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Abstract— A novel very efficient algorithm based on geomet-
rical optics (GO) is presented for the analysis of graded index
(GRIN) lens antennas, namely, dielectric inhomogeneous lenses
with a 3-D arbitrary varying refractive index. A family of curved
ray paths are traced starting from a set of points defined on the
lens input interface, which is illuminated by a feed antenna,
up to a corresponding set of points on the output interface,
i.e., the lens radiating aperture. The ray tracing is numerically
performed in combination with the field transportation along the
ray by exploiting an additional wavefront-curvature transport
equation, thus providing a single independent vector ordinary
differential equation (ODE) for each ray. This scheme allows a
complete parallelization of the algorithm by assigning any ray
to a different thread. Crossing the lens input–output interfaces
at the two end points of the curved ray is accomplished by aug-
menting the refraction Snell’s law and the Fresnel transmission
coefficients with a novel compact closed-form dyadic formula for
the transmitted wavefront curvature. The ODE output provides
the field aperture distribution on the output lens interface,
permitting the far-field calculation as a radiation integral. To this
end, an ad hoc quadrature rule is exploited, which requires an
aperture sampling rate corresponding to the slowly varying part
of the integrand, while the rapid phase variation is accounted
for analytically, thus resulting in an extremely efficient and
frequency-independent scheme. The effectiveness and accuracy of
the algorithm are shown by resorting to a couple of well-known
analytical benchmarks and to two more general examples with
real-life antennas: a spaceborne weather radar lens antenna and
a feed antenna with a zero-focal lens.

Index Terms— Dielectric lenses, geometrical optics (GO), inho-
mogeneous lenses, inhomogeneous media, lens antennas, ray
tracing.

I. INTRODUCTION

IN THE sector of fifth-generation (5G) wireless commu-
nication networks, there is a growing need for enhanced
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capacity and reduced latency. This requirement has spurred the
industry to transition to millimeter-wave (mm-wave) frequen-
cies, which offer broader bandwidth solutions. Nonetheless,
a significant obstacle arises in the form of substantial free-
space path losses. To tackle this issue, there is a demand for
antenna technologies capable of delivering high directivity and
supporting multiple beams aimed at various users.

Graded index (GRIN) lens-based antennas can emerge as a
competitive technology when compared to other conventional
technologies such as homogeneous lens antennas, reflector
antennas, and phased arrays. This is attributed to their rapid
and cost-effective development using additive manufacturing,
reduced complexity, and the greater flexibility they offer in the
design process. This flexibility in design allows for the creation
of slimmer and more compact implementations, even though
it may involve the use of materials with higher maximum
permittivity. Beam scanning can also be accomplished by
altering the position or orientation of the source relative to the
lens [1] or by customizing the lens distribution for multifocal
capabilities. The resurgence of interest in GRIN lenses is
linked to the newfound ability to manufacture them using
3-D printers [2], [3], [4], [5], [6], [7], [8]. The two most
commonly used GRIN lenses are the spherical Luneburg lens
(LL) [9] and the Maxwell fish-eye (MFE) lens [10], for
which the refractive index is available in an analytical closed
form. Nevertheless, their large and bulky design can be a
disadvantage in certain applications. Therefore, innovative flat
cylindrical GRIN lenses have been developed using various
techniques, including transformation optics (TO) [11], [12],
ray-tracing optimization [13], and analytical formulas rooted in
geometrical optics (GO) [14], [15]. All of these methodologies
are tailored to specific applications, often constrained by geo-
metric and material limitations, making them less universally
applicable. TO requires the existence of both electric and mag-
netic properties, in conjunction with anisotropy. When TO is
rigorously applied, it provides the material parameters and the
distribution of the electric and magnetic fields, as well as the
Poynting vector within a GRIN lens. Nevertheless, achieving
these conditions in practical applications can be a formidable
task. In nearly all cases of actual TO device implementation,
it becomes necessary to simplify the constituent parameter
expressions by approximating them in a feasible manner, often
leading to the omission of the magnetic response and, at times,
anisotropy. This simplification can introduce notable errors in
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the original field. Consequently, the availability of efficient
tools for rapid analysis of GRIN devices has become increas-
ingly crucial. A full-wave electromagnetic simulator can offer
valuable insights into wave propagation within the GRIN
lens and the resulting far-field radiation patterns. However,
as the electrical size and/or permittivity gradient increase,
simulations become computationally demanding in terms of
both time and resources. As a consequence, they cannot be
effectively employed for the optimization-based design of
GRIN lenses, which would necessitate numerous iterations
involving varying GRIN lens geometries and refractive indices.
To overcome this challenge, one can resort to GO as a very
efficient analysis tool. As a special case of the method of
characteristics, GO provides a solution of an asymptotic (high
frequency) approximation of the wave equation by tracing
rays (eikonal equation) and then by calculating the field along
the ray trajectories (transport equation). Many previous works
deal with the ray-tracing implementation, without addressing
the transport equation [16], [17], [18], [19], which ultimately
results in an incomplete GO analysis tool. However, recent
research (e.g., [20], [21]) has introduced complete GO-based
algorithms, including the field calculation. These algorithms
not only provide analytical insight but also enable optimization
for GRIN lenses. Nonetheless, there remains a shortage of
efficient and accurate numerical tools for comprehensively
analyzing wave propagation within inhomogeneous materials,
particularly when the lens aperture is significant relative to the
wavelength, rendering full-wave electromagnetic simulation
tools unfeasible.

In this research, we introduce a GO analysis algorithm that
combines in a single ordinary differential equation (ODE) the
ray tracing and the field calculation with the capacity to ana-
lyze a wide range of GRIN lens types while accommodating
arbitrary material distributions in space. This algorithm paves
the way for novel and inventive designs within the framework
of GRIN lenses. Our proposed approach brings several features
compared to the methodology outlined in [20] and [22]. These
innovations encompass the following.

1) More Accurate Field Amplitude Calculation From Wave-
front Curvature: In contrast to the method presented
in [20], our study employs an additional transport
equation for precisely computing the wavefront curva-
ture along the ray. This enables the exact determination
of the ray-tube cross-sectional area, which, in turn,
permits precise field transport calculations without the
need for approximations based on tracking neighboring
rays. This improvement enhances the overall accuracy
of our analysis. It has to be said that our approach
encounters difficulties when dealing with caustics, where
the ODE solver of the wavefront transport breaks down.
In contrast, the method in [20], although less accurate,
is more robust and allows field calculation through
caustics, facilitating inverse design by optimization.
Therefore, we are working on a more efficient direct
retrieval method for the refractive index in ray design
that will eliminate caustic-related problems. This will
be the focus of our future work and preliminary results
are presented in [23].

2) Increased Ray Processing Independence and Complete
GO Parallelization: As a special case of the method
of characteristics, GO solves electromagnetic problems
along ray trajectories. The calculation of ray trajectories
is independent of each other, allowing for easy paral-
lelization by assigning each ray to a separate thread.
However, in [20] and [24], the calculation of field
transport along the ray requires the estimation of the
spreading factor by tracking the distance between a bun-
dle of, at the very least, three rays. This process intercon-
nects different threads, complicating the parallelization.
Alternatively, to mitigate this issue, additional dummy
rays can be traced alongside each primary ray, as done
in [20] and [22], incurring an increased computational
burden. The algorithm developed in this research enables
the independent processing of individual rays, including
field calculations. This feature makes the entire GO
analysis fully parallelizable and efficient, not limited to
just ray tracing. This enhancement has the potential to
significantly boost computational efficiency and expedite
the analysis procedure.

3) More Efficient Calculation of Wavefront Curvature of
the Transmitted Wave: The calculation of the transmitted
wavefront curvature, essential for the initial condition in
the wavefront-curvature transport equation at the input
lens interface, is accomplished through a novel and
concise dyadic expression introduced in this work.

4) Far-Field Computation Utilizing an Ad Hoc Method:
Rather than relying on the fast Fourier transform
algorithm derived from the plane wave spectrum, our
research adopts an alternative approach to compute the
far field. This different technique may offer potential
advantages in terms of either accuracy or computational
efficiency, especially when the lens output interface is
far from being flat. This alternative approach may offer
the advantages with respect to an FFT applied directly to
the aperture ray-field, especially in terms of estimate of
cross-polar components. A careful analysis is provided
in [25].

