
Exploiting nearest-neighbour maps for estimating the variance of 
sample mean in equal-probability systematic sampling of 
spatial populations

Sara Franceschi a,*, Lorenzo Fattorini a, Timothy G Gregoire b

a University of Siena, Department of Economics and Statistics, P.zza San Francesco 8, 53100, Siena, Italy
b Yale School of the Environment, 195 Prospect Street, New Haven, CT 06511, USA

A R T I C L E  I N F O

Keywords:
Spatial interpolation
Pseudo-populations
Design-based consistency
Simulation study

A B S T R A C T

Because of its ease of implementation, equal probability systematic sampling is of wide use in 
spatial surveys with sample mean that constitutes an unbiased estimator of population mean. A 
serious drawback, however, is that no unbiased estimator of the variance of the sample mean is 
available. As the search for an omnibus variance estimator able to provide reliable results under 
any spatial population has been lacking, we propose a design-consistent estimator that invariably 
converges to the true variance as the population and sample size increase. The proposal is based 
on the nearest-neighbour maps that are taken as pseudo-populations from which all the possible 
systematic samples can be enumerated. As nearest-neighbour maps are design-consistent under 
equal-probability systematic sampling and mild conditions, the variance of the sample mean 
achieved from all the possible systematic samples selected from the map is also a consistent 
estimator of the true variance. Through a simulation study based on artificial and real populations 
we show that our proposal generally outperforms the familiar estimators proposed in literature.

1. Introduction

When sampling spatial units, the selection of spatially balanced samples, i.e., samples in which units are well spread throughout the 
study region, is suitable. Spatially balanced samples are usually constructed by avoiding or reducing the selection of contiguous units. 
That can be done by a plethora of spatial schemes explicitly constructed for this purpose, that continue to appear in statistical journals. 
Di Biase et al. (2024, Section 4) provide an updated review of these schemes, pointing out their complex nature, and comparing them 
with very simple schemes such as tessellation stratified sampling and systematic sampling (Breidt 1995) that easily provide spatially 
balanced samples without losing precision with respect to more complicated schemes.

In particular, when spatial populations are constituted by grids of regular polygons and can be partitioned into regular blocks of 
contiguous polygons, spatial balance is straightforwardly ensured by equal-probability systematic sampling (EPSS), in which one 
polygon is randomly selected in one block and then repeated in the other blocks. Under EPSS, the population mean is simply estimated 
by the sample mean that in this case coincides with the Horvitz-Thompson (HT) estimator (see Section 2).

Owing to its simplicity, EPSS has constituted a sort of standard design of wide application especially in forest surveys (Tomppo et al. 
2010), even if the inability of estimating the variance of the sample mean unbiasedly and precisely is a well-known drawback. The 
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problem is a long-standing issue in both the statistical and forestry literature (Langsæter 1926; Hasel 1938; Osborne 1942) and a huge 
sequence of estimators have been proposed, but none of them uniformly outperform the others, with performance depending on the 
population characteristics (see Section 3).

As an alternative to search for an improbable omnibus estimator, in this paper we propose the construction of a design consistent 
variance estimator based on population maps achieved by the nearest-neighbour (NN) interpolation of sampled values (see Section 4). 
The idea arose from a paper by Opsomer et al. (2007) devoted to model-assisted estimators of forest attributes under the two-phase 
systematic sampling adopted in U.S by the Department of Agriculture Forest Service. To check the precision of these estimators 
avoiding the use of standard but potentially unreliable variance estimators, the authors construct a so-called synthetic population able 
to mimic the one from which they are sampling, draw all possible systematic samples from that population, and take the variance of the 
resulting estimates across these samples as the estimator of the true variance.

Notwithstanding the originality of the proposal, it is unclear in what sense synthetic populations would be able to mimic true 
populations. In design-based inference, populations suitable to mimic true populations are referred to as pseudo-populations and they 
are usually adopted in the bootstrap estimation of sampling variances by selecting independent samples from them by replicating the 
same sampling scheme adopted to select the original sample (Quatember 2016). In spatial sampling, Franceschi et al. (2022) inves
tigate the role of pseudo-populations for mimicking the characteristics of real spatial populations such as spatial trend and relation
ships and similarities among neighbouring locations. The results indicate the superiority of pseudo-populations achieved by the NN 
interpolation of the sampled values with respect to other pseudo-populations adopted in literature (Conti et al. 2020). The reason is 
that under suitable sampling schemes including EPSS, the NN interpolator is design-consistent when the number of polygons parti
tioning the study region increases and their size decreases (Fattorini et al. 2022).

