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A B S T R A C T

How could firms best reduce their environmental impact? Should they change technology? Or
could they do better with what they already have? This paper shows that one size does not fit
all. We analyse a sample of polluting production plants (i.e. installations) regulated under the
EU Emission Trading System. We employ a mixture model estimation to dissect environmental
efficiency into a technology adoption component (𝑤ℎ𝑎𝑡 type of technology is used) and a
technology usage component (ℎ𝑜𝑤 a technology is used). Our installation-level analysis shows
that the share of installations adopting frontier technologies is about 21%. We also find that the
average environmental efficiency gains that installations could reach by improving technology
adoption and technology usage are 75% and 80% respectively. The analysis of balance-sheet
data on parent companies reveals that better environmental technologies are adopted by larger,
listed, multi-installation and international companies, while older firms and firms with higher
intangible assets intensity more commonly show improved technology usage.

. Introduction

Recent empirical evidence has documented that in many OECD countries emission intensity (measured as emissions per unit of
utput) of manufacturing sectors has been falling over the last decades (e.g., Najjar and Cherniwchan, 2021). Looking at the plant-
evel, the decline of emission intensity seems to be driven primarily by a within-product increase in environmental efficiency, i.e. an
mprovement in the ability to generate the same output at a lower environmental cost, rather than by changes in the composition
f production (Shapiro and Walker, 2018). Yet, as it has been observed for standard economic measures of productivity (e.g., Hsieh
nd Klenow, 2009), environmental efficiency remains highly dispersed even within narrowly defined product-industries.

The sources of such heterogeneity are rather unexplored. In particular, it is still poorly understood whether within-product
ifferentials in environmental efficiency are to be explained mainly in terms of differences in the type of technology adopted by
ifferent groups of firms (𝑤ℎ𝑎𝑡 type of technology is used) or as idiosyncratic differences across firms in the usage of technologies
f a same type (ℎ𝑜𝑤 a technology is used). This paper aims at exploring this issue at the installation-level, i.e. at the level of each
olluting production plant operating within narrowly defined product sectors. To what extent the within-product heterogeneity in
nvironmental efficiency across installations is explained by differences in technology adoption, and to what extent by differences
n technology usage? Measuring these dimensions has broad policy implications, as it would allow evaluating the potential gains in
utput, emissions being equal, of technology diffusion policies in comparison with policies aimed at improving technology usage.1
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1 Technology diffusion policies cover a large array of measures, including both direct and indirect instruments, such as technology standards and adoption
ubsidies (Fisher and Newell, 2008; Acemoglu et al., 2012, 2016), whereas policies aimed at promoting technology usage are typically more nuanced and point
o improving managerial and technical skills, environmental awareness, green accounting and, more in general, corporate social responsibility.
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A quantification of the gains from implementing such types of policies could help governments and regulatory agencies to better
rasp the whole picture about green growth potentials besides those associated with more standard innovation policies alone.

The main reason of this lacuna is practical. On the one hand, measuring the technological component of environmental efficiency
requires isolating each technology (or set of technologies that are equivalent in terms of emission intensity) available in a product-
sector. Under standard techniques, this is possible only after conducting some form of ex-ante classification, e.g. based on an
engineering approach with experts examining and classifying the technology in use firm-by-firm, to then estimate the emission
coefficient (i.e. the additional emissions associated with an increase in output) for each type of technology. Such approaches are
learly unusable on a large scale. On the other hand, obtaining Solow residual-like measures of environmental efficiency at the

firm (or installation) level under the assumption that a single emission coefficient can describe the production process in a sector
implies imposing that all firms use technology of a same type, thereby confounding the firm-specific (technology usage) and the
group-specific (technology adoption) dimensions of environmental efficiency.

In this paper we apply well-know statistical techniques in a new empirical context in order to decompose environmental efficiency
into a group-level and an installation-level dimension.

We use data on installation-level pollution emissions and output obtained from the European Union’s Operator Holding Accounts
(EU OHA hereafter), which provide detailed information on verified CO2 emissions and allocated emission permits for all European
nstallations regulated under the EU Emission Trading System (EU ETS). Installations are identified as heavy energy-using power
tations and other combustion plants with more than 20MW thermal rated input. In particular, we use permits data from the EU
TS Phase 3 (2013–2020) in order to recover, from the inverse permit allocation rule, physical output levels as the median activity
evel in 2005–2008 for each installation. We then match output levels with contemporaneous CO2 emission levels obtained from
he EU ETS Phase 1 (2005–2007). This allows us to afford additional granularity in the measurement of emission intensity relative
o the existing literature and to capture cross-installation differences in technology adoption.

First, we employ an empirical mixture model to identify different ‘‘environmental-profile functions’’ (E-PFs) within narrowly
defined industries, with each E-PF (identified by its constant and shape parameters) reflecting a type of production technology
efined in terms of physical output generated per unit of emissions. In simple terms, the E-PF can be thought of as describing the
olluting profile of the production process as determined by the characteristics of the technology in use. Our mixture model is similar
n spirit to the one proposed by Battisti et al. (2015, 2020) in a more classical productivity context. It allows for the probability
istribution of environmental efficiency to be the result of the potential overlapping of several distributions that we then interpret
s different technology clusters, i.e. clusters of installations adopting production technologies with a same E-PF. The model leaves
he estimation free to determine both the number of E-PFs available in each sector and the probability of each installation using
ach E-PF, including the one at the frontier (i.e. the technology profile associated with the minimum emission intensity).

Brought to the data, this exercise delivers a number of technology clusters ranging from one to five, with most sectors having
more than one cluster. Our results square with the engineering of the actual production processes in the industries under analysis,
as described by EPA (2022) among others, leading us to interpret the environmental profiles isolated in the model as arguably
eflecting the environmental dimension of production technologies. For example, our model points to two relevant clusters in the

production of carbon black, which are most likely to reflect the two main manufacturing processes actually used in the sector, i.e. the
oil furnace process and the thermal process, which have different emission rates and require different emission control systems. In
the lime and dolomite manufacturing, our model finds four clusters, consistently with the alternative use of rotary, shaft, calcimatic
and fluidized bed kilns, which show very different fuel efficiencies. For the production of iron and steel, the two E-PFs identified
in our model may capture the use of basic oxygen furnaces and electric arc furnaces in the steelmaking process, associated with
different emission rates. Also for other sectors, we obtain a number of clusters that is in line with the actual technological differences
between firms.

We then use the difference between the observed output of each installation and the estimated output associated with each E-PF to
compute an installation-level measure of ‘‘environmental-profile usage’’ (E-PU), weighted by the installation’s probability of adopting
each available technology profile. The E-PU can be interpreted as the idiosyncratic component of the environmental performance
of an installation, given the production technology. As a cross-installation differential, the E-PU captures the installation-specific
ability to further mitigate the pollution generated in the production process with respect to the other installations adopting the
same technology profile, e.g. by means of specific maintenance programs to make equipment work efficiently or using energy-saving
internal logistics and materials management.2

In the sectors where more than one cluster is available, we find that the probability weighted share of installations adopting the
frontier profile is about 21% and that the dispersion of the E-PU varies substantially depending on the technology in use (with E-PU
variance being in most sectors lower for the installations in the frontier technology cluster).

In a second step, we quantify the potential gains in environmental efficiency from eliminating technology adoption and
technology usage heterogeneity. We compute two counterfactual scenarios. One in which the installation adopts the frontier E-
PF available in its sector and one in which the installation continues to be attached to the probability of adopting each profile
as estimated in the first step but shows the E-PU of the top 5% performers in the sector. For each installation, we compare the
output that would have been obtained under these two scenarios with the output actually observed. We find that adopting the
frontier technology cluster would entail an average output gain at the installation-level by 75%, while improving technology usage

2 Previous productivity research has shown that the Solow residual in standard production function estimation in part reflects managerial quality
e.g., Bhattacharya et al., 2013), which may be relevant also in our environmental context.
2 
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would increase output up to 80%, emissions being equal. On average, the total gain from technology upgrades when both sources
of efficiency dispersion are eliminated is about 155%. These results are qualitatively similar when installation-level emissions are
modelled as an endogenous variable and when emissions are expressed per unit of capital or unit of labour. Behind these averages,
we also document that the growth margins of environmental efficiency differ substantially both across sectors and across installations

ithin sectors, partly reflecting a number of characteristics of parent companies. We link each installation in the EU OHA database
ith its parent company in Orbis (Bureau van Dijk, 2022) by means of a fuzzy approach that matches account holder names in the
U OHA database and company names in Orbis. Consistently with previous literature on the competitive advantage of multinational

companies (e.g., Forslid et al., 2018), we find that better technologies (in terms of output per unit of emissions) are more likely
to be adopted by larger, listed, multi-installation and international companies, while older firms and firms with higher intangibles
assets intensity more commonly show improved technology usage.

Taken together, our results suggest that existing technologies have large unexploited potentials, both because only a minor
fraction of firms is adopting frontier technologies and because there is non-negligible room for improving the usage of currently
adopted technologies. This points to the importance of coupling green innovation policies, aimed at promoting the development
f new low-carbon technologies, with policies for broadening technology diffusion and good managerial and technical practices,
n particular if emissions reduction goals are to be met in the short-run. Moreover, by unveiling significant cross-installation
symmetries in both technology adoption and usage, our statistical decomposition may lead to consider flexible environmental
olicies as an effective way for improving environmental efficiency—an insight in line with the ‘‘narrow’’ version of the so-called
orter Hypothesis which posits that flexible environmental regulations may give firms greater incentive to introduce technological

innovations than prescriptive policy regimes (Jaffe and Palmer, 1997; Lanoie et al., 2011).
The paper proceeds as follows. In Section 2 we provide a brief overview of the related literature. In Section 3 we present the

data. In Section 4 we explain in detail the steps of our methodology. In Section 5 we provide a quantification of the group-level and
he installation-level components of environmental efficiency dispersion. In Section 6 we check the robustness of this quantification

to different model specifications. Section 7 concludes by explaining the policy relevance of our analysis.