These innovative aspects of our work contribute to advance-
ments in the analysis of GRIN lenses, offering insights and
potential enhancements in both design and optimization. The
remainder of this article is divided into two sections. Section II
delves into the development of the differential equations for
ray tracing and transport (Section II-A) and their transfor-
mation into a unified vector ODE format, well-suited for
array programming and efficient parallelization (Section II-B).
The utilization of general external astigmatic rays outside
the lens region to establish boundary value problems at the
input interface is discussed in Section II-C. Section II-D
explores the crossing of rays at interfaces between different
inhomogeneous media, providing the wave parameters for
the transmitted wave, which serve as the initial boundary
values for the ODE. Following this, Section II-E presents a
comprehensive algorithm for rapidly computing the far field,
starting from the field aperture distribution at the output
interface. The entire algorithm is summarized with a pseu-
docode in Section II-F. In Section III, we demonstrate the
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Fig. 1. GRIN lens antenna geometrical arrangement. A ray is originated at
the source point F , hits the lens input interface Sin at A, and then travels
inside the inhomogeneous volume V on a curved trajectory up to B on the
output interface Sout .

effectiveness and accuracy of the presented algorithm through
four numerical examples: the MFE lens (Section III-A), the
LL (Section III-B), an unconventional application of a circular
scanning GRIN lens antenna presented in [6] (Section III-C),
and the zero-focal lens described in [7] (Section III-D), for
which a comparison against measurements is available.

II. FORMULATION

The GRIN lens antenna is assumed as a block of isotropic
dielectric material with an arbitrary shape and a varying
refractive index n(r) [or relative dielectric permittivity ε(r) =
n2(r)]. The refractive index is defined at every point r ∈ V ,
where V is the lens volume, and it is assumed at least twice
differentiable, i.e., n(r) ∈ C2(V ). In our assumption, the
refractive index is assumed as continuous and differentiable,
and no attempt of modeling practical realizations with dis-
cretized stepped refractive index profiles is done, which is
beyond the purpose of this present article. The boundary of V
comprises an input Sin and an output Sout surface. In the lens
intentional operation, the impinging wave enters through Sinc,
crosses V , and exits through Sout (Fig. 1).

A. GO in Inhomogeneous Media

GO [26], [27], [28] is effective and accurate when the size
of the lens, the curvature of its surface, and the refractive
index changing rate are all large compared to the wavelength
λ. According to GO, the time harmonic (e jωt intended and
suppressed) electromagnetic field is written as

E(r) = E0(r)e− jkψ(r) (1)

with k = 2π/λ denoting the free-space wavenumber, E0(r)
the slowly varying field polarization and strength (namely, the
leading term of the Luneburg–Kline asymptotic series expan-
sion [29], [30]), and ψ(r) the eikonal function, corresponding

to the optical length. The eikonal function satisfies the eikonal
equation

|∇ψ(r)|2 = n2(r) (2)

obtained by introducing (1) in the Helmholtz wave equation for
the electric field and collecting the leading asymptotic terms
with respect to inverse powers of k. Instead, the first higher
order asymptotic terms provide the electric field transport
equation

d
ds

E0 = −
∇

2ψ

2n
E0 −

(
E0 ·
∇n
n

)
∇ψ

n
(3)

where d/ds = ŝ · ∇, with ŝ = ∇ψ/n. The argument depen-
dence (r) is hereinafter omitted for the sake of compactness.
In this article, we consider the case of lossless materials for
which n and ε are real. However, the present formulation can
be easily extended to the case of small losses, for which
ε = ε′ − jε′′ becomes complex (ε′′ ≪ ε′), by assuming
n =

√
ε′ and by adding an extra term −(kε′′/2n)E0 in the

transport equation (3), accounting for weak absorption [28].
Instead of solving the eikonal equation (2) by calculating

the eikonal in a volume grid of points, an effective modeling
scheme is to resort to rays, i.e., a set of curves perpendicular
to wavefronts. By taking the gradient of (2), the ray trajectory
equation is derived

d
ds
∇ψ(r) = ∇n(r) (4)

whose solution provides the curved ray trajectory in the
inhomogeneuos medium r(s), parametrized by the curvilinear
abscissa s. The unit vector tangent to the ray is given by

d
ds

r = ŝ (5)

and, according to (2), satisfies ∇ψ = nŝ. The numerical
solution of (4) requires the definition of initial conditions
r(s = 0) = rA and ŝ(s = 0) = ŝA, i.e., a starting point
rA and a launching direction ŝA.

Once the ray is traced, it is claimed in some literature that
one can use (3) to calculate E0. However, this is not practical
because the eikonal Laplacian ∇2ψ = n∇ · ŝ + dn/ds is
not available from the single ray trajectory. Such a quantity
requires additional information on the wavefront or the rays
in the neighborhood of the traced ray r(s). As a matter of
fact, the eikonal Laplacian expresses the divergence of the
rays which causes the variation of the cross-sectional area d6
of the ray tube and the spreading of the transported power.
The latter is dictated by the power conservation (Poynting
theorem) ∇ · (|E0|

2
∇ψ) = 0 applied to a ray tube (Fig. 2).

Indeed, according to differential geometry, the divergence of
the unit vector normal to a surface (i.e., the wavefront) is
related to the surface curvature by ∇ · ŝ = κ1 + κ2, with
κ1,2 = 1/ρ1,2 denoting the wavefront principal curvatures;
i.e., the reciprocal of the principal radii of curvature ρ1,2
(Fig. 3).

To solve this impairment in [20] and [24], a bundle of
two additional paraxial rays are traced around the center
ray to estimate the ray-tube cross-sectional area from the
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Fig. 2. Ray-tube geometry for a curved ray in an inhomogeneous medium.
The ray-tube cross-sectional area d6 varies along the ray according to ray
divergence.

Fig. 3. Wavefront principal radii of curvature ρ1,2 and respective principal
plane directions X̂1,2.

distance between the rays. However, a more accurate, efficient,
and elegant solution consists in resorting to the wavefront-
curvature approach in [31] (previously developed for seismic
waves [32]). The wave-field object is augmented by introduc-
ing the local wavefront-curvature dyadic

Q̄ = κ1X̂1X̂1 + κ2X̂2X̂2 (6)

with X̂1,2 the two orthogonal unit vectors tangent to the
wavefront in the direction of the principal planes (Fig. 3).

The curvature dyadic allows a complete second-order local
representation of the eikonal at any point along a ray, including
a displacement transverse to the ray. Namely, the Hessian of
the eikonal is given by

∇∇ψ = nQ̄+ D̄ (7)

in which the curvature dyadic provides the components trans-
verse to the ray, while the longitudinal term is calculated from
the refractive index profile; in fact, according to (4)

D̄ = ∇nŝ+ ŝ∇n −
dn
ds

ŝŝ. (8)

The eikonal Hessian obeys to the transport equation [31]

d
ds
∇∇ψ = −

(∇∇ψ)2

n
+
∇n∇n

n
+∇∇n (9)

which can be obtained by taking the Hessian of (2). Therefore,
by using (9), one can calculate the wavefront curvature along
the ray and use it in (3) to calculate the Laplacian of the
eikonal as the trace of the Hessian ∇2ψ = tr{∇∇ψ}.

B. Ray Trajectory and Wavefront-Curvature Transport in a
Single ODE

Before proceeding further, let us introduce the operator
vec{·}, which reshapes the triangular part of a 3×3 symmetric

matrix into a 6× 1 column vector

vec


 a11 a12 a13

a12 a22 a23
a13 a23 a33

 =


a11
a12
a13
a22
a23
a33

 (10)

and its inverse vec−1
{·}, which rebuilds the 3 × 3 symmetric

matrix from the 6× 1 column vector

vec−1




b1
b2
b3
b4
b5
b6


 =

 b1 b2 b3
b2 b4 b5
b3 b5 b6

. (11)

Equations (3)–(5) and (9) can be combined in single vectorial,
first-order, ODE 

d
dt

y(t) = F
[
y(t)

]
y(t = ψA) = yA

(12)

in which we have chosen the optical length t = ψA +
∫ s

0 nds
to parameterize the ray, by introducing the change of variable
dt = nds, and

y(t) =


r(t)
∇ψ(t)
E0(t)

vec{∇∇ψ(t)}

 (13)

is a 15 × 1 column vector collecting all the ray and wave-
field information. Namely, in the first three entries, we have
arranged the ray point y(1:3) = r, in the second three entries
the eikonal gradient (i.e., the ray direction) y(4:6) = ∇ψ = nŝ,
in the third three entries the electric field y(7:9) = E0, and in the
last six entries the Hessian of the eikonal y(10:15)

= vec{∇∇ψ}.
It is also worth noting that the definition of dyads according to
the dyadic notation Ā = bb is straightforwardly implemented
as a matrix product between a column and a row vector b ·bT .
Furthermore, in (12), F(y) is a 15× 1 column vector function
of the vector argument y, which is defined as follows. The
first three entries are given by

F(1:3)(y) =
y(4:6)

n2 (14)

the second three entries by

F(4:6)(y) =
∇n
n

(15)

the third three entries by

F(7:9)(y) = −
tr
{
vec−1

{
y(10:15)

}}
2n2 y(7:9)

− y(7:9) ·
∇n
n

y(4:6)

n2 (16)

and the last three entries by

F(10:15)(y) = vec
{
∇n
n
∇n
n

}
+
∇∇n

n

−

[(
vec−1

{
y(10:15)

})2
]

n2 . (17)
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Equations (14)–(17) also involve the refractive index n, its
gradient ∇n, and its Hessian ∇∇n all evaluated at the ray point
r = y(1:3). Those quantities can be easily rewritten in terms of
the relative permittivity ε = n2, its gradient ∇ε = 2n∇n, and
its Hessian ∇∇ε = 2∇n∇n + 2n∇∇n, if preferred.