Obviously in the case of EPSS there is no need of bootstrap resampling, as the number of possible samples in EPSS is usually so small 
that samples can be completely enumerated. In practice, because NN pseudo-populations converge to true populations for sufficiently 
large populations and sample size, the variance of the sample mean across all the possible systematic samples converges to the true 
variance and as such should provide an effective estimator.

In Section 5 the performance of the proposed estimator is assessed and compared with those of traditional estimators considered in 
Section 3. The simulation study is performed on four surfaces, two of them derived from real studies and two of artificial nature. To 
check the design-based consistency, these surfaces are partitioned into populations of quadrats of decreasing size from which samples 
of increasing sizes are selected by EPSS. Concluding remarks are given in Section 6.

2. Preliminaries and notations

Let A be a study area partitioned into a finite population U of N regular polygons and let yj be the amount of an interest variable Y 
for each j ∈ U. Suppose N = Kn, so that U can be split into n equally-shaped blocks of K adjacent polygons U1,…,Un. The spatial EPSS 
consists in randomly selecting one polygon in the first block and then selecting the polygons having the same position in the other 
blocks (Fig. 1). In this way, the EPSS scheme partitions U into K possible samples s1,…, sK of size n, each of them selected with 
probability 1/K = n/N. Accordingly, for each j ∈ U, the first-order inclusion probability is invariably equal to πj = n /N, and for each 
h ∕= j ∈ U, the second-order inclusion probability is equal to πj,h = n/N if j and h are in the same sample sk and is equal to 0 otherwise.

Under EPSS, the HT estimator of the population mean 

Y =
1
N
∑

j∈U
yj 

Fig. 1. Example of a population of N = 300 quadrats partitioned into n = 50 blocks of K = 3x2 = 6 contiguous quadrats. Blocks are identified by 
blue lines. One quadrat is randomly selected in the first block and systematically repeated in the others. Selected quadrats are highlighted in yellow. 
To treat the systematic sample as a stratified sample, 10 strata are constructed by joining 2x2 = 4 adjacent blocks and 2 strata are constructed by 
joining 5 adjacent blocks in the lower part of the study region. Strata are identified by red lines.
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coincides with the sample mean 

y =
1
n
∑

j∈S
yj (1) 

where S denotes the sample randomly selected from the K possible samples. The HT estimator (1) is design unbiased with design-based 
variance 

VSYS(y) =
1
K
∑K

k=1
(yk − Y)2 (2) 

where yk denotes the mean of the sample sk.
Because the second-order inclusion probabilities are zero for any two polygons that do not belong to the same sample, the design is 

non-measurable, i.e. no unbiased estimator of (2) exists. The problem of estimating the variance of the sample mean in EPSS and in 
particular in EPSS of spatial populations is a long-standing and long-debated issue of sampling theory.

3. A review of variance estimation in equal-probability systematic spatial sampling

The standard approach for estimating the variance of sample mean in EPSS of both one-dimensional and spatial populations is 
obtained by assuming that the sample has been selected by simple random sampling. If simple random sampling is supposed to be with 
replacement (SRSWR), the variance estimator reduces to 

V̂SRSWR =
v2

n
(3) 

where 

v2 =
1

n − 1
∑

j∈S

(
yj − y

)2 

is the variance of the selected sample. The estimator (3) is also a member - achieved when πj = n/N - of a large class of variance 
estimators of type 

V̂ =
1

n(n − 1)
∑

j∈S

(
ŷj − ŶHT

)2
(4) 

where each ̂yj =
(

nyj

)
/
(
Nπj
)

is an unbiased estimator of the population mean and their average coincides with the HT estimator of the 

population mean. These estimators are applicable to any without replacement design as straightforward variance estimators that avoid 
the use of second-order inclusion probabilities. Though biased, these estimators have the appealing property to be invariably 
nonnegative and are traditionally considered as conservative. In his classic (reissued) textbook on variance estimation, Wolter (2007, 
section 2.4.5) has attempted to justify the conservative nature of variance estimators of type (4) under any single-stage with
out-replacement sampling design, but with no definitive result.