2. Related literature

The paper is at the intersection of two main literatures.
First is the literature on the diffusion of environmental technologies among regulated firms, i.e. technologies associated with

a reduced environmental impact per unit of output, including technologies that reduce pollution at the end of the pipe, such
as scrubbers for industrial smokestacks, and improved energy efficiency devices integrated into the production process. Popp
et al. (2010) provide an extensive survey of this literature.3 Recent research has focused on the question whether environmental
egulations are responsible for the broader adoption of lower-emissions technologies observed in many countries and sectors. Shapiro

and Walker (2018) find that changes in environmental regulations in the US account for most of the emissions reductions in US
manufacturing between 1990 and 2008. Similarly, Najjar and Cherniwchan (2021) show that improved air quality standards in
Canada caused reductions in the emission intensity of individual industries in Canadian manufacturing over the period 2004–2010.
In the European context, Tchorzewska et al. (2022) show that the adoption of green technologies is encouraged by policy-mixes
of environmental taxation and subsidies. With more specific reference to the European emission trading framework, Calel and

echezlepretre (2016) find that the introduction of the EU ETS in 2005 has increased low-carbon innovation among companies
ncluded in the EU ETS, while Calel (2020) shows that the EU ETS has been effective in encouraging the production of low-carbon
echnologies without necessarily driving the diffusion of such technologies. This literature has improved our understanding of the
hift in environmental technologies diffusion that can be attributed to changes in environmental regulations. However, it does not

explore the technological differentials across firms regulated under the same regulatory framework. Moreover, by relying on data
on low-carbon patenting, R&D spending or sector-specific technology classifications, most of this body of research tends to overlook
cleaner technologies that are unpatented or difficult to classify in broad-scale analyses. Related to this, it is important to emphasize
that patents and R&D spending are good proxies of innovation (i.e. the production of new technologies), but they may fail to
capture technology adoption. While the use of some environmental technologies may be linked to a complementary innovation
(thereby being associated to patent applications and R&D activities), many others may be introduced in the production process as
such, without implying additional R&D investments.4 The methodology proposed in the present paper allows to address this gap.5

Second, and to a lower extent, our paper may also be linked to the literature on the environmental consequences of managerial
uality. Our measure of technology usage could be interpreted as reflecting environmental practices at the installation level, net
f the technological dimension. Hence, our results on technology usage may speak to previous research discussing the relationship
etween firm management and environmental performance. For example, it has been argued that the adoption of pollution-reducing
echnologies may be prevented by organizational failures and managerial inertia (Porter and van der Linde, 1995; Ambec and Barla,

2002). Bloom et al. (2010) show that better managed establishments are significantly less energy intensive in a sample of 300
manufacturing firms in the UK. Martin et al. (2012) interviewed managers of 190 manufacturing plants in the UK and find that

3 Allan et al. (2014) clarify the position of the literature on diffusion of environmentally beneficial technologies into the general topic of technology diffusion.
4 As an example, the substitution of a basic oxygen furnace with an electric arc furnace in a steelmaking plant does not require particular R&D investments,

but the two types of furnace are associated to different CO2 emission rates.
5 Our methodology may also contribute to the broader literature on the measurement of firm-level upgrading and technology adoption outside the

environmental context (see Verhoogen, 2023 for an overview).
3 
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climate friendly management practices are associated with lower energy intensity and higher productivity. De Haas et al. (2021)
show that managerial constraints slow down firm investment in more energy efficient and less polluting technologies, using data
for a large sample of firms in 22 emerging markets. Gaganis et al. (2023) find that firms with more able managers have lower
greenhouse gas emissions, in a cross-country sample of 407 publicly listed firms. Chen et al. (2021) point to the human capital of
he workers more in general as a driver of better compliance with environmental regulations and reduced firm emissions.

3. Data

Before explaining the details of our empirical strategy, here we present the data. We use installation-level data provided by
the EU OHA, which is carried out by the European Commission and covers all the installations regulated under the EU ETS.6 The
database provides accurate information on tons of verified CO2-equivalent emissions and the number of allocated emission permits
for each installation and year covered by the EU ETS, along with information on the installation’s location and product-sector.7

We are able to retrieve installation-level output from the allowance allocation rule employed in the EU ETS Phase 3 (2013–2020).
Over the years 2013–2020, allocation of allowances was administrated by the following rule:

𝐴𝑖,𝑡,𝑠 = 𝑒𝑠 𝜆𝑠,𝑡 𝜗𝑡 𝑄𝑖,𝑠, (1)

where 𝐴𝑖,𝑡,𝑠 is the allowances to installation 𝑖 in year 𝑡 and sector 𝑠, 𝑒𝑠 is the sectoral benchmark emission intensity, 𝜆𝑠,𝑡 is a carbon
eakage exposure factor (CLEF), 𝜗𝑡 is a cross-sectoral correction factor (CSCF) and 𝑄𝑖,𝑠 is the baseline activity level calculated as
he median of the activity level in 2005–2008. Since 𝐴𝑖,𝑡,𝑠, 𝑒𝑠, 𝜆𝑠,𝑡 and 𝜗𝑡 are known, 𝑄𝑖,𝑠 can be retrieved by manipulating Eq. (1).8

Installation-level annual tons of verified CO2-equivalent emissions (𝐸𝑖,𝑡,𝑠) are directly obtained from the EU OHA. In order to match
physical output levels with contemporaneous emission levels, we use the median value of emissions over the EU ETS Phase 1
(denoted hereafter with 𝐸𝑖,𝑠, for simplicity). Hence, an installation’s emission intensity can be calculated as:

𝑒𝑖,𝑠 =
𝐸𝑖,𝑠

𝑄𝑖,𝑠
. (2)

Environmental efficiency is nothing else than the reciprocal of 𝑒𝑖,𝑠. Since our empirical analysis is conducted sector-by-sector, under a
arrow product-sector classification, possible differences in the unit of measurement of 𝑄𝑖,𝑠 across sectors are not an issue.9 However,

we cannot exclude measurement errors stemming from a misalignment between the median values of emissions and outputs in the
years of the EU ETS Phase 1. It is also possible that measuring 𝐸𝑖,𝑠 with other pollutants different from CO2-equivalent emissions
would lead to non-negligible changes in the distribution of 𝑒𝑖,𝑠 with respect to the one documented in this paper. In any case, it is
impossible to predict in which direction measurement errors may drive our final results. There is no reason to expect misaligned
median values of emissions and outputs to be systematically asymmetric towards one rather than the other side (thereby causing an
under- or an over-bias in our emission intensity measure). In our mixture model analysis presented below, if measurement errors
occur at random, they do not alter the distribution of 𝑒𝑖,𝑠 and therefore do not imply distortions in the results.

Given our strategy to recover 𝑄𝑖,𝑠 and 𝐸𝑖,𝑠, we restrict our sample to those installations that were active both in the EU ETS
hase 1 and Phase 3, which means about 75.9% of all the installations active during Phase 1. After data cleaning, we remain with
881 installation-level observations over 14 product-sectors and 15 countries. Fig. 1 describes the cross-sector and cross-country
omposition of our final sample.

The cross-sectional distribution of 𝑒𝑖 within each industry is illustrated in Fig. 2. As the figure shows, there are significant emission
intensity differentials across installations. The sense of scale of these differentials can be grasped by considering that, in most of the
sectors, the emission intensity of the installation at the 75th percentile of the distribution is about as twice as the emission intensity
of the installation at the 25th percentile.

While this evidence suggests that dispersion of environmental efficiency is significant even in narrowly defined industries, it
eveals little as to whether this heterogeneity is driven by installation-level or group-level sources. This is explored next.

6 The system includes more than 11 000 installations operating in energy activities (combustion installations, mineral oil refineries, coke ovens), mineral
ndustry (cement clinker, glass and ceramic bricks), production and processing of ferrous metals and pulp, paper and board activities, that each year receive (or
ust buy) a certain amount of allowances to emit greenhouse gases.
7 The standard methodology to calculate CO2 emissions, as then reported in the EU OHA, is based on multiplying the amount of fuel or other material

ombusted with corresponding emission factors. Variants of the standard methodology are used in some sectors (details are provided in European Commission
(2018)).

8 The CLEF is constant 1 or decreasing at a predetermined rate depending on the carbon leakage status of the sector, while the CSCF is a time-varying
actor (constant across sectors) ensuring that total allocation remains below the maximum amount pursuant to article 10a(5) of the EU ETS Directive (European

Commission, 2015). Product-specific benchmark emission intensities are listed in European Commission (2011) according to a classification that is more granular
than the EU OHA sectors classification. We cross-walked the two classifications using product-sector description matching. Unmatched sectors are left out of the
analysis. Details on CLEF, CSCF and benchmark emission intensities are provided in Appendix.

9 By using a narrow product-sector classification at the installation level, we minimize the risk of confounding cross-installation variation within products
with cross-product variation within firms (i.e. the ‘‘product-mix’’ effect, which is found to explain emission intensity dispersion about half as much as the
variation across firms; see, e.g. Barrows and Ollivier, 2018). In any event, it is worth noting that our industry classification is more granular than commonly
sed classifications in related productivity literature (e.g., Battisti et al., 2020).
4 
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Fig. 1. Sample composition across sectors and countries. Note. Share of installations across sectors and countries.

Fig. 2. Distribution of emission intensity within sectors. Note. Emission intensity is measured at the installation-level as verified tons of CO2-equivalent emissions
per unit of output. The default unit of measurement of output is tons of product produced expressed as saleable net production and to 100% purity of the
substance concerned (details are in European Commission, 2011).

4. Measuring technology adoption and usage

With our analysis we want to dissect environmental efficiency of installations in two components, reflecting respectively the
extent to which environmental efficiency is due to the type of technology employed in production (a technology-type is assumed
to be common to more than one installation, hence it is a group-level dimension) and the extent to which it is due to factors
associated with the idiosyncratic (installation-level) usage of the technology. To achieve this decomposition we proceed in two steps.
First, we need to cluster installations depending on the technology in use, where each cluster brings together all the installations
adopting a same technology or different technologies of a same type in terms of output-to-emission ratios (i.e. technologies
that are environmentally equivalent). Second, we measure the idiosyncratic component as the difference between the observed
installation-level environmental efficiency and the predicted environmental efficiency within the same technology cluster.
5 
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We begin by formalizing the association between output and emissions of installation 𝑖 in sector 𝑠 as follows:

𝑄𝑖 = 𝛹𝑖,𝜏𝐸
𝛽𝜏
𝑖 , (3)

where 𝛹𝑖,𝜏 is the environmental efficiency of installation 𝑖 when it uses the technology-type 𝜏 among the  technology-types available
n the sector.

