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Appendix 1. Some consistency results.  

For any 𝛿 > 0 and for any location 𝑝 ∈ 𝐴, denote by 𝐵(𝑝, 𝛿) = {𝑞: 𝑞 ∈ 𝐴, ‖𝑝 − 𝑞‖ < 𝛿 } the 𝛿-ball 

of 𝑝 within 𝐴. Moreover, denote by 𝑉(𝑝, 𝛿) = ⋂ {𝑃𝑖 ∉ 𝐵(𝑝, 𝛿)}𝑛
𝑖=1  the event that a void, i.e., no 

sample location, occurs within the 𝛿-ball of 𝑝.  

If 𝑝 is an interior point, i.e. 𝑝 ∈ 𝐴\Δ, then the greatest distance 𝛿𝑝 such that 𝐵(𝑝, 𝛿𝑝) ∩  Δ = ∅ 

defines the event 𝑉𝑐(𝑝, 𝛿𝑝), i.e. the event that at least a sample point falls within  𝐵(𝑝, 𝛿𝑝), in such 

a way that if 𝑉𝑐(𝑝, 𝛿𝑝) occurs, the NN interpolar at 𝑝 guesses the true class. In other words 

  

Pr{�̂�(𝑝) = 𝑦(𝑝)} ≥ Pr{𝑉𝑐(𝑝, 𝛿𝑝)} 

 

that is equivalent to 

 

Err(p) ≤ Pr{𝑉(𝑝, 𝛿𝑝)}                                                            (𝐴. 1) 

 

Now, denote by 𝑎(𝑝) ≤ |𝐴| the size of the 𝛿𝑝-ball of 𝑝. Under URS, the probability that the 𝑖-th 

sample location falls outside the 𝛿𝑝-ball of 𝑝 is given by 

     

Pr{𝑃𝑖 ∉ 𝐵(𝑝, 𝛿𝑝)} = 1 −
𝑎(𝑝)

|𝐴|
  , 𝑖 = 1, … , 𝑛                                    

 

in such a way that, owing to independence of sample locations under URS, the probability that no 

sample location falls within the 𝛿𝑝-ball of 𝑝 is given by 

             



Pr{𝑉(𝑝, 𝛿𝑝)} = {1 −
𝑎(𝑝)

𝐴
}

𝑛

                                                    (𝐴. 2) 

 

Then, substituting (A.2) into (A.1), under URS it holds that 

  

Err(p) ≤ {1 −
𝑎(𝑝)

𝐴
}

𝑛

                                                         (𝐴. 3) 

 

i.e., under URS the NN interpolator is pointwise consistent for each interior point 𝑝 with an error 

probability that decreases at least at a 𝑐𝑛 rate, with 𝑐 ∈ (0,1). Therefore, under URS the NN 

interpolator is also consistent in mean.  

Regarding consistency under TSS and SGS, for a sample size 𝑛, denote by 𝐴1,𝑛, … , 𝐴𝑛,𝑛 the 𝑛 

patches of equal size |𝐴|/𝑛 that partition 𝐴, and denote by 𝑖(𝑝) the label identifying the patch 

containing 𝑝. Suppose that as 𝑛 increases the 𝐴𝑖,𝑛s decrease in size in such a way that 

lim
𝑛→∞

min
𝑖=1,…,𝑛

diam(𝐴𝑖,𝑛) = 0. Therefore, there exists a sample size 𝑛0 such that, for each 𝑛 > 𝑛0 it 

holds that 𝐴𝑖(𝑝),𝑛 ⊂ 𝐵(𝑝, 𝛿𝑝), in such a way that 

  

Err(p) ≤ Pr{𝑉(𝑝, 𝛿𝑝)} ≤ Pr{𝑃𝑖(𝑝) ∉ 𝐵(𝑝, 𝛿𝑝)} ≤ Pr{𝑃𝑖(𝑝) ∉ 𝐴𝑖(𝑝),𝑛} = 0             (𝐴. 4) 

 

In practice, inequality (A.4) states that for a sufficiently large size, the NN interpolator does not 

provide errors. That obviously proves pointwise consistency and consistency in mean for the NN 

interpolator under TSS and SGS.  

 

Appendix 2. Features of bootstrap estimators of precision.  

Owing to the dichotomous nature of 𝑧(𝑝), the bootstrap estimator of  Err(p) can be rewritten as  

 

𝐸𝑟�̂�𝐵
∗(𝑝) =

1

𝐵
∑ 𝑧𝑏

∗(𝑝)
𝐵

𝑏=1
=

1

𝐵
∑ 𝐼[�̂�𝑏

∗(𝑝) ≠ �̂�(𝑝)]
𝐵

𝑏=1
   

 

Accordingly, for a sufficiently large 𝐵, owing to the strong law of large numbers it holds that 

  

𝐸𝑟�̂�𝐵
∗(𝑝)~E∗{𝐼[�̂�∗(𝑝) ≠ �̂�(𝑝)]|𝑃1, … , 𝑃𝑛} 

 



where E∗ denotes expectation with respect to the bootstrap experiment and conditional to the 

original sample 𝑃1, … , 𝑃𝑛, and �̂�∗(𝑝) denotes the estimate of 𝑦(𝑝) occurred in a generic bootstrap 

resampling. 

