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TAIL GRANGER CAUSALITIES AND WHERE TO FIND THEM:

EXTREME RISK SPILLOVERS VS SPURIOUS LINKAGES

PIERO MAZZARISI1,2,∗, SILVIA ZAOLI1,3, CARLO CAMPAJOLA2, AND FABRIZIO LILLO1

Abstract. Identifying risk spillovers in financial markets is of great importance for assessing systemic
risk and portfolio management. Granger causality in tail (or in risk) tests whether past extreme events
of a time series help predicting future extreme events of another time series. The topology and con-
nectedness of networks built with Granger causality in tail can be used to measure systemic risk and
to identify risk transmitters. Here we introduce a novel test of Granger causality in tail which adopts
the likelihood ratio statistic and is based on the multivariate generalization of a discrete autoregres-
sive process for binary time series describing the sequence of extreme events of the underlying price
dynamics. The proposed test has very good size and power in finite samples, especially for large sample
size, allows inferring the correct time scale at which the causal interaction takes place, and it is flexible
enough for multivariate extension when more than two time series are considered in order to decrease
false detections as spurious effect of neglected variables. An extensive simulation study shows the per-
formances of the proposed method with a large variety of data generating processes and it introduces
also the comparison with the test of Granger causality in tail by [Hong et al., 2009]. We report both
advantages and drawbacks of the different approaches, pointing out some crucial aspects related to the
false detections of Granger causality for tail events. An empirical application to high frequency data of
a portfolio of US stocks highlights the merits of our novel approach.

Introduction

The problem of inferring causal interactions from data has a remarkable history in scientific research
and the milestone work of Granger [Granger, 1969] represented the turning point in such study. Ac-
cording to Granger causality, given a couple of time series x and y, it is said that y ‘Granger-causes’
x if the past information on y helps in forecasting x better than using only the past information on x.
Granger causality overcomes the philosophical question of properly defining what ‘true causality’ means,
by limiting the study to systems whose state can be assessed quantitatively by means of time series
and relying on the concept of ‘predictive causality’ [Granger, 1980]. Within this framework, Granger
causality is pragmatic, well defined, and has exhibited many successful applications in a variety of fields,
from quantitative finance [Billio et al., 2012, Corsi et al., 2018] to transportations [Zanin et al., 2017] and
neuroscience [Seth et al., 2015].

In time series econometrics, the most commonly used test of Granger causality for bivariate systems is
the F-test originally proposed in [Granger, 1969]. This test is sometimes referred to as causality in mean
since the statistical testing procedure is based on the evaluation of the forecasting performances associ-
ated with the first moment of a time series. The most stringent assumption consists in considering the
information on the two time series as all the significant information when testing for Granger causality.
This is a strong assumption because, in the case of a high dimensional system, a low dimensional subpro-
cess contains little information about the true structure of interactions and some causal relations might
be falsely detected as spurious effect of neglected variables [Lütkepohl, 1982]. Starting with the seminal
work of [Geweke, 1982], multivariate approaches have been proposed to correct these spurious effects by
taking into account network effects in the statistical testing procedure. Finally, Granger causality has
been investigated from a theoretical point of view moving from Econometrics to Information Theory and,
in particular, the equivalence with transfer entropy was proved in the Gaussian case [Barnett et al., 2009],
which is in turn equivalent to the log-likelihood ratio statistic [Barnett and Bossomaier, 2012]. In prac-
tice, this implies, among other things, that the Likelihood-Ratio test is supported as statistical method
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for inferring Granger causality. The advantage relies on less stringent hypotheses about the statistical
distributions with respect to the F-test.

Granger causality proved useful in monitoring systemic risk in financial markets. In fact, recent ap-
plications showed that it captures the network of risk propagation between market participants, and the
degree of interconnectedness of this network can be used to define indicators of systemic risk. For in-
stance, [Billio et al., 2012] have adopted Granger causality in mean as a proxy for return-spillover effects
among hedge funds, banks, broker/dealers, and insurance companies (e.g. see [Danielsson et al., 2012,
Battiston et al., 2012, Duarte and Eisenbach, 2014] for theoretical studies on spillover effects during fi-
nancial crises), showing that the financial system has become considerably more interconnected before
the financial crisis of 2007-2008 because financial innovations and deregulation had increased the inter-
dependence of business between such investors.