If simple random sampling is supposed to be without replacement (SRSWOR), the variance estimator is 

V̂SRSWOR =
N − n

N
v2

n
(5) 

which is invariably smaller than the SRSWR estimator (3). Opinions on these approaches are many and varied. Milne (1959), Cochran 
(1977), Ripley (1981) suggest that they are safe approaches both recommendable and acceptable in most cases, giving “a good idea of 
the true sampling variance” (Ripley 1981, p.27). On the other hand, other authors are more critical (e.g. Payandeh 1970, McRoberts 
et al. 2016). Actually, what can be said about the estimators (3) and (5) is that they are generally biased, but the magnitude and 
direction of the bias is obscure. In some cases, it can be shown that their bias tends to be positive, but this is not the case universally, 
especially when EPSS does not perform well because blocks do not provide an effective stratification of the population, i.e. when blocks 
fail to partition the population into homogeneous sets that greatly differ between them (Aronow and Samii 2013). The issue is also 
apparent from the plethora of simulation studies performed on one-dimensional populations (e.g. Wolter 1984) and spatial populations 
(e.g. Dunn and Harrison 1993, D’Orazio 2003, Strand 2017) where no definitive result about the conservative nature of (3) and (5) is 
reached.

A compelling result is achieved by Aronow and Samii (2013). The authors prove that the standard HT variance estimator 

V̂HT =
1
N2

(
∑

j∈S

1 − πj

π2
j

y2
j +2

∑

h>j∈S

πjh − πjπh

πjπhπjh
yjyh

)
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that is design unbiased in presence of measurable design, turns out to be invariably conservative under non measurable designs when 
yj ≥ 0 for each j ∈ U. In the case of EPSS, inserting the expressions of the first and second order inclusion probabilities in the previous 
equation, the standard HT variance estimator reduces to 

V̂HT =
N − n

N
y2 (6) 

From Eq. (6) it is apparent the weak dependence of the HT estimator on the sample size n. This fact is likely to generate very large 
overestimations. Clearly, this is the price to paid for ensuring the conservative property of the estimator in presence of any population 
with non-negative yjs.

Besides these naïve variance estimators, an alternative method of long standing in sampling literature is to treat the systematic 
sample as if it was a stratified random sample. Yates (1981, section 7.18) suggests constructing artificial non-overlapping strata by 
joining 4 adjacent blocks in a 2 × 2 pattern, in such a way that spatial variability is considered in both directions with 4 sample 
observations per strata. Some strata constituted by a different number of blocks are allowed when n is not a multiple of 4 or a 2 × 2 
collapse is not possible (Fig. 1). In analogy with Strand (2017), denote by L the number of strata artificially constructed by joining 
adjacent blocks, by Nl the number of polygons within the stratum l, by Sl the set of polygons in the systematic sample S belonging to the 
stratum l and by nl the size of Sl with nl ≥ 2 to allow variance estimation within strata. Then, from the standard formula of stratified 
sampling the variance estimator is 

V̂STR =
∑L

l=1

w2
l
Nl − nl

Nl

v2
l

nl
(7) 

where wl = Nl/N is the l-stratum weight and 

v2
l =

1
nl − 1

∑

j∈Sl

(
yj − yl

)2 

is the estimator of variance within the stratum l, with 

yl =
1
nl

∑

j∈Sl

yj 

If n is a multiple of 4 and the stratification achieved joining 2 × 2 adjacent blocks can be exactly performed, then L = n /4, Nl = 4K, nl 
= 4, wl = 4/n for each stratum l and the estimator (7) reduces to 

V̂STR4 =
N − n

N
4
n2

∑n/4

l=1
v2

l (8) 

In the case of one-dimensional populations, Wolter (2007, section 8.2) suggests two corrections of V̂SRSWOR based on the serial 
correlation between sample observations. In particular, the first correction is achieved by multiplying V̂SRSWOR by half of the 
Durbin-Watson statistics. D’Orazio (2003) propose extending this correction to spatial populations multiplying V̂SRSWOR by the Geary’s 
spatial autocorrelation index (Cliff and Ord 1973, p.8). The resulting estimator is 