Taking natural logs of Eq. (3) results in
ln(𝑄𝑖) = 𝛼𝑖,𝜏 + 𝛼𝜏 + 𝛽𝜏 ln(𝐸𝑖), (4)

with ln(𝛹𝑖,𝜏 ) = 𝛼𝑖,𝜏 + 𝛼𝜏 . The parameters 𝛼𝜏 and 𝛽𝜏 are the constant and shape coefficients of the 𝜏-technology-type. Hence, {𝛼𝜏 , 𝛽𝜏}
escribes the ‘‘environmental-profile function’’ (E-PF), i.e. the function generating the predicted output per unit of emissions from
sing a technology of type 𝜏. It is clear that, in this framework, two (or more) technologies are considered of a same type (which
quals to say that they can be described by a same E-PF) even if they employ different amounts of capital and labour inputs, or a
ifferent mix of them, provided that such technologies have a same profile in terms of output-to-emission ratios. In more explicit
erms, we consider a technology-type as broader than a unique combination of physical inputs: if two installations use different
mounts of capital with a different intensity, labour being equal, generating the same amounts of output and emissions, then they

are considered as employing environmentally equivalent technologies and are associated to the same technology cluster 𝜏. From this,
it also follows that, in our framework, a firm exposed to a demand-side shock, pushing down production levels, remains correctly
associated to the same technology it was using before the shock, to the extent that the firm’s output-to-emission ratio remains
onstant.

In Eq. (4), the residual term 𝛼𝑖,𝜏 reflects the idiosyncratic deviation of installation 𝑖’s output with respect to the fitted output of
the installations adopting the same technology-type 𝜏. We refer to 𝛼𝑖,𝜏 as the ‘‘environmental-profile usage’’ (E-PU), which, net of
he technological dimension, can be thought of as representing the installation-specific idiosyncratic component of environmental
fficiency.10 By measuring output in physical quantities instead of value added or revenues, we avoid the omitted price bias of the

type discussed by previous literature (e.g., Klette and Griliches, 1996).
We obtain 𝛼𝜏 and 𝛽𝜏 by estimating Eq. (4) with a finite mixture model (McLachlan et al., 2019) on our installation-level data

ector-by-sector. Under such type of modelling, the within-sector distribution of ln(𝑄𝑖) is the average of  Gaussian distributions,
ach with own mean 𝜇𝜏 and variance 𝜎2𝜏 , weighted by the ex-ante probabilities 𝜋𝜏 of belonging to group 𝜏, i.e.:

𝑓
(

ln(𝑄𝑖)|𝜇 , 𝜎2
)

=

∑

𝜏=1
𝜋𝜏𝑓𝜏

(

ln(𝑄𝑖)|𝜇𝜏 , 𝜎2𝜏
)

, (5)

where

𝜋𝜏 =
∑𝑁

𝑖=1 𝑝𝑖,𝜏
∑

𝜏=1
∑𝑁

𝑖=1 𝑝𝑖,𝜏
, (6)

with 𝑁 being the number of installations and 𝑝𝑖,𝜏 the posterior probabilities. It is imposed that ∑
𝜏=1 𝜋𝜏 = 1.

Posterior probabilities 𝑝𝑖,𝜏 are obtained by using an expectation–maximization (EM) algorithm to the sector-by-sector weighted
least squares estimation of Eq. (4). In the expectation (E) step, posterior probabilities 𝑝𝑖,𝜏 are computed as

𝑝𝑖,𝜏 =
𝜋𝜏𝑓𝜏{ln(𝑄𝑖)|𝜇𝜏 ; 𝜎2𝜏 }

∑
𝜏=1 𝜋𝜏𝑓𝜏{ln(𝑄𝑖)|𝜇𝜏 ; 𝜎2𝜏 }

, (7)

starting from random values of 𝜋𝜏 . In the maximization (M) step, the likelihood for Eq. (4) is maximized using observation weights:

𝛾𝑖,𝜏 =
√

𝑝𝑖,𝜏 . (8)

The two steps are iterated until the likelihood converges. We denote with 𝑝̃𝑖,𝜏 the posterior probabilities obtained after the last EM
iteration, once the likelihood is converged.11

We leave the model free to choose, in each sector, the number of technology clusters that best fits the data. We do so by running
he mixture model estimation of Eq. (4) repeatedly, imposing in each round a different number of clusters  ∈ [1, 10] and selecting
he number of clusters that minimizes the Bayesian information criterion (BIC).12 We denote with ̃ such optimal number. Detailed
esults of our BIC-based selection procedure are collected in Table 1. Our mixture model estimation delivers a number of clusters
anging from one to five, with most sectors having more than one cluster.

10 Note that 𝛼𝑖,𝜏 captures the idiosyncratic component of environmental efficiency only if capital, labour and intermediate inputs are not included in Eq. (3).
If marketed inputs were added into Eq. (3), a variation in one of these inputs, output and emissions being equal, would reflect in some variation in 𝛼𝑖,𝜏 without
the actual idiosyncratic deviation in environmental efficiency of installation 𝑖 being changed.

11 It is evident that our empirical strategy is different and computationally less intensive than environmental efficiency techniques based on environmental
roduction function models and data envelopment analysis (e.g., Färe et al., 2005), stochastic frontier models (e.g., Fernández et al., 2002), hyperbolic

output efficiency measurement (e.g., Färe et al., 1989) and directional distance function approaches (e.g., Chung et al., 1997), which boil together
esirable and undesirable outputs and inputs, without disentangling technical efficiency (productivity) from environmental efficiency, and cannot separate the
etween-technology and within-technology components that are crucial in our framework.
12 A number of  higher than 10 could be considered, but we observed empirically that in our data the model does not converge for  > 5 in any sector.
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Table 1
BIC values from the sector-by-sector mixture model estimation.

Sector BIC =1 BIC =2 BIC =3 BIC =4 BIC =5 BIC =6 BIC =7 BIC =8 BIC =9 BIC =10 BIC𝑚𝑖𝑛 ̃

Aluminium 55.476 78.963 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 55.476 1
Ammonia 11.373 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 11.373 1
Carbon black 11.953 6.694 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 6.694 2
Cement clinker 199.759 51.661 43.964 n.c. n.c. n.c. n.c. n.c. n.c. n.c. 43.964 3
Coke and coke ovens 19.193 25.188 21.160 n.c. n.c. n.c. n.c. n.c. n.c. n.c. 19.193 1
Glass 279.792 182.605 174.329 163.654 145.700 n.c. n.c. n.c. n.c. n.c. 145.700 5
Gypsum or plasterboard 16.323 13.717 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 16.323 2
Lime and dolomite 283.474 204.808 212.997 189.685 n.c. n.c. n.c. n.c. n.c. n.c. 189.685 4
Mineral wool 32.714 37.133 30.905 n.c. n.c. n.c. n.c. n.c. n.c. n.c. 30.905 3
Nitric acid 40.613 17.581 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 17.581 2
Other pulp 293.492 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 293.492 1
Paper or cardboard 894.623 631.598 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 631.598 2
Pig iron or steel 315.812 271.033 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 271.033 2
Pulp from timber 86.536 83.353 n.c. n.c. n.c. n.c. n.c. n.c. n.c. n.c. 83.353 2

Note.  = number of technology clusters (i.e. number of E-PFs), ̃ =  corresponding to BIC𝑚𝑖𝑛, n.c. = not converged.

Table 2
E-PF parameters from the sector-by-sector mixture model estimation.

Sector E-PF1 E-PF2 E-PF3 E-PF4 E-PF5

Aluminium 𝛽1 = 0.944
𝛼1 = 0.000

Ammonia 𝛽1 = 0.151
𝛼1 = 0.000

Carbon black 𝛽1 = 0.250 𝛽2 = 0.793
𝛼1 = 8.407 𝛼2 = 0.000

Cement clinker 𝛽1 = 0.974 𝛽2 = 0.419 𝛽3 = 0.975
𝛼1 = 0.284 𝛼2 = 7.956 𝛼3 = 0.384

Coke and coke ovens 𝛽1 = 0.852
𝛼1 = 3.020

Glass 𝛽1 = 0.973 𝛽2 = 0.980 𝛽3 = 0.208 𝛽4 = 0.561 𝛽5 = 0.766
𝛼1 = 1.141 𝛼2 = 0.358 𝛼3 = 9.760 𝛼4 = 5.748 𝛼4 = 3.424

Gypsum or plasterboard 𝛽1 = 0.264 𝛽2 = 0.864
𝛼1 = 10.819 𝛼2 = 0.000

Lime and dolomite 𝛽1 = 1.170 𝛽2 = 0.367 𝛽3 = 0.373 𝛽4 = 1.069
𝛼1 = −2.620 𝛼2 = 0.003 𝛼3 = 0.082 𝛼4 = 0.048

Mineral wool 𝛽1 = 0.811 𝛽2 = 0.658 𝛽3 = 1.057
𝛼1 = 2.066 𝛼2 = 0.000 𝛼3 = 0.272

Nitric acid 𝛽1 = 1.306 𝛽2 = 0.602
𝛼1 = −2.485 𝛼2 = 0.000

Other pulp 𝛽1 = 0.359
𝛼1 = 9.203

Paper or cardboard 𝛽1 = 0.857 𝛽2 = 0.065
𝛼1 = 2.542 𝛼2 = 12.441

Pig iron or steel 𝛽1 = 0.860 𝛽2 = 1.004
𝛼1 = 2.877 𝛼2 = 1.236

Pulp from timber 𝛽1 = 0.856 𝛽2 = 0.590
𝛼1 = 4.548 𝛼2 = 0.000

Note. All the reported parameters are statistically significant at the 1% level. Both 𝛼 and 𝛽 are considered equal to zero if not statistically
different from zero at the 1% level.