The original Granger causality test evaluates the forecasting performance giving equal importance to
the ability to forecast average or extreme values, negative or positive ones. However, when monitoring
financial risk, extreme downside market movements are much more important than small fluctuations
for spillover effects. A method specific for risk measures, in particular volatility, was introduced by
[Cheung and Ng, 1996] with the concept of Granger causality in variance, by extending the concept of
causation to the second moment. Nevertheless, variance is a two-sided risk measure and it is not able
to capture heavy tails, thus the causal relations between extreme events of two time series. To this end,
Granger causality in tail can be defined. The concept was firstly introduced by [Hong et al., 2009]. In
this work, the authors have proposed a kernel-based test to detect extreme downside risk spillovers with
a statistical procedure in two steps: (i) measuring risk by the left (or right, depending on the application)
tail of the distribution, i.e. Value at Risk, and (ii) testing for non-zero lagged cross-correlations between
the two binary time series representing the occurrences of extreme left (right) tail events, with a method
based on spectral analysis. Based on this test, e.g. , [Corsi et al., 2018] have studied the network of causal
relations detected by Granger causality in tail for a bipartite financial system of banks and sovereign bonds
and, combining measures of network connectedness with the ratings of the sovereign bonds, proposed a
flight-to-quality indicator to identify periods of turbulence in the market. However, as we show below, the
statistical test of Granger causality in tail by [Hong et al., 2009] displays some sensitivity to both non-zero
auto-correlation and instantaneous cross-correlation in the binary time series representing extreme events,
resulting in an increased rate of false causality detections. Additionally, the test by [Hong et al., 2009]
is by construction a pairwise causality analysis, thus sensitive to false detections when variables of some
importance, different from the two under investigation, are not considered.

In this paper we propose a different approach to identify Granger causality in tail, which overcomes
some of the issues of the Hong et al. method. Differently from the latter, our approach is parametric and
it explicitly models causality interactions between time series. Thus, it is less sensitive to other possible
effects, such as autocorrelation, which may result in spurious detections as mentioned above, and can be
generalized to multivariate settings. Moreover, having an explicit model of the causation process allows
us to devise a method based on Likelihood-Ratio to test for Granger causality in tail. Specifically, the
causation mechanism is captured by a process in which the extreme events are modeled according to
a discrete autoregressive process of order p, namely DAR(p). The DAR(p) process, first introduced by
[Jacobs and Lewis, 1978], is the natural extension of the standard autoregressive process for binary time
series. We consider a multivariate generalization of the DAR(p) process, namely VDAR(p), where the
binary variable X describing the occurrence of an extreme event for the underlying time series x can be
copied from its past values or from the past values of the extreme events of another time series y. The
choice of this specific model is motivated by the fact that the Markov chain associated with the vector
discrete autoregressive process of order one (VDAR(1)) can be interpreted as the maximum entropy
distribution of binary random variables with given means, lag one auto-correlations, and lag one cross-
correlations, as recently proved in [Campajola et al., 2020A]. Moreover, the same argument holds for the
vector discrete autoregressive process of generic order, by noticing that a Markov chain of order p for N
variables can be seen equivalently as a Markov chain of order one for N × p variables, under appropriate
conditions for the transition matrix. By the principle of maximum entropy then the VDAR(p) model
is the first candidate in building a parametric method to test for non-zero lagged cross-correlations (of
binary time series) as signal of Granger causality in tail.

We first propose a statistical test based on the bivariate version of the model, for any p. Then, to
overcome the limit of pairwise analysis highlighted above, we also propose a statistical method for the
multivariate case, with p = 1 (Markovian dynamics).