V̂GEARY =
N − n
2DNn

∑

j∈S

∑

h∕=j∈S

δj,h

(
yj − yh

)2
(9) 

where 

D =
∑

j∈S

∑

h∕=j∈S

δj,h 

and δj,h = 1 if the sampled polygons j and h belong to adjacent block having at least a side or a vertex in common, and δj,h = 0 
otherwise. The second correction, originally proposed by Cochran (1946) for one-dimensional populations, has been extended to 
spatial population by D’Orazio (2003) - and subsequently by McGarvey et al. (2016) and Strand (2017) - substituting the serial 
correlation index by the Moran’s spatial autocorrelation statistic (Cliff and Ord 1973, p.8). The resulting estimator is 

V̂MORAN =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N − n
N

v2

n

[

1 +
2

ln I
+

2
(
I− 1 − 1

)

]

if I > 0

N − n
N

v2

n
otherwise

(10) 

where 
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I =
n

(n − 1)v2D
∑

j∈S

∑

h∕=j∈S

δj,h

(
yj − y

)
(yh − y)

is the Moran’s statistics and the δj,hs are as in Eq. (9).
In his comparison of variance estimators of sample mean under spatial EPSS - the most updated at least to our knowledge - Strand 

(2017) considers the model-based approach by Brus and Saby (2016) in which the semi-variance concept is exploited to rewrite the 
variance of the sample mean, also providing an estimator for it. We avoid considering this method because it necessitates estimating 
the semi-variogram also for lags much smaller than the distances among sample observations.

4. A variance estimator based on nearest-neighbour spatial interpolation

Denote by a1,…, aN the N regular polygons of size b partitioning A with centroids c1,…,cN, and suppose the existence of a Riemann 
integrable function d(p) from A onto [0, L] giving the density of Y at any location p ∈ A, so that the amount of Y within aj is given by yj 

=
∫

aj
d(p)λ(dp) while dj = yj/b is the density in the j-th polygon.

Even if an assumption about the population values may appear unsuitable in a design-based framework, where no assumption is 
necessary, Fattorini et al. (2018) point out that the Riemann integrability assumption seems adequate in most environmental in
vestigations. In real world, the density of a variable, even if high, never attains infinity. In real world, there are parts of the study region 
in which density changes smoothly throughout space, well approaching the theoretical condition of continuity. Even when density 
changes abruptly, that usually occurs along borders delineating sudden variations in the characteristic of the study region. Thus, these 
borders may be realistically approximated by curves on the study area, well approaching the theoretical condition of discontinuity over 
a region of zero measure. This situation is typical in forest mapping (forest/nonforest) where d(p) is 1 within forest areas and 
0 otherwise, thus jumping from 0 to 1 along the forest edges, which may be realistically considered regions of zero measure.

The estimation of yj for each polygon j ∈ U is essential in many environmental surveys as it enables the mapping of the spatial 
distribution of Y. Mapping of finite populations of polygons is usually approached by model-dependent techniques, where the yjs are 
assumed as outcomes of spatial autoregressive models and connections in the polygon lattice define neighbours used to model spatial 
dependency (e.g. Cressie 1993, chapter 6). More recently, mapping has been performed in a design-based framework adopting a class 
of inverse distance weighting (IDW) interpolators (Fattorini et al. 2018) or the NN interpolator (Fattorini et al. 2022). In this study we 
focus on the use of NN interpolator that, besides its large use in environmental investigations (e.g., Li and Heap 2008), it avoids the 
choice of the smoothing parameter that is necessary when using IDW interpolators. Because the polygon size b is always known, for 
finite sample it is theoretically equivalent to interpolate the yjs or the djs. However densities are more suitable for working in an 
asymptotic scenario in which the polygon size approaches zero so that the yjs also approach zero.

Quoting from Fattorini et al. (2022), the NN interpolator of dj is given by 

d̂j = Ijdj +
1 − Ij

card
(
Hj
)
∑

i∈Hj

di (11) 

where Ij is the sample indicator variable equal to 1 if j ∈ S and equal to 0 otherwise, and Hj =
{
i : ‖ ci − cj‖=minh∕=j∈S‖ ch − cj ‖

}
is the 

set of sampled polygons nearest to polygon j. For finite samples, no properties are available because (11) has intractable design-based 
expectation and variance. However, some appealing results can be achieved in a design-based asymptotic scenario.