As a simple external validity check of these results, for each sector we compare the number of technology clusters identified by
ur model with a standard classification of the actual production processes provided by EPA (2022). In the Appendix, we provide

a summary of the relevant technical aspects. Reassuringly, our clustering squares with the main differences across the technologies
typically used by actual installations.

Table 2 reports the estimated 𝛼𝜏 and 𝛽𝜏 coefficients for the ̃ technology clusters identified in each sector. While the emission
coefficient 𝛽 is generally lower than one, a few clusters have 𝛽 greater than one. All the E-PFs are plotted in Fig. 3.
𝜏 𝜏
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Fig. 3. Estimated E-PFs. Note. E-PFs obtained from the mixture model estimation. The number of E-PFs in each sector is determined as the result of optimal
clustering selection based on BIC minimization.

Once the parameters describing each E-PF are obtained, we are able to identify the locally optimal technology-type 𝜏∗, referred
to as the technology-type such that ln(𝑄̂𝑖,𝜏∗ )|𝐸𝑖 > ln(𝑄̂𝑖,𝜏 )|𝐸𝑖 ∀𝜏 ≠ 𝜏∗.13 Note that 𝜏∗ is ‘‘locally’’ optimal because conditional on 𝐸𝑖,
i.e. two or more E-PFs may cross each other at some level of 𝐸𝑖. Indeed, as shown in Fig. 3, in most sectors, we observe that there is
not a unique optimal technology-type for any level of 𝐸𝑖. This means that the relative performance of environmental technologies
is emission-contingent, with the technologies which perform relatively well at low levels of emissions tending to perform worse in
highly polluting (and arguably larger) installations.14

For each installation we have the probability 𝑝̃𝑖,𝜏 of adopting each cluster 𝜏 as well as the probability 𝑝̃𝑖,𝜏∗ of adopting the locally
optimal technology-type 𝜏∗. Hence, we can calculate the probability-weighted size of each technology cluster, including the one that
is locally optimal. We observe that the cross-cluster distribution of installations vary considerably both within and across sectors. In
particular, in the sectors where ̃ ≥ 2, the within-sector share of installations adopting the technology-type 𝜏∗ ranges from 6.10% in
the production of lime and dolomite to 54.25% in the carbon black industry, it being 21.12% on average. When installations from
all sectors are pooled, the share of installations at the technological frontier is 31.85%. The full distributions of installations across
technology clusters and sectors are provided in Table 3. This result unveils that the accessibility of the frontier technologies may
differ remarkably across industries, with most installations in most sectors using sub-optimal technologies.

Finally, we obtain the E-PU term 𝛼𝑖,𝜏 as the difference between the installation’s observed output and the fitted output under
each E-PF (weighted by the probability of adopting each E-PF), i.e. as

ln(𝑄𝑖) −
̃
∑

𝜏=1
𝑝̃𝑖,𝜏 ln(𝑄̂𝑖,𝜏 ), (9)

with ln(𝑄̂𝑖,𝜏 ) = 𝛼𝜏 + 𝛽𝜏 ln(𝐸𝑖).

13 Clearly, this notion of optimality refers to the environmental performance of the technology (in terms of emission intensity minimization). An optimal
environmental technology-type may be in fact sub-optimal from a profit-maximization perspective.

14 Note that, for high levels of output and emissions (i.e. above and to the right of the point where the E-PFs intersect each other), the E-PF with the highest
𝛽 coefficient is by construction the one describing the technology-type associated with the highest environmental efficiency. As the levels of emissions and output
are normally associated with the size of installations, this equals to say that the aggregate Q-to-E ratio is higher when installations have a relatively large scale
(i.e. they are above and to the right of the kink point—or of the ‘‘last’’ kink point if there are multiple kinks) and at the same time adopt the technology-type
with the highest shape parameter.
8 
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Table 3
Probability-weighted distributions of installations across clusters and sectors (%).

Sector 𝜏 = 𝜏1 𝜏 = 𝜏2 𝜏 = 𝜏3 𝜏 = 𝜏4 𝜏 = 𝜏5 𝜏 = 𝜏∗

Aluminium 100 100
Ammonia 100 100
Carbon black 74.04 25.95 54.25
Cement clinker 35.58 7.05 57.35 18.31
Coke and coke ovens 100 100
Glass 60.958 7.61 3.42 22.20 5.79 19.88
Gypsum or plasterboard 56.44 43.55 51.42
Lime and dolomite 6.79 24.27 4.55 64.37 6.10
Mineral wool 16.79 25.51 57.69 27.07
Nitric acid 54.48 45.50 41.98
Other pulp 100 100
Paper or cardboard 86.36 13.63 14.53
Pig iron or steel 33.29 66.70 41.26
Pulp from timber 60.88 39.11 37.89

All sectors pooled 31.85
All sectors with ̃ ≥ 2 pooled 21.12

Note. Entries are within-sector shares (%) of observations across technology clusters, weighted by the probability 𝑝̃𝑖,𝜏 of belonging to
each cluster. The locally optimal technology cluster is 𝜏∗.

Table 4
E-PU dispersion conditional on technology-type.

Sector V̂ar (𝛼𝑖,𝜏∗ ) V̂ar (𝛼𝑖,𝜏≠𝜏∗ )
Aluminium 0.063 –
Ammonia 0.122 –
Carbon black 0.026 0.017
Cement clinker 0.003 0.057
Coke and coke ovens 0.222 –
Glass 0.002 0.020
Gypsum or plasterboard 0.002 0.010
Lime and dolomite 0.001 0.043
Mineral wool 0.004 0.015
Nitric acid 0.050 0.084
Other pulp 0.846 –
Paper or cardboard 0.052 0.193
Pig iron or steel 0.315 0.200
Pulp from timber 0.158 0.436

Note. V̂ar (𝛼𝑖,𝜏≠𝜏∗ ) = − in sectors where ̃ = 1.

To understand how the dispersion of the E-PU varies conditional on the technology-type in use at the installation level, we
compute two additional versions of 𝛼𝑖,𝜏 , conditional respectively on the locally optimal and sub-optimal technology clusters, i.e.

𝛼𝑖,𝜏∗ = ln(𝑄𝑖) − 𝑝̃𝑖,𝜏∗ ln(𝑄̂𝑖,𝜏∗ ) and 𝛼𝑖,𝜏≠𝜏∗ = ln(𝑄𝑖) −
∑

𝜏≠𝜏∗
𝑝̃𝑖,𝜏 ln(𝑄̂𝑖,𝜏 ), (10)

and compare their estimated variances. Sectoral figures are in Table 4. We find that V̂ar (𝛼𝑖,𝜏∗ ) > V̂ar (𝛼𝑖,𝜏≠𝜏∗ ) only in the production
f carbon black and pig iron, while the opposite holds in all the other sectors with ̃ ≥ 2, thereby revealing that the adoption of
he frontier technology-type may help to reduce cross-installation differentials in technology usage performance. This finding may
e interesting in light of very recent research showing that environmental management quality correlates positively with green
nvestments at the firm level (De Haas et al., 2021).

5. Green growth potentials

Once the technology adoption and the technology usage dimensions of environmental efficiency are identified, a natural question
s whether their economic significance is relevant. In this Section, we address this point by quantifying the potential gains in
utput that could be obtained by improving on both dimensions without additional environmental costs (in terms of CO2-equivalent
missions).

First, we measure an E-PF 𝑔 𝑎𝑖𝑛𝑖 index, obtained as the difference between the output associated with the best available
echnology-type in the sector and the weighted fitted output associated with the type of technology actually in use by the individual
nstallation. Formally:

E-PF 𝑔 𝑎𝑖𝑛𝑖 = ln(𝑄̂𝑖,𝜏∗ ) −
̃
∑

𝑝̃𝑖,𝜏 ln(𝑄̂𝑖,𝜏 ), (11)

𝜏=1
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Table 5
Potential gains from eliminating emission intensity dispersion.

Sector E-PF 𝑔 𝑎𝑖𝑛𝑖 E-PU 𝑔 𝑎𝑖𝑛𝑖 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖
Aluminium 0.000 0.595 0.595

(0.000) (0.219) (0.219)
Ammonia 0.000 0.429 0.429

(0.000) (0.349) (0.349)
Carbon black 0.102 0.386 0.488

(0.148) (0.211) (0.267)
Cement clinker 0.478 0.578 1.057

(0.612) (0.249) (0.666)
Coke and coke ovens 0.000 0.571 0.571

(0.000) (0.471) (0.471)
Glass 0.534 0.332 0.867

(0.589) (0.154) (0.608)
Gypsum or plasterboard 0.122 0.169 0.292

(0.169) (0.113) (0.217)
Lime and dolomite 1.037 0.452 1.489

(0.928) (0.210) (0.997)
Mineral wool 0.521 0.267 0.788

(0.534) (0.132) (0.568)
Nitric acid 1.159 0.571 1.730

(1.420) (0.347) (1.484)
Other pulp 0.000 1.692 1.692

(0.000) (0.834) (0.834)
Paper or cardboard 1.754 0.883 2.637

(1.153) (0.481) (1.194)
Pig iron or steel 0.102 1.259 1.362

(0.125) (0.638) (0.664)
Pulp from timber 0.136 1.710 1.847

(0.203) (0.723) (0.810)

All sectors pooled 0.755 0.800 1.555
(0.999) (0.640) (1.128)

Note. E-PF 𝑔 𝑎𝑖𝑛𝑖 quantifies the increase in 𝑄 that would be obtained by moving to the counterfactual
scenario where all firms adopt E-PF∗, expressed as a ratio with respect to the observed (i.e. actual) levels
of 𝑄. E-PU 𝑔 𝑎𝑖𝑛𝑖 quantifies the increase in 𝑄 that would be obtained by moving to the counterfactual
scenario where all firms have E-PU∗, the technology in use being equal, expressed as a ratio with respect
to the observed (i.e. actual) levels of 𝑄. 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖 is the sum of E-PF 𝑔 𝑎𝑖𝑛𝑖 plus E-PU 𝑔 𝑎𝑖𝑛𝑖. E-PF
𝑔 𝑎𝑖𝑛𝑖, E-PU 𝑔 𝑎𝑖𝑛𝑖 and 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖 are calculated at the installation-level and then reported in the table
as sector-averages. Standard deviation in parenthesis.