Our findings show that the detection of causality between extreme events is far from a trivial task,
with a significant dependence on the adopted statistical procedure. In fact, we show that the proposed
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method and the current standard in literature represented by the test of [Hong et al., 2009] differ under
some circumstances. First, as mentioned above, the test by Hong et al. displays some sensitivity to
auto-correlation and cross-correlation of the time series of extreme events, which are, on the contrary,
naturally accounted for by our framework. We show numerically concrete examples of such behavior and
the spurious effect of two-way causality detection in the presence of unidirectional relations, a drawback
of the Hong et al.’s test which is solved by our method. As a consequence, we claim that our method
should be preferable in such cases. At the same time, we present also cases when the approach by Hong
et al. outperforms ours, for instance when the underlying dynamics of the time series is autoregressive
and heteroskedastic, even if the discrepancy is typically quite small. In fact, in the case of model mis-
specification, a non-parametric approach should be preferable to a parametric method. Nevertheless, we
show numerically also cases when the latter works better, even for misspecified data generating process.
Second, we point out the importance of a multivariate approach, numerically showing the consequences
of network effects in the spurious detection of Granger causality in tail relations when adopting a pairwise
analysis. We then propose a possible solution within our framework. Finally, in an empirical application
to high-frequency price returns of a portfolio of stocks traded in the US stock markets, we highlight that
different methods yield different networks of causal interactions between stocks. First, while Hong et
al.’s approach results in an almost complete graph, both the pairwise and multivariate versions of the
statistical method we propose give much sparser networks. Hence, the measure of the level of causality
in the system dynamics depends on the chosen approach. Additionally, the captured dynamics of the
network evolution itself is quite different, in particular in relation to the presence of the financial crisis of
2007-2008: no patterns are recognized by using the test of Hong et al., while, with our method, a sharp
transition characterizes the number of causal interactions between the stocks composing the financial
sector and the others. In particular, we find that the financial sector started to be less ‘Granger-caused’
by the other stocks before the financial crisis, but it ‘Granger-causes’ more than the average over all
the considered period. Thus, our findings open a discussion about the correct evaluation of a Granger
causality relation between tail events and, in this paper, we highlight both advantages and drawbacks of
the different approaches together with some signals associated with false detections.

The paper is organized as follows. Section 1 presents the general definition of Granger causality in tail
and explains how to obtain the sequence of extreme events from data. We also discuss the importance of
the multivariate approach to avoid false detections because of network effects. Section 2 introduces the
novel methodology and describes how to construct the test statistics. Section 3 presents some Monte Carlo
exercises to validate numerically the novel approach and to compare it with the test by [Hong et al., 2009].
Section 4 shows a financial application of the method. Finally, Section 5 concludes. Technical details are
reported in Appendix A.

1. Granger causality in tail

As introduced for the first time by [Granger, 1969], the concept of Granger causality relies on testing
whether the past information on a time series y is statistically useful in predicting the future of another
time series x, better than using only the past information on x. In the original version of the test, the
information on past realization of the two time series defines the information set, which is also called the
Universe. The information set may include also the information on other variables.

Here, we study Granger Causality (GC) in tail, that is a generalization of the standard Granger
causality, but focusing on the prediction of extreme events represented by binary time series. With a
similar aim of [Granger, 1969], we define:

Definition 1.1. (Granger Causality in tail). A time series y ‘Granger-causes in tail’ another time series
x if, given some information set, we are able to predict the occurrence of an extreme event for x using
the past information on extreme events of y better than if the information on extreme events of y is not
considered.

To characterize whether the occurrence of an extreme event for y can help predicting the occurrence
of an extreme event for x in the spirit of Granger causality, we need to specify how an extreme event is
defined, giving an operational meaning to definition 1.1.

1.1. Extreme events and Value at Risk. Assume to observe a realization at time t of a random
variable x, i.e. xt ∈ R. Given the distribution of the random variable conditional to some suitably
defined information set It−1 up to time t− 11, the realization xt is defined as extreme if it is in the left
(or, equivalently right) tail of the distribution.

1Here, we consider the stochastic process in discrete time with the unit value representing the time scale of observations.
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A natural way to characterize the tail of a distribution is the Value at Risk (VaR), see, e.g. , [Roy, 1952].
In the case of the left tail, for a given probability level ρ ∈ (0, 1), the Value at Risk V aRρ,t at time t
is the quantile of the distribution of x conditional to the information set It−1 and associated with the
probability ρ. It is implicitly defined by

P(xt < V aRρ,t|It−1) = ρ almost surely (a.s.).

