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A B S T R A C T

Despite the wide variety of methods developed for synthetic image attribution, most of them can only attribute
images generated by models or architectures included in the training set and do not work with unknown
architectures, hindering their applicability in real-world scenarios. In this paper, we propose a verification
framework that relies on a Siamese Network to address the problem of open-set attribution of synthetic images
to the architecture that generated them. We consider two different settings. In the first setting, the system
determines whether two images have been produced by the same generative architecture or not. In the second
setting, the system verifies a claim about the architecture used to generate a synthetic image, utilizing one or
multiple reference images generated by the claimed architecture. The main strength of the proposed system
is its ability to operate in both closed and open-set scenarios so that the input images, either the query and
reference images, can belong to the architectures considered during training or not. Experimental evaluations
encompassing various generative architectures such as GANs, diffusion models, and transformers, focusing on
synthetic face image generation, confirm the excellent performance of our method in both closed and open-set
settings, as well as its strong generalization capabilities.
1. Introduction

Synthetic manipulation and generation of images have become
ubiquitous and are being increasingly used in a wide variety of appli-
cations. Contents generated by Artificial Intelligence (AI) and deepfake
technology have garnered widespread attention because they are often
used with malicious intent, thus representing a serious threat to public
trust. In response to this, several methods have been developed for the
detection of synthetic images, performing real vs fake classification.
However, in many cases, only knowing that the image is fake is not
enough and more information is required on the synthetic nature of the
image. In particular, in some cases, it is necessary to know the specific
model or the type of architecture used to produce the fake image
(synthetic image attribution). Several methods have been proposed
for model-level attribution via multi-class classifiers by relying on the
artifacts or signatures (fingerprints) left by the models in the images
they generate [1–3]. With model-level attribution, models that are
fine-tuned or retrained with a different configuration, for instance by
using a different initialization or training data, are considered different
models, as they are characterized by different fingerprints. This can be
a limitation in many real-world applications, where model-level gran-
ularity is not needed or is too difficult to achieve. As an answer, recent
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1 Focusing on attribution of synthetic images, our system do not consider pristine data as input.

approaches have started addressing the attribution task under a more
general setting, attributing the synthetic images to the architecture that
was used to generate them, instead of the specific model [4,5].

A common drawback of most model-level and architecture-level
attribution methods [4,5] is that they cannot work in an open-set
scenario wherein the test images are generated by a model/architecture
that has not been considered during training. This seriously limits the
applicability of these methods in real-world applications, where the im-
ages seen at operation time may be produced by models/architectures
that have not been seen during training, with the consequence that the
predictions made by the methods are not trustable. Some approaches
address this issue by performing classification with a rejection class, re-
vealing unknown models/architectures, and refraining from identifying
the model/architecture, in this case, [6–8].

In this paper, we adopt a different approach, treating the synthetic
architecture attribution task as a verification task. In particular, we
propose a method to decide whether two synthetic input images have
been produced by the same generative architecture or not.1 We also
consider a slightly different setting, where the system is asked to
verify a claim about the architecture used to generate a given im-
age, by relying on multiple reference images produced by the same
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architecture. The system is based on a Siamese Network architecture
with an EfficientNet-B4 backbone, trained in two phases: the first one
focusing on the feature extraction part to learn the embeddings and
the second on the final decision layers. We carried out a thorough
experimental campaign considering several generative architectures,
including Generative Adversarial Networks (GANs), diffusion models,
and transformers, by focusing on synthetic face image generation. The
results showed that the proposed system performs very well in both
closed and open-set settings, with a significant advantage with respect
to systems based on the introduction of a rejection class, which are not
able to provide any information about out-of-set architectures, other
than recognizing that they do not belong to the set used for training.

The contributions of this paper can be summarized as follows:

• We propose a new verification framework for open-set architec-
ture attribution of synthetic images. Two verification scenarios
are considered: in the first one, the system has to decide whether
two synthetic input images are generated by the same architec-
ture or not; in the second one, an synthetic image and a claim
on the architecture generating it are given, and the system has to
decide whether to support the claim or not.