In simple words, E-PF 𝑔 𝑎𝑖𝑛𝑖 measures the increase in output that would be associated with a switch to the technological frontier,
he installation’s E-PU being zero.

Second, we compute an index of the output gain that an installation could obtain by adopting the best usage practices available
in the sector, the technology in use being the same. We refer to this index as E-PU 𝑔 𝑎𝑖𝑛𝑖 and obtain it as the difference between the
E-PU of the top 5% performers in the sector and the E-PU of the individual installation. More formally:

E-PU 𝑔 𝑎𝑖𝑛𝑖 = 𝛼∗ − 𝛼𝑖,𝜏 (12)

where 𝛼𝑖,𝜏 is defined as in (9) and 𝛼∗ is the average 𝛼𝑖,𝜏 of the best 5% of installations in the within-sector distribution of 𝛼𝑖,𝜏 .15

As a difference between logarithmic terms, both E-PF 𝑔 𝑎𝑖𝑛𝑖 and E-PU 𝑔 𝑎𝑖𝑛𝑖 can be directly interpreted as output gains in
ercentage points. By construction, the sum of E-PF 𝑔 𝑎𝑖𝑛𝑖 plus E-PU 𝑔 𝑎𝑖𝑛𝑖 is the total environmental efficiency distance from the

‘‘frontier installation’’, referred to as the installation in the top 5% performers in terms of E-PU that adopts the locally optimal
echnology-type. Denote the sum E-PF 𝑔 𝑎𝑖𝑛𝑖 + E-PU 𝑔 𝑎𝑖𝑛𝑖 with 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖. Clearly, these potential gains are to be interpreted as
pper bounds, as moving to the frontier may be unfeasible in reality for many installations.

Table 5 reports the sectoral averages of E-PF 𝑔 𝑎𝑖𝑛𝑖, E-PU 𝑔 𝑎𝑖𝑛𝑖 and 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖.16

Two main results emerge. On the one side, both the group-level and the installation-level dimensions are associated with
conomically significant environmental efficiency dispersion. In particular, switching to the frontier technology cluster would
ncrease average output at the installation-level by 75%, while having the best usage abilities would entail an output gain of about
0%, emissions being equal. When both sources of environmental efficiency dispersion are eliminated, the total gain is about 155%.
t is reassuring to observe that the total green growth potential which, according to our estimates, would follow from a full removal
f cross-installation heterogeneity in technology adoption and usage is compatible with the objectives of the ‘‘Fit for 55’’ strategy

15 We use the average of the top 5% performers instead of the E-PU of the best individual installation not to have the E-PU 𝑔 𝑎𝑖𝑛𝑖 index driven by an outlier.
16 Within-sector distributions are presented in Appendix.
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lunched by the European Commission for delivering the EU’s 2030 climate targets.17 According to the most recent version of the
‘‘Fit for 55’’ legislative package, EU net greenhouse gas emissions are expected to be reduced by 57% by 2030 compared with 1990
evels, while preserving living standards and economic growth. Our estimated 155% potential gain in output, emissions being equal,

can be also read as an about 60% reduction in emissions, output being equal. In these terms, our results appear reasonable and in
ine with the 2030 climate goals of the European Commission.

On the other side, we also find significant heterogeneity in the relative size of these gains across sectors. In the production
f lime and dolomite, nitric acid, paper and cardboard, the cross-technology dimension of environmental efficiency dispersion is

quantitatively the most significant, accounting by more than two-thirds of the total dispersion. Productions of pulp from timber,
pig iron and steel are associated with much larger idiosyncratic differences. Clearly, where only one E-PF was found in our mixture
model estimation, efficiency gains would come only from eliminating E-PU dispersion.

The quantification of the output gains, as reported in Table 5, should be taken with caution. As we mentioned above, when
restricting our analysis to installations active both in the EU ETS Phase 1 and Phase 3, we exclude from the sample about 24.1%
of installations that were active in Phase 1. Arguably, these excluded installations were the least productive or were exposed to
a higher closure risk. If the use of cleaner technologies implies higher survival probability (e.g. because cleaner technologies are
input-saving and therefore more cost efficient), then it is possible that environmentally more efficient firms are over-represented in
our final sample. As a consequence, the output gains resulting from our empirical exercise might be under-estimated.

To help interpreting the distribution of E-PF 𝑔 𝑎𝑖𝑛𝑖 and E-PU 𝑔 𝑎𝑖𝑛𝑖 across installations and sectors, it is useful to explore whether
the adoption of improved environmental technologies and usage practices follows a systematic pattern, as observed for innovative
echnologies and revenue-based productivity more in general by a large empirical literature (Syverson, 2011; Verhoogen, 2023). In

this literature, internationalization, access to external capital, intangible capital inputs, firm size and structure, among other factors,
have been found to directly impact productivity at the micro level. Following this line of study, here we look at the association
between E-PF 𝑔 𝑎𝑖𝑛𝑖, E-PU 𝑔 𝑎𝑖𝑛𝑖 and a number of contemporaneous characteristics of parent companies obtained from Orbis (Bureau
van Dijk, 2022).18 In particular, we consider firm size (measured as the share of company’s employees relative to the total number
of employees in the sector), firm age (as the number of years since the year of incorporation), a dummy variable equal to one if
the firm is listed on the stock market, and intangible capital intensity (i.e., intangible assets per employee). Moreover, by looking
t the number of installations of each parent company and their location, we construct two additional dummy variables equal to
ne, respectively, if the installation belongs to a multi-installation firm and if the installation is located in a country different from
he country of the parent company’s global ultimate owner.

Formally, we regress E-PF 𝑔 𝑎𝑖𝑛𝑖 and E-PU 𝑔 𝑎𝑖𝑛𝑖 on a vector of firm-specific variables, by means of OLS over the pooled sample:

𝑌𝑖,𝑠 = 𝛿1 + 𝐝2𝐗𝑖,𝑠 + 𝜀𝑖,𝑠, (13)

with 𝑌𝑖,𝑠 being alternatively E-PF 𝑔 𝑎𝑖𝑛𝑖 and E-PU 𝑔 𝑎𝑖𝑛𝑖, and where 𝐗𝑖,𝑠 is a vector of covariates, 𝐝2 the associated vector of parameters,
nd 𝜀𝑖,𝑠 the residuals. Statistically significant correlations emerge from this exercise, as reported in Table 6.19

We find correlations that are broadly consistent with our interpretation of E-PF 𝑔 𝑎𝑖𝑛𝑖 and E-PU 𝑔 𝑎𝑖𝑛𝑖 as reflecting the technology
adoption and the technology usage components of environmental efficiency. Installations closer to the technological frontier (i.e. E-
PF 𝑔 𝑎𝑖𝑛𝑖 is lower) belong to larger, international, and multi-installation companies. Installations belonging to an international owner
and to companies with higher intangibles intensity more commonly show improved technology usage. Finally, listed firms and older
firms have, respectively, lower E-PF 𝑔 𝑎𝑖𝑛𝑖 and lower E-PU 𝑔 𝑎𝑖𝑛𝑖 (but these effects show weaker statistical significance after accounting
for country fixed effects).20

Overall, these correlations are consistent with previous evidence about firm characteristics, technological upgrades and produc-
tivity outside the environmental context (e.g., Battisti et al., 2021). A suggestive, yet speculative interpretation of this finding is that
the adoption and the usage of environmental technologies are facilitated by international exposure and broader access to external
funding and to higher quality inputs. Hence, firms may have improved environmental efficiency more likely when international
linkages are stronger, their productive structure is broader and when the firm makes greater use of information technology and
other types intangible assets. Larger and exporting firms may invest more in abatement also because they can exploit a larger scale
to spread the fixed costs of abatement investment (Forslid et al., 2018; Barrows and Ollivier, 2018).

6. Robustness checks

There are two main issues that may distort the quantification of the technology adoption and technology usage components of
nvironmental efficiency dispersion provided in the previous Section. One is the possible endogeneity bias in the E-PF estimation.
he second issue relates to the specification of the E-PF itself.

17 In particular, the Green Deal Industrial Plan (European Commission, 2023) is an articulated architecture of initiatives aimed at improving the development,
diffusion and usage of clean technologies, through simplified regulations, easier access to finance, enhanced skills, and open trade.

18 We link each installation 𝑖 in the EU OHA database with its parent company in Orbis by using approximate string matching (fuzzy matching), with a match
ate of 82.86%. Precisely, our matching procedure exploits similarities between company names in Orbis and the names of account holders in the EU OHA
atabase, with an account holder (i.e. the holder of a permits account) possibly covering more regulated installations belonging to a same multi-plant company.
his means that balance-sheet variables at the parent company level are attached to every installation (one or more than one) of the same parent firm. Changes

n ownership are not an issue, provided that they do not imply changes in company names and identification numbers.
19 Notwithstanding a good match rate between the EU OHA and Orbis databases, in the regressions with firm-level controls the number of observations drop

ignificantly because of extensive missing data in Orbis.
20 That country effects absorb the effect of firm listing is compatible with De Haas and Popov (2023), which shows that deeper (country-level) stock markets

facilitate the transition to technologies resulting in lower carbon emissions per unit of output.
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Table 6
E-PF 𝑔 𝑎𝑖𝑛𝑖, E-PU 𝑔 𝑎𝑖𝑛𝑖 and parent firms’ characteristics.