Given the time series {xt}t=1,...,T which describes the stochastic process for x at discrete time, there exist
several methods to estimate the Value at Risk of the distribution of x at time t: Monte Carlo simulation
methods, Hansen’s autoregressive conditional density estimation [Hansen, 1994], Morgan’s RiskMetrics
[Morgan, 1996], historical estimation of the realized variance [Barndorff-Nielsen and Shephard, 2002 ],
and Engle and Manganelli’s conditional autoregressive VaR (CAViaR) model [Engle and Manganelli, 2004].

In the case of financial time series, we can be interested, e.g. , in extreme variations of prices, thus we
can compare the price return xt with an estimate of the instantaneous or spot volatility σt, i.e.

xt

σt

< θ,

where the value of θ is either chosen as a free parameter or determined by the desired probability level ρ of
the Value at Risk, given some assumption on the probability distribution of returns. The crucial aspects in
this approach are the proper estimation of the spot volatility, see [Barndorff-Nielsen and Shephard, 2004,
Mancini, 2009, Corsi et al., 2010] and the choice of the conditional density (when one is interested in
mapping θ to ρ).

Sometimes, the tail probabilities depends not only on the mean and the variance of the distribu-
tion, but also on other moments such as skewness and kurtosis, e.g. see the empirical financial studies
by [Harvey and Siddique, 1999, Harvey and Siddique, 2000, Jondeau and Rockinger, 2003]. Some econo-
metric models can capture time-varying higher order conditional moments, such as [Gallant and Tauchen, 1996,
Hansen, 1994].

Finally, given some estimation of the Value at Risk, we can map the time series of realizations
{xt}t=1,...,T of x to the binary time series {Xt}t=1,...,T of extreme events of x, by defining Xt = 1 if
xt < V aRρ,t

2, 0 otherwise.

1.2. Null vs Alternative Hypotheses for GC in tail. The statistical test of Granger causality in
tail as defined in Def. 1.1 can be formalized as follows.

Given the times series of extreme events (or hits) associated with x and y, i.e. X and Y , and all other
information about the universe included in some information set U , the null hypothesis that y does not
‘Granger-cause in tail’ x can be stated as

H
0 : P(Xt = 1|IXt−1, I

Y
t−1, Ut−1) = P(Xt = 1|IXt−1, Ut−1) a.s. ∀t, (1.1)

where IXt−1 ≡ {Xs}s=1,...,t−1, IYt−1 ≡ {Ys}s=1,...,t−1, and Ut−1 the set of all available information (on
other time series, possibly) up to time t− 1.

On the other hand, the alternative hypothesis is

H
A : P(Xt = 1|IXt−1, I

Y
t−1, Ut−1) 6= P(Xt = 1|IXt−1, Ut−1) a.s. ∀t. (1.2)

We say that y ‘Granger-causes in tail’ x if the null hypothesis H
0 is rejected. Thus, under the alternative

hypothesis H
A, the information on the past extreme events of y, i.e. IYt−1 ≡ {Ys}s=1,...,t−1, can be used

to obtain a better prediction on the occurence of an extreme event of x, i.e. Xt, with respect to the
prediction obtained not accounting for it.

1.3. Hong et al.’s test. The method proposed by [Hong et al., 2009] is a kernel-based non-parametric
test for Granger causality in tail, which is built on the null hypothesis (1.1) and having test statistics
based on the normalized cross-spectral density between two time series X and Y ,

f(ω) =
1

2π

+∞
∑

τ=−∞

ρ(τ)e−iωτ (1.3)

with ρ(τ) ≡ Corr(Xt, Yt−τ ). In particular, under the null hypothesis (1.1), it is ρ(τ) = 0 ∀τ > 0.
Thus, using spectral methods similarly to [Hong, 2001], a test statistic can be defined to control for
non-zero lagged cross-correlations between the two binary time series {Xt}t=1,...,T and {Yt}t=1,...,T . The
statistical rejection of zero cross-correlation coefficients is thus a signal of a causality relation. This
approach considers the possibility of a causal interaction at any possible time lag. However, because

2In the case of the right tail, it is xt > V aR1−ρ,t.
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of finite sample size, the largest time scale is imposed in practice by the kernel estimator of the cross-
spectral density (1.3), in particular by the kernel non-uniform weighting whose effective window is fixed
by an integer parameter M . In the following, we adopt the Daniell kernel which has displayed the best
performance in the numerical analysis presented in [Hong et al., 2009], with M = 5 when not specified
differently.

