematologic malignancies turns into the minimal and
less efficient dialogue in solid malignancies. This crucial “anatomical” difference might
account for the opposing functions of IL-9 in neoplasias, and suggests potentially different
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outcomes of anti-cancer therapies based on anti-IL-9 antibodies. It is noteworthy that
additional careful evaluation of IL-9 secretion in both solid and hematologic malignancies
is required before considering its potential use as an anti-cancer therapeutic.

CLL is a hematologic malignancy where IL-9 has pro-tumoral functions. Secreted
by both Th9 cells [91] and leukemic cells themselves, it activates JAK/STAT-dependent
signals, which promote neoplastic cell survival and proliferation [14,92]. Moreover, it
stimulates stromal cells to secrete homing chemokines, ultimately enhancing the ability
of leukemic cells to home to the lymphoid stroma, thereby further promoting their sur-
vival [15]. Targeted therapies that are able to reduce IL-9 in CLL patients might, therefore,
counteract its detrimental effects in CLL pathogenesis. Intravenous injection of mono-
clonal anti-IL-9 antibodies was proven effective in ameliorating disease outcomes in the
Eµ-TCL1/p66Shc−/− mouse model of aggressive CLL [15], paving the way to further pre-
clinical studies. In the era of targeted therapies, the strong association between circulating
IL-9 and markers of unfavorable CLL prognosis [14,15,90] suggests the potential use of
anti-IL-9 antibodies as a therapeutic option for patients with high IL-9 levels. Interestingly
glucocorticoids, potent immune-suppressive agents that reduce cytokine expression by
inhibiting transcription factors such as Activation Protein (AP)-1 and NF-κB, have been
observed to reduce IL-9 expression in asthma patients [40,105]. However, they also reduce
the expression of other cytokines, including IL-5 and IL-13, as a consequence of a shared
regulatory mechanism [105], making this therapeutic hypothesis hardly feasible.

CAR-T cell therapy is effective for hematologic malignancies. However, no approved
CAR-T cell therapies for CLL are available yet [106]. Interestingly, a recent existing finding
demonstrates that human CAR-T cells polarized and expanded under a Th9-culture condi-
tion (T9 CAR-T) display stronger anti-tumor activity against established CD19-expressing
human ALL or GPC3-expressing liver carcinoma in vivo compared to the classical IL-2-
polarized (T1) CAR-T cells [107]. Compared to the T1 subtype, T9 CAR-T cells preferentially
secrete IL-9, which displays anti-tumoral effects on both hematologic (ALL) and solid (liver
carcinoma) tumors. This result further highlights that our knowledge of IL-9 behavior in
tumor control is still far from complete but also underscores the importance of investigating
the full array of tumor-specific activities of this cytokine.

The role of Tc9 cells in CLL has not yet been addressed. Interestingly, while, in melanoma
models, Tc9 cells have a strong and persistent anti-tumor effect that mainly depends on the
production of IL-9 [108], Tc9 cells show a weak cytolytic ability in vitro [28,109,110]. Given
that T cell-mediated cytotoxicity is suppressed in CLL [111], studies focused on this immune
cell population might provide new clues to restore CTL-mediated anti-tumor responses in
CLL.
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