[1] [2] [3] [4]
E-PF 𝑔 𝑎𝑖𝑛𝑖 E-PU 𝑔 𝑎𝑖𝑛𝑖 E-PF 𝑔 𝑎𝑖𝑛𝑖 E-PU 𝑔 𝑎𝑖𝑛𝑖

Firm age 0.000 −0.001** −0.000 −0.001
(0.001) (0.000) (0.001) (0.001)

Firm size −1.444** −0.419 −1.896*** −0.406
(0.609) (0.290) (0.626) (0.295)

Multi-installation firm −0.434*** −0.020 −0.382*** −0.042
(0.093) (0.053) (0.094) (0.054)

Intangibles intensity −0.000 −0.001** −0.000 −0.001**
(0.000) (0.000) (0.000) (0.000)

Listed firm −0.348* −0.002 −0.254 −0.106
(0.177) (0.106) (0.194) (0.117)

International ultimate owner −0.196** −0.130** −0.198** −0.097*
(0.091) (0.052) (0.095) (0.056)

Constant 1.169*** 0.947*** 0.763*** 1.334***
(0.089) (0.052) (0.243) (0.148)

Country FE No No Yes Yes
𝐹 8.56 3.61 4.72 2.48
Pr.> 𝐹 0.000 0.001 0.000 0.000
# of obs. 493 554 493 554

Statistical significance: ∗ = 10%, ∗∗ = 5%, ∗∗∗ = 1%. Standard errors are in parentheses. Installation level OLS regressions. All
sectors pooled. Sectors with ̃ = 1 are omitted from the E-PF 𝑔 𝑎𝑖𝑛𝑖 regressions.

6.1. Endogeneity bias

It is well known since Marschak and Andrews (1944) that, if the firm has knowledge of its idiosyncratic efficiency parameter
hen making input choices, these choices will likely be dependent on such efficiency term. This is the so-called ‘‘simultaneity
roblem’’. In our environmental framework, this equals to say that both 𝛼𝑖,𝜏 and {𝛼𝜏 , 𝛽𝜏} in Eq. (4) may be biased due to the fact

that, while the true 𝛼𝑖,𝜏 is unobserved by the econometrician, it is known by the firm when it takes emission decisions, i.e. ln(𝐸𝑖) is
endogenous. In this Section, we assess the impact of this simultaneity bias in our E-PF estimation.

To tackle the simultaneity problem in our analysis we rely on an instrumental variable (IV), i.e. a variable that is correlated with
the installation-level emissions but does not directly enter Eq. (4) on the right-hand-side and is uncorrelated with 𝛼𝑖,𝜏 . Economic
ntuition would suggest the price of CO2 as a natural instrument. To use CO2 prices as an instrument requires econometrically helpful

variation in this variable. With permit pricing being homogeneous across firms under the EU ETS, in our cross-sectional estimation
setting there is no such variation to exploit. Hence, we instrument emissions by means of the number of allowances allocated
to installations through ‘‘grandfathering’’ at the start of the EU ETS in 2005. Following Directive 2003/87/EC on greenhouse gas
emissions trading, in 2005 each installation eligible to enter the EU ETS was provided with a number of allowances allocated free of
charge based on the installation’s historical (predetermined) emissions. Fortunately for us, the number of allowances freely allocated
was unexpected by polluters. Moreover, it is reasonable to assume that pollution permits influence output only through their effect
on emissions. However, this instrument may violate the exclusion restriction, as historical emissions may be correlated with other
time-invariant or slow-moving firm characteristics that also determined output in the 2005–2008 period. Yet, available data do not
offer better suited instruments (previous literature too does not point to valid alternatives).

Denote the number of allowances allocated through ‘‘grandfathering’’ in 2005 as 𝐴𝑖,2005. We integrate our mixture model
estimation of Eq. (4) with the following first stage:

𝐸𝑖 = 𝛾1 + 𝛾2𝐴𝑖,2005 + 𝜖𝑖 (14)

The predicted values from Eq. (14) are used in the E-PF estimation. Then, we run again all the steps of our counterfactual analysis
nd obtain E-PF 𝑔 𝑎𝑖𝑛𝑖 and E-PU 𝑔 𝑎𝑖𝑛𝑖 as recomputed based on the IV estimation of the environmental efficiency terms. The OLS

correlation between 𝐸𝑖 and 𝐴𝑖,2005 over the pooled sample is reported in the Appendix and the final results of the counterfactual
exercise in Table 7.21

The results are qualitatively similar to those obtained without accounting for endogeneity. In particular, we observe that the
total gain in environmental efficiency due to removing both sources of efficiency dispersion is about 161%, against a total gain of
about 155% obtained in our baseline estimation. In the IV version of the analysis, the model does not converge for installation data
from the aluminium sector, plus we find other four sectors with only one technology. This explains why the cross-cluster dimension
of efficiency dispersion is relatively lower (and the within-cluster dispersion relatively higher) than in the baseline estimates.

Fig. 4, finally, shows that the differences, respectively, between the baseline E-PF 𝑔 𝑎𝑖𝑛𝑖 and the IV-based E-PF 𝑔 𝑎𝑖𝑛𝑖 and between
the baseline E-PU 𝑔 𝑎𝑖𝑛𝑖 and the IV-based E-PU 𝑔 𝑎𝑖𝑛𝑖 are not systematic.

21 Details of the BIC-based selection of clusters and of the within-sector distribution of installations across clusters are available upon request.
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Table 7
Potential output gains: IV estimates.

Sector E-PF 𝑔 𝑎𝑖𝑛𝑖 E-PU 𝑔 𝑎𝑖𝑛𝑖 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖
Ammonia 0.000 0.447 0.447

(0.000) (0.357) (0.357)
Carbon black 0.332 0.138 0.471

(0.270) (0.087) (0.290)
Cement clinker 0.181 1.305 1.487

(0.275) (0.430) (0.442)
Coke and coke ovens 0.000 0.931 0.931

(0.000) (0.491) (0.491)
Glass 0.671 0.516 1.187

(0.732) (0.251) (0.803)
Gypsum or plasterboard 0.000 0.313 0.313

(0.000) (0.238) (0.238)
Lime and dolomite 0.619 0.552 1.172

(0.808) (0.248) (0.898)
Mineral wool 0.922 0.483 1.406

(0.804) (0.278) (0.781)
Nitric acid 0.000 2.412 2.412

(0.000) (1.596) (1.596)
Other pulp 0.639 1.207 1.846

(0.665) (0.427) (0.875)
Paper or cardboard 0.375 1.454 1.829

(0.477) (0.661) (0.951)
Pig iron or steel 0.852 0.979 1.832

(1.182) (0.536) (1.330)
Pulp from timber 2.079 2.217 4.297

(1.370) (0.748) (1.246)

All sectors pooled 0.554 1.062 1.617
(0.797) (0.691) (1.101)

Note. E-PF 𝑔 𝑎𝑖𝑛𝑖 quantifies the increase in 𝑄 that would be obtained by moving to the counterfactual
scenario where all firms adopt E-PF∗, expressed as a ratio with respect to the observed (i.e. actual) levels
of 𝑄. E-PU 𝑔 𝑎𝑖𝑛𝑖 quantifies the increase in 𝑄 that would be obtained by moving to the counterfactual
scenario where all firms have E-PU∗, the technology in use being equal, expressed as a ratio with respect
to the observed (i.e. actual) levels of 𝑄. 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖 is the sum of E-PF 𝑔 𝑎𝑖𝑛𝑖 plus E-PU 𝑔 𝑎𝑖𝑛𝑖. E-PF
𝑔 𝑎𝑖𝑛𝑖, E-PU 𝑔 𝑎𝑖𝑛𝑖 and 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖 are calculated at the installation-level and then reported in the table as
sector-averages. Standard deviation in parenthesis. Estimates obtained by means of 2-stage mixture model
estimation of Eq. (4). Aluminium is omitted due to non convergence in the mixture model estimation.

Fig. 4. Difference between baseline and IV-based E-PF 𝑔 𝑎𝑖𝑛𝑖 and E-PU 𝑔 𝑎𝑖𝑛𝑖. Note. E-PF 𝑔 𝑎𝑖𝑛𝑖 quantifies the increase in 𝑄 that would be obtained by moving
to the counterfactual scenario where all firms adopt E-PF∗, expressed as a ratio with respect to the observed (i.e. actual) levels of 𝑄. E-PU 𝑔 𝑎𝑖𝑛𝑖 quantifies the
increase in 𝑄 that would be obtained by moving to the counterfactual scenario where all firms have E-PU∗, the technology in use being equal, expressed as a
ratio with respect to the observed (i.e. actual) levels of 𝑄. The figure displays: (left-hand panel) the distribution of the difference between E-PF 𝑔 𝑎𝑖𝑛𝑖 obtained by
means of the baseline mixture model and E-PF 𝑔 𝑎𝑖𝑛𝑖 obtained by means of the IV mixture model; (right-hand panel) the distribution of the difference between
E-PU 𝑔 𝑎𝑖𝑛𝑖 obtained by means of the baseline mixture model and E-PU 𝑔 𝑎𝑖𝑛𝑖 obtained by means of the IV mixture model. Pooled sample.
13 
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Table 8
Potential output gains: estimates with input-intensive E-PFs.