To this purpose, suppose a sequence {Uk} of partitions of A in which each partition Uk is constituted of Nk regular polygons of size bk 
with Nk→∞ and bk→0. In practice, A is partitioned into an increasing number of regular polygons of decreasing size, so that it is 
possible to suppose a sequence of designs selecting samples of increasing size nk→∞. In this framework, under an EPSS that selects a 
constant fraction p of polygons from each Uk, Fattorini et al. (2022) prove the uniform design-based consistency of the NN interpolator 
(11), i.e. 

plim
k→∞

max
j∈Uk

⃒
⃒d̂j(k) − dj(k)

⃒
⃒ = 0 

where dj(k) is the density in the j-th polygon of the k-th population and d̂j(k) is the corresponding NN interpolator of type (11). In 
practice, for population and sample size sufficiently large, under EPSS the map achieved using (11) approaches the true map. 
Moreover, since the interpolator of type (11) is bounded by L, the uniform design-based consistency ensures the design-based 
asymptotic unbiasedness.

Besides its practical importance, population mapping has also a theoretical relevance as the resulting map 
{

ŷj, j ∈ U
}

- where ŷj 

= bd̂j are the interpolated values achieved by rescaling the interpolated densities - provides a pseudo-population from which the 
variance of EPSS can be simply estimated by mimicking Eq. (2). The resulting estimator turns out to be 

V̂NN =
b2

K
∑K

k=1
(
̂dk − D̂)

2 (12) 

where 
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̂dk =
1
n
∑

j∈sk

d̂j 

is the mean of the interpolated densities within the possible sample sk, and 

D̂ =
1
N
∑

j∈U
d̂j 

is the mean of the interpolated densities in the whole population. Because for population and sample size sufficiently large the d̂js 
converge to djs in probability, the ratio V̂NN/VSYS(y) does not depend on b and approaches 1 in probability. In this sense V̂NN is a 
consistent estimator of VSYS(y).

5. Simulation study

A 27 ha section of Harvard Forest (Petersham, Massachusetts, USA) is considered. Data are available for download at https:// 
harvardforest1.fas.harvard.edu/exist/apps/datasets/showData.html?id=hf253. Spatial coordinates and above ground biomass 
(AGB) of the living trees censused in 2014 within the 27 ha portion are considered, the density of AGB per ha is derived for each 30 m 
square area partitioning the portion, and an artificial continuous surface is achieved by means of ordinary kriging interpolation across 
a grid of 540 × 720 points. In addition, we have considered two artificial surfaces over a study area of 27 ha to generate values of the 
density of AGB per ha. For each point p = [p1,p2], the function 

f(p) = 1 + p1 + p2 (13) 

has produced a surface with a linear spatial trend, while the function 

f(p) = 3p2
1 + 6p2

2 (14) 

Fig. 2. Maps of AGB densities (m3 x ha) for the Harvard Forest populations of N = 972, 2700, 4800, 10,800 squares, with average density of 
322.28 m3 per ha.
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has produced a surface with a quadratic spatial trend. The two functions have then been rescaled to ensure a maximum AGB density of 
500 and a minimum of 20. Finally, a real surface representing forest is considered in a region of 23,400 ha located in Tuscany (Central 
Italy). In this area, forest and non-forest categories were recorded in the year 2000 in correspondence with the 25 m square pixels 
partitioning the region. Data are available for download at https://forest.jrc.ec.europa.eu/en/past-activities/forest-mapping/ 
#Downloadforestmaps.

From the four surfaces, four populations of N = 972,2700,4800 and 10,800 squares are constructed by partitioning the study 
regions into 27 × 36, 45 × 60, 60 × 80, 90 × 120 squares. For the first three surfaces, the AGB densities within squares are taken as 
population values so that the four population means simply coincide with the average AGB per ha on the whole study area that does not 
change with N. Similarly, in the case of forest-non forest surface the population values are the fractions of forest extents within 
quadrats expressed as percentages, so that the four populations means coincide with the percentage of forest extent on the whole area 
(see Figs. 2–5).

Sampling from the resulting populations is performed by selecting n = 81,225,400 and 900 squares by means of EPSS, for a constant 
sampling fraction of 1/12. In practice, the populations are partitioned into blocks of 3 × 4 contiguous squares and one square is 
randomly selected in the first block and then repeated in the other blocks.