Finally, in (12), the initial conditions yA are assigned at
the starting value of the parameter t = ψA = ψ(rA) by
specifying the coordinates y(1:3)A = rA of the starting point A;
then, from the knowledge of the ray direction, the electric field,
and the wavefront curvature at A, the rest of the vector can be
completed. Namely, y(4:6)A = n(rA)ŝ(rA), y(7:9)A = E0(rA), and
y(10:15)

A = vec{n(rA)Q̄(rA)+ D̄(rA)}, with D̄ defined as in (8).
Hence, the solution of (12) permits the ray tracing and the

wave-field propagation along the ray, by considering one ray
at a time, therefore allowing a parallelization of the code.
In addition, (12) calculates four quantities at a matrix, which
is efficient for those matrix-based calculators such as MAT-
LAB. Among the general purpose, ready-to-use, and numerical
tools available for the solution of ODEs, we have adopted
MATLAB’s ode45 without encountering any numerical issues.
As a matter of fact, the ODE is not stiff within the GO
validity range ∇n/n, ∇|E0|/|E0|, and ∇2ψ ≪ k, i.e., when
the refractive index and the field amplitude exhibit a slow
variation compared to the wavelength and far form caustics.
That kind of routine accepts as input tA, yA and the pointer
to a function calculating F in (14)–(17) and gives as output
a matrix containing a sampled version of the solution. In the
present case, we obtain a 16-row matrix with the values of t
in the first row[

ψA · · · t · · · ψB

yA · · · y(t) · · · yB

]
. (18)

Each column contains, below the parameter value in the first
row, the corresponding wave-field information vector y(t). The
number of columns is variable and depends on the ray length
and the required accuracy, which is set via an error parameter;
the higher the accuracy, the smaller the parameter step, and the
larger the number of parameter samples and the computation
time. Along with the initial conditions, the ODE solver routine
needs a stopping criterion; in addition to an upper limit in the
parameter domain t ∈ [ψA, tmax ], one can define an event that
is a logical condition, which dictates the solution endpoint
parameter value. By choosing as event r(t) = y(1:3)(t) ∈ V ,
if the starting point A ∈ Sin , then the endpoint is found at
the point B with coordinates rB ∈ Sout , for a parameter value
t = ψB . Hence, all the wave-field information at the exit point
B is available in the last column of the output matrix (18).

C. Astigmatic Ray Illumination From the External Region

In some cases, the wave illuminating the lens is originated
from a source, which is external to the lens. The region
around the lens r /∈ V is assumed to be air (free space),
i.e., a homogeneous medium with n = ε = 1. Here, t = s,
∇n = ∇∇n = 0, and the system of ODEs (12) admits the
well-known GO analytical solution. A ray starting at the point
F , with coordinates rF , in the direction ŝF , continues on a
straight path r(s) = rF+s ŝF . The wavefront radii of curvature

Fig. 4. Interface between two materials #1 and #2 with respective refractive
indices n1 and n2. The unit vector normal to the interface pointing toward
#1 is denoted by n̂. A ray impinges on the interface from medium #1, with
impinging direction ŝi , and hits the interface at R. Here, the ray abruptly tilts
to the transmitted direction ŝt , because of refraction when n1(R) ̸= n2(R).
The electric field is also discontinuous across the interface and the transmitted
electric field vector can be expressed in terms of the incident field through the
dyadic transmission coefficient. The wavefront curvature also changes across
the interface; the transmitted wave curvature is affected by the refractive index
step and the local interface curvature but also by the local gradient of the
refractive indices, for inhomogeneous materials.

increase linearly ρi = ρFi + s along the ray, in the constant
directions X̂i (i = 1, 2), so that

Q̄(r) =
X̂1X̂1

ρF1 + s
+

X̂2X̂2

ρF2 + s
. (19)

The electric field direction also remains constant, while its
amplitude is modulated by a closed-form spreading factor, thus
yielding to the well-known closed-form expression for the GO
field (1)

E(r) = E0(rF )

√
ρF1ρF2

(ρF1 + s)(ρF2 + s)
e− jk(ψF+s). (20)

In conclusion, for a known source, by using standard GO
expressions (19) and (20), the source rays can be analytically
traced from the source up to the point A ∈ Sin where the
wave-field quantities ψ(rA), E0(rA), and Q̄(rA) are calculated
in closed form.

D. Discontinuity of the Refractive Index at an Interface

When a ray crosses the input (output) interface Sin (Sout ),
a point A(B) is encountered where the refractive index n
(or the relative permittivity ε) might be discontinuous or
nondifferentiable, and thus, the ODE (12) is not applicable.
To calculate the ray direction, the field, and the wave curvature
beyond an interface, one has to exploit continuity conditions.

In a general arrangement (Fig. 4), a ray crosses the interface
S between two inhomogeneous media at the refraction point
R ∈ S, with coordinates rR .

The ray travels from the medium #1 to the medium
#2 beyond the interface, characterized by n1(r) and n2(r),
respectively, and crosses the interface at R. The interface
surface S is characterized at R by the normal unit vector
n̂ pointing outward from #2 to #1 and by the curvature
dyadic C̄ = Û1Û1/R1 + Û2Û2/R2, with R1,2 the interface
surface principal curvature radii in the principal planes along



2152 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 3, MARCH 2024

the tangent unit vectors Û1,2. The incident, reflected, and
transmitted fields are written at R in the GO format (1). Then,
the eikonal continuity is imposed at R and the neighbor points
on the interface, for the various wavefronts. For the transmitted
wave, the eikonal continuity reads

ψ i (rA) = ψ
t (rA). (21)

Next, the eikonal gradient continuity provides the well-known
Snell’s refraction law

ŝt
=

n1

n2

(
1̄− n̂n̂

)
· ŝi
+

√
1− |

n1

n2

(
1̄− n̂n̂

)
ŝi |2n̂. (22)

Finally, the eikonal Hessian continuity provides the expression
of the transmitted wave wavefront-curvature dyad

Q̄t
=

(
1̄−

n̂ŝt

n̂ · ŝt

)
·[

n1

n2
Q̄i
+

D̄i
1 − D̄t

2

n2
−

(
n1

n2
ŝi
− ŝt

)
· n̂C̄

]
·

(
1̄−

ŝt n̂
n̂ · ŝt

)
(23)

in which, as well as in (22), all quantities are evaluated at rA

and D̄i
1 (D̄t

2) is defined as in (8) with ŝi and n1 (ŝt and n2).
Equation (23) represents the generalization of the equation
in [33] for the case of an interface between two homogeneous
materials and reduces to it when D̄i

1 = D̄t
2 = 0.

In addition, by imposing the electric and magnetic field
tangent component continuity at the interface, the well-known
dyadic Fresnel transmission coefficient is obtained: T̄ =

T∥ût
∥
ûi
∥
+ T⊥û⊥û⊥, with û⊥ = ŝi

× n̂/|ŝi
× n̂|, ûi,t

∥
= û⊥× ŝi,t ,

and T∥,⊥ = 2n1ŝi
· n̂/(n2,1ŝi

· n̂+ n1,2ŝt
· n̂), through which

Et
0(rR) = T̄ · Ei

0(rR). (24)

Therefore, by using (21)–(24), the ray and wave quantities
can be transported through the interface. This is needed to
derive the initial condition to initialize the ODE (12) from
the impinging field at A and to calculate the field just outside
the lens output interface Sout at the point B, from the ray and
wave-field parameters calculated by the ODE at the curved ray
endpoint. It is worth noting that, in certain inhomogeneous lens
designs, the refractive index at the interface is unity to avoid
reflection; in such cases, ŝt

= ŝi and T̄ = 1̄ (no refraction
as well). However, the jump discontinuity in the refractive
index gradient still introduces a discontinuity in the wavefront-
curvature dyad.

E. Efficient Calculation of the Far Field

Once rays are traced from the source to the output interface
Sout and the field is transported across the interface, aperture
field samples Et (rm) = Et

0(rm)e− jkψ(rm ) are available on the
lens aperture at the sample points rm ∈ Sout . The far field in
the observation direction û is then calculated resorting to the
radiation integral

E f f (û) = jk
4π

∫∫
Sout

û×
[
M(r)+ û× ηJ(r)

]
e jkû·rd S (25)

Fig. 5. Arrangement of the pth triangle in the Delaunay mesh. The vertexes
are pointed by the vectors vp,i , i = 1, 2, 3, in the general reference system,
and they are counted in a positive counterclockwise sense with respect to the
outgoing normal n̂. Each side corresponds to the vector lp,i = vp,i+1 − vp,i .

where a spherical factor e− jkr/r is intended and suppressed,
η is the free-space impedance, and the aperture equivalent
magnetic and electric currents are defined as

M(r) = Et
0(r)× n̂(r)e− jkψ(r)

J(r) = n̂(r)×
ŝt
(r)× Et

0(r)
η

e− jkψ(r). (26)

By using (26) in (25), the radiation integral appears in the
form [34]

E f f (û) = ∫∫
Sout

F(r)d S =
∫∫

Sout
G(r)− jkϕ(r)d S (27)

with G=( jk/4π){(û · n̂)1̄− n̂û+(ûû− 1̄) · [ŝt n̂−(n̂ · ŝt
)1̄]} ·

Et
0 a slowly varying part of the integrand and ϕ = ψ − û · r

the phase function of a rapidly oscillating complex exponen-
tial factor. If the aperture samples are sufficiently dense to
accurately follow the variation of the slowly varying part (i.e.,
to follow the variation of the output interface geometry and
its normal n̂, and the transmitted wave eikonal ψ , direction
ŝt , and electric field Et

0), then one can generate on Sout a
triangular surface mesh from the sample points rm with a
Delaunay triangulation [35]. Ready-to-use routines for this
operation are available; they take as input the list of N points
rm (m = 1, 2, . . . , N ) arranged in an N×3 matrix and give as
output an Nt × 3 matrix d̄, which is a lookup table where any
row corresponds to one of the Nt triangles and contains in the
three columns the indices of the three points that are the three
triangle vertices, in a counterclockwise sense. As far as the
pth triangle (p = 1, 2, . . . , Nt ), the i th vertex (i = 1, 2, 3) is
vp,i = rm , with m = dpi , i.e., the pth row and i th column entry
of d̄. Analogously, Fp,i = F(vm). Triangle sides are readily
obtained as lp,i = vp,i+1 − vp,i , with i + 1 intended “mod 3”
(i.e., i = 4→ i = 1, see Fig. 5). Hence, by assuming a linear
interpolation for G and f on each triangle, the integral (27)
is evaluated as the sum of the integrals over each triangle,
which is calculated in a closed form [25], finally leading to
the quadrature rule

E f f (û) ≃ Nt∑
p=1

3∑
i=1

Fp,i Bp,i . (28)

In (28)

Bp,i = 2Sp

[
1

δp,iδp,i−1
+ j

(
δp,i−1 − δp,i

δ2
p,iδ

2
p,i−1
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Fig. 6. Ray tracing in an MFE. Rays are launched by a dipole source at the
“south pole” and shown in a vertical plane. The background color is propor-
tional to the refractive index n, with a surrounding medium n = 1 beyond the
MFE surface (black line). Numerically traced rays (white solid lines) follow
the expected circular trajectory and converge at the “north pole.” One circle
corresponding to the theoretical ray trajectory for θ0 = 2π/5 = 72◦ is traced
for comparison (black dashed line). The observation scan where the field is
calculated for comparison (see Fig. 8) is also shown (red dashed line).

Fig. 7. Wavefront curvature κ along the rays in the MFE as calculated by
the proposed algorithm (green solid line) and analytical value (red dashed
line). Three different rays are considered with initial launching directions
θ0 = 0 (straight central ray along the z-axis), θ0 = 2π/5 (ray compared to
the analytical circular trajectory in Fig. 6), and θ0 = π/2 (extremal ray on
the MFE surface).

+
e− jδp,i

δp,i+1δ
2
p,i
−

e jδp,i−1

δp,i+1δ
2
p,i−1

)]
(29)

with Sp = 1/2|lp,i+1 × lp,i | denoting the pth triangle’s area
and δp,i = k[ψ(vp,i+1)− ψ(vp,i )−û · lp,i ] the phase gradient
component along the i th edge of the pth triangle (note that∑3

i=1 δp,i = 0, and i − 1 is also intended “mod 3”; i.e.,
i − 1 = 0 → i − 1 = 3). Indeed, unlike in [25], in the
present case, under the far-field observation and linear eikonal
interpolation assumption, the phase function is exactly linear
over each triangle with a constant gradient. Therefore, the
required spatial sampling rate is independent of the frequency
and can be much larger than the wavelength, as only the
slowly varying part of the integrand needs to be reconstructed.
Similar to [25] and [36], an iterative scheme might be arranged
where the mesh is refined at each step by tracing new rays
to add aperture samples, but it is beyond the scope of this
present article. Though (29) is not defined when observing in

the far-field caustic directions on the triangle edge Keller’s
diffraction cones (δp,i = 0, i = 1, 2, 3), it exhibits removable
singularities there, and it is intended to assume the limit
values Bp,i

(
δp,i = 0

)
= Sp

[
j

δp,i−1
+

2
δ2

p,i−1
− 2 e jδp,i−1−1

jδ3
p,i−1

]
,

Bp,i
(
δp,i−1 = 0

)
= Sp

[
1

jδp,i
+

2
δ2

p,i
+ 2 e− jδp,i−1

jδ3
p,i

]
, and

Bp,i
(
δp,i+1 = 0

)
= 2Sp

[
2 j e− jδi−1

δ3
i
−

e− jδi+1
δ2

i

]
. Finally, when

observing at the three Keller’s cone intersection, i.e., at the
forward scattering far-field caustic direction of the triangle,
Bp,i (δp,i = δp,i+1 = δp,i−1 = 0) = Sp/3.

Algorithm 1 GRIN Lens Analysis
1: Define Lens Geometry, n(r), source type and location

//ray-tracing loop
2: for m = 1 to N do
3: Launch the mth ray from the source and find the

respective hit point A ∈ Sin location rA

4: Evaluate the source ray-field ψA, ŝi (rA), Ei
0(rA), and

Q̄i (rA) with (19)-(20)
5: Transmit the ray-field through the input interface and

calculate ŝt (rA), Et
0(rA) and Q̄t (rA) with (21)-(24)

6: yA ←− [ŝt (rA),Et
0(rA), Q̄t (rA)]

7: [t, y]=ODE (F(y), yA)

8: ψB ←− t (end), [rB, ŝi (rB),Ei
0(rB), Q̄i (rB)] ←− y(end)

9: Transmit the ray-field through the output interface and
calculate ŝt (rB), Et

0(rB) with (21)-(24)
10: Store the aperture sample point and ray-field quantities

[rm, ψm, ŝt (rm),Et
0(rm)] ←− [rB, ψB, ŝt (rB),Et

0(rB)]

11: end for
12: define observation direction(s) û
13: d̄ =DELAUNEY(rm)

14: Calculate triangle geometrical quantities vp,i , lp,i , Sp

15: Evaluate radiation integrand at aperture sample points
Fp,i ←− F(vp,i )

16: Initialize E f f (û)←− 0
//radiation integral loop over triangles

17: for p = 1 to Nt do
18: Evaluate triangle phase gradient parameters δp,i

19: Evaluate triangle radiation functions Bp,i

20: for i = 1 to 3 do
21: E f f (û)←− E f f (û)+ Fp,i Bp,i

22: end for
23: end for

F. GRIN Lens Overall Analysis Algorithm

The formulation presented in Sections II-A –II-E provides a
complete tool for the analysis of GRIN lens antennas, which
is here schematically summarized in Algorithm 1. First, the
lens geometry, the refractive index function n(r), and the
source type and location are defined. Then, a loop starts
on a given number of rays Nr launched from the source to
illuminate the input surface Sin of the lens. The ray from
the source to the surface point A ∈ Sin with coordinates
rA is traced analytically, and the impinging ray eikonal ψA,
its direction ŝi (rA), the source illuminating field Ei

0(rA), and
wavefront curvature Q̄i (rA) are calculated according to (19)
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Fig. 8. Amplitude of the electric field on the linear scan ρ ∈ [−a, a] (red
dashed line in Fig. 6) in the MFE illuminated by the unit momentum electric
dipole at the “south pole.” The proposed algorithm calculation (green solid
line) and analytical formula (red dashed line), when observing in the dipole
plane φ0 = 0 or in the orthogonal plane φ0 = π/2, are almost identical.

and (20). The ray-field transmitted beyond the interface is
determined by using (21)–(24); namely, ŝt (rA), Et

0(rA), and
Q̄t (rA) are calculated and then collected in yA, thus allowing
the ODE (12) initialization. Next, the ODE is numerically
solved, thus tracing the curved ray inside the lens up to the
endpoint B ∈ Sout . The ODE output provides the endpoint
location rB , and all the quantities characterize the ray-field
impinging on the output interface, i.e., ψB , ŝi (rB), Ei

0(rB),
and Q̄i (rB). Finally, the quantities are transmitted through the
output interface via (21)–(24), thus calculating the aperture
field sample Et

0(rB) and the transmitted ray direction ŝt (rB),
which are stored. Once the ray-tracing loop is completed,
the aperture distribution is available. Hence, the surface is
meshed by a Delaunay triangulation and the far-field radiation
is calculated resorting to the quadrature rule (28). It is worth
mentioning that the ray-tracing loop can be easily and very
efficiently parallelized because rays are independent of each
other, even assigning any ray to a thread.

III. NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness of the
proposed algorithm through some examples. In the first two
examples, we test the numerical solution against well-known
analytical benchmarks. Next, two more general and realistic
cases are provided.

A. MFE Lens

As a first example, we consider an MFE lens [37], which is
a sphere of dielectric with radius a and radial refractive index
variation n(r) = 2/[1 + (r/a)2], where the reference system
origin lies at the sphere center. A unit momentum (J0 = 1 Am)
dipole source J0 = J0x̂ is placed at F ≡ A = −aẑ, i.e., on the
sphere “south pole.”

As it is shown in [37], rays emerging from the point source
travel across the sphere and converge at the “north pole” B ≡
aẑ following circular trajectories. Namely, a ray launched in
the direction ŝt

A = sin θ0(cosφ0x̂+sinφ0ŷ)+cos θ0ẑ, i.e., with
an angle θ0 from the z-axis, traces an arc of the circumference
with center at C = −a cot θ0(cosφ0x̂ + sinφ0ŷ) and radius
R = a csc θ0. In Fig. 6, a section of the MFE in a vertical
plane is shown; the background is colored proportionally to

Fig. 9. Ray tracing in an LL. Rays are launched by a dipole source at the
“south pole” and shown in a vertical plane. The background color is propor-
tional to the refractive index n with a surrounding medium n = 1 beyond the
LL surface (black line). Numerically traced rays (white solid lines) follow the
expected elliptic trajectories and focus to infinity. One ellipse corresponding
to the theoretical ray trajectory for θ0 = π/5 = 36◦ is traced for comparison
(black dashed line). The observation scan where the field is calculated for
comparison (see Fig. 10) is also shown (red dashed line).

Fig. 10. Amplitude of the electric field on the output interface (red dashed
line in Fig. 9) in the LL illuminated by the unit momentum electric dipole
at the ”south pole.” The scan is parametrized by ρ ∈ [−a, a]. The proposed
algorithm calculation (green solid line) and analytical formula (red dashed
line), when observing in the dipole plane φ0 = 0 or in the orthogonal plane
φ0 = π/2, are almost identical.

Fig. 11. Wavefront principal curvatures κ1 and κ2 on the output interface (red
dashed line in Fig. 6) in the LL. The scan is parameterized by ρ ∈ [−a, a].
The proposed algorithm calculations (green solid line) and analytical formulas
κ1 = ρ

2/a2(a2
− ρ2)1/2 and κ2 = 0 (red dashed line) are superposed.

the refractive index according to the lateral colorbar (from
blue n = 1 to yellow n = 2). The surrounding medium is
assumed n = 1 beyond the MFE surface (thin black line).
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Fig. 12. Geometry of the circular beam-scanning GRIN lens antenna designed
in [6] for a spaceborne weather radar. (a) Three-dimensional view of the
antenna system. Ray trajectories start at the feed point and hit the input surface
(orange straight lines), then travel through the lens (white curved lines), and
finally reach the output surface. At any endpoint B ∈ Sout , the transmitted
ray direction ŝt is drawn (orange arrow). The triangular Delaunay mesh for
the radiation integral is also depicted (black lines). (b) 2-D section of the
same antenna in the focal plane is also shown with the background color
corresponding to the refractive index n(ρ, z).

The ray trajectories calculated with the proposed algorithm are
shown (white solid lines) and precisely follow the analytical
circular trajectories, one of which is reported for comparison
(dashed black line) corresponding to the launching direction
θ0 = 2π/5 = 72◦. It is worth mentioning that at the source
point F , the source GO field is singular, as F is a caustic
where ∇2ψ = ∞. Also, since on the MFE surface n = 1,
then ŝt

= ŝi (no refraction) and, with the source at the surface,
Q̄t
= Q̄i

= ∞ because the discontinuity introduced by (23)
becomes negligible; therefore, the fifth step of the algorithm is
trivial, being the transmitted ray field equal to the incident one.

However, to numerically manage this condition, a tiny sphere
with radius r0 = 10−6a is considered in the MFE around the
source, and the ODE starting points A are taken on its surface,
slightly displaced from F , thus avoiding the singularity. The
source ray-field quantities at rA = −aẑ + r0ŝt

A become
ψ(rA) = r0, Et

0(rA) =
jkη

4πr0
ŝt

A ×

(
ŝt

A × J0

)
, and Q̄t (rA) =

(1̄ − ŝt
A ŝt

A)/r0. Such values are used to initialize the ODE.
Along ray trajectories, the numerical solution of the ODE
provides the eikonal Hessian as ∇∇ψ = vec−1

{y(10:15)
}, which

allows the calculation of the wavefront-curvature dyad Q̄ =
(1̄− ŝŝ) ·∇∇ψ · (1̄− ŝŝ)/n. The two nonzero eigenvalues of Q̄
are the numerically calculated local wavefront curvatures κ1,2;
they are equal to each other and they are compared with the
expected analytical value κ = − 2z√

(r2+a2)2−(2za)2
of the circular

wavefronts in Fig. 7, along three ray trajectories: the central
straight ray along the z-axis (θ0 = 0), the abovementioned
ray (θ0 = 2π/5), and the extremal ray traveling on the sphere
surface (θ0 = π/2). It is observed a perfect correspondence
between the curvature provided by the proposed algorithm
(green solid line) and the analytical benchmark (red dashed
line). Finally, the electric field is calculated along the x-axis
(φ0 = 0) and y-axis φ0 = π/2 in the range ρ ∈ [−a, a]
(red dashed line), and its amplitude is compared against the

analytical closed-form formula |E(ρ)| =
kη0

∣∣∣ŝt
A×

(
ŝt

A×J0

)∣∣∣
2π
√

2
√

a2+ρ2
in

Fig. 8. The ray-tracing numerical prediction (green solid) and
the analytical formula (red dashed) are superposed. In the two
scan planes, the field profile is different because of the dipole
radiation pattern, which is omnidirectional in the φ0 = π/2
plane (orthogonal to the dipole), whereas it exhibits nulls in
the φ0 = 0 plane (along the dipole direction).

B. Luneburg Lens

As a second example, we consider an LL [29], which is
also a radially symmetric spherical GRIN lens, with refractive
index radial variation n(r) = (2 − (r/a)2)1/2. In this con-
figuration, which is the most famous but only one special
case of the more general kind, rays emanating by a source
on the sphere surface travel across the LL along elliptic
trajectories and exit from the other side all parallel, i.e.,
focusing to infinity. We adopt the same reference system,
notation, and illumination of the previous MFE example. Here,
a ray launched from the unit dipole at the “south pole” in
the direction ŝt

A, i.e., with an angle θ0 from the z-axis, traces
an arc of the ellipse with center at the origin, major axis
along sin(θ0/2)(cosφ0x̂+ sinφ0ŷ)+ cos(θ0/2)ẑ, i.e., with an
angle θ0/2 from the z-axis, and semiaxes a(1 ± cos θ0)

1/2.
In Fig. 9, a section of the LL in a vertical plane is shown; the
background is colored proportionally to the refractive index
(from blue n = 1 to yellow n =

√
2), with a surrounding

medium n = 1 beyond the LL surface (black line). The rays
calculated with the proposed algorithm are shown (white solid
lines) and precisely follow the analytical elliptic trajectories,
one of which is reported for comparison (dashed black line)
corresponding to the launching direction θ0 = π/5 = 36◦. The
electric field is calculated on the LL output surface (red dashed
line) both in the xz (φ0 = 0) and yz (φ0 = π/2) planes, and
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Fig. 13. Far-field gain (dBi) of the weather radar inhomogeneous lens antenna in Fig. 12 for (a) f = 20, (b) f = 40, and (c) f = 60 GHz, as predicted by
GO (black solid line) and CST full-wave simulation (red dashed-dotted line), in the focus plane φ = π/2.

Fig. 14. Far-field normalized pattern of the weather radar inhomogeneous lens antenna in Fig. 12 for f =20 (right column), 40 (central column), and 60 GHz
(left column), as predicted by GO (top row) and CST full-wave simulation (bottom row), in the uv plane.

its amplitude is compared against the analytical closed-form

formula |E(ρ)| =
kη0

∣∣∣ŝt
A×

(
ŝt

A×J0

)∣∣∣
4π
√

a 4
√

a2−ρ2
in Fig. 10. Again, the ray-

tracing numerical prediction (green solid) and the analytical
formula (red dashed) are superposed and the field profile in
the two scan planes varies because of the dipole radiation
pattern. It is worth noting that along these observation scans,
the wavefront is cylindrical Q̄i (rB) =

ρ2

a2
√

a2−ρ2
ρ̂ρ̂ in the

internal side of the output surface, whereas it becomes flat
Q̄t (rB) = 0 (plane wave) on the external side, according to
the jump prescribed by (23). In Fig. 11, the curvatures κ1,2,
i.e., the eigenvalues of the curvature dyad Q̄i (rB), along the
output interface (red dashed line in Fig. 9) are plotted by
comparing the numerical solution of the ODE and the ana-
lytical benchmark of this canonical shape, revealing a perfect
matching.
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Fig. 15. Geometry of the zero-focal GRIN lens [7]. Three-dimensional view
of the antenna system (left). Ray trajectories start at the feed point on the
input surface and travel through the lens (white curved lines) up to the output
surface. At any endpoint B ∈ Sout , the transmitted ray direction ŝt is drawn
(orange arrow). A 2-D section of the same antenna in the focal plane is also
shown (right) with the background color corresponding to the refractive index
n(ρ). Prototype of the zero-focal GRIN lens made with 3-D printing (bottom).
(a) Rear view. (b) Front view.

C. Circular Beam-Scanning Lens

As a third example, we consider the offset inhomogeneous
lens designed in [6] for spaceborne weather radar. The lens
optimization exploits both the interface shapes and the refrac-
tive index profile to focus on the infinity of the rays arising
from an offset source. To permit a conical scanning, the lens
geometry and refractive index are circularly symmetric, i.e.,
interface surfaces are described by z = f1,2(ρ) and n(ρ, z).
The feed, located at rF ≡ 5/6aŷ, radiates a x̂ linearly polarized
spherical wave with an amplitude pattern cos4.45(θ), pointed
toward the lens center, with a 29◦ tilt. The 3-D view of the
lens geometry is shown in Fig. 12(a), while in Fig. 12(b), a
2-D view in the focus plane is reported where the background
is proportional to the refractive index. The reader is addressed

Fig. 16. Prototype of the zero-focal GRIN lens made with 3-D printing.
(a) Rear view. (b) Front view.

to [6] for the details of the exact geometry. The proposed
algorithm is used to calculate the far field radiated by the
antenna at various frequencies ( f = 20, 40, and 60 GHz)
when the radius of the lens is a = 9 cm, and the results are
compared against those provided by the full-wave simulation
software CST Microwave Studio. The analysis was performed
with 186 rays starting from the focal feed point, hitting the
input surface and propagating through the inhomogeneous lens
up to a point on the output surface. The ray trajectories and the
resulting aperture triangular mesh are shown in Fig. 12. It is
noteworthy that the aperture mesh consists of 338 triangles,
with an average area of 0.28λ2, 1.12λ2, and 2.53λ2 and
an average side length of 0.72λ, 1.45λ, and 2.18λ, at 20,
40, and 60 GHz, respectively. Despite the coarse sampling,
especially at the highest frequency f = 60 GHz, the quadra-
ture formula (28), unlike FFT-based formulas, allows accurate
evaluation of the radiation integral on a frequency-independent
mesh over a nonflat aperture. Indeed, the normalized far-
field pattern of the weather radar lens antenna is shown in
Fig. 13 as predicted by the proposed GO algorithm (upper row)
and compared to the corresponding full-wave CST simulation
(lower row) for the different frequencies. It is apparent that GO
correctly reproduces the main beam and the first sidelobes,
whereas diffraction effects occurring at the lens rim, which
are responsible for conical far sidelobes, are not present, while
they appear in the full-wave simulation. It is rather apparent in
Fig. 12(a) that the rays emitted from the feed do not reach the
far end of the aperture, which is in a GO shadow region where
no GO ray arrives. Therefore, the GO prediction of the aperture
distribution provides no field in this area. Augmenting GO
through diffracted rays, such as by using the uniform theory
of diffraction, may enhance precision and describe the field
in such a shaded part of the radiating aperture. Nevertheless,
its contribution in the far field does not significantly impact
radiation in the main lobe. In fact, such diffraction lobes
are much lower than the main beam and become negligible
when the frequency increases, as expected. The lens radiates
a pencil beam in the θ = 33◦ direction, which becomes
more directive for higher frequencies, as the lens’ electric size
increases. It is worth noting that the ray tracing is performed
once (in less than 1 s, with a nonparallelized, interpreted
MATLAB code) and the various radiation patterns at the
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Fig. 17. Far-field pattern of the zero-focal lens antenna at f = 18 GHz. Normalized far field as predicted by (a) presented GO algorithm and (b) experimental
results in the uv plane. (c) Directivity pattern in the E-plane (φ = π/2 cut); GO prediction (black solid line) and measurements (red dashed line).

various frequencies are calculated later on (in approximately
41 s for each frequency point). On the other hand, the CST
analysis requires 12M/62M/180M cells and 50/138/253 min
at 20/40/60 GHz on a 64-bit operating system and 512-GB
RAM.

Fig. 14 shows the far-field gain in the horizontal cut on the
focal plane φ = π/2. In this picture, the accuracy of the main
beam prediction of the GO (black solid line) can be better
and quantitatively appreciated in terms of realized gain for
the different frequencies, against the CST results (red dashed-
dotted line). It is evident that the gain peak value is well
estimated and the pattern shape and sidelobes are accurately
predicted except for the abovementioned rim diffraction effect.

The GO algorithm also permits the estimation of the power
efficiency of the lens antenna system, which is useful for
antenna design and assessment. Indeed, by integrating the
Poynting vector flux on various surfaces, one can track the
power spreading in the system. The flux integral can be easily
calculated as

P =
∫∫

S

n|E0|
2

2η
ŝ · n̂d S ≃

Nt∑
p=1

3∑
i=1

Wp,i
Sp

3
(30)

in which Wp,i = [(n|E0|
2/2η)ŝ · n̂]r=vp,i is the normal com-

ponent of the Poynting vector calculated at the sample point
rm = vp,i where the mth ray intersects the integrating surface
S, which corresponds to the i th vertex of the pth triangle
in the Delaunay mesh of S, and Sp the pth triangle area,
analogously to the radiation integral calculation. Applying (30)
to the input Sin and output Sout surfaces by considering both
the impinging Ei

0 and the transmitted Et
0 field, and to the far-

field sphere, it is calculated that the spillover efficiency is
eso ≃ 79%, reflection efficiency er ≃ 97% both at Sin and
Sout so that the total loss efficiency is eloss ≃ 74%. These
efficiencies are frequency-independent, provided that the feed
pattern is assumed independent of the frequency. Conversely,
the aperture efficiency depends on the frequency because the
aperture phase error in the main beam direction increases for
increasing frequencies, indeed eap = 52%, 37%, and 21% at
f = 20, 40, and 60 GHz, respectively.

D. Zero-Focal Lens

To illustrate a comparison between the proposed GO
algorithm prediction and measurement results, we consider
a final example involving the zero-focal GRIN lens pre-
sented in [15]. This lens, which was fabricated as described
in [7], has a focus on the input surface, hence its name.
The analytical expression for the radially varying refractive
index profile has been obtained through the inverse truncated
Abel transform and it is given by n(ρ) = n0/cosh(πρ/2d),
in which n0 = cosh(πa/2d) ≃ 2 is the maximum refractive
index value at the center (ρ = 0), while d = 9 cm and
a = 7.5 cm are the lens thickness and radius, respectively.
A 3-D perspective of the lens geometry together with the
ray trajectories (white lines) is shown in Fig. 15(a), while
a section in the vertical plane is reported in Fig. 15(b)
where the background color corresponds to the refractive
index.

The feed is in direct contact with the input surface at
the focus, thus maximizing reflection and spillover efficiency,
and radiates a spherical wave with an amplitude pattern
U (θ) = cos3(θ). The GRIN lens has been fabricated through
additive manufacturing, specifically utilizing the fused filament
fabrication (FFF) technique, commonly known as 3-D printing.
The refractive index profile was divided into cylindrical layers,
which were synthesized with hollow structures with different
filling fractions. These correspond to intermediate refractive
index values between air (n = 1) and dielectric material
PREPERM (n = 2.24). For a comprehensive understanding
of the fabrication process, please refer to [7] for detailed
information. Pictures of the lens prototype display both the
rear view (Fig. 16(a)), where the open waveguide feed is
visible, and the frontal view (Fig. 16(b)), which reveals the
layered structure and the distinct geometries of each layer.
The normalized far-field pattern at f = 18 GHz in the uv
plane, as predicted by the proposed GO algorithm, is shown
in Fig. 17(a) along with the corresponding experimental results
in Fig. 17(b). The same comparison in terms of antenna
directivity is reported in Fig. 17(c) in the φ = π/2 (E-plane)
cut. It is evident that, as well as in the previous example, the
GO algorithm accurately reproduces the main beam.
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IV. CONCLUSION

A novel and efficient GO algorithm has been introduced
for a GRIN lens illuminated by a general astigmatic source.
The algorithm involves tracing curved ray paths from points
on the lens input interface and combining ray tracing with
field and wavefront-curvature transport equations. This results
in a single independent vector ODE for each ray, enabling
parallelization of the algorithm by assigning different rays
to separate threads. The astigmatic ray behavior at the lens
interfaces is achieved by augmenting Snell’s law transmission
coefficients with a compact closed-form dyadic formula for the
transmitted wavefront curvature. The ODE solution provides
samples of the field aperture distribution on the output lens
interface, enabling far-field calculations using a novel ad
hoc fast and efficient quadrature rule. Several examples have
demonstrated the accuracy and efficiency of the algorithm in
general cases.

REFERENCES

[1] K. Liu, C. Zhao, S.-W. Qu, Y. Chen, J. Hu, and S. Yang, “A 3-D-printed
multibeam spherical lens antenna with ultrawide-angle coverage,” IEEE
Antennas Wireless Propag. Lett., vol. 20, no. 3, pp. 411–415, Mar. 2021.

[2] S. Zhang, R. K. Arya, S. Pandey, Y. Vardaxoglou, W. Whittow, and
R. Mittra, “3D-printed planar graded index lenses,” IET Microw., Anten-
nas Propag., vol. 10, no. 13, pp. 1411–1419, Oct. 2016.

[3] S. Zhang, R. K. Arya, W. G. Whittow, D. Cadman, R. Mittra, and
J. C. Vardaxoglou, “Ultra-wideband flat metamaterial GRIN lenses
assisted with additive manufacturing technique,” IEEE Trans. Antennas
Propag., vol. 69, no. 7, pp. 3788–3799, Jul. 2021.

[4] A. Paraskevopoulos, I. Gashi, M. Albani, and S. Maci, “High aperture
efficiency 3D-printed radial GRIN lens,” in Proc. 16th Eur. Conf.
Antennas Propag. (EuCAP), Mar. 2022, pp. 1–5.

[5] H. Xin and M. Liang, “3-D-printed microwave and THz devices using
polymer jetting techniques,” Proc. IEEE, vol. 105, no. 4, pp. 737–755,
Apr. 2017.

[6] A. Papathanasopoulos, J. Budhu, Y. Rahmat-Samii, R. E. Hodges, and
D. F. Ruffatto, “3-D-printed shaped and material-optimized lenses for
next-generation spaceborne wind scatterometer weather radars,” IEEE
Trans. Antennas Propag., vol. 70, no. 5, pp. 3163–3172, May 2022.

[7] A. Paraskevopoulos, F. Maggiorelli, I. Gashi, C. D. Giovampaola,
M. Albani, and S. Maci, “3-D printed all-dielectric GRIN lens antenna
with an integrated feeder,” IEEE Open J. Antennas Propag., vol. 4,
pp. 528–536, 2023.

[8] A. Paraskevopoulos, I. Gashi, M. Albani, and S. Maci, “Analytical
formulas for refractive indices of a telescopic GRIN lens for aperture
magnification,” IEEE Antennas Wireless Propag. Lett., vol. 21, no. 11,
pp. 2206–2210, Nov. 2022.

[9] H. F. Ma, B. G. Cai, T. X. Zhang, Y. Yang, W. X. Jiang, and T. J. Cui,
“Three-dimensional gradient-index materials and their applications in
microwave lens antennas,” IEEE Trans. Antennas Propag., vol. 61, no. 5,
pp. 2561–2569, May 2013.

[10] H.-X. Xu, G.-M. Wang, Z. Tao, and T. Cai, “An octave-bandwidth half
Maxwell fish-eye lens antenna using three-dimensional gradient-index
fractal metamaterials,” IEEE Trans. Antennas Propag., vol. 62, no. 9,
pp. 4823–4828, Sep. 2014.

[11] C. Mateo-Segura, A. Dyke, H. Dyke, S. Haq, and Y. Hao, “Flat
Luneburg lens via transformation optics for directive antenna applica-
tions,” IEEE Trans. Antennas Propag., vol. 62, no. 4, pp. 1945–1953,
Apr. 2014.

[12] A. D. Yaghjian and S. Maci, “Alternative derivation of electromagnetic
cloaks and concentrators,” New J. Phys., vol. 11, no. 3, Mar. 2009,
Art. no. 039802, doi: 10.1088/1367-2630/11/3/039802.

[13] N. C. Garcia and J. D. Chisum, “High-efficiency, wideband GRIN lenses
with intrinsically matched unit cells,” IEEE Trans. Antennas Propag.,
vol. 68, no. 8, pp. 5965–5977, Aug. 2020.

[14] A. Paraskevopoulos, F. Maggiorelli, M. Albani, and S. Maci, “Radial
GRIN lenses based on the solution of a regularized ray congruence
equation,” IEEE Trans. Antennas Propag., vol. 70, no. 2, pp. 888–899,
Feb. 2022.

[15] F. Maggiorelli, A. Paraskevopoulos, J. C. Vardaxoglou, M. Albani,
and S. Maci, “Profile inversion and closed form formulation of
compact GRIN lenses,” IEEE Open J. Antennas Propag., vol. 2,
pp. 315–325, 2021.

[16] A. Sharma, D. V. Kumar, and A. K. Ghatak, “Tracing rays through
graded-index media: A new method,” Appl. Opt., vol. 21, no. 6,
pp. 984–987, 1982.

[17] A. Sharma and A. K. Ghatak, “Ray tracing in gradient-index lenses:
Computation of ray-surface intersection,” Appl. Opt., vol. 25, no. 19,
pp. 3409–3412, 1986.

[18] M. Balasubramanian, S. D. Campbell, and D. H. Werner, “Highly-
efficient GRIN lens optimization through differential ray tracing,” in
Proc. IEEE Int. Symp. Antennas Propag. North Amer. Radio Sci.
Meeting, Jul. 2020, pp. 1991–1992.

[19] M. Bahrami and A. V. Goncharov, “Geometry-invariant GRIN lens:
Finite ray tracing,” Opt. Exp., vol. 22, no. 23, p. 27797, 2014.

[20] J. Budhu and Y. Rahmat-Samii, “A novel and systematic approach to
inhomogeneous dielectric lens design based on curved ray geometrical
optics and particle swarm optimization,” IEEE Trans. Antennas Propag.,
vol. 67, no. 6, pp. 3657–3669, Jun. 2019.

[21] W. Wang and J. Chisum, “Hybrid geometrical optics and uniform
asymptotic physical optics for rapid and accurate practical grin lens
design,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2022, pp. 20–23.

[22] J. Budhu, “Numerical synthesis algorithms and antenna designs
for next generation spaceborne wind scatterometer and cubesat
antennas,” Ph.D. dissertation, Dept. Elect. Comput. Eng., UCLA
Electron, Los Angeles, CA, USA, 2018. [Online]. Available:
https://escholarship.org/uc/item/9m93g5hz

[23] I. Gashi, A. Paraskevopoulos, S. Maci, and M. Albani, “Inhomogeneous
dielectric lens antennas design based on clothoid ray paths,” in Proc.
IEEE Int. Symp. Antennas Propag. USNC-URSI Radio Sci. Meeting (AP-
S/URSI), Jul. 2022, pp. 1510–1511.

[24] G. A. Hallock, J. C. Wiley, A. Khanna, E. A. Spencer, J. W. Meyer, and
J. T. Loane, “Impact analysis of Hall thrusters on satellite antenna per-
formance,” J. Spacecraft Rockets, vol. 39, no. 1, pp. 115–124, Jan. 2002,
doi: 10.2514/2.3789.