Sector Capital-intensive E-PF model Labour-intensive E-PF model

E-PF 𝑔 𝑎𝑖𝑛𝑖 E-PU 𝑔 𝑎𝑖𝑛𝑖 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖 E-PF 𝑔 𝑎𝑖𝑛𝑖 E-PU 𝑔 𝑎𝑖𝑛𝑖 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖
Aluminium 0.000 0.455 0.455 0.000 0.615 0.615

(0.000) (0.301) (0.301) (0.000) (0.334) (0.334)
Ammonia 0.004 1.861 1.865 0.000 2.235 0.235

(0.010) (0.653) (0.653) (0.000) (0.849) (0.849)
Carbon black 0.016 0.270 0.286 0.001 0.325 0.326

(0.049) (0.128) (0.144) (0.002) (0.191) (0.191)
Cement clinker 0.798 0.467 1.266 1.616 0.388 2.005

(0.908) (0.259) (0.913) (0.686) (0.180) (0.679)
Coke and coke ovens 0.000 0.675 0.675 – – –

(0.000) (0.531) (0.531) – – –
Glass 0.502 0.297 0.800 0.413 0.277 0.691

(0.485) (0.178) (0.529) (0.394) (0.137) (0.433)
Gypsum or plasterboard 0.001 0.392 0.393 0.000 0.573 0.573

(0.001) (0.217) (0.218) (0.000) (0.348) (0.348)
Lime and dolomite 0.331 0.252 0.584 – – –

(0.553) (0.130) (0.605) – – –
Mineral wool 0.000 0.425 0.425 0.695 0.341 1.036

(0.000) (0.269) (0.269) (0.544) (0.236) (0.599)
Nitric acid 0.000 1.594 1.594 0.000 1.695 1.695

(0.000) (1.326) (1.326) (0.000) (1.475) (1.475)
Other pulp 1.051 0.808 1.859 0.000 1.630 1.630

(0.587) (0.302) (0.731) (0.000) (0.564) (0.564)
Paper or cardboard 0.520 1.356 1.876 5.570 1.692 7.263

(0.744) (0.520) (0.869) (1.772) (0.682) (1.949)
Pig iron or steel 0.656 0.870 1.527 0.140 1.625 1.766

(0.841) (0.336) (0.915) (0.173) (0.843) (0.873)
Pulp from timber 1.907 0.852 2.760 0.301 0.490 0.791

(2.168) (0.405) (2.245) (0.626) (0.327) (0.711)

All sectors pooled 0.602 0.732 1.335 1.810 1.030 2.840
(0.865) (0.577) (1.047) (2.424) (0.860) (2.823)

Note. E-PF 𝑔 𝑎𝑖𝑛𝑖 quantifies the increase in 𝑄 that would be obtained by moving to the counterfactual scenario where all firms adopt E-PF∗, expressed as a ratio
with respect to the observed (i.e. actual) levels of 𝑄. E-PU 𝑔 𝑎𝑖𝑛𝑖 quantifies the increase in 𝑄 that would be obtained by moving to the counterfactual scenario
where all firms have E-PU∗, the technology in use being equal, expressed as a ratio with respect to the observed (i.e. actual) levels of 𝑄. 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖 is the sum
of E-PF 𝑔 𝑎𝑖𝑛𝑖 plus E-PU 𝑔 𝑎𝑖𝑛𝑖. E-PF 𝑔 𝑎𝑖𝑛𝑖, E-PU 𝑔 𝑎𝑖𝑛𝑖 and 𝑇 𝑜𝑡𝑎𝑙 𝑔 𝑎𝑖𝑛𝑖 are calculated at the installation-level and then reported in the table as sector-averages.
Standard deviation in parenthesis. Estimates obtained by means of input-intensive specifications of Eq. (4). Lime and dolomite and coke and coke ovens are
omitted in the labour-intensive estimates due to insufficient observations.

6.2. Misspecification bias

In our baseline analysis we modelled the association between output and emissions, with both variables being measured in levels.
One may wonder whether our main results would have changed significantly if output and emissions were expressed per unit of
capital or unit of labour. This would equal to cluster installations into technology-types defined in terms of an input-intensive version
of environmental efficiency. There is not an a priori best way to estimate the E-PF parameters between using variables in the levels
r per unit of inputs. Nevertheless, it is worth exploring whether the specification strategy we have chosen in baseline analysis
rives the scale of our estimates.

Here we assess the empirical impact of our model strategy, by computing E-PF 𝑔 𝑎𝑖𝑛𝑖 and E-PU 𝑔 𝑎𝑖𝑛𝑖 as resulting from estimating
q. (4) in an input-intensive form. We run two checks, one in which Eq. (4) is estimated with 𝐸𝑖,𝑠 and 𝑄𝑖,𝑠 expressed per unit

of tangible capital and one where 𝐸𝑖,𝑠 and 𝑄𝑖,𝑠 are expressed per unit of labour. These two specifications model the relationship
between emissions and output with capital and labour, respectively, being equal. Data on capital and labour inputs are taken from
the balance sheets of parent companies in Orbis. The regression analysis uses the sub-sample of installations for which we have a
match between EU OHA and Orbis records.

The results are displayed in Table 8. Again, we obtain technological and idiosyncratic environmental efficiency differentials in
ine with our baseline estimates. Since data on labour inputs are missing for many firms in two sectors in particular (lime and
olomite, coke and coke ovens), in these sectors we remain with an insufficient number of observations to run our regressions.
oreover, we obtain exceptionally large values of E-PF 𝑔 𝑎𝑖𝑛𝑖 in the paper and cardboard industry, which drive the pooled average

p. For all the other sectors, both E-PF 𝑔 𝑎𝑖𝑛𝑖 and E-PU 𝑔 𝑎𝑖𝑛𝑖 obtained here are qualitatively similar to those resulting from considering
ur baseline version of Eq. (4).

7. Conclusions

In recent years, there has been increasing attention to the development of empirical strategies aimed at exploring within-product
heterogeneity in productivity and its relationship with technical change (e.g., Dosi et al., 2016; Battisti et al., 2020; Dosi et al.,
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2021). In this literature, less effort has been devoted to measuring the environmental dimension of such productivity differentials.
To which extent do firms in a same product market differ in how they combine marketed and non-marketed outputs? And to
which extent can these differences be interpreted as differences in the type of technology adopted by otherwise similar firms?
How large are the potential gains from broadening the diffusion of frontier technologies and how large those from improving
the way a same technology is used? These questions are relatively new, but they are already very relevant for both industrial
policy and environmental regulation, as the ongoing design of technology transition plans in Europe and the US, in addition to
other countries and regions, revolves around the possibility to link economic growth and improved environmental sustainability of
industrial productions—the so-called ‘‘green growth’’.

With this paper we digged into these issues. We applied a mixture model technique on installation-level data to decompose
environmental efficiency into a technology adoption (group-level) and a technology usage (installation-level) component. This
method has two main attractive properties: (𝑖) it is entirely data-driven (i.e. it does not need assumptions on the number of
technology-types available in the sector and on the degree of technological sharing across installations), and (𝑖𝑖) it only requires
information on emissions and output levels, which is typically available for large-scale samples of firms (in our exercise, we used
freely accessible data from the EU OHA database). Moreover, by working at the installation-level, our empirical analysis allows
different installations to adopt different types of technology, even within the boundaries of a same parent company.

Our study yields the general result that cross-sectional differentials in both technology adoption and technology usage are
qualitatively important in many sectors. We find that more than two-thirds of regulated installations in our European sample
uses sub-optimal technologies, whereas adopting the locally optimal technology-type would lead on average to a 75% increase
in output, emissions being equal. Interestingly, the distribution of both cross-technology and within-technology differences tends
to be associated with several firm characteristics, with within-technology asymmetries on average being lower for the production
units at the technological frontier.

Related literature on environmental technology adoption has explored a number of possible causes leading firms not to adopt
mproved environmental technologies. In particular, some of these technologies may not be profit enhancing and adopting them may

be inconvenient for profit-maximizing firms, absent public policy. Others may be profitable (e.g. because they are energy-saving)
but their adoption may be prevented by transaction costs, monitoring costs, administrative costs and adjustment costs (De Canio
and Watkins, 1998), which may be critical especially for firms with reduced access to external finance (D’Orazio and Valente, 2019;
De Haas et al., 2021; De Haas and Popov, 2023).22 Also the lack of complementary technologies and skills may retard the adoption
of low-carbon energy technologies (Popp et al., 2022). Related to this, in addition it has been shown that the timing of adopting
socially efficient technologies may be affected by disruption costs and market structure (Milliou and Petrakis, 2011; Pérez and Ponce,
2015).

Our paper adds to this literature in two distinct ways. First, it provides an easy to implement algorithm to quantify the potential
gains in output, emissions being equal, that can be reached by boosting emission-saving technology diffusion. With our method,
his quantification can be done at the most granular level, i.e. the installation level.

Second, the paper shows that there is a great variability across regulated installations (even within countries and sectors) in
technological quality, with many capped installations adopting sub-optimal technologies and others adopting optimal (or close
to optimal) technologies together with environmentally inefficient usage practices. We show that these asymmetries tend to be
systematic and aligned with existing evidence on the competitive advantages of multinational firms. Our findings may suggest that
existing technologies have large unexploited potentials, particularly among smaller, national firms. Arguably, our method could
stimulate future research to explore more deeply the causes of such heterogeneity.

Taken together, these findings point to technology diffusion as an important target for environmentally oriented industrial policy.
In particular, we find that what is an optimal technology-type, in terms of environmental efficiency, depends on the installation’s
level of emissions. On the one side, we observe that the technologies with the highest shape parameter (i.e. 𝛽) tend to be sub-
optimal at low levels of emissions. Viceversa, the technologies that are most efficient at low levels of emissions tend to be less so
for higher levels of pollution. As a result, assuming that emission levels and installation size correlate positively, one-size-fits-all
technology standards may be inappropriate for some installations and less effective, on average, than emission-contingent technology
rescriptions. In different words, certain technologies may fit better for smaller firms, whilst larger firms may perform better under
ifferent technological choices. In terms of policy, this points to implementing more targeted technology measures rather than
niform prescriptions. This holds if the size of the firm is taken as given by policy-makers. On the other side, we show that the

technologies with the highest 𝛽 parameter are those associated with the highest Q-to-E ratio above and to the right of the kink
oint (where the E-PFs intersect), i.e. for installations above a certain critical size. Hence, if policy-makers can affect the size of
roduction installations, it is optimal for policy-makers to design industrial policies that both spur installation growth and at the

same time facilitate technology switching towards high-𝛽 technologies. That is, provided that installations are above a critical size,
uniform standards may be imposed.

Our findings also lend support to the adoption of flexible policies, that combine technology standards with market-based
regulations inducing each firm to work more on the margin (adoption or usage) where the scope for improvement is larger. In this
respect, it is worth emphasizing that our analysis is conducted on a sample of installations regulated under the EU ETS, which is a
type of market-based regulation that is supposed to be effective in spurring environmental efficiency. Indeed, under a cap-and-trade

22 A broader body of study on economic productivity dispersion shows that informational frictions and adjustment costs may be an important driver of such
ispersion, which could in fact be optimal within the context of richer models (Asker et al., 2014).
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program, firms should react to a higher price of emissions by making operational changes and investments in technologies with
reduced emission intensity. In the language of our framework, firms below the technological frontier should find it more convenient
to adopt more efficient technologies if there is no room for improving usage practices further. Viceversa, firms at the technological
frontier may be induced to adopt improved usage practices. Since our empirical study is based on data from EU ETS Phase 1, taking
a picture at the very beginning of the program, a simple and informative policy evaluation exercise may be conducted by re-running
our model on more recent data to measure the extent to which the EU ETS has induced environmental efficiency improvements on the
two margins of technology adoption and usage.23 Unfortunately, a policy impact research of this kind would require information
on installation-level physical product-output that is not disclosed by the European Commission.24 It is worth noting that, when
information on both emission and output is available, our method may be used to conduct policy evaluation analysis over a broad
range of regulatory issues beyond emission trading programs.