For each population, the design-based variance of the sample mean (V) is computed by means of Eq. (2) and is compared with the 
variance that would be achieved under SRSWOR (V0) by the ratio DE=V0/V to evidence the design effect, i.e. the improvement in 
precision achieved by EPSS. Moreover, for each population and each of the 12 possible samples, the variance estimates of the sample 
mean are computed by the estimators (3), (5), (6), (7), (9), (10), and the expectations of these estimators are computed as the mean of 
the 12 resulting estimates. Finally, for each population and each possible sample the estimated map of AGB densities or forest pro
portions is obtained from (11) and the variance estimate of the sample mean based on the NN interpolation is computed by means of 
(12). Once again, the expectation of the NN-based variance estimator is computed as the mean of the 12 resulting estimates.

The ratios between expectations of the variance estimators and the actual design-based variances are reported in Table 1 for each 
population and each estimator, with the exception of the HT estimator (6) whose ratios are not reported because the estimator turns 
out to be excessively conservative in all cases.

The results of Table 1 show a similarity between the DE values in the fourth columns of the tables and the ratios in the sixth columns 

Fig. 3. Maps of AGB densities (m3 x ha) for the populations of N = 972, 2700, 4800, 10, 800 squares generated from the surface with a linear 
spatial trend, with average density of 260 m3 per ha.
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regarding the performance of the estimator (5). These similarities are due to the fact that, as proven in Appendix A of the Supple
mentary Material file, the DE values differ from the ratios quantifying the performance of estimator (5) by a quantity that vanishes for 
sufficiently large samples. Therefore, for large n these ratios are equivalent to DE indexes.

From the results of Table 1 it is apparent that the performance of the variance estimators (3), (5), (7), (9) and (10) greatly depend on 
the population characteristics. The naïve estimators (3) and (5) are too conservative, especially in the case of Harvard Forest pop
ulations but also in the case of forest extent populations. On the other hand, these estimators perform exceptionally well in the case of 
trended populations arising from the surfaces (13) and (14) with values of the ratios quantifying their performance that (owing to the 
approximation to the first two decimal digits) turn out to be invariably equal to 1. These results are quite surprising because owing to 
the similarity of these ratio with DEs, they evidence the inability of EPSS to provide improvements with respect to SRSWOR under 
linear and quadratic trends in both the spatial coordinates. These results are indeed in contrast with the literature on EPSS that, at least 
for one-dimensional populations, invariably stresses the EPSS effectiveness under trends (e.g., Särndal et al. 1992, example 3.4.2). On 
the other hand, linear trends in both the spatial coordinates entail some periodicities in the spatial populations of polygons that, as it is 
well recognized in literature, are likely to deteriorate the performance of EPSS (e.g., Wu and Thompson 2020, section 2.3). The failure 
of EPSS under linear trends is analytically demonstrated in Appendix B of the Supplementary Material file, where it is proven that the 
ratios quantifying the performance of estimator (5) do not depend on sample sizes and are near to 1. These results approximately hold 
also for estimator (3) that for large population and sample sizes is equivalent to (5) and also for quadratic trends of type (14) that 
generate populations similar to those achieved under linear trends.

Finally, regarding the estimators (7), (9) and (10), they provide severe under evaluations of the actual variances in the case of 
trended populations while providing conflicting results in the case of Harvard Forest and forest extent populations. In conclusion, at 
least for the considered populations, the variance estimator (12) appears to be the most stable performing satisfactorily in all situations 
with ratios that are the nearest to 1, thereby confirming the theoretical finding of the previous section.

6. Conclusions

Decades of studies on the estimation of the variance of the sample mean in EPSS have shown the weakness of searching for an 
omnibus estimator able to provide reliable variance estimates in any situations. As a matter of fact, the performance of any proposed 

Fig. 4. Maps of AGB densities (m3 x ha) for the populations of N = 972, 2700, 4800, 10,800 squares generated from the surface with a quadratic 
spatial trend, with average density of 180.26 m3 per ha.
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estimator crucially depends on the characteristic of the surveyed population. In this framework, it seems suitable to search for a 
consistent estimator that invariably converges in probability to the true variance as the population and sample size increase.

In the case of spatial populations, a straightforward solution is to use the NN maps as pseudo-populations and to take the variances 
of the sample mean computed from them as estimates of the actual variances. As NN maps are consistent, in the sense that they 
converge to the true maps under an asymptotic scenario in which the study area is partitioned into an increasing number of regular 
polygons of decreasing size in such a way that population and sample size can approach infinity, the variances computed from these 
maps are also consistent.