• By focusing on the face image generation domain, we run exten-
sive experiments that prove the good performance of the proposed
verification method with several types of generative architectures
when different combinations of architectures are considered in
both closed and open set scenarios.

• We perform several generalization tests proving that the system
can verify the architecture also when unknown models for the
various architectures are considered to produce the test images,
e.g. models trained with different pristine data, different training
procedures, and different configurations of parameters.

• We exploit the verification architecture to build a system for
classification with a rejection option, showing that the proposed
system outperforms state-of-the-art methods for open-set architec-
ture attribution with a rejection class.

The rest of the paper is organized as follows: in Section 2, we briefly
review the state-of-the-art of synthetic image generation and attribu-
tion. Then, in Section 3, we describe the proposed framework and
architecture. In Section 4, we describe the datasets and the methodol-
ogy, including the training procedure and the verification protocol. The
results of the experiments we carried out to validate the effectiveness
of the proposed verification system are reported in Section 5.

2. Related works

To build our verification system for synthetic image attribution,
we resort to a Siamese Network-based architecture. It is proper to
stress that the use of Siamese Networks is not novel in the forensic
literature, and several approaches have been proposed that relies on
contrastive learning, and Siamese Networks in particular. For instance,
Mayer et al. [9], proposed using a Siamese Network to predict whether
pairs of image patches come from the same camera model. Notably,
in [10], a Siamese Network was employed to extract a camera model
fingerprint, called noiseprint, from image patches, that can be used for
image forgery localization. In [11] a method is proposed that utilizes
Siamese Networks to reveal inter-eye symmetries and inconsistencies
for GAN face detection. Additionally, [12], utilized a Siamese network
to reveal whether patches from different images have consistent meta-
data, facilitating the localization of spliced image content. To the best
of our knowledge, this paper is the first attempt to exploit Siamese
Networks for synthetic image attribution.

Below, we will briefly present the state of the art of synthetic image
generation and image attribution.
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2.1. Image generation

After the early attempts that could only generate low-resolution
images, nowadays generative models can produce very high-quality,
high-resolution images. The first approaches generating low-resolution
images were all based on GAN technology, e.g., BEGAN or BigGAN [13,
14]. An impressive advance was marked by the emergence of the Pro-
GAN architecture [15], capable of producing 1024 × 1024 resolution
images by using a progressive learning strategy. The quality of the
generated high-resolution images was further improved by the Style-
GAN series, and in particular, StyleGAN2 [16,17] and StyleGAN3 [18].
More recently, taming transformers [19], a.k.a. VQGANs, combined the
power of transformer architectures with the convolutional approach of
generative models for image synthesis. They utilize encoder–decoder
architectures and transformer-based modules to generate high-quality
images with coherent image structures. A drawback of GANs is that
they suffer from mode collapse, according to which generators tend to
produce a small variety of data that is not as diverse as real-world data.
Notable achievements in this direction have been made by diffusion
models. Diffusion models smoothly perturb data by adding noise, then
reverse this process to generate samples from noisy images (denoising).
The pioneering work is the Denoising Diffusion Probabilistic Models
(DDPM) [20], which first demonstrated the model’s ability to generate
high-quality samples with high levels of detail. Later on, methods
applying the diffusion process in the latent space have been proposed
(see, for instance, [21,22]).