Future research may also consider refining our method in the direction of enabling it to identify the nuances of technology types
more precisely. Our method identifies groups of technologies that differ in terms of output-to-emission rates, clustering together
technologies with a same environmental impact (per unit of output) even if they are different in their physical characteristics and
degree of sophistication. These within-group differences, however, may correlate with other important dimensions, such as different
cost functions or differences in the labour skills required as complementary assets. A proper design of technology policy interventions
may need more detailed information about these sources of within-group heterogeneity, which are not captured with our technique.
Although this aspect may be seen as a limit of our method, we believe that it is also a useful trigger possibly stimulating additional
work on the measurement of environmental technology heterogeneity.
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Appendix

A.1. Additional tables and figures

See Tables 9–12 and Figs. 5 and 6.

Data availability

EUTL data used in this paper and replication codes can be made available upon request.

23 With reference to the EU ETS, Marin et al. (2018) and Dechezlepretre et al. (2023) compare the performance of regulated and non-regulated firms over a
set of indicators, including carbon emissions and economic productivity, without digging into the changes in environmental efficiency of regulated units across
the phases of the EU ETS. Calel (2020) documents that the EU ETS has not encouraged the diffusion of low-carbon technologies to any substantial extent, but
e does not show whether regulated firms improved on other margins, such as technology usage or managerial quality.
24 Recall that we obtained the average output levels for the period 2005–2008 by inverting the allowance allocation rule employed in the EU ETS Phase 3.
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Fig. 5. Distribution of E-PF 𝑔 𝑎𝑖𝑛𝑖 within sectors. Note. E-PF 𝑔 𝑎𝑖𝑛𝑖 quantifies the increase in 𝑄𝑖 that would be obtained by an installation by switching to E-PF𝜏∗ ,
expressed as a ratio with respect to the observed (i.e. actual) levels of 𝑄𝑖. Sectors with ̃ = 1 are omitted.

Fig. 6. Distribution of E-PU 𝑔 𝑎𝑖𝑛𝑖 within sectors. Note. E-PU 𝑔 𝑎𝑖𝑛𝑖 quantifies the increase in 𝑄𝑖 that would be obtained by an installation by having the same
E-PU as the average of the top 5% performers, the technology in use being equal, expressed as a ratio with respect to the observed (i.e. actual) levels of 𝑄𝑖.
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Table 9
CSCF and CLEF.

Year 𝜗𝑡 (CSCF) 𝜆𝑠,𝑡 (CLEF) 𝜆𝑠,𝑡 (CLEF)
sectors at risk sectors not at risk
of carbon leakage of carbon leakage

2013 0.94272151 1 0.8000
2014 0.92634731 1 0.7286
2015 0.90978052 1 0.6571
2016 0.89304105 1 0.5857
2017 0.87612124 1 0.5143
2018 0.81288476 1 0.4429
2019 0.79651677 1 0.3714

Note. The carbon leakage exposure factor — CLEF (𝜆𝑠,𝑡) is constant 1 or decreasing at a predetermined rate
depending on the carbon leakage status of the sector. The cross-sectoral correction factor — CSCF (𝜗𝑡) ensures
that total allocation remains below the maximum amount pursuant to article 10a(5) of the EU ETS Directive
(European Commission, 2015).

Table 10
List of sectors, benchmark emission intensities and carbon leakage risk.
𝑠-sector Product-specific 𝑒𝑠 Exposure to
(EU-OHA classification) benchmark emission intensity carbon leakage risk
Aluminium Aluminium: 1.514 1.514 Yes

(1-to-1 match)

Ammonia Ammonia: 1.619 1.619 Yes
(1-to-1 match)

Carbon black Carbon black: 1.954 1.954 No
(1-to-1 match)

Cement clinker White cement clinker: 0.766 0.876 Yes
Grey cement clinker: 0.987 (average)

Coke and coke ovens Coke and coke ovens: 0.286 0.286 Yes
(1-to-1 match)

Glass Float glass: 0.453 0.380 Yes
Colourless glass: 0.382 (average)
Coloured glass: 0.306

Gypsum or plasterboard Plaster: 0.048 0.032 Yes
Gypsum: 0.017 (average) (No in 2013-14)

Lime and dolomite Lime: 0.954 1.013 Yes
Dolomite: 1.072 (average)

Mineral wool Mineral wool: 0.682 0.682 No
(1-to-1 match)

Nitric acid Nitric acid: 0.302 0.302 Yes
(1-to-1 match)

Other pulp Sulphite pulp: 0.020 0.067 Yes
Short fibre kraft pulp: 0.120 (average)
Long fibre kraft pulp: 0.060

Paper or cardboard Coated fine paper: 0.318 0.286 Yes
Uncoated fine paper: 0.318 (average)
Coated carton board: 0.273
Uncoated carton board: 0.237

Pig iron or steel Pig iron or steel: 0.325 0.325 Yes
(1-to-1 match)

Pulp from timber Pulp from timber: 0.039 0.039 Yes
(1-to-1 match)

Note. Product-specific benchmark emission intensities are listed in European Commission (2011) according to a classification that is
more granular than the EU-OHA sectors classification. We cross-walked the two classifications using product-sector description matching:
(𝑖) 1-to-1 match is obtained when product and sector descriptions perfectly coincide, (𝑖𝑖) where different products covered by a larger
EU-OHA sector have different product-specific benchmark emission intensities, the sectoral benchmark emission intensity 𝑒𝑠 is obtained
as the average of the product-specific benchmark emission intensities. Unmatched sectors are left out of the analysis.
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Table 11
Summary of the actual emission-relevant production processes.
𝑠-sector (̃ ) Actual processes (EPA, 2022)

Aluminium (1) The production of aluminium consists of refining the ore and electrolytically reducing it to elemental aluminium.
Nearly all alumina refineries use the Bayer process integrated with wet scrubber systems.

Ammonia (1) Most ammonia is produced by means of the Haber process, with activated carbon fortified with metallic oxide
additives used for feedstock desulfurization. CO2 is removed from the synthesis gas by scrubbing.

Carbon black (2) Two major processes are available: the oil furnace process and the thermal process. The principal source of emissions
in the oil furnace process is the main process vent, but most gaseous emissions can be controlled with CO boilers,
incinerators, and flares. Emissions from the furnaces in thermal process are very low.

Cement clinker (3) Three main different processes are used in the cement industry to accomplish pyroprocessing: wet production
technology, semi-wet or semi-dry technology, dry technology. Fuel consumption decreases in the order of the three
processes listed, with the combustion of fuels being a main source of CO2 in this industry.

Coke and coke ovens (1) Coke is typically produced by the destructive distillation of coal in coke ovens, mostly using the ‘‘byproduct’’ process
in the period under analysis. Emissions can be controlled at various steps of the process.

Glass (5) Commercially produced glass are typically classified in five types: soda-lime, lead, fused silica, borosilicate, and
96-percent silica. The melting furnace contributes over 99% of the emissions from a glass plant, with the amount of
emissions from the melting furnace depending upon the type of glass being manufactured.

Gypsum or plasterboard (2) Production of gypsum board consists of calcining and grinding gypsum powder, forming a gypsum panel product and
drying off excess water. Heating can be performed in two alternative ways with different emission rates: by using
kettle or flash calciners, or by using heated impact mills which eliminate the need for rotary dryers, calciners, and
roller mills.

Lime and dolomite (4) Lime and dolomitic lime are manufactured with one among four kinds of kilns, which are at the heart of the plant:
rotary kiln, vertical or shaft kiln, calcimatic kiln and fluidized bed kiln. Calcimatic and fluidized bed kiln do not
operate with coal. Fuel efficiency varies significantly across the four types of kilns.

Mineral wool (3) The main step in the process of mineral wool manufacturing involves melting the mineral feed, by loading the raw
material into a cupola, which is the primary source of emissions, as it requires burning coke. This process can be
modified to reduce coke consumption and emissions, by using natural gas auxiliary burners or an aluminium flux
byproduct.

Nitric acid (2) Nitric acid is produced by two methods, i.e. by utilizing oxidation, condensation, and absorption, or by combining
dehydrating, bleaching, condensing, and absorption. Depending on the method, control of absorption tower tail gas
emissions is obtained with extended absorption or with catalytic reduction.

Other pulp (1) This is mostly kraft pulping, with emissions occurring largely from the recovery furnace. Emission control is generally
accomplished by scrubbers.

Paper or cardboard (2) In the production of paper and cardboard, two process can be distinguished. Both begin with the pulping of wood
chips in the kraft process. One process continues with refining, sizing, colouring of the fibres, and later forming paper
sheet in a Fourdrinier machine. The other uses corrugators to crimp and glue layers of kraft paper to form corrugated
cardboard.

Pig iron or steel (2) Iron is produced in blast furnaces by the reduction of iron bearing materials with a hot gas. The subsequent
steelmaking process can be performed by using a basic oxygen furnace, where high-purity oxygen is injected, or by
electric arc furnaces. The two methods have different emissions rates.

Pulp from timber (2) Pulping from timber refers to the process of separating the wood fibre and removing impurities from the fibre
materials. The two typical methods involve chemical or mechanical processes (with or without using heat), with
different emission rates.

Table 12
First stage OLS correlation between emissions and allowances.
𝛾1 𝛾2 R2 𝐹 Pr.> 𝐹
7526.502* (3979.685) 0.916*** (0.005) 0.953 23 883.36 0.000

Note. Statistical significance: ∗ = 10%, ∗∗ = 5%, ∗∗∗ = 1%. Standard errors are in parentheses. Installation level OLS regression.
All sectors pooled.
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