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Abstract
Reaction systems (RSs) are a computational framework inspired by biochemical mechanisms. A RS defines a finite set of
reactions over a finite set of entities. Typically each reaction has a local scope, because it is concerned with a small set
of entities, but complex models can involve a large number of reactions and entities, and their computation can manifest
unforeseen emerging behaviours. When a deviation is detected, like the unexpected production of some entities, it is often
difficult to establish its causes, e.g., which entities were directly responsible or if some reaction was misconceived. Slicing is
a well-known technique for debugging, which can point out the program lines containing the faulty code. In this paper, we
define the first dynamic slicer for RSs and show that it can help to detect the causes of erroneous behaviour and highlight
the involved reactions for a closer inspection. To fully automate the debugging process, we propose to distil monitors for
starting the slicing whenever a violation from a safety specification is detected. We have integrated our slicer in BioResolve,
written in Prolog which provides many useful features for the formal analysis of RSs. We define the slicing algorithm for
basic RSs and then enhance it for dealing with quantitative extensions of RSs, where timed processes and linear processes
can be represented. Our framework is shown at work on suitable biologically inspired RS models.

Keywords Reaction systems · SOS semantics · Program slicing · Assertions · Monitors

1 Introduction

Reaction Systems (RSs) (Ehrenfeucht andRozenberg 2007b;
Brijder et al. 2011a) are a computational framework inspired
by systems of living cells. Their constituents are a finite set
of entities and a finite set of reactions. Each reaction is a
triple that consists of: a set of entities whose presence is
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needed to enable the reaction, called reactants; a set of enti-
ties whose absence is needed to enable the reaction, called
inhibitors; and a set of entities that are produced when the
reaction takes place, called products. RSs have shown to be a
general computational model whose application ranges from
the modelling of biological phenomena (Azimi et al. 2014;
Corolli et al. 2012;Azimi 2017; Barbuti et al. 2016) tomolec-
ular chemistry (Okubo and Yokomori 2016). The classical
semantics of RSs is defined as a reduction system whose
states are sets of entities (those produced at the previous
step, possibly joinedwith others provided by an external con-
text, thus modelling the interaction with the environment).
Notably, as reactions exploit facilitation and inhibitionmech-
anisms, the behaviour of RSs is generally non-monotonic,
i.e., a computational effect, like the production of a given
entity, is not necessarily preserved when more entities are
present in the source state.

1.1 Problem statement

Several tools are already available to simulate RSs or to ver-
ify that certain properties are met. Besides our own prototype
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BioReSolve1 proposed in Brodo et al. (2021a, 2023b) and
further extended in this paper, some notable examples are,
e.g., brsim2 a Basic Reaction System Simulator written
in Haskell and distributed under the terms of GNU GPLv3
license (Azimi et al. 2015), its online version WEBRSIM3

that makes all functionalities of brsim available through a
friendly web interface (Ivanov et al. 2018), the GPU-based
Highly Efficient REaction SYstem simulator HERESY4 that
exploits the large number of computational units insideGPUs
to boost performance (Nobile et al. 2017), the optimised
Common Lisp simulator for RSs cl-rs5 presented in Fer-
retti et al. (2020).

However, the design of RSs for modelling some natural
phenomenon is often done by domain experts to validate their
hypotheses and require some degree of abstraction. Conse-
quently, inaccuracies or false assumptionsmay be introduced
as early as the design stage. In addition, writing reactions is
an error-prone activity, and verifying their execution can be
difficult even for RSs with a couple of dozens of entities and
reactions. For example, if some mistake is done at the design
level and some inexplicable result is observed during the sim-
ulation, then a manual inspection of the computation may be
necessary in order to understand the nature of the problem.

The aim of this paper is to propose the first automatic
technique to ease the debugging of RSs. In fact, we are not
aware of any debugging systems available for the above RSs
tools.

1.2 The approach

Slicing is the classical technique to circumscribe the most
relevant parts of a program that may have caused a certain
observable effect. Slicingwas first introduced as a static tech-
nique by Weiser (1984). Then it was extended in Korel and
Laski (1988) by introducing the so called dynamic program
slicing, which supports the debugging process by selecting a
portion of the program containing the faulty code. Dynamic
program slicing has been applied to several programming
paradigms (see Silva (2012) for a survey).

The idea explored in this paper is to tailor the slicing tech-
nique to RSs and then to automatically trigger the slicing of
the computation as soon as certain events are detected. The
expected benefit is to discard all irrelevant entities and reac-
tions and to focus the attention on those directly responsible
for the observed undesirable effect.

1 Available at http://www.di.unipi.it/~bruni/LTSRS/
2 Available at https://github.com/scolobb/brsim/
3 Available at https://combio.org/portfolio/webrsim-reaction-system-
simulator/
4 Available at https://github.com/aresio/HERESY/
5 Available at https://github.com/mnzluca/cl-rs

In order to trigger the slicing in a fully automated manner
we adapt themonitoring framework in Aceto et al. (2021a) to
the setting of RSs. To this aim, first we build on the available
Labelled Transition System (LTS) semantics of RSs defined
in Brodo et al. (2021a) following the well-known Structural
Operational Semantics (SOS) style (Plotkin 1981, 2004).
Second, we introduce a flexible modal logic of assertions
over transition labels that can be used to express safety condi-
tions. Formulas are then used to synthesize suitable monitors
for the LTS semantics of RSs: they inspect the labels as the
computation progresses andwhen a violation is detected they
trigger the slicing of the trace from the faulty state.

Our slicing framework follows three main steps as in
Falaschi et al. (2016) (there declined for the quite different
setting of Concurrent Constraint Programming, which is a
monotonic language). First the dynamics of RSs is extended
to an enriched semantics that considers states paired with
their computation history. Second, we take a partial com-
putation which is considered faulty by the user, or which
is determined automatically as faulty by the monitor: the
fault is identified by marking a set of entities in the last state
reached by the computation. The marked entities are con-
sidered responsible of the bug and the goal of the slicing is
to determine the causes which led to their production. The
third step is the execution of an algorithm that removes from
the history any irrelevant information w.r.t. the production of
marked entities.

1.3 Contribution

First, we consider a slicing algorithm for ‘closed’ RSs which
are RSs where the environment provides just a set of initial
entities and then no longer interact at subsequent computa-
tion steps. Then, we extend the slicing algorithm to take into
account the step-by-step interaction of RSs with the envi-
ronment, represented by a ‘context’, which can provide new
entities at each computation step. In both cases, we show that
the sliced computation is a simplification of the original one,
which highlights the entities, contexts and reactions that are
essential to produce the marked entities. Then we show how
to define monitors to fully automate the slicing process.

Finally, we consider slicing for enhanced RSs with quan-
titative features, such as delays, duration and linearly con-
strained reactions.

We have developed a prototype implementation in Prolog,
freely available online. Here the use of a declarative approach
is useful to guarantee the correctness of the implementation,
which closely mirrors the theoretical definitions, and also it
can be easily modified to accommodate several quantitative
extensions.
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1.4 Organisation

In Sect. 2 we summarise the basics of RSs. In Sect. 3 we
recall amore convenient process algebra for RSs (Brodo et al.
2021a). In Sect. 4 we define the slicing technique for RSs.
In Sect. 5 we show a biological example to illustrate our
framework and implemented tools. In Sect. 6 we present a
specialised assertion language and we introduce monitors.
Monitors can be derived from safety formulas in modal logic
tomark automatically the entities and start the slicing. InSect.
7 we recall the definition of extensions of RSs for modelling
quantitative information, namely processes with delays and
processes with quantities which can be computed by solving
linear expressions. Then we show how the slicing algorithm
naturally extends to delays and linear quantities. We discuss
some related work in Sect. 8 and future work in Sect. 9,
together with concluding remarks.

This paper is an extended version of Brodo et al. (2023a).
We have added an entire new section to show that our slicing
framework is flexible and that our algorithm can be easily
modified to deal with previous extensions of RSs such as
timed processes and linear processes, which introduce quan-
titative information in RSs.We have included the correctness
proof of our base slicing algorithm. We have added some
examples and further explanations to improve the readabil-
ity of this paper and we have introduced a better and more
clear notation to represent the RS computations and their
sliced simplifications.

2 Reaction systems

The theory of Reaction Systems (RSs)was born in the field of
Natural Computing tomodel the qualitative behaviour of bio-
chemical reactions in living cells.We briefly account here for
the main concepts as introduced in the classical set theoretic
presentation of RSs (Brijder et al. 2011a). In the following,
we use the term entities to denote generic molecular sub-
stances (e.g., atoms, ions, molecules) that may be present in
the states of a biochemical system.

Let S be a (finite) set of entities; we call a state any subset
W ⊆ S. A reaction in S is a triple r = (R, I , P), where
R, I , P ⊆ S are finite, non empty sets and R ∩ I = ∅. The
sets R, I , P are the sets of reactants, inhibitors, and products,
respectively.We let rac(S) denote the set of all reactions over
S.

Given a state W ⊆ S, the result of a reaction r =
(R, I , P) ∈ rac(S) on W , denoted by resr (W ), is defined
as follows, where enr (W ) is called the enabling predicate of
r :

resr (W ) �
{
P if enr (W )

∅ otherwise

enr (W ) � R ⊆ W ∧ I ∩ W = ∅

From the above definition it follows that all reactants have
to be present in the current state for the reaction to take
place, while the presence of any of the inhibitors would block
the reaction. Products are the outcome of the reaction, to be
released in the next state.

A Reaction System is a pair A = (S, A) where S is the
set of entities, and A ⊆ rac(S) is a finite set of reactions
over S. Given W ⊆ S, the result of the reactions A on W ,
denoted resA(W ), is just the lifting of resr , i.e., resA(W ) �
∪r∈Aresr (W ).