2.2. Synthetic image attribution

The problem of attributing the image to the synthetic model that
generated it has been addressed through both active and passive
approaches. Active methods involve injecting specific information,
e.g., an artificial fingerprint [3], into the generated images during
the generation process, which can later be used to identify the source
model. On the other hand, passive methods rely on the presence in the
generated images of intrinsic artifacts (namely model fingerprints), that
are peculiar to the specific model and that can be used to attribute the
images to the source model. Marra et al. [1] revealed that each GAN
leaves its specific fingerprint in the images it generates. The averaged
noise residual image can be taken as a GAN fingerprint. Yue et al. [23]
replace the hand-crafted fingerprint formulation in [1] with a learning-
based one, decoupling the GAN fingerprint into a model fingerprint and
an image fingerprint. Frank et al. [24] and Joslin et al. [25] perform
model attribution considering features in the transformed domain.
In addition to model-level attribution techniques, researchers have
started proposing approaches that address the attribution problem at
the architecture-level [4,5,26], whose goal is to attribute the synthetic
images to the source architecture, regardless of how the generative
models have been trained, fine-tuned or retrained with a different
dataset of pristine images or with different configurations.

All the above model-level and architecture-level methods work in
a closed-set setting, that is when they are asked to analyze images
produced by models included in the training set, in the model-level
attribution case, or by (possibly unknown) models from known ar-
chitectures, in the architecture-level attribution case, and fail in the
open-set scenario. The problem of open-set classification has been ad-
dressed in several forensic tasks, like camera model identification [27,
28]. With regard to the forensic analysis of synthetically generated
contents, while the problem of generalization to unknown manipulation
methods has been considered recently by several works dealing with
synthetic image detection, e.g., [29,30], only a few methods have been
proposed dealing with synthetic image attribution in open-set scenario,
at model-level [6,7] and at architecture-level [8]. These methods rely
on the introduction of a rejection option, whereby images generated by
models or architectures that were not seen during training are rejected
to avoid making a wrong prediction. Such methods, then, must be
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Fig. 1. Verification scenarios considered in the paper.
retrained with samples coming from the new models/architectures if
the analysts want to be able to attribute the samples to these architec-
tures/models. The method in [6], for instance, permits the attribution
to any new class, assuming that a few labeled images of such a class
are available. These images are exploited to derive the distribution of
the new class in the latent space.

As we already stated, in this paper, we adopt a different perspective
and treat the open-set architecture attribution problem as a verification
task, whereby images produced by out-of-set architectures are handled
naturally, without introducing a rejection option.

3. Proposed verification system

The proposed verification system for synthetic image attribution is
illustrated in Fig. 1. The following verification scenarios are considered:

• Given two input images 𝑋 and 𝑌 , verify whether they are pro-
duced by the same generative architecture or not (input pair
verification).

• Given an input image 𝑋 and a claim on the generating archi-
tecture, verify whether 𝑋 has been produced by the claimed
architecture or not (claimed-based verification).

In the first scenario, the system is fed with the input pair (𝑋, 𝑌 ). The
label 𝑚 associated with the input pair is equal to 0 if 𝑋 and 𝑌 have been
generated by the same architecture, 1 otherwise. By indicating with 𝑚̂
the output of the system, and with 𝑝(𝑋, 𝑌 ) the probability score, we
have 𝑚̂ = 0 if 𝑝(𝑋, 𝑌 ) < 0.5, 𝑚̂ = 1 otherwise. In the second scenario,
the verification works by considering one or multiple reference images
𝑌𝑗 generated from the claimed architecture (of Type-𝑗) and evaluating
the system with the resulting pairs. In the multiple-reference case, given
a dataset of references 𝐷𝑗 , all the pairs (𝑋, 𝑌𝑗𝑖), 𝑌𝑗𝑖 ∈ 𝐷𝑗 , are tested and
the final decision (Yes/No) is taken by fusing the outputs according to
some fusion strategy. In our experiments, we considered both majority
voting and score-level fusion. The latter gave the best performance. In
particular, the best results were achieved by considering the minimum
probability score. The proposed verification framework naturally works
in an open-set scenario, where one of the two inputs or both inputs
come from an architecture that has not been used for training (with
reference to the second verification scenario, either the input 𝑋, or the
claim, or both, may come from an unknown architecture).

3.1. Siamese network-based architecture

The system we are proposing to address the tasks described in
Fig. 1 relies on a Siamese Network (SN) architecture, see Fig. 2. It
consists of two parts, the feature extraction part, and the decision-
making part. Feature extraction is performed by an SN that is based on
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EfficientNet-B4 [31] as a backbone for each of the two branches with
shared weights. The input image size for each branch is 380 × 380.
The output of each branch is flattened and then fed as input to a dense
layer with size input neurons. The feature embedding, then, consists
of 512 elements. The features are input to a normalization layer, then
the point-wise absolute distance between the two output vectors is
computed. The distance vector enters the decision-making network,
consisting of three consecutive dense layers of sizes 256, 64, and 1
respectively. The final probability scores are obtained by inputting the
output of the last dense layer into a sigmoid activation layer. In our
experiments, we also tried other backbone networks to implement the
Siamese branches, based on ResNet [32] and SWIN transformers [33].
While we got perfect results with all these networks in the closed-set
setting, the EfficientNet backbone is the one giving the best result in
the open-set setting.

4. Methodology

4.1. Datasets

To train and test the verification system, we considered a total of 10
architectures, reported below, including GANs, diffusion models, and
transformers. Specifically, we considered the following generative ar-
chitectures: BigGAN [14], BEGAN [13], ProGAN [15], StyleGAN2 [16],
StarGANv2 [34], StyleGAN3 [18], DDPM [20], Latent Diffusion [22],
LSGM [21] and taming transformers [19].

The generative models utilized for the experiments correspond
to models pre-trained on the FFHQ dataset [35] and the CelebA
datasets [36], with different configuration parameters, made available
in the various repositories. In particular, for StyleGAN3, we consid-
ered the two best configurations, namely t and r [18], trained on
different real datasets and with different resolutions. For StyleGAN2,
the best performing configuration, namely configuration f, is used for
training [16].

Starting from this pool of architectures, three different splittings of
in-set and out-of-set architectures were considered, with 5 in-set and
5 out-of-set architectures each, named config1, config2, and config3.
The details of the splittings are reported in Table 1. We observe that
in the first and second configurations, a mixture of GANs, diffusion
architectures, and transformers were considered as in-set, while in the
third configuration, only GANs are included as in-set architectures. The
in-set architectures are used to train the Siamese verification network,
while the out-of-set architectures are only considered for testing. For
each in-set architecture, we considered 48,000 images, split into train-
ing, validation, and testing sets according to the following numbers
45000:2500:500. For each out-of-set architecture, 500 images were
considered for testing. Fig. 3 shows an example of generated images
for every selected architecture.
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Fig. 2. High-Level Architecture for the verification task.
Fig. 3. Examples of synthetic images from the 10 architectures.
Table 1
Dataset splitting information. Architectures split (in-set and out-of-set) considered in
our experiments.

Domain Config1 Config2 Config3

In-set FFHQ Latent diffusion,
Taming
transformers,
StyleGAN2-f

StyleGAN2-f,
Latent diffusion

StyleGAN2-f,
StyleGAN3

CelebA Latent diffusion,
DDPM, BEGAN

BigGAN,
ProGAN,
Latent diffusion,
LSGM

ProGAN,
BEGAN,
BigGAN

Out-of-set FFHQ StyleGAN3,
StarGAN2

StyleGAN3,
Taming
transformers

Latent diffusion,
Taming
transformers

CelebA LSGM, ProGAN,
BigGAN

Taming
transformers,
BEGAN, DDPM,
StarGAN2

Latent diffusion,
Taming
transformers,
LSGM, DDPM,
StarGAN2

Table 2
Closed-set verification results (Acc).

Config1 Config2 Config3

Accuracy 1 1 1

As we said, to produce the images, we used pre-trained models
released by the authors in the online repositories.

4.2. Siamese network training

We trained three different SN-based verification models, one for
each configuration of in-set and out-of-set architectures, namely con-
fig1, config2, and config3. The SN-based architecture is trained on
a dataset of paired inputs, corresponding to images produced by the
same or different architectures, hereafter referred to as positive and
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negative pairs. For every configuration, the dataset is built from the
in-set training dataset as follows: each image is coupled with another
image from the same architecture to build a positive pair, and another
image is selected randomly from a different architecture to build a
negative pair. In this way, the SN is trained on a balanced dataset.
Specifically, the training dataset is made up of 45000 × 5 (no. of images
per arch × no. of in-set arch) negative pairs and the same number of
positive pairs, for a total of 450.000 pair.

In all cases, training was carried out in two distinct phases: the
feature extraction phase and the decision phase. In the first phase,
the two SN branches are trained for 100 epochs, starting from an
EfficientNet-B4 model pre-trained on ImageNet, with Adam optimizer
and learning rate equal to 0.0001, using the early stopping condition.
The network is trained using contrastive loss [37], defined as

 = (1 − 𝑚) ⋅ 𝑑2𝐸 + 𝑚 ⋅ [max(0, ℎ − 𝑑𝐸 )]2, (1)

where 𝑑𝐸 is the Euclidean distance between the output of the branches
of the SN (embeddings) and ℎ is a margin hyperparameter that enforces
a minimum distance between the two embeddings. We set ℎ to 1 in
the experiments. The contrastive loss enforces the embeddings of the
images in the latent space to be far away whenever the images come
from different architectures and close to each other when they belong
to the same architecture. Augmentation is performed during training. In
particular, we considered JPEG compression, random color transforma-
tions (brightness, contrast, saturation, and hue), and random flip. The
JPEG quality factors are randomly selected within the range [70–100].
For saturation, a random factor between 0.5 and 1 is considered, while
hue is adjusted using a random factor between −0.2 and 0.2. Similarly,
brightness undergoes modification with a random factor between −0.2
and 0.2, and contrast enhancement is applied with a random factor
between 0.2 and 0.5. Each type of augmentation is applied to the
image with a probability of 0.3. Therefore, different images undergo
a different number and different types of augmentations. Once the
embeddings have been obtained, in the second phase, the weights of
the feature extraction network are frozen and the three dense layers
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Table 3
Verification results (AUC and pd@0.05) in closed and open-set. The cells with green backgrounds
indicate in-set architectures, while the white backgrounds indicate out-of-set architectures in the
various configurations.

Config1 Config2 Config3Generating Architecture AUC pd@0.05 AUC pd@0.05 AUC pd@0.05
Latent Diffusion 1 1 1 1 0.91 0.76

DDPM 0.94 0.74 0.85 0.68 0.91 0.8
Taming transformers 1 1 0.88 0.72 0.84 0.66

StyleGAN2 1 1 1 1 1 1
BEGAN 1 0.99 0.95 0.79 1 1

StyleGAN3 0.9 0.81 0.9 0.81 0.97 0.92
LSGM 0.84 0.68 1 0.98 0.7 0.34

StarGAN v2 0.88 0.72 0.84 0.68 0.89 0.8
BIGGAN 0.95 0.79 0.9 0.74 0.92 0.79
PROGAN 0.85 0.68 1 1 1 1
following the normalization and the absolute distance layer, responsi-
ble for the decision, are trained. The binary cross-entropy (BCE) loss is
used for training these layers (decision-making network). The layers are
trained for 20 epochs with Adam optimizer and a learning rate equal
to 0.0001, with an early stopping condition. The code is made publicly
available for reproducibility at the link https://github.com/lydialy8/
openset_attribution_synthetic_images.git.

4.3. Testing procedure

We evaluated the proposed method by considering two testing sce-
narios for verification: one-vs-one and one-vs-many. In the one-vs-one
case, each input image in the test set is paired with images generated
by the 10 architectures (5 in-set, 5 out-of-set), chosen at random from
the test set, thus getting a total of 5000 × 10 (10% positive pairs and
90% negative pairs). Then the SN-based model is evaluated on those
pairs. The one-vs-one tests measure the performance of the system in
the input-pair verification scenario depicted in Fig. 1, and in the claim-
based verification scenario, when only one (random) reference is used
to verify the claim.

The one-vs-many test setting measures the performance of the sys-
tem in the claim-based verification scenario when multiple references
are available. In our experiments, we considered 100 reference images.
Given a test input image and a claim on the architecture (10 possible
claims are considered to correspond to all the architectures) - say
Type 𝑗, we paired each input image with 𝐷𝑗 = 100 reference images
from the claimed architecture. The reference images are randomly
selected from the test set. The final decision is taken by considering
either the mean or the minimum probability score (the latter resulting
in the best results). Formally, we consider, respectively, the statistic
(1∕|𝐷𝑗 |)

∑

𝑖∈𝐷𝑗
𝑝(𝑋, 𝑌𝑗𝑖), and min𝑖∈𝐷𝑗

𝑝(𝑋, 𝑌𝑗𝑖).

4.4. Comparison with classification approaches

Given that the verification framework proposed in this paper to
address the synthetic attribution task is a novel one, no baseline and
state-of-the-art methods can be considered for comparison. In order
to show the good capabilities of our system in learning good embed-
dings for the attribution task, we exploited the SN-based verification
model inside a classification framework and run a comparison with
existing methods for the classification of synthetic attribution in an
open-set scenario. In particular, for every configuration of in-set/out-
of-set architectures in Table 1, a classifier with rejection is obtained
as follows: (i) we chose one representative image for every in-set
architecture. Specifically, the cluster centroid of the validation sub-
dataset (corresponding to the architecture) is considered; (ii) the input
image is paired with the 5 representative images obtained at step 1,
and the SN-based architecture is tested with these pairs; (iii) the pair
associated with the minimum score is considered. Formally, let 𝑍𝑗 ,
𝑗 = 1,… , 5 denote the 5 centroids. Given an image 𝑋, the final classi-
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fication score associated with 𝑋 is min𝑗=1,…,5 𝑝(𝑋,𝑍𝑗 ) and the decision
is made for the closed-set architecture 𝑖∗ that achieving the minimum.
Rejection is performed by exploiting the so-called Maximum Softmax
Probability (MSP) [38]. According to this approach, low confidence in
the predicted class reflects the uncertainty of the network prediction,
providing evidence that the input sample belongs to an out-of-set class.
Then, given a threshold 𝑡, the output of the classifier 𝑗∗ is accepted
if 𝑝(𝑋,𝑍𝑗∗ ) < 𝑡 (lower scores correspond to higher confidences for
the ‘Same’/’Yes’ class in our case), rejected otherwise (unknown input
declared).

5. Experimental results

In this section, we report the performance of the proposed system in
the closed and open-set cases and the results of the generalization tests,
when unknown models are considered for the same in-set architectures.
Finally, we report the comparison results, obtained by considering the
classification with rejection system described in Section 4.4.

5.1. Verification results

The results in the one-vs-one setting are reported and discussed
below. In Table 2, we report the Accuracy (Acc) of the verification
task in the closed-set scenario, when 𝑋 and 𝑌 are produced by in-
set architectures, for the 3 configurations. These results show that in
the closed-set scenario perfect verification (Acc = 1) can always be
achieved by our system. The verification performance in the closed and
open-set settings are reported in Table 3 for each architecture, that is
for 𝑌 belonging to each of the 10 architectures. The average Area Under
Curve (AUC) of the ROC curve and the probability of correct detection
for a false alarm rate equal to 5% (pd@0.05), are reported for each
architecture. The average is computed for the negative pairs over both
in-set and out-of-set architectures (9 architectures in total). We observe
that the results corresponding to in-set architectures refer to a mixture
of closed and open-set scenarios, given that 𝑌 may either belong to an
in-set or out-of-set architecture (with probability 50%). Said differently,
at least one input of the pair comes from the in-set architectures
in this case. Instead, the results reported corresponding to out-of-set
architectures refer to the open set scenario, where at least one input of
the pair, or both inputs (with probability 50%) are produced by out-
of-set architectures. By looking at this table, we see that when at least
one of the two inputs comes from a known architecture, the verification
is perfect or almost perfect. In particular, focusing on config1, we see
that the AUC is 1 in 4 out of 5 cases (in which the pd@0.05 is also
perfect) and 0.94 in the other case. Similar results are observed in
the other configurations. The verification performance decreases, still
remaining pretty good, in cases where at least one or both inputs
come from unknown architectures (results associated with out-of-set
architectures). Overall, similar behavior and results are obtained in the
three configurations.

In Table 4, we report the average results for all configurations.

The total AUC is averaged over all the possible pairs of inputs, hence

https://github.com/lydialy8/openset_attribution_synthetic_images.git
https://github.com/lydialy8/openset_attribution_synthetic_images.git
https://github.com/lydialy8/openset_attribution_synthetic_images.git
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Table 4
Total, open-set and closed-set AUCs.

Config1 Config2 Config3

Total AUC 0.95 0.93 0.93
Open-set AUC 0.92 0.81 0.85
Closed-set AUC 1 1 1

Table 5
Total, open-set, and closed-set AUCs in the one-vs-many setting.

Config1 Config2 Config3

Mean Min Mean Min Mean Min

Total AUC 0.95 0.96 0.94 0.94 0.94 0.94
Open-set AUC 0.92 0.94 0.78 0.84 0.87 0.85
Closed-set AUC 1 1 1 1 1 1

considering all the pairs’ combinations (in-set vs in-set, in-set vs out-
of-set, out-of-set vs in-set, and out-of-set vs out-of-set). The open-set
AUC instead is computed by considering only the out-of-set vs out-of-
set pairs (fully open set), while the closed-set AUC is computed over
the in-set vs in-set pairs. The results show that config1 shows better
results in the open-set scenario. We observe that in this configuration,
the out-of-set set contains (mostly) GAN architectures and a diffusion-
type architecture (LSGM), that are also present in the in-set. This is not
the case in the other configurations where, for instance, transformers in
config2 and both diffusion models and transformers in config3 are only
considered as out-of-set, without any of these types of architectures
included in the in-set set.

In Table 5, we report the average results of the tests one-vs-many,
for all the configurations. In all the cases, a slight improvement is
observed when the minimum score is considered, compared to the case
of one reference only, while the mean score case only improves in a few
cases. These results show that using multiple random references for the
verification improves the results only slightly. A possible reason is that
all the feature vectors for a given architecture tend to cluster close to
each other, yielding a similar verification result.

5.2. Generalization tests

We also ran some generalization tests in order to prove the capabil-
ity of the proposed system to perform attribution when unknownmodels
are considered for the various in-set architectures during testing. The
purpose of these tests is to show that the system works as supposed to
and indeed attributes images to the architecture and not to the single
models. In all generalization tests, positive pairs were formed by pairing
images from the unknown models with random images from the known
models from the same in-set architecture, while negative pairs were
created by pairing images from unknown models with random images
from different in-set architectures.

In particular, we considered new models from the in-set archi-
tectures that were trained: (i) on a different dataset; (ii) by using
a different training methodology; and (iii) using different training
configurations. For case (i), we tested a system trained in config1, con-
sidering as unknown model a taming transformer model trained on the
CelebA dataset (the models considered during training for the taming
transformer architectures are trained on the FFHQ dataset). Therefore,
in this case, positive pairs are formed by generating images from
taming transformers trained respectively on FFHQ and CelebA. For
the negative pairs, images from the taming transformer model trained
CelebA (namely, the unknown) are coupled with images generated from
known models for different architectures. In case (ii), we tested the
systems trained in all configurations considering as unknown model
the StyleGAN2-ada [17] (the systems are trained with images from
StyleGAN2-f), which employs an adaptive discriminator augmentation
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mechanism for training stability in limited data regimes. Finally, for
Table 6
Results with models trained with different datasets, parameters, and training procedure
(in the last line, the number in the models’ names refers to the image resolution).

Architecture Type of
mismatch

Train Test AUC ACC

Taming
Transf
Config1

Dataset FFHQ CelebA 1 1

StyleGAN2
Config1

Training
Methodology

StyleGAN2-f StyleGAN2-
ada

1 1

StyleGAN2
Config2

Training
Methodology

StyleGAN2-f StyleGAN2-
ada

1 1

StyleGAN2
Config3

Training
Methodology

StyleGAN2-f StyleGAN2-
ada

1 1

StyleGAN3
Config3

Configuration StyleGAN3-
(t-1024/t-
u256/r)

StyleGAN3-
t-u1024

1 1

Table 7
Comparison of closed-set (Acc) and open-set (AUC) performance of the classifier based
on our SN-based model with state-of-the-art classifiers.

ResVit[8] PCSSR[39] RCSSR[39] Ours

Accuracy 0.99 0.99 0.99 1Config1 AUC 0.79 0.84 0.83 0.82

Accuracy 0.99 0.99 0.99 1Config2 AUC 0.76 0.74 0.75 0.82

Accuracy 0.99 0.99 0.99 1Config3 AUC 0.68 0.66 0.64 0.83

case (iii), we evaluated the system trained in config3 using, as unknown
model, a StyleGAN model obtained through retraining on unaligned
(-u-) high-resolution faces (FFHQ-U) with resolution 1024 × 1024.

The results reported in Table 6 demonstrate that the system gener-
alizes well in all scenarios, achieving an AUC and Accuracy equal to
1.

5.3. Comparison results

In this section, we report the results of the experiments that we
run considering a classifier built by starting from the proposed verifier,
as detailed in Section 4.4. This system is compared with state-of-the-
art classification methods, namely the PCSSR and RCSSR variants of
the method in [39], recently proposed in the general literature of
machine learning for open-set classification, and the ResVit method [8]
for the classification of synthetic manipulation and attribution in open-
set settings. All these methods perform classification with a rejection
option, thus rejecting unknown samples. As to the performance met-
rics, following [8], we use the Accuracy to measure the closed-set
performance, and the AUC to measure the rejection performance. The
results reported in Table 7 show that the proposed classifier is the one
obtaining the best average performance in all the three configurations
of in-set and out-of-set architectures, with a perfect Acc and an AUC
gain which is about 8% on the average over PCSSR and RCSSR, and
11% over [8]. These results show the superior capability of our method
based on similarity learning of getting characteristic embeddings for
the various architectures. Once again, we stress that we considered this
framework only for comparison purposes. Indeed, the capabilities of
the verification system that we proposed in this paper in the open-set
scenario are not limited to sample rejection, given that our system can
provide the same functionality in both closed and open-set scenarios.

6. Conclusion

We have proposed a novel verification framework to address the
problem of synthetic architecture attribution in open set conditions.

The experiments we ran demonstrated good performance of our system
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in both closed and open-set settings when different mixtures of gen-
erative architectures of synthetic face images are considered as in-set
and out-of-set. Generalization performance is also good, with unknown
models correctly attributed to the source architectures. We also showed
that when the SN-based verification model is used to build a classifier
with a rejection class, the results, we got are superior to those achieved
by state-of-the-art methods. Future work will focus on improving the
results obtained for the one-vs-many case, by optimizing the choice of
the images used as references. Moreover, we will consider synthetic
images with different semantic content (beyond the face domain) and
investigate the generalization capabilities of the proposed system, when
the architectures are trained on other domains to get models producing
images belonging to different categories.
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