1.4. Network effects and multivariate analysis. As pointed out in the original paper of Granger
causality [Granger, 1969], the definition of the Universe is crucial. In the analysis of a causality relation
between x and y, the time series {xt, yt}t=1,...,T are considered as all available information. This as-
sumption is strong and unrealistic. In fact, consider the simplest case in which all relevant information is
numerical in nature and refers to three stochastic processes x, y, and z. Now suppose to test the presence
of a causal relation between x and z, whereas the true causality chain is from x to y, and from y to z.
Then, neglecting the information on y when testing causality between x and z can induce a spurious
causality detection. This is similar to spurious correlation between sets of data that arise when some
other statistical variable of importance has not been included.

False detection of causal relations becomes relevant when we analyze a system displaying by nature a
complex network of interactions between its many subparts. In this scenario, pairwise causality analysis
applied to all possible pairs of elements will capture the network of causal relations, but also spurious
effects. This could be the case, for example, of financial networks of investors [Billio et al., 2012] or
of banks and bond investments [Corsi et al., 2018] where the degree of connectedness in the Granger
causality network (for both in mean and in tail cases) is used to construct indicators of financial distress.
Thus, reducing false detections is of paramount importance for the correct evaluation of such indicators.
To this end, the causality analysis needs to be generalized to the multivariate case, thus accounting for
the information on all subparts composing the whole system under investigation (but assuming that no
important variables have been excluded).

Granger causality in mean has been extended to the multivariate case using the vector autoregressive
process VAR(p) for more than two variables [Geweke, 1982] and several procedures have been introduced
to validate the statistical significance of the off-diagonal couplings, i.e. non-zero parameters capturing
the presence of causal interactions, such as the LASSO penalization [Tibshirani, 1996] or methods based
on the transfer entropy [Barrett et al., 2010]. In the next Section, after introducing a pairwise test of
Granger causality in tail based on Discrete AutoRegressive DAR(p) processes [Jacobs and Lewis, 1978]
for binary time series, which we generalize to the bivariate case, we also present a Markovian (p = 1)
extension to the multivariate case with more than two variables, in the same spirit of both the milestone
works of [Granger, 1969, Geweke, 1982].

2. Methods and test statistics

In this section we propose the multivariate generalization of the DAR(p) process to describe jointly
the dependence structure of N binary random variables which represent the extreme events of some
underlying time series. The introduction of this modeling framework permits to test for the presence of
non-zero terms of (lagged) interactions between the binary variables, which signal causal relations.

The discrete autoregressive model DAR(p) has been introduced for the first time by [Jacobs and Lewis, 1978]
and recently applied to the modeling of temporal networks [Williams et al., 2019a, Mazzarisi et al., 2020,
Williams et al., 2019b]. In the most general setting, it describes the time evolution of a categorical vari-
able which has p-th order Markov dependence and a multinomial marginal distribution. Here we are
interested in the case of a binary random variable X , thus the marginal distribution is Bernoulli. If Xt

is the realization of X at time t, we have

Xt = Vt Xt−τt + (1− Vt)Zt (2.1)

where Xt ∈ {0, 1} ∀t, Vt ∼ B(ν̃) is a Bernoulli random variable with ν̃ ∈ [0, 1], τt ∼ M(γ̃1, ..., γ̃p) is a
multinomial random variable with γ̃ ≡ {γ̃j}j=1,...,p such that

∑p
i=1 γ̃i = 1 and Zt ∼ B(χ̃) is a Bernoulli

random variable with χ̃ ∈ [0, 1]. In other words, at each time, Vt determines whether Xt is copied from
the past or sampled from the marginal. When