Because each �̂�𝑘 (see equation 14) can be rewritten as 

  

�̂�𝑘 = {𝑝: 𝑝 ∈ 𝐴, 𝑦(𝑃𝑁𝑁(𝑝)) = 𝑐𝑘} = {𝑝: 𝑝 ∈ 𝐴, 𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘} 

 

in such a way that  

 

𝐸𝑟�̂�𝐵
∗(𝑝)~E∗{𝐼[�̂�∗(𝑝) ≠ �̂�(𝑝)]|𝑃1, … , 𝑃𝑛} 

= ∑ 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘) ∑ Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ �̂�ℎ|𝑃1, … , 𝑃𝑛}

𝐾

ℎ≠𝑘=1

𝐾

𝑘=1

                              (𝐵. 1) 

 

Then, if 𝑝 ∈ 𝐴\Δ and 𝑝 ∈ 𝐷𝑘0
, i.e., 𝑦(𝑝) = 𝑐𝑘0

, from (B.1) and from the identity that 

  

𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘0
) = 1 − 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘0

𝑐 ) 

 

it follows that  

 

𝐸𝑟�̂�𝐵
∗(𝑝)~ ∑ Pr{𝑃𝑁𝑁(𝑝)

∗ ∈ �̂�ℎ|𝑃1, … , 𝑃𝑛}

𝐾

ℎ≠𝑘0=1

 

−𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘0

𝑐 ) ∑ Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ �̂�ℎ|𝑃1, … , 𝑃𝑛} +

𝐾

ℎ≠𝑘0=1

 

∑ 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘) ∑ Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ �̂�ℎ|𝑃1, … , 𝑃𝑛}     

𝐾

ℎ≠𝑘=1

𝐾

𝑘≠𝑘0=1

                       (B. 2) 

 

Once again, as stated in Appendix A, under URS, Pr(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘0

𝑐 ) , i.e., the error probability 

quickly approaches 0 at a rate of at least 𝑐𝑛 with 𝑐 ∈ (0,1), while under SGS and TSS, it is 

definitively equal to 0 for a sufficiently large 𝑛. Therefore, the random variable 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘0

𝑐 ) 

converges almost surely to 0, and, a fortiori, each 𝐼(𝑃𝑁𝑁(𝑝) ∈ 𝐷𝑘) for 𝑘 ≠ 𝑘0 converges almost 

surely to 0. Then, from (B.2) it holds 

  



𝐸𝑟�̂�𝐵
∗(𝑝)~ ∑ Pr{𝑃𝑁𝑁(𝑝)

∗ ∈ �̂�ℎ|𝑃1, … , 𝑃𝑛}

𝐾

ℎ≠𝑘0=1

 

 

in such a way that  

 

𝐸𝑟�̂�𝐵
∗(𝑝)

Err(𝑝)
~

∑ Pr{𝑃𝑁𝑁(𝑝)
∗ ∈ �̂�ℎ|𝑃1, … , 𝑃𝑛} 𝐾

ℎ≠𝑘0=0

∑ Pr{𝑃𝑁𝑁(𝑝) ∈ 𝐷ℎ}                       𝐾
ℎ≠𝑘0=0

                                (B. 3) 

 

Also in this case, in accordance with Appendix A, the random variable (B.3) is the ratio of two 

quantities that approach 0 at rates at least of exponential nature and as such it may be very unstable 

especially in the interior zones, those far by Δ where interpolation is precise and the denominator of 

(B.3) approaches 0.  

Therefore, owing to the volatility of (B.3), the quantity 

    

𝑏𝑜𝑟𝑎𝑡𝐵(𝑝) =
E{𝐸𝑟�̂�𝐵

∗(𝑝)}

Err(𝑝)
= E {

𝐸𝑟�̂�𝐵
∗(𝑝)

Err(𝑝)
}    

 

does not admit any upper bound greater than one, as that achieved by Fattorini et al. (2021, 

Theorem 3) that proves the conservative nature of the bootstrap means squared error estimator of 

the NN interpolator for quantitative variables under suitable assumptions.   

  



Appendix 3. Figures from the simulation study. 

 

Figure C1. Spatial patterns of the error probabilities (left column) and the bias of their bootstrap 

estimator (right column) evaluated at each node of the regular grid of 201 × 201 locations within 

the quadrat of Figure 1 under URS and sample sizes 𝑛 = 100;  400;  1,600;  10,000 (rows). 

 



 

Figure C2. Spatial patterns of the error probabilities (left column) and the bias of their bootstrap 

estimator (right column) evaluated at each node of the regular grid of 201 × 201 locations within 

the quadrat of Figure 1 under SGS and sample sizes 𝑛 = 100;  400;  1,600;  10,000 (rows). 

 

 

 

 



Appendix 4. Figures from cases studies. 

(a) 

 

(b)                                                                             (c) 

 

 

Figure D1. (a) Map of the six land use classes estimated from the IUTI TSS sample at the year 

2008 regarding the zone of Gargano Promontory (Puglia Region, Southern Italy); (b) Map of the 

estimates of the error probabilities achieved by 𝐵 =1,000 bootstrap samples; (c) Cumulative 

frequencies of the estimates of the error probabilities. 

 

 

 

 

 



(a) 

 

(b)                                                                         (c) 

 

 

Figure D2. (a) Map of the eight land use classes estimated from the LCMAP SRSWOR sample at 

the year 2017 regarding the state of Florida; (b) Map of the estimates of the error probabilities 

achieved by 𝐵 =1,000 bootstrap samples; (c) Cumulative frequencies of the estimates of the error 

probabilities. 

  



(a) 

 

(b)                                                                                     (c) 

 

 

 

Figure D3. (a) Map of the eight land use classes estimated from the LCMAP SRSWOR sample at 

the year 2017 regarding the state of Texas; (b) Map of the estimates of the error probabilities 

achieved by 𝐵 =1,000 bootstrap samples; (c) Cumulative frequencies of the estimates of the error 

probabilities. 
 