[25] G. Carluccio and M. Albani, “Efficient adaptive numerical integration
algorithms for the evaluation of surface radiation integrals in the high-
frequency regime,” Radio Sci., vol. 46, no. 5, pp. 1–8, Oct. 2011, doi:
10.1029/2010RS004623.

[26] M. Born and E. Wolf, Principles of Optics. Cambridge, U.K.: Cambridge
Univ. Press, 1999.

[27] L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves (IEEE
Press Series on Electromagnetic Wave Theory). Hoboken, NJ, USA:
Wiley, 1994.

[28] Y. A. Kravtsov and Y. I. Orlov, Geometrical Optics of Inhomoge-
neous Media (Springer Series on Wave Phenomena). Berlin, Germany:
Springer, 1990.

[29] R. K. Luneburg, Mathematical Theory of Optics. Providence, RI, USA:
Brown Univ., 1944.

[30] M. Kline, “An asymptotic solution of Maxwell’s equations,” Commun.
Pure Appl. Math., vol. 4, pp. 225–263, Jan. 1951.

[31] R. M. More and K. Kosaka, “Wave-front curvature in geometrical
optics,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdis-
cip. Top., vol. 57, no. 5, pp. 6127–6134, May 1998, doi: 10.1103/Phys-
RevE.57.6127.

[32] P. Hubral, “A wave-front curvature approach to computing ray ampli-
tudes in inhomogeneous media with curved interfaces,” Studia Geo-
physica et Geodaetica, vol. 23, no. 2, pp. 131–137, Jun. 1979, doi:
10.1007/bf01628838.

[33] G. A. Deschamps, “Ray techniques in electromagnetics,” Proc. IEEE,
vol. 60, no. 9, pp. 1022–1035, Jun. 1972.

[34] M. Albani, G. Carluccio, and P. H. Pathak, “Uniform ray description for
the PO scattering by vertices in curved surface with curvilinear edges and
relatively general boundary conditions,” IEEE Trans. Antennas Propag.,
vol. 59, no. 5, pp. 1587–1596, May 2011.

[35] B. Delaunay, “Sur la sphère vide. A la mémoire de Georges Voronoi,”
Bull. de l’Académie des Sci. de l’Union des Républiques Soviétiques
Socialistes. VII série. Classe des Sci. Mathématiques et Naturelles,
vol. 1934, no. 6, pp. 793–800, 1934.

[36] C. D. Giovampaola, G. Carluccio, F. Puggelli, A. Toccafondi, and
M. Albani, “Efficient algorithm for the evaluation of the physical optics
scattering by NURBS surfaces with relatively general boundary condi-
tion,” IEEE Trans. Antennas Propag., vol. 61, no. 8, pp. 4194–4203,
Aug. 2013.

[37] J. Maxwell, “Solution of problems,” Cambridge Dublin Math. J., vol. 9,
pp. 9–11, Feb. 1854.

http://dx.doi.org/10.1088/1367-2630/11/3/039802
http://dx.doi.org/10.2514/2.3789
http://dx.doi.org/10.1029/2010RS004623
http://dx.doi.org/10.1103/PhysRevE.57.6127
http://dx.doi.org/10.1103/PhysRevE.57.6127
http://dx.doi.org/10.1007/bf01628838


2160 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 72, NO. 3, MARCH 2024

Ilir Gashi (Graduate Student Member, IEEE) was
born in Prizren, Kosovo, in 1996. He received
the Laurea degree (cum laude) in electronics and
communications engineering from the University of
Siena, Siena, Italy, in 2021, where he is currently
pursuing the Ph.D. degree.

His research interests include innovative tech-
niques for the analysis and design of inhomogeneous
lens antennas.

Mr. Gashi was a recipient of the 2022 IEEE AP-S
Doctoral Research Grant, the 2023 C. J. Reddy

Travel Grant, and the 2023 IEEE AP-S Fellowship Award.

Anastasios Paraskevopoulos was born in Athens,
Greece, in 1988. He received the Diploma degree
in electrical and computer engineering from the
Democritus University of Thrace, Xanthi, Greece,
in 2012, and the Ph.D. degree from Loughborough
University, Loughborough, U.K., in 2017, for his
research titled “Body-Centric Wireless Communica-
tions: Wearable Antennas, Channel Modeling, and
Near-Field Antenna Measurements.”

From 2016 to 2019, he worked as a Research
Assistant with the Department of Digital Systems,

University of Piraeus, Piraeus, Greece, participating in the European Union’s
Horizon 2020 Projects. He is currently with the Electromagnetics Group,
University of Siena, Siena, Italy. His research interests include the design
of artificially engineered materials with a focus on gradient index lenses for
antenna applications. He is also involved in antenna characterization through
near- and far-field measurements in the anechoic chamber.

Stefano Maci (Fellow, IEEE) received the Laurea
degree (cum laude) from the University of Florence,
Florence, Italy, in 1987.

He has been a Professor with the Univer-
sity of Siena, Siena, Italy, since 1997. In 2004,
he was the Founder of the European School
of Antennas (ESoA), a postgraduate school that
presently comprises 34 courses on antennas, prop-
agation, electromagnetic theory, and computational
electromagnetics, and 150 teachers coming from
15 countries. Since 2004, he has been the Director

of ESoA. From 2008 to 2015, he was the Director of the Ph.D. Program
in information engineering and mathematics with the University of Siena.
He was a Principal Investigator of the Future Emerging Technology Project
Nanoarchitectronics of the 8th EU Framework Program. He is a Principal
Investigator of the EU Program Metamask. Since 2010, he has been a Principal
Investigator of six cooperative projects and a University Coordinator of about
other 20 cooperative projects financed by the European Space Agency. His
research activity is documented in 200 articles published in international
journals (among which 100 on IEEE journals), 14 book chapters, and about
600 papers in proceedings of international conferences. His research interests
include high-frequency and beam representation methods, computational
electromagnetics, large phased arrays, planar antennas, reflector antennas and
feeds, metamaterials, and metasurfaces.

Prof. Maci was a member of the AdCom of IEEE Antennas and Propagation
Society (AP-S), the Board of Directors of the European Association on
Antennas and Propagation (EurAAP), and the Antennas and Propagation
Executive Board of the Institution of Engineering and Technology (IET),
U.K. From 2013 to 2015, he was a member of the first National Italian
Committee for Qualification to Professor. Since 2000, he has been a member
of the Technical Advisory Board of 16 international conferences and the
Review Board of six international journals. He was a recipient of the EurAAP
Award in 2014, the IEEE Schelkunoff Transaction Prize in 2016, the Chen-
To Tai Distinguished Educator Award in 2016, and the URSI Dellinger
Gold Medal in 2020. He was the Chair of the Award Committee of IEEE
AP-S. He has been the Technical Program Committee (TPC) Chair of
the METAMATERIAL 2020 Conference and the General Chairperson of
the European Conference on Antennas and Propagation (EuCAP) in 2023.
From 2004 to 2007, he was a Work Package (WP) Leader of the Antenna
Center of Excellence (ACE; FP6-EU), and from 2007 to 2010, he was an
International Coordinator of the 24-Institution Consortium of a Marie Curie
Action (FP6). He founded and was the Director of the consortium FORE-
SEEN, involving 48 European (EU) institutions. He has been a Distinguished
Lecturer of the IEEE AP-S. He has been a EuRAAP Distinguished Lecturer
of the Ambassador Program. In the last ten years, he has been invited 25 times
as a keynote speaker at international conferences. He was the President of the
IEEE Antennas and Propagation Society in 2023. He was an Associate Editor
of IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION.

Matteo Albani (Fellow, IEEE) received the Laurea
degree in electronic engineering and the Ph.D.
degree in telecommunications engineering from the
University of Florence, Florence, Italy, in 1994 and
1999, respectively.

From 2001 to 2005, he was an Assistant Profes-
sor with the University of Messina, Messina, Italy.
He is currently an Associate Professor with the
Information Engineering and Mathematics Depart-
ment, University of Siena, Siena, Italy, where he is
also the Director of the Applied Electromagnetics

Laboratory. He has authored or coauthored more than 80 journal articles
and more than 200 conference papers. His research interests are in the areas
of high-frequency methods for electromagnetic scattering and propagation,
numerical methods for array antennas, antenna analysis, and design, and
metamaterials.

Dr. Albani is a member of European Association on Antennas and Propa-
gation (EurAAP), URSI, and Società Italiana di Elettromagnetismo (SiEM).
He was a recipient of the Best Paper Awards at the XIV RiNEM 2002, the
URSI EMTS 2004, the European AMTA Symposium 2006, the URSI EMTS
2010, the EuCAP 2014, and the EuCAP 2018.

Open Access funding provided by ‘Università degli Studi di Siena’ within the CRUI CARE Agreement