Fattorini et al. (2022) show how the NN interpolation is the borderline case of IDW interpolation as the smoothing parameter 
approaches infinity. Both the interpolations ensure consistency so that we can use also IDW maps as pseudo-populations to achieve 
consistent variance estimators. We have preferred NN interpolation as it avoids the arbitrary choice of smoothing parameter or its 
computationally intensive data driven selection (Fattorini et al. 2023) and because the NN interpolated values have the same support 
of the survey variable, even when the support is discrete. This feature has practical relevance as it allows the application of NN 
interpolation for constructing maps of dichotomous 0–1 variables (e.g. forest/non forest maps).

Finally, it is worth noting that NN and IDW interpolations can be viewed as a model-assisted interpolation based on the very simple 
model assumption that neighbouring locations tend to be more similar than locations far apart. Even when this situation does not hold, 
consistency continues to hold because it is ensured in a design-based scenario by the use of EPSS. Thus, the unique crucial assumption 
is the Riemann integrability of the density function of the survey variable throughout the study region, that, as argued in Section 3, is 
likely to hold in most real situations

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.spasta.2024.100865.

Fig. 5. Maps of percentages of forest extents for the populations of N = 972, 2700, 4800, 10,800 squares generated from the forest/non forest 
surface in a region of 24,300 ha located in Tuscany (Central Italy), with an average percentage of 47%.
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Table 1 
Variance (V) and design effect (DE) of EPSS in the four populations of quadrats derived from the Harvard forest surface (Table 1a), linear spatial trend 
surface (Table 1b), quadratic spatial trend surface (Table 1c) and percentages of forest extent derived from the forest-non forest surface (Table 1d) 
together with the ratios between the expectations of the variance estimators of sample mean achieved from the estimators (3), (5), (7), (9), (10), (12), 
denoted by SRSWR, SRSWOR, STR, GEARY, MORAN, NN respectively, and the actual variances of the third column.

Table 1a. Average density: 322.28 m3 x ha

N n V DE SRSWR 
(3)

SRSWOR 
(5)

STR 
(7)

GEARY 
(9)

MORAN 
(10)

NN 
(12)

972 81 3.47 28.03 30.91 28.33 13.01 16.15 3.24 2.37
2700 225 0.92 38.48 42.14 38.63 8.60 11.10 1.87 2.00
4800 400 0.49 40.72 44.52 40.81 6.75 7.54 1.19 1.86
10,800 900 0.26 33.76 36.86 33.79 2.66 3.16 0.46 1.37

Table 1b. Average density: 260 m3 x ha

N n V DE SRSWR 
(3)

SRSWOR 
(5)

STR 
(7)

GEARY 
(9)

MORAN 
(10)

NN 
(12)

972 81 111.61 1.00 1.09 1.00 0.04 0.05 0.03 1.32
2700 225 40.18 1.00 1.09 1.00 0.02 0.02 0.02 1.40
4800 400 22.60 1.00 1.09 1.00 0.01 0.01 0.01 1.41
10,800 900 10.05 1.00 1.09 1.00 0.004 0.005 0.01 1.51

Table 1c. Average density: 180.26 m3 x ha

N n V DE SRSWR 
(3)

SRSWOR 
(5)

STR 
(7)

GEARY 
(9)

MORAN 
(10)

NN 
(12)

972 81 108.68 1.07 1.17 1.07 0.05 0.07 0.04 1.40
2700 225 39.11 1.07 1.17 1.07 0.02 0.03 0.02 1.49
4800 400 22.00 1.07 1.17 1.07 0.01 0.01 0.02 1.51
10,800 900 9.78 1.07 1.17 1.07 0.01 0.01 0.01 1.62

Table 1d Average percentage: 47%

N n V DE SRSWR 
(3)

SRSWOR 
(5)

STR 
(7)

GEARY 
(9)

MORAN 
(10)

NN 
(12)

972 81 4.95 2.88 3.17 2.91 1.24 1.22 0.28 1.66
2700 225 1.06 5.53 6.05 5.54 2.25 2.36 0.51 2.61
4800 400 1.27 2.81 3.07 2.81 1.17 1.20 0.26 1.27
10,800 900 0.31 5.66 6.18 5.66 2.41 2.44 0.53 2.07
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