Since living cells are seen as open systems that react to
environmental stimuli, the behaviour of a RS is formalised in
terms of an interactive process. Let A = (S, A) be a RS and
let n ≥ 0. An (n + 1)-steps interactive process in A is a pair
π = (γ, δ) s.t. γ = {Ci }i∈[0,n] is the context sequence and
δ = {Di }i∈[0,n] is the result sequence, where Ci , Di ⊆ S for
any i ∈ [0, n], D0 = ∅, and Di+1 = resA(Di ∪ Ci ) for any
i ∈ [0, n − 1]. The context sequence γ represents the envi-
ronment, while the result sequence δ is entirely determined
by γ and the set of reactions A. We call τ = W0, . . . ,Wn the
state sequence, with Wi � Ci ∪ Di for any i ∈ [0, n]. Note
that each state Wi in τ is the union of the context Ci at step
i and the result set Di = resA(Wi−1) from step i − 1. Note
also that the result of a computation step does not depend on
the order of application of the reactions.

Example 1 We consider the simple RS A � (S, A), where
S � {a,b, c,d} and the set A � {r1, r2} contains the reac-
tions r1 � ({a}, {d}, {b, c}) and r2 � ({a, c}, {d}, {d}), more
concisely written as (a,d,bc) and (ac,d,d). Then, we con-
sider a 3−steps interactive process π � (γ, δ), where γ �
C0,C1,C2 = {a,b}, {a,b}, {a,b} and δ � D0, D1, D2 =
∅, {b, c}, {b, c,d}. The resulting state sequence is τ �
W0,W1,W2 = {a,b}, {a,b, c}, {a,b, c,d}. In fact, it is
easy to check that, e.g., W0 = C0, D1 = resA(W0) =
resA({a,b}) = {b, c} because enr1(W0) ∧ ¬enr2(W0), and
W1 = C1 ∪ D1 = {a,b} ∪ {b, c} = {a,b, c}.

3 SOS rules for reaction systems

In order to define our automatic slicing technique, we find it
convenient to exploit the algebraic syntax for RSs introduced
in Brodo et al. (2021a). Inspired by process algebras such as
CCS (Milner 1980), simple SOS inference rules define the
behaviour of each operator. This induces a LTS semantics
for RSs, where states are terms of the algebra, each tran-
sition corresponds to a step of the RS and transition labels
retain some information on the entities involved at each step.
Transition labels and SOS rules will allow us to pair RSswith
monitors and to easily enrich state informationwith histories,
respectively.
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Definition 1 (RS processes) Let S be a set of entities. A RS
process P is any term defined by the following grammar:

P:=[M] M:=(R, I , P)
∣∣ D ∣∣ K ∣∣ M|M

K::=0
∣∣ X ∣∣ C .K

∣∣ K + K
∣∣ rec X . K

where R, I , P ⊆ S are non empty sets of entities, C, D ⊆ S
are possibly empty set of entities, and X is a process variable.

While in principle reactions, entities and contexts could
be seen as components to be handled separately (and in the
implementation is more convenient to do so), we mix them
together to provide a compositional account of their interac-
tions. A RS process P embeds a mixture process M obtained
as the parallel composition of some reactions (R, I , P), some
set of current entities D (possibly the empty set), and some
context processes K. We write

∏
i∈I Mi for the parallel com-

position of all Mi with i ∈ I .
A context process K is a possibly non-deterministic and

recursive system: the nil context 0 stops the computation;
the prefixed context C .K makes the entities C available to
the reactions at the current step, and then leaves K be the
context offered at the next step; the non-deterministic choice
K1 + K2 allows the context to behave as either K1 or K2;
X is a process variable, and rec X . K is the usual recur-
sive operator of process algebras. Choice and recursion can
combine in-breadth (different evolutions) and in-depth (evo-
lutions of different length, possibly infinite) analysis. The
ability to compose contexts in parallel is useful, e.g., to han-
dle different entities with different strategies or to reduce
combinatorial explosion at the specification level. For exam-
ple, letting K?a � rec X . a.X + ∅.X be the context that can
recursively offer a or not at any step, the process K?a|K?b|K?c
can recursively offer any combination of entities a, b and c.

We say that P and P′ are structurally equivalent, written
P ≡ P′, when they denote the same term up to the laws of
commutative monoids (unit, associativity and commutativ-
ity) for parallel composition ·|·, with ∅ as the unit, and the
laws of idempotent and commutativemonoids for choice ·+·,
with 0 as the unit. We also assume D1|D2 ≡ D1 ∪ D2 for
any D1, D2 ⊆ S.

Definition 2 (RSs as RS processes) Let A = (S, A) be a RS,
andπ = (γ, δ) an (n+1)-steps interactive process in A, with
γ = {Ci }i∈[0,n] and δ = {Di }i∈[0,n]. For any step i ∈ [0, n],
the corresponding RS process �A, π�i is defined as follows:

�A, π�i �
[∏
r∈A

r | Di | Kγ i

]

where the context Kγ i � Ci .Ci+1. · · · .Cn .0 is the serialisa-
tion of the entities offered by γ i (the shifting of γ at the i-th
step). We write �A, π� as a shorthand for �A, π�0.

Example 2 The encoding of the RS A = (S, A), in Exam-
ple 1, is as follows:

P0 � �A, π� = [(a,d,bc) | (ac,d,d) | ∅ | Kγ ]
≡ [(a,d,bc) | (ac,d,d) | ab.ab.ab.0]

where Kγ = {a,b}.{a,b}.{a,b}.0 is written more concisely
as ab.ab.ab.0. Note that D0 = ∅ is inessential and can be
discarded thanks to structural congruence.

A transition label � is a tuple 〈(D,C) � R, I , P〉 with
D,C, R, I , P ⊆ S. The sets D,C record the entities avail-
able in the current state of the system, where C is provided
by the context and D is the result from the previous step;
the set R records entities whose presence is assumed (either
acting as reactants or as inhibitors); the set I records enti-
ties whose absence is assumed (either acting as inhibitors or
as missing reactants); and the set P records the products of
enabled reactions.

The operational semantics of RS processes is defined by
the SOS rules in Fig. 1.

The process 0 has no transition. The rule (Ent) makes
available the entities in the (possibly empty) set D, then
reduces to ∅. The rule (Cxt) says that a prefixed context pro-
cess C .K makes available the entities in the set C and then
reduces to K. The rule (Rec) is the classical rule for recur-
sion. The rules (Suml) and (Sumr) select a move of either
the left or the right component, resp., discarding the other
process. The rule (Pro) executes the reaction (R, I , P) (its
reactants, inhibitors, and products are recorded in the label),
which remains available at the next step together with newly
produced entities P . The rule (Inh) applies when the reaction
(R, I , P) should not be executed; its label records the causes
for which the reaction is disabled: possibly some inhibiting
entities (J ⊆ I ) are present or some reactants (Q ⊆ R) are
missing, with J ∪ Q = ∅, as at least one cause is needed.
The rule (Par) puts two processes in parallel by pooling their
labels and joining all the set components of the labels. The
sanity check �1 � �2 is required to guarantee that reactants
and inhibitors are consistent (see definition below, where we
let Wi � Di ∪ Ci for brevity):

〈(D1,C1) � R1, I1, P1〉 � 〈(D2,C2) � R2, I2, P2〉
� (W1 ∪ W2 ∪ R1 ∪ R2) ∩ (I1 ∪ I2) = ∅

In the conclusion of rule (Par) we write �1 ∪ �2 for the
component-wise union of labels (see definition below, where
the notation X1,2 � X1 ∪ X2 is used):

〈(D1,C1) � R1, I1, P1〉 ∪ 〈(D2,C2) � R2, I2, P2〉
� 〈(D1,2,C1,2) � R1,2, I1,2, P1,2〉
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Fig. 1 SOS semantics of the RS
processes D

〈(D,∅)�∅,∅,∅〉−−−−−−−−−−→ ∅
(Ent)

C.K
〈(∅,C)�∅,∅,∅〉−−−−−−−−−−→ K

(Cxt)

K1
�−→ K′

1

K1 + K2
�−→ K′

1

(Suml)
K2

�−→ K′
2

K1 + K2
�−→ K′

2

(Sumr)
K[rec X.K/X ] �−→ K′

rec X. K �−→ K′
(Rec)

(R, I, P )
〈(∅,∅)�R,I,P 〉−−−−−−−−−−→ (R, I, P ) | P

(Pro)
J ⊆ I Q ⊆ R J ∪ Q �= ∅

(R, I, P )
〈(∅,∅)�J,Q,∅〉−−−−−−−−−−→ (R, I, P )

(Inh)

M1
�1−−→ M′

1 M2
�2−−→ M′

2 �1 � �2

M1 | M2
�1∪�2−−−−→ M′

1 | M′
2

(Par)
M

〈(D,C)�R,I,P 〉−−−−−−−−−−−→ M′ R ⊆ D ∪ C

[M]
〈(D,C)�R,I,P 〉−−−−−−−−−−−→ [M′]

(Sys)

Finally, the rule (Sys) requires that all the processes of the
systems have been considered, and also checks that all the
needed reactants are actually available in the system (R ⊆
D ∪ C). In fact this constraint can only be met on top of all
processes. The check that inhibitors are absent (I∩(D∪C) =
∅) is embedded in rule (Par). In the following we assume

transitions P
〈(D,C)�R,I ,P〉−−−−−−−−−→ P′ guarantee that any instance

of the rule (Inh) is applied in a way that maximises the sets
J and Q (see Brodo et al. 2021a).

Example 3 Let us consider the RS process P0 � [M | ab.ab.

ab.0] fromExample2,wherewe letM � (a,d,bc) | (ac,d,d)

for brevity. The process P0 has a unique outgoing transition:

P0 = [M | ab.ab.ab.0] 〈(∅,ab)�a,cd,bc〉−−−−−−−−−−→ [M | b | c | ab.ab.0].

Letting P1 � [M | b | c | ab.ab.0], there is also a unique
outgoing transition from P1:

P1 = [M | b | c | ab.ab.0] 〈(bc,ab)�ac,d,bcd〉−−−−−−−−−−−→
[M | b | c | d | ab.0].

Finally, letting P2 � [M | b | c | d | ab.0], there is also a
unique outgoing transition from P2:

P2 = [M | b | c | d | ab.0] 〈(bcd,ab)�d,∅,∅〉−−−−−−−−−−→ [M | 0].

As the process P3 � [M | 0] contains the stopping context 0,
it has no outgoing transition.

The following theorem from Brodo et al. (2021a) shows
how the set-theoretic dynamics of a RS matches the SOS
semantics of its RS process.

Theorem 1 (see Brodo et al. 2021a) Let A = (S, A) be a RS,
and π = (γ, δ) an (n + 1)-steps interactive process in A,
with γ = {Ci }i∈[0,n], δ = {Di }i∈[0,n], and let Pi � �A, π�i
for any i ∈ [0, n]. Then, for any i ∈ [0, n − 1]:

1. if Pi
〈(D,C)�R,I ,P〉−−−−−−−−−→ P then D = Di , C = Ci , P = Di+1

and P ≡ Pi+1;

2. there exist R, I ⊆ S such that Pi
〈(Di ,Ci )�R,I ,Di+1〉−−−−−−−−−−−−→

Pi+1.

4 Slicing RS computations

Dynamic slicing is a technique that helps to debug a program
by simplifying a partial execution trace, thus depurating it
from parts which are irrelevant to finding the bug. It can
also help to highlight parts of the program which have been
wrongly ignored by the execution.

4.1 SOS rules for the slicing computation

The slicing algorithm, presented in the next section, needs a
slightly different state configuration that includes the whole
past state sequenceWi = Ci ∪Di . To carry the relevant infor-
mation, we enrich the state configuration [M] by prefixing it
with the list of the previous result and context sets, written
D0
C0

D1
C1

· · · Dn
Cn

[M].
First, we extend the syntax of RS processes as follows:

P:=[M] ∣∣ D
C P

The next step consists in enriching the operational seman-
tics to deal with histories. We add the new rule (Hist) and
modify the (Sys) inference rule in Fig. 1 as below:

P
�−→ P′

D
C P

�−→ D
C P′

(Hist)
M

〈(D,C)�R,I ,P〉−−−−−−−−−→ M′ R ⊆ D ∪ C

[M] 〈(D,C)�R,I ,P〉−−−−−−−−−→ D
C [M′]

(Sys)

The formal Definition 2 is thus updated to carry on the
history of the computation.

Definition 3 (RS processes with history) Let A = (S, A) be
a RS, and π = (γ, δ) an (n + 1)-steps interactive process
in A, with γ = {Ci }i∈[0,n] and δ = {Di }i∈[0,n]. For any
step i ∈ [0, n], the corresponding new process configuration
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�A, π�i is defined as follows:

�A, π�i � D0

C0

D1

C1
· · · Di−1

Ci−1

[∏
r∈A

r | Di | Kγ i

]
.

Example 4 Let us revisit the computation in Example 3 to
take histories into account. The corresponding sequence of
transitions is thus:

P0
〈(∅,ab)�a,cd,bc〉−−−−−−−−−−→ ∅

ab
P1

〈(bc,ab)�ac,d,bcd〉−−−−−−−−−−−→ ∅
ab

bc
ab

P2

〈(bcd,ab)�d,∅,∅〉−−−−−−−−−−→ ∅
ab

bc
ab

bcd
ab

P3.

where we recall that P0 � [M | ab.ab.ab.0], P1 �
[M |b | c | ab.ab.0],P2 � [M |b | c |d | ab.0] andP3 � [M |0]
with M � (a,d,bc) | (ac,d,d).

4.2 Slicing algorithms

In the following we assume that the reactions are numbered
consecutively by positive integer numbers, and denote the
j-th reaction in the RS by the notation r j . As amatter of nota-
tion, please notice that each history D0

C0
· · · Dm

Cm
computed in

m steps by Definition 3, defines a trace D0
C0

N1−→ · · · Nm−−→ Dm
Cm

on which we perform the slicing computation, where Ni is
the set of reactions applied in the i-th computation step. Here
each reaction is simply represented by its numeric position
in the list of reactions, i.e., Ni = { j | enr j (Di−1 ∪ Ci−1)}
for any i ∈ [1,m]. Abusing the notation, in the following we
write r j ∈ N whenever j ∈ N .

Example 5 The trace that corresponds to the computation in
Example 4 is just:

∅
ab

{r1}−−→ bc
ab

{r1,r2}−−−→ bcd
ab

.

Our slicing technique consists of three main steps.
Enriched Semantics (Step S1). The slicing process requires
some extra information from the execution of the processes.
More precisely, (1) at each operational step we need to high-
light the reactions that have been applied; and (2) we need
to determine the part of the context which adds to the pre-
vious state the entities which are necessary to produce the
marked entities in the following state. For solving (1) and
(2), in Sect. 4.1 we have introduced an enriched semantics
that records computation sequences.We need to keep track of
the state sequence of the computation for the slicing process,
by keeping separated the produced entities Di in a computa-
tion step from the context Ci .
Marking the state (Step S2).Let us suppose that the final con-
figuration in a partial computation is Dm

Cm
. The user selects a

Input: - a trace D0
C0

N1−−→ · · · Nm−−→ Dm
Cm

- a marking Dsliced ⊆ Dm

Output: a sliced trace
D′
0

C ′
0

N ′
1−−→ · · · N ′

m−−→ D′
m

C ′
m

= D′
sliced∅

1 begin
2 let D′

m = Dsliced ∧ C ′
m = ∅

3 for i = m to 1 do
4 let D′

i−1 = ∅ ∧ C ′
i−1 = ∅ ∧ N ′

i = ∅
5 for j ∈ Ni where r j = (R j , I j , Pj ), such that (D′

i ∩ Pj = ∅) do
6 let N ′

i = N ′
i ∪ { j}

7 if enr j (Di−1) then
8 let D′

i−1 = D′
i−1 ∪ R j

9 else
10 let C ′

i−1 = C ′
i−1 ∪ (R j \Di−1)

11 let D′
i−1 = D′

i−1 ∪ (R j ∩ Di−1)

12 end
13 end
14 end
15 end

Algorithm 1: Trace Slicer for context dependent computa-
tions

Input: - a trace D0
N1−−→ · · · Nm−−→ Dm

- a marking Dsliced ⊆ Dm

Output: a sliced trace D′
0

N ′
1−−→ · · · N ′

m−−→ D′
m = Dsliced

1 begin
2 let D′

m = Dsliced
3 for i = m to 1 do
4 let D′

i−1 = ∅ ∧ N ′
i = ∅

5 for j ∈ Ni where r j = (R j , I j , Pj ), such that D′
i ∩ Pj = ∅ do

6 let N ′
i = N ′

i ∪ { j}
7 let D′

i−1 = D′
i−1 ∪ R j

8 end
9 end

10 end

Algorithm 2: Trace Slicer for context independent compu-
tations

subset Dsliced ⊆ Dm that may explain the (wrong) behaviour
of the program. In Sect. 6 we describe an assertion language
and monitors to automatize the selection.
Trace Slice (Step S3). Starting from the user’s selection
Dsliced∅ , we define a backward slicing step. Roughly, this step
allows us to eliminate from the execution trace all the infor-
mation not related to Dsliced . Starting from this sliced final
state and proceeding backwards we can compute for each
computation step the information which is relevant to pro-
duce the marked elements in the final state. At the generic

step i ∈ [1,m]we assume the marked entities
D′
i

C ′
i
are already

available and infer the entities
D′
i−1

C ′
i−1

to bemarked at step i−1.

Notably, the setC ′
i is irrelevant for computing

D′
i−1

C ′
i−1

(only the

component D′
i matters).

4.2.1 Marking algorithms

Let us explain how the slicing Algorithm 1 works.
Our algorithm returns a sliced trace which contains only

the (usually rather small) subset of the entities which are nec-
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essary for deriving the marked entities. Let us now describe
it informally. Let us consider first the more complex case of
context dependent computations. First of all the user has to
indicate the subset Dsliced of the entities in the last state of the
computation Dm that she wants to mark. Then the backward
slicing process can start. Now let us consider the iteration i of
the slicer. Marking the relevant information in previous state
Di−1
Ci−1

requires analyzing the rules which have been applied
at step i − 1. So, if r j ∈ Ni−1 and r j = (R j , I j , Pj ) then
we need to check if r j produces at least one entity which
is marked in the next state. If this is the case, then j is
added to the set of marked rules. Then it is necessary to
check if the context Ci−1 was essential for applying rule r j ,
or if all necessary entities were already included in Di−1.
Thus it is necessary to compute the entities in Ci−1 which
are missing in Di−1 in order for rule r j to be enabled, and
those entities are marked in (added to) context C ′

i−1. The
elements in R j are added to the marked entities in D′

i−1. For
the computations which are context independent the part of
transformation which is related to the context can clearly be
eliminated (see Algorithm 2).

Example 6 Let us consider the trace in Example 5:

∅
ab

{r1}−−→ bc
ab

{r1,r2}−−−→ bcd
ab

.

and suppose we let Dsliced = {d}, i.e., we mark the entity
d in the target state. The slicing algorithm returns the sliced
trace:

∅
a

{r1}−−→ c
a

{r2}−−→ d
∅ .

In the following we will sometimes illustrate the sliced trace
as embedded in the original trace, byboxing the sliced entities
and reactions:

∅
a b

{ r1 }
−−−→ b c

a b

{r1, r2 }
−−−−−→ bc d

ab
.

The following proposition states what is kept or removed
by the slicing algorithm at each step.

Proposition 2 Let D0
C0

N1−→ · · · Nm−−→ Dm
Cm

be a context depen-

dent computation and let
D′
0

C ′
0

N1−→ · · · Nm−−→ D′
m

C ′
m
be the sliced

trace corresponding to a given marking Dsliced = D′
m ⊆ Dm

(with C ′
m = ∅). Then, we have all of the following:

1. ∀i ∈ [1,m], r j = (R j , I j , Pj ) ∈ N ′
i iff r j ∈ Ni and

there exists e ∈ D′
i s.t. e ∈ Pj .

2. ∀i ∈ [0,m − 1], e ∈ D′
i iff there exists r j =

(R j , I j , Pj ) ∈ N ′
i+1 such that e ∈ Di ∩ R j .

3. ∀i ∈ [0,m − 1], e ∈ C ′
i iff there exists r j =

(R j , I j , Pj ) ∈ N ′
i+1 such that e ∈ (Ci ∩ R j ) \ Di .

Proof The proof is by induction on the number n of compu-
tation steps.
Base case n = 1)

Let us first prove property (1).
Let the marked subset of D1 be the set D′

1 ⊆ D1 as
defined in line 2 of Algorithm 1. Then, by line 5, for a
reaction r j = (R j , I j , Pj ) ∈ N1, we have that: r j ∈ N ′

1
(by line 6) iff D′

1 ∩ Pj = ∅ (by line 5) iff there exists
e ∈ D′

1 s.t. e ∈ Pj . Thus, property (1) holds.
Let us now prove property (2).
In Algorithm 1, D′

0 is initialised to the empty set in line
4. Thus, we have that an entity e ∈ D′

0 iff (by line 7 we
have two cases) (a) r j is enabled on D0, which means
that R j ⊆ D0, hence D′

0 = D′
0 ∪ R j = D′

0 ∪ (D0 ∩ R j ),
and the property holds, or (b) if ¬enr j (D0) then D′

0 =
D′
0 ∪ {D0 ∩ R j } and hence the property holds.

Let us now prove property (3).
By line 4,C ′

0 = ∅. Then a new entity e can be added toC ′
0

only by line 10 and only if the conditions in line 5 holds
but not the one in line 7. Hence, by line 5, j ∈ N0, with
r j = (R j , I j , Pj ), and, by line 6, r j ∈ N ′

1. By line 10,
we derive that C ′

0 = C ′
0 ∪ (R j\D0). Now let us consider

e ∈ R j\D0. By line 5, r j is enabled in this (current)
first step, hence, by definition, e ∈ R j ⊆ D0 ∪ C0. By
line 10 ¬enr j (D0), and hence R j\D0 ⊆ C0 must be
non empty and R j\D0 ⊆ C0 ∩ R j and hence for all
e ∈ R j\D0 ⊆ C0 ∩ R j we have that e ∈ C ′

0 (by line 10),
and e /∈ D0, and the property holds.

Inductive case n > 1)

We start by considering the step Dn−1
Cn−1

Nn−→ Dn
Cn

. In the first
iteration of the for statement in line 5 inAlgorithm1, thus
with i = n − 1, we can show that properties (1-3) hold.
Thus we prove that property (1) holds for i = n, and
properties (2) and (3) hold for i = n − 1.

Let us first prove property (1).
Let the marked subset of Dn be the set Dsliced = D′

n ⊆
Dn as defined in line 2 of Algorithm 1. Then, by line
5, for a reaction r j = (R j , I j , Pj ) ∈ Nn , we have that:
r j ∈ N ′

n (by line 6) iff D′
n ∩ Pj = ∅ (by line 5) iff there

exists e ∈ D′
n s.t. e ∈ Pj . Thus, property (1) holds for

the last computation step.
Let us now prove property (2).
In Algorithm 1, D′

n−1 is initialised to the empty set in line
4. Thus, we have that an entity e ∈ D′

n−1 iff (by line 7 we
have two cases) (a) r j is enabled on Dn−1, which means
that R j ⊆ Dn−1. Hence D′

n−1 = D′
n−1 ∪ R j = D′

n−1 ∪
(Dn−1∩ R j ), and the property holds. (b) if¬enr j (Dn−1)
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then D′
n−1 = D′

n−1∪(Dn−1∩R j ) and hence the property
holds.

Let us now prove property (3).
By line 4, C ′

n−1 = ∅. Then a new entity e can be added
to C ′

n−1 only by line 10 and only if the conditions in
line 5 holds but not the one in line 7. Hence, by line 5,
j ∈ Nn , with r j = (R j , I j , Pj ), and, by line 6, r j ∈ N ′

n .
By line 10, we derive that C ′

0 = C ′
0 ∪ (R j\D0). Now

let us consider e ∈ R j\Dn−1. By line 5, r j is enabled
in this (current) first step, hence, by definition, e ∈
R j ⊆ Dn−1 ∪ Cn−1. By line 7 ¬enr j (Dn−1), and hence
R j\Dn−1 ⊆ Cn−1 must be non empty and R j\Dn−1 ⊆
Cn−1 ∩ R j and hence for all e ∈ R j\Dn−1 ⊆ Cn−1 ∩ R j

we have that e ∈ C ′
n−1 (by line 10), and e /∈ Dn−1, and

the property holds for the last computation step. Now

we consider the computation D0
C0

N1−→ · · · Nn−1−−−→ Dn−1
Cn−1

w.r.t. the marking D′
n−1 computed in the last computa-

tion step (see line 7 of Algorithm 1). By line 5 the set
R j in line 10 is a subset of Dn−1, and hence D′

n−1 is a
subset of Dn−1 and determines a marking Dsliced for the

trace D0
C0

N1−→ · · · Nn−1−−−→ Dn−1
Cn−1

, then the property follows
by the inductive hypothesis, as the number of steps for
the remaining computation is n − 1 < n. ��

Proposition 2 addresses context independent computations
when contexts are empty.

5 Implementation

In this section we show how to check a biological model
by our slicing methodology. The implementation is available
on-line,6 with a small manual to use it. It extends the tool
BioReSolve,7 which already provided a friendly environ-
ment for simulation, analysis and verification of RSs. The
tool has been developed and tested under SWI-Prolog and
exploits a few library predicates for efficiency reasons. DCG
Grammar rules are used to ease the writing of RS specifica-
tions. Its features include the possibility to simulate single
traces or generate the whole graph of the LTS (where user
defined predicates can be used to color each node depending
on its content so to improve readability), to verifymodal logic
formulas, to check bisimulation based equivalences between
different RSs, to deal with quantitative aspects of RSs, such
as delays and duration for produced entities and linear han-
dling of concentration levels (see Brodo et al. 2021a, 2021c
for more details).

For a computation which does not use assertions the inter-
preter gives the users some choices: (1) whether they want to

6 http://www.di.unipi.it/~bruni/LTSRS/slicingBioReSolve.zip
7 http://www.di.unipi.it/~bruni/LTSRS/

make a context independent computation; (2) the possibility
to specify the maximum number m of computation steps.

The interpreter will show the corresponding trace D0
C0

N1−→
· · · Nm−−→ Dm

Cm
, emphasizing the elements Di ,Ci , Ni . Then the

users have to provide the entities that they wantsto mark in
Dm . Finally, the interpreter will compute the corresponding
sliced computation and present it. Let us see one example for
illustrating our tool.

Example 7 We consider a RS defined in Barbuti et al. (2021),
to model a network for gene regulation. These networks rep-
resent the interactions among genes regulating the activation
of specific cell functions. The RS models a fragment of the
network for controlling the process of differentiation of T
helper (Th) lymphocytes, which play a fundamental role in
the immune system. We introduced on purpose one wrong
reaction in the RS model that can be found in our tool web-
site8 and performed some experiments. For instancewemade
a context free computation, starting from the initial state
containing only the entity ifngammah. The computation,
limited to 6 steps, produced the following sequence of states.

[ [ifngammah], [ifngammarh], [stat1h],
[socs1,socs2], [tbeth],

[ifngammah,socs1,tbeth],
[ifngammah,ifngammarm,socs1,tbeth] ]

Now we wanted to focus on the molecule tbeth in the last
computation state, and hence we used our slicer, marking
tbeth. The sliced trace in outcome was the following:

[ [ifngammah], [ifngammarh], [stat1h],
[socs1], [tbeth],

[socs1,tbeth], [tbeth] ]

with the following sequence of reaction numbers applied in
the steps:

[ [5], [8], [19], [18], [27,29], [18,27] ]

The sliced sequence can now easily be interpreted. Clearly
[tbeth] was produced as a result of the application
of four reaction rules in a sequence, those with numbers
[5],[8],[19],[18]. Then reaction [27] reintroduced
tbeth in each following step. So, the sliced sequence pro-
duced a much simpler trace, with an easy interpretation. It
is now immediate to see that [tbeth] was introduced by
rule [18], due to the reactant [socs1], which is recog-
nised as an error, because[tbeth] should be introduced by
[stat1h]. Thus the user can now correct reaction [18]
for [stat1h].

8 http://www.di.unipi.it/~bruni/LTSRS/wrongspec.pl
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6 A logical framework for the slicing
algorithm

In this section we try to further automate the slicing process
whenever the user can describe a property to be checked
along a computation: the computation is stopped as soon as
the current state S does not satisfy the property. Then slicing
starts from S, which is automatically marked.

To specify properties we reuse the simple assertion lan-
guage introduced in Brodo et al. (2021a), which is tailored on
the labels of the LTS generated by SOS semantics in Sect. 3.
Then, we rely on a fragment of the recursive extension of the
Hennessy-MilnerLogic, called sHML(Aceto et al. 2021a), to
formally express properties to be verified along a RS process
execution. We exploit the monitor technique from Aceto et
al. (2020) to check if the current state of the RS process exe-
cution respects or not the required property. To this aim, we
apply the translation from sHML formula to monitors given
in Aceto et al. (2021a). Some modifications are required as
in the original proposal sHML logic works on action names,
whereas we work with logic assertions.

6.1 The assertion language

The labels of our LTS carry on a large amount of information
about the activity executed during each transition, our asser-
tion is a formula that predicates on those labels. Hereafter,
we assume that the context can be non-deterministic.

Example 8 Here follows an example of some properties
which we may verify:

Has the reaction (ab, c,b) been applied ?
Has the entity a played both as reactant and as product ?

Definition 4 [Assertion Language] Given a set of entities S,
assertions F on S are built from the following syntax, where
E ⊆ S and Pos ∈ {D, C,W,R, I,P}:

F ::= tt | E ⊆ Pos | ? ∈ Pos | F ∨ F | F ∧ F | ¬F

Pos distinguishes different positions in the labels: D stands
for entities produced in the previous transition, C for entities
provided by the context, W for their union, R for reactants,
I for inhibitors, and P for products. An assertion E ⊆ Pos,
checks the membership of a subset of entities E in a given
Pos, ? ∈ Pos is a test of non-emptiness ofPos, F1∨F2 denotes
a disjunction, F1 ∧ F2 is a conjunction, ¬F is a negation.

Definition 5 [Satisfaction of Assertion] Let P be a RSs pro-
cess, let � = 〈(D,C) � R, I , P〉 be a transition label, and F
be an assertion. We write � |� F (read as the transition label
� satisfies the assertion F) if and only if the following hold,
where select(�,Pos) extract the desired component from the

label �:

� |� E ⊆ Pos iff E ⊆ select(�,Pos)
� |�? ∈ Pos iff select(�,Pos) = ∅
� |� F1 ∨ F2 iff � |� F1 ∨ � |� F2
� |� F1 ∧ F2 iff � |� F1 ∧ � |� F2
� |� ¬F iff � |� F

select(〈(D,C) � R, I , P〉,Pos) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

D if Pos = D,

C if Pos = C,
D ∪ C if Pos = W,

R if Pos = R,

I if Pos = I,

P if Pos = P

Example 9 Some assertions matching the queries listed in
Example 8 are:

• F1 � {ab} ⊆ R ∧ {c} ⊆ I, while F′
1 � ¬F1 is verified if

(ab, c,b) is not applied,
• F2 � {a} ⊆ R ∧ {a} ⊆ P.

6.2 Monitors

Differently from Aceto et al. (2020), in our context monitors
check if transition labels satisfy a given property. A process
monitor stops when a verdict is reached, thus we omit 0. The
nos verdict is equipped with a set of entities, s ⊆ S, used as
markers for the slicing.

Definition 6 A monitor process is defined by the grammar:

m, n ∈ Mon::=nos
∣∣ yes ∣∣ F.m ∣∣ m + n

∣∣ m ⊗ n
∣∣ rec X .m

∣∣ X
where X comes from a countably infinite set of monitor
variables, and the set s ⊆ S.

The syntax of a monitor is similar to that of a context
process: actions are replaced by properties to be verified by
the process action. A ‘verdict’ can be yes or nos for accep-
tance or rejection respectively. Summ +n is used to provide
monitors with different behaviours, while m ⊗ n is used to
compose monitors in parallel.

The semantics is in Fig. 2, where the symmetric rules are
omitted. The set of transition labels is composed by the set
of the formulas of the assertion language in Definition 4 plus
a special silent action τ . The verdicts do nothing.

Definition 7 A monitored system is a monitor m ∈ Mon
and a process p ∈ Proc that run side-by-side, denoted m �
p. The behaviour of a monitored system is defined by the
inference rules in Table 1.

If a monitored systemm � p reaches a verdict like nos �
q, then a violation is detected and q is the state where the
slicing starts by marking the entities in the set s.
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Fig. 2 SOS semantics of the
monitors

F.m F−→ m
(Pro)

yes ⊗ m
τ−→ m

(Ver1)
nos ⊗ m

τ−→ nos

(Ver2) m
τ−→ m′

m ⊗ n
τ−→ m′ ⊗ n

(Par1)

m1
F−→ m′

1

m1 +m2
F−→ m′

1

(Sum)
m[recX.m/X ] F−→ m′

rec X. m
F−→ m′

(Rec) m
F1−→ m′ n

F2−→ n′

m ⊗ n
F1∧F2−−−→ m′ ⊗ n′

(Par2)

Table 1 Monitored systems
p

�−→ p′ m
F−→ m′ � � F

m � p
(�,F)−−→ m′ � p′

(Exec)
m

τ−→ m′ p

m � p
τ−→ m′ � p

(τ)

6.3 Monitorability

Typically we are interested in verifying if certain assertions
are met along a process execution. Writing the correspond-
ing monitors is an error prone task. Following Aceto et al.
(2021a), we prefer to write property specifications as for-
mulas in a fragment of the (recursive) Hennessy-Milner
logic, called sHML. The syntax and semantics of sHML
are reported in Table 2. For example, given a certain asser-
tion F (see Definition 4) we can write the sHML formula
max X .([F].X ∧ [¬F].ff) to specify that “the computation
should always exhibit transition labels satisfying F and stops
as soon as a violation is detected”. Of course, other prop-
erties can be required, e.g. that F1 and F2 are satisfied in
alternation. Following the monitor synthesis in Aceto et al.
(2021b), and recalled in Table 3, we obtain that, after some
logical simplifications, a monitor implementing the previous
formula is: m = rec X .(¬F.X + F.no). While it may seem
that monitors closely resemble sHML formulas, we argue
that the box modality [F].φ is much more convenient to write
and to manage than the sum F.m(φ) + ¬F.yes.

Example 10 Let P0 be the process in Examples 3–4.We want
to study a computation where all the visited states satisfy
the following assertion: F � {b} ⊆ C ∧ {d} � R. Then
we need a sHML formula of the format described above:
φ � max X .([F].X ∧ [¬F]ff {d}), where the idea is to flag
the presence of the entity d as a fault to understand why it
has been produced. The corresponding process monitor is
thus: m � rec X .(F.X + ¬F.no{d}). The execution of the
monitored processm � P0 proceeds by applying the rules in
Table 1.

P0
〈(∅,ab)�a,cd,bc〉−−−−−−−−−−→ ∅

ab P1 m
F−→ m 〈(∅, ab) � a, cd,bc〉 � F

m � P0
(〈(∅,ab)�a,cd,bc〉,F)−−−−−−−−−−−−→ m � ∅

ab P1

(Exec)

The next step is derived by using rule (Exec) again:

∅
ab P1

〈(bc,ab)�ac,d,bcd〉−−−−−−−−−−−→ ∅
ab

bc
ab P2 m

F−→ m 〈(bc, ab) � ac,d,bcd〉 � F

m � ∅
ab P1

(〈(bc,ab)�ac,d,bcd〉,F)−−−−−−−−−−−−−−→ m � ∅
ab

bc
ab P2

(Exec)

The computation ends after applying the (Exec) rule:

∅
ab

bc
ab P2

〈(bcd,ab)�d,∅,∅〉−−−−−−−−−−→ ∅
ab

bc
ab

bcd
ab P3 m

¬F−→ no{d} 〈(b, c) � bc, ∅,∅〉 � ¬F

m � ∅
ab

bc
ab P2

(〈(bcd,ab)�d,∅,∅〉,¬F)−−−−−−−−−−−−−→ no{d} � ∅
ab

bc
ab

bcd
ab P3

(Exec)

The computation stops and ∅
ab

bc
ab

bcd
ab P3 is a starting point for

backward slicing on {d}.
Example 11 Given the assertionF = {ifngammah,tbeth}
� W , the formula φ � max X .([F].X ∧[¬F]ff {tbeth})would
automatize the slicing in Example 7, by selecting tbeth
with the monitor, if it is found present.

Let us now consider a complex biological example in
which there is a continuous interaction with the environment,
represented by the sequence of the provided contexts.

Example 12 This example is due to Nobile et al. (2017),
where a RS was introduced to replicate one of the exper-
iments in Helikar and et al. (2013) related to a dynamical
model of ErbB receptor signal transduction in human mam-
mary epithelial cells. The non-receptor tyrosine kinase Src
and receptor tyrosine kinase epidermal growth factor recep-
tor (EGFR/ErbB1) have been established as collaborators in
cellular signaling and their combined disregulation plays key
roles in human cancers, including breast cancer. The RS con-
tains 6,720 reactions and a sequence of 1,000 contexts.

We installed a monitor looking for the introduction of an
EFGR lysosome, which is essential for a bifurcation in the
pathway of our experiment. We discovered that the lysosome
is introduced after 11 computation steps. Thenwemarked the
lysosome in the last state of the computation of length 11,
and computed the slicing.

The resulting sliced sequence contains states with at most
a couple of dozens of entities, and the context of larger size
contains 17 entities. Moreover, in the sliced sequence the
biologist can identify other entities that can be used for fur-
ther slicing simplifications. We report here an excerpt of the
sliced sequence. The first and last three states of the sliced
computation are:
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Table 2 Syntax and semantics for the sHML

Syntax φ,ψ ∈ sHML::=tt | ffs | [F].φ | φ ∧ ψ | maxX .φ | X

Semantics
�tt, ρ� � P �ffs , ρ� � ∅
�[F].φ, ρ� � {p | ∀q. p

�−→ q , � |� F and q ∈ �φ, ρ�} �φ ∧ ψ, ρ� � �φ, ρ� ∩ �ψ, ρ�

�max X .φ, ρ� �
⋃{P | P ⊆ �φ, ρ[X �→ P]�} �X , ρ� � ρ(X)

where ρ is a set of formula definitions, and P is the whole set of processes.

Table 3 Rules for deriving a
process monitor m(ffs) � nos m([F].φ) � F.m(φ) + ¬F.yes m(max X .φ) � rec x .m(φ)

m(tt) � yes m(φ ∧ ψ) � m(φ) ⊗ m(ψ) m(X) � x

[ [alpha_ir,alpha_qr,alpha_sr,ap2,arf,cas,
clathrin,egfr_free,grb2,hip1r,ilk,

myosin,pak,pdk1,pi4k,pi5k,pip2_45,pten,rho,
rhok,rin],

...
[egfr_egfr_egf_mvb,egfr_egfr_egf_pm,egfr_ub,
escrt_i,rab5],

[alix,egfr_egfr_egf_mvb,eps15,escrt_iii,rab7],
[egfr_egfr_egf_lysosome] ]

The last states of the original computation consisted of
about 100 different molecules each, containing molecules
which are unrelated to the introduction of themarked entities.
On the other hand the sliced computation gives a sequence
containing less than 33 entities in each state, which is easier
to inspect, and can be used for further slicing derivations.
Moreover all elements in the sequence are essential to derive
themarked entities.We show the sequence of sliced contexts,
which emphasizes the entities provided by the contextswhich
are really useful/necessary for the sliced computation:

[ [alpha_il,alpha_ql,alpha_sl,calm,cdc42,egf,
egfr_contr,erk,fak,gak,pa,pip2_34,
pip3_345,pp2a,ras,src,stress],

[alpha_sl,cdc42,egf,fak,gak,pa,pip2_34,
pip3_345,rho,src,stress],
[cdc42,egfr_contr,fak,gak,pip3_345,rho,
src,stress],

[cdc42,egfr_contr,fak,pip3_345,ras,src],
[cdc42,egf,egfr_contr,pip3_345,src],
[egf,fak,pip3_345,src],
[egf,egfr_contr,pip3_345,src],
[egf],
[],
[] ]

Each context in the original computation adds at every
step 30 entities, most of which after the first computation
step become irrelevant, while only 17 were used in the first
sliced step. In the last two computation steps the context does
not contribute at all to the computation of the marked entity.
Concerning the applied reactions, in each sliced step at most

33 are used. In the last three steps of the computation the
relevant reactions are just the following ones:

[1558,1574,2456,3276,5573]
[91,1556,3008,3279,5599]
[1554]

Thus, it is possible to know exactly, within the 6,720 reac-
tions, the ones which are relevant to compute the marked
entities, as well as the relevant entities introduced by the con-
texts. Then it is possible to proceed to identify a bug in the
model following the same strategy outlined in Example 7. In
practice the biologists analyze the simplified sliced sequence
by using their knowledge of the intended model, or they can
express the properties to be monitored automatically.

We performed our experiments on a MacBook Pro with
OSX 11.7, 2,6GHz Intel i7 6 core, with 16GB RAM. The
slicing for the small Example 7 was executed in 9 ms, while
the big Example 12 took 6000 ms. Considering the number
of reactions (about 300 times more) and the fact that the con-
text is absent in the first example and it is pretty large in the
second onewe can notice that the computation time increases
linearly with the number of reactions. This is a result that we
might expect also theoretically by an analysis of the algo-
rithm, which depends directly on the number of reactions
and the size of the context. We are working on an optimisa-
tion of the implementation by recording in the history also
the list of the reactions applied in the computation.

7 Slicing enhanced reaction systems

Reaction Systems have been designed as a qualitative model.
In fact, their theory is based on assumptions such as no per-
manency, i.e., any entity vanishes unless it is sustained by a
reaction in the same way as a living cell would die for lack
of energy, without chemical reactions; no counting, i.e., the
quantity of entities that are present in a cell is not taken into
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account; and threshold nature of resources, i.e., we assume
that either an entity is available for all reactions, or it is not
available at all.

More recently, different versions of RSs were also studied
in several papers (Ehrenfeucht and Rozenberg 2007a; Bri-
jder et al. 2011b; Meski et al. 2016; Ehrenfeucht et al. 2017;
Bottoni et al. 2019, 2020; Koutny et al. 2021) to account for
certain aspects of biological system in a more accurate way
and increase their predictive power about natural phenom-
ena. In particular, the work in Brodo et al. (2021c, 2023b)
show that the process algebraic approach described in Sect. 3
allows to enhance RS models with several quantitative fea-
tures in a modular way.

In this sectionwe show that the basic slicing algorithm can
be rather naturally extended to deal with quantitative exten-
sions ofRSs, like those including delays and linear processes.
The extension is rather direct in the case of delays. Linear
processes require some more elaborate changes due to the
peculiarity of this type of RSs.

7.1 Delays, durations and timed processes

In Biology it is well known that reactions occur with dif-
ferent frequencies. For example, since enzymes catalyse
reactions, many reactions are more frequent when some
enzymes are present, and less frequent when such enzymes
are absent. Moreover, reactions describing complex transfor-
mations may require time before releasing their products. To
capture these dynamical aspects in our framework by pre-
serving the discrete and abstract nature of RS, in Brodo et al.
(2021c, 2023b)wehave proposed a discretisation of the delay
between two occurrences of a reaction by using a scale of nat-
ural numbers, from 0 (smallest delay, highest frequency) up
to n (increasing delay, lower frequency).

Intuitively, the notation Dn stands for making the entities
D available after n time units, and we use the shorthand D
for D0, meaning that the entities are immediately available.
Similarly, we can associate a delay value to the product of
each reaction by writing (R, I , P)n when the product of the
reaction will be available after n time units, and we write
(R, I , P) for (R, I , P)0. The syntax for mixture processes
is thus extended as below and the operational semantics is
changed accordingly:

M ::= (R, I , P)n
∣∣ Dn

∣∣ K ∣∣ M|M

Figure 3 only reports the rules that are new and those that
override the ones in Fig. 1 (e.g., the semantics of context pro-
cesses is unchanged). Rule (Tick) represents the passing of
one time unit, while rule (Ent)makes available those entities
whose delay has expired. Note that the entities Dn+1 that
appear is the transition label in rule (Tick) cannot be used as
reactants by any reaction, because their delay is not yet zero.

Rule (Pro) delays the product of the reaction as specified by
the reaction itself, while rule (Inh) is used when the reaction
is not enabled.

Example 13 Let us consider two RSs sharing the same entity
set S = {a,b, c,d} and the same reactions r1 = (a,b,b),
r2 = (b, a, a), r3 = (ac,b,d), r4 = (d, a, c), but working
with different reaction speeds. For simplicity we assume that
only two speed levels are distinguished: 0 the fastest and 1 the
slowest. The reaction system A1 provides the speed assign-
ment {r11 , r2, r3, r14 } to its reactions, while A2 provides the
speed assignment {r1, r12 , r13 , r4}. We assume that the context
process for both reaction systems is just K � ac.∅.∅.0. The
LTSs of their corresponding timed processes are in Fig. 4,
where, for brevity we let:

M1 � r11 | r2 | r3 | r14 M2 � r1 | r12 | r13 | r4
K2∅ � ∅.∅.0. K∅ � ∅.0.

In both cases, the execution is deterministic and the corre-
sponding traces are, respectively:

∅
ac

{r11 ,r3}−−−→ b1d
∅

{r14 }−−→ bc1

∅ and
∅
ac

{r1,r13 }−−−→ bd1

∅
{r12 }−−→ a1d

∅ .

Inspired by Brijder et al. (2011b), we can also provide
entities with a duration, i.e. entities that last a finite number
of steps. To this aim we use the syntax D[n,m] to represent
the availability of D for m > 0 time units starting after n
time units from the current time. In Brodo et al. (2021c) we
have shown that durations can be encoded using just delays
as follows:

D[n,m] �
n+m−1∏
k=n

Dk (R, I , P)[n,m] �
n+m−1∏
k=n

(R, I , P)k .

For example, we have a[2,3] ≡ a2 | a3 | a4 and a[0,1] ≡ a0 ≡
a.

We use the name timed processes for processes with
delays and durations. Notably, our extension is conservative,
i.e., it does not change the semantics of processes without
delays and durations. Therefore, the encoding of standard
RSs described in Definition 2 still applies.

7.1.1 Dynamic slicing of timed processes

We now explain how the base slicing algorithm for RSs can
be extended to timed processes. The corresponding pseu-
docode is Algorithm 3. Here we have an additional case to
be considered: if a delayed entity ek is marked in Di , then
it can derive from an entity ek+1 in the previous state Di−1

with a delay which is one tick bigger than the marked one.
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Fig. 3 SOS semantics with
delays and durations

D0 〈(D,∅)�∅,∅,∅〉−−−−−−−−−−→ ∅
(Ent)

Dn+1 〈(Dn+1,∅)�∅,∅,∅〉−−−−−−−−−−−−−→ Dn

(Tick)

(R, I, P )n 〈(∅,∅)�R,I,P 〉−−−−−−−−−−→ (R, I, P )n | P n
(Pro)

J ⊆ I Q ⊆ R J ∪ Q �= ∅

(R, I, P )n 〈(∅,∅)�J,Q,∅〉−−−−−−−−−−→ (R, I, P )n
(Inh)

Fig. 4 Execution of two timed
processes (see Example 13) [M1|K] 〈(∅,ac)�ac,bd,bd〉−−−−−−−−−−−−→ ∅

ac [M1|b1|d|K2∅]
〈(b1d,∅)�d,abc,c〉−−−−−−−−−−−−→ ∅

ac
b1d
∅ [M1|b|c1|K∅]

(〈bc1,∅)�b,acd,a〉−−−−−−−−−−−−→ ∅
ac

b1d
∅

bc1
∅ [M1|a|c|0]

[M2|K] 〈(∅,ac)�ac,bd,bd〉−−−−−−−−−−−−→ ∅
ac [M2|b|d1|K2∅]

〈(bd1,∅)�b,acd,a〉−−−−−−−−−−−−→ ∅
ac

bd1
∅ [M2|a1|d|K∅]

〈(a1d,∅)�d,abc,c〉−−−−−−−−−−−−→ ∅
ac

bd1
∅

a1d
∅ [M2|a|c|0]

Input: - a trace D0
C0

N1−−→ · · · Nm−−→ Dm
Cm

- a marking Dsliced ⊆ Dm

Output: a sliced trace
D′
0

C ′
0

N ′
1−−→ · · · N ′

m−−→ D′
m

C ′
m

= Dsliced∅
1 begin
2 let D′

m = Dsliced ∧ C ′
m = ∅

3 for i = m to 1 do
4 let D′

i−1 = ∅ ∧ C ′
i−1 = ∅ ∧ N ′

i = ∅
5 for j ∈ Ni where r j = (R j , I j , Pj )

n j , such that (D′
i ∩ P

n j
j = ∅) do

6 let N ′
i = N ′

i ∪ { j}
7 let D′

i−1 = D′
i−1 ∪ (R j ∩ Di−1)

8 if ¬enr j (Di−1) then let C ′
i−1 = C ′

i−1 ∪ (R j \Di−1)

9 end
10 for sk ∈ D′

i do
11 if sk+1 ∈ Di−1 then let D′

i−1 = D′
i−1 ∪ {sk+1},

12 end
13 end
14 end

Algorithm 3: Trace Slicer for context dependent computa-
tions for timed processes

We also note that the context only introduces entities without
delay.

Example 14 Let us consider Example 13, and the evolution
(computation) for M1 in Fig. 4, whose corresponding trace
is:

∅
ac

{r11 ,r3}−−−→ b1d
∅

{r14 }−−→ bc1

∅ .

By marking the entity b in the last state we get the simplified
sliced computation as follows:

∅
a

{r11 }−−→ b1

∅
∅−→ b

∅ .

As previously discussed, the sliced trace can be also high-
lighted as part of the original trace using boxes:

∅
a c

{ r11 ,r3}
−−−−−→ b1 d

∅
{r14 }−−→ b c1

∅

This shows that only reaction r1 is involved in the first com-
putation step, while no reaction is involved in the second
computation step, as by the rules in lines 10 and 11 in Algo-
rithm 3 entity b1 is marked by the presence of the value b in
the last computation state and the delayed value b1 in previ-
ous state.

7.2 Concentration levels and linear processes

Quantitative modelling of chemical reactions requires taking
molecule concentrations into account. An abstract repre-
sentation of concentrations that is considered in many
formalisms is based on concentration levels: rather than rep-
resenting these quantities as real numbers, a finite classifica-
tion is considered (e.g., low/medium/high) with a granularity
that reflects the number of concentration levels at which sig-
nificant changes in the molecule’s behaviour are observed.
In classical RSs, the modelling of concentration levels would
require using different entities for the same molecule (e.g.,
al, am, and ah for low, medium and high concentration of
a, respectively). This may introduce some additional com-
plexity due to the need of guaranteeing that only one of
these entities is present at any time for the state to be consis-
tent. Moreover, consistency would be put at risk whenever
the context sequence could provide a molecule with a con-
centration level different from the one present in the result
sequence (e.g., how do we handle conflicting levels al ∈ Di

and ah ∈ Ci?).
In Brodo et al. (2021c) we have enhanced RS processes

by representing concentration levels with natural numbers
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associated with entities and using symbolic reactions whose
product concentration levels can depend linearly on reactant
levels. The idea is to associate linear expressions, such as
e = m · x + n (where m ∈ N and n ∈ N+ are two constants
and x stands for a variable ranging over natural numbers),9

to reactants and products of each reaction. As a special case,
when m = 0 the expression e is called ground and it is
just a positive natural number. In the definition of states we
exploit ground expressions: each entity in the state is paired
with a natural number representing its current concentration
level. In the following we write s(e) to state that the linear
expression e is associated to entity s and s(e)[k/x] to denote
the substitution of the variable x by the actual value k in e.
Substitutions are extended to set of entities R as expected,
by writing R[k/x] to denote the substitution of the variable
x by the actual value k in all the expressions present in R.
Expressions associated to reactants are used as patterns to
match the current levels of the entities involved in the reac-
tion. Pattern matching allows to find the largest value for
the variable x (the same for all reactants) that is consistent
with the concentration levels in the current state. Then, linear
expressions associated to products (that can contain, again,
variable x) can be evaluated to compute the concentration
levels of those entities. For example, the reactant a(x + 1)
requires that the concentration level of a is at least 1 and
uses x to count the additional quantity of a in the current
state; then the product b(2x + 2) can be used to produce a
molecule b with twice a concentration level than that of a.
Expressions can be associated also to reaction inhibitors in
order to let such entities inhibit the reaction only when their
concentration level is above a given threshold. However, we
require inhibitor expressions to be ground.

For the sake of simplicity we do not report here all the
technical definitions in Brodo et al. (2021c) that formalise
the computation step, but rather we try to give an intuition
of how one computation step is performed. Let us consider
a state W and a reaction r = (R, I , P). We call multiplicity
of r w.r.t. W the maximum value k (a natural number) that
the variable x can assume so that the concentration levels
of entities in R[k/x] are below or equal to those in W . Of
course, the enabling of the reaction also requires that the
concentration levels of all inhibitors I are above those in W .
Themultiplicity k of the reaction determines the level P[k/x]
of products. As a special case, when R and P are ground10

we let themultiplicity be 1 by default. The following example
instantiates the previous description.

Example 15 Assume that we want to write a reaction that
produces c with a concentration level that corresponds to the

9 To ease the presentation, we require n ∈ N+ to guarantee that e
evaluates to a positive number, even when x = 0. Alternative choices
are possible to relax this constraint.
10 We assume that P is ground whenever R is such.

current concentration level of a (but at least one occurrence
of a must be present), and that requires b not to be present
at a concentration level higher than 1. Such a reaction would
be r1 � (a(x + 1),b(2), c(x + 1)). When C0 � {a(3),b(2)}
the reaction r1 is not enabled because the concentration
of the inhibitor is too high (b(2) < b(2)). On the con-
trary, if C ′

0 � {a(3),b(1)} it holds b(1) < b(2), and the
reaction r1 is enabled with multiplicity k = 2, that is the
maximum value for x that satisfies a(x + 1) ≤ a(3). There-
fore, the concentration level of the product c is given by
c(x + 1)[2/x] = c(2 + 1) = c(3). The corresponding trace
can be written:

∅
3a + b

2r1−→ 3c
∅

where the concentration levels and multiplicities are repre-
sented more concisely using standard multiset notation: we
write, e.g., 3a + b for the context where the concentration
level of a is 3 and that of b is 1 and 2r1 for the enabling of
the reaction r1 with multiplicity 2.

In the following we further exploit multiset notation, e.g.,

• By writing W (s) to denote the concentration level of the
entity s in the state W ;

• By writing R ⊆ W whenever R(s) ≤ W (s) for each
entity s ∈ S, i.e., to denote multiset inclusion;

• By writing s(k) ∈ W if s is present in W with a concen-
tration level k′ ≥ k;

• By letting W (s) = 0 if s is not present in W ;
• By writing s instead of s(1).

It is worth remarking that the concentration level of an
entity in the result state is the maximum concentration level
of each product. Similarly, the concentration level of an entity
in the current state sequence is computed as the maximum
concentration level between the result state and the context.
To this aim, we introduce the notation D � C to combine
multisets as follow:

(D � C)(s) � max{D(s),C(s)}

i.e., the concentration level of s in D � C is the maximum
between D(s) and C(s).

7.2.1 Dynamic slicing of linear processes

We finally consider the extension of the base slicing algo-
rithm to linear processes.We assume that the usermay decide
to mark only a subset s(k) with k < m of the m available
s-entities (represented by notation s(m)) in the state, so that
the slicing is concerned with how such a subset of the entities
was derived. Moreover, it has to consider the multiplicity of
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Input: - a trace D0
C0

N1−−→ · · · Nm−−→ Dm
Cm

- a marking Dsliced ⊆ Dm

Output: a sliced trace
D′
0

C ′
0

N ′
1−−→ · · · N ′

m−−→ D′
m

C ′
m

= Dsliced∅
1 begin
2 let D′

m = Dsliced
3 for i = m to 1 do
4 let D′

i−1 = ∅ ∧ C ′
i−1 = ∅ ∧ N ′

i−1 = ∅
5 for j ∈ Ni where r j = (R j , I j , Pj ), k j = Ni ( j), and

(∃s ∈ D′
i .D

′
i (s) ≤ Pj [k j /x](s)) do

6 let N ′
i = N ′

i � {k j r j }
7 for s ∈ R j do
8 let m = R j [k j /x](s)
9 if s(m) ∈ Di−1 let D′

i−1 = D′
i−1 � {s(m)}

10 else let C ′
i−1 = C ′

i−1 � {s(m)}
11 end
12 end
13 end
14 end

Algorithm 4: Trace Slicer for context dependent computa-
tions with linear processes

each reaction in a computation step, and then also how many
of entities come from the context or from the result state.

The algorithm we propose is Algorithm 4, where we
assume that Di ,Ci , Ni , ... are multisets. Line 5 selects from
Ni all reactions r j = (R j , I j , Pj ) with multiplicity k j such
that their product Pj [k j/x] includes at least one entity s ∈ D′

i
with a multiplicity Pj [k j/x](s) greater or equal to the one s
has in D′

i : in such cases, r j can be responsible for the pro-
duction of the marked entities and its reactants should be
considered at the stage i − 1. Line 6 updates N ′

i to include
r j with its multiplicity k j . Then for any reactant s of r j we
let m be the multiplicity of s required to enable k j instances
of r j and update one of D′

i−1 or C
′
i−1.

Example 16 Let us consider Example 15. By marking c(3)
in the final state we obtain the following sliced computation
step:

∅
a(3) + b(1)

2r1−−−→
c(3)

∅

We note that by line 10 in Algorithm 4, we derive a marking
of the three a’s entities in the first computation state, which
is the quantity required by reaction r1.

Let us consider one last example which illustrates the dif-
ferences in the sliced computations when different quantities
of entities are marked.

Example 17 Let us consider the following linear RS over
S = {a,b, c} whose reactions are r1 = ({a(x + 1), c(x +
1)}, {b(3)}, {c(x + 1)}), r2 = ({a(x + 4)}, {b(2)}, {c(x +
1), a(x + 1)}) r3 = ({c(x + 1)}, {b(1)}, {c(x + 2)}), and
context K = {a(5), c(3),b(1)}.{a(2)}.∅.0. Then we get the

following computation trace:

∅
5a + 3c + b

2r1+r2−−−−→ 2a + 3c
2a

r1+2r3−−−−→ 4c
∅

If the usermarks c(4) in the last state, we obtain the following
sliced computation:

∅
2a + 3a + 3c + b

2r1 +r2−−−−−→ 2a + 3c

2a

r1+ 2r3−−−−−→ 4c

∅

which is, by erasing all non boxed elements:

∅
3a + 3c

2r1−→ 3c
∅

2r3−→ 4c
∅

If instead the user marks c(2) in the last state, we obtain the
following sliced computation:

∅
2a + 3a + 3c + b

2r1 + r2−−−−−−−→ 2a + 3c

2a

r1 + 2r3−−−−−−−→ 2c + 2c

∅

We note that by selecting only two c-entities in the last state
there are two reactions (r1 and r3) which are able to produce
at least two c-entities in the last computation step and hence
we obtain a sliced computation which is a kind of ‘superset’
of the previous one.

Let us note that Proposition 2 can be generalised to the
cases of theAlgorithms3 and4 for the quantitative extensions
and can be proven following a similar pattern.

8 Related work

Dynamic program slicing has been applied to several pro-
gramming paradigms, for instance to imperative program-
ming (Korel and Laski 1988), functional programming
(Ochoa et al. 2008), Term Rewriting (Alpuente et al. 2011),
functional logic programming (Alpuente et al. 2014, 2016),
and Constraint Concurrent Programming (Falaschi et al.
2020). RSs use term rewriting and sets manipulation for its
basic computation mechanism. Thus, Alpuente et al. (2011,
2016) have a similarity with our work in the adoption of a
backward style of computation of the slicer and Alpuente
et al. (2016) uses assertions to stop the computation and to
start the slicing process. However our framework and the
one in Alpuente et al. (2011, 2016) are quite different: the
former is oriented towards functional computations, while
the latter considers the Maude language. In the language that
they consider there are neither inhibitors, which introduce a
kind of non-monotonic behaviour in the rewriting rule, nor
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a notion of interactive context. We tried to apply the frame-
work in Alpuente et al. (2011, 2016) on some examples, but
we were losing too much information, and the resulting sim-
plified computations were not informative. We have instead
defined a framework which is totally specialised and suit-
able for RSs, we use different logics specific for RSs and we
are the first to consider monitors for checking the verifica-
tion process in a slicer. The automatization of the slicing has
been inspired by the recentwork byAceto et al. (2020, 2021a,
2021b), here extended to exploit assertions over labels and
the explicit marking of entities that are primary responsible
for the fault detection. Azimi et al. (2016) defines a frame-
work for model checking RSs. There is some similarity with
our system, in the sense that both frameworks use a logic for
checking properties of the underlying model. However our
system considers set oriented properties specific for RSs, and
analyzes one computation per execution, while the specifi-
cations considered in model checking can be more general.
Slicing does not consider the full set of possible states in all
possible execution traces as model checking do. The strategy
is different. Model checking aims to prove if a property holds
considering all possible computation states, and it provides
a counterexample if it does not. Slicing returns a simplified
trace for one specific computation which will help the users
in their analyses. In Brodo et al. (2019, 2021b) we derived
a similar LTS to the one in this paper by encoding RSs into
cCNA, a multi-party process algebra (a variant of the link-
calculus defined inBodei et al. 2019;Brodo andOlarte 2017).
In comparisonwith the encodingofRS in cCNA, here theSOS
semantics is extended to traces and tailored for RSs, without
relying on an ad hoc translation.

Our implementation introduces several novel features not
covered in the literature and has been designed as a tool for
verification, for slicing, aswell as for rapid prototyping exten-
sions of RSs, not just for their simulations. For ordinary
interactive RSs there are already some performant simula-
tors, such as brsim, written in Haskell (Azimi et al. 2015)
or such as HERESY which is a GPU-based simulator of RSs,
written using CUDA (Nobile et al. 2017). Using Prolog has
had the advantage of a more flexible, safe and rapid proto-
typing.

Ehrenfeucht and Rozenberg (2007a) define the notion
of event for “extended reaction systems" (which are not
standard RSs), which roughly consists of considering a com-
putation W0, . . . ,Wn in RS taking a subsequence of states
generated by the RS, starting from a set U ⊆ Wi , with
0 ≤ i < n. The sets which are in the event sequence are
called modules. Ehrenfeucht and Rozenberg (2007a) con-
sider that two different events can merge, when one event
generates one module of state Wk which is a subset of the
corresponding module in the other event. The notion of event
can remind our notion of sliced sequence. However there are
many differences. An event corresponds to a forward com-

putation, while we compute a slice backwards. We focus on
a set of marked entities, a notion which is not considered in
Ehrenfeucht and Rozenberg (2007a). Thus, we look for “a
minimal module" which includes the entities of our interest
and try to determine the sliced subsequence which is respon-
sible for their introduction. On the other hand, the notion of
event and of module do not make a clear separation of the
role of the context for deriving the marked entities, which is
essential for our framework.

The quantitative enhancements or RSs based on delays
and linear processes were first studied in Brodo et al. (2021c,
2023b). Some previous work Ehrenfeucht and Rozenberg
(2009) introduced a notion of time in RSs with the purpose
of computing the time distance between two different states
in a single state sequence. Thus, the authors define, when it
exists, a positive and strictly increasing time function, called
universal time function, for a RS that assigns a value to each
state and it determines how many time units elapse between
two consecutive states in an interactive process for that RS.
In our approach, the passing time between two consecutive
states is alway a time unit. We define a duration for each
reactant as a value indicating how many time units it will
be active, and a delay value n is associated to each reaction
whose effect is to make available the produced reagents only
after n time units. We believe that the concept of delay as
we defined in Brodo et al. (2021c, 2023b) is novel in the
literature on RSs.

The work in Brijder et al. (2011b) introduces a time dura-
tion for each entity that indicates how many steps the entity
lasts, instead of decaying in the next step time; the authors
point out that this mechanism can also be formalised as
an interacting context. The entity duration function is then
applied to define entity concentrations and to formalise some
theoretical results. Later on, Salomaa (2017) introduced a
time duration definition for each entity similar to the one in
Brijder et al. (2011b). The duration function is then exploited
to state a theoretical result. As in Brijder et al. (2011b), Salo-
maa (2017), we specify a time duration for each entity by
assigning a value indicating how many time steps it will be
active. As a difference to Brijder et al. (2011b), Salomaa
(2017) we define a delay value n associated with each reac-
tion whose effect is to make available the produced reagents
only after n time steps. Thus, wemake explicit the time dura-
tion of each entity and the time delay each reaction takes to
be completed. We also remark that in Brijder et al. (2011b),
Salomaa (2017) the duration is fixed for each entity, while
in our work we can define a different duration for each reac-
tion, leading to different durations depending on the enabled
reactions.We believe that our framework for slicing is a good
basis to be extended also to theworks inBrijder et al. (2011b),
Salomaa (2017), even if they mainly seem devoted to the
development of theoretical results. In Meski et al. (2016)
the authors introduce an extension of RSs by considering
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discrete concentrations and introducing some quantitative
modelling. There, ‘bags’ are used to count the number of
each entity which are necessary to enable a reaction. How-
ever as a difference to our system they do not consider a
concept of multiplicity like us. Thus, whenever they apply
a reaction, the number of produced entities is the one indi-
cated explicitly by the bags of the products of the reaction.
Similarly to us Meski et al. (2016) takes the maximum num-
ber of entities produced by the reactions, and the maximum
considering also the contribution of the context. We believe
that our slicing algorithm for linear processes might be easily
instantiated to the case of the system in Meski et al. (2016).

9 Conclusions and future work

We have presented the first framework for dynamic slicing
of RSs. We have defined a slicing algorithm which has been
applied first to standard RSs: both closed systems or interac-
tive (context depending) ones can be dealtwith. Thenwehave
shown that the slicer can be applied also to several quantita-
tive extensions ofRSs bydefining somenaturalmodifications
of the basic algorithm. This way we have been able to define
a slicer for analysing RSs which consider notions of reaction
speed and delays in the activation of the entities, as well as
for treating discrete concentration levels in reactions (Brodo
et al. 2021c, 2023b).

The main advantage of the slicer is the possibility to auto-
matically extract a simplified computation, with the minimal
amount of information that is relevant to explain the pro-
duction of marked entities. Monitors help to identify states
which violate a property and to automate marking of such
states, using a flexible language to specify assertions over
computations.We have implemented the slicer (Algorithm1)
for RSs, including the monitors, in our working environment
called BioResolve11, in Prolog, and have applied our tool
to some bioinformatic examples. We are currently working
to expand our implementation to the quantitative extensions
(Algorithms 3 and 4).

As future work, we plan to add forward slicing to our
interpreter, and explore the advantages of combining the
information that we can derive by proceeding in the two
directions (backward and forward),making the analysismore
precise. We also want to extend our slicing algorithm to keep
trace of inhibitors, which are essential for the computation.
This would provide the user with a fully detailed information
about the entities which are involved in the computation of
the marked elements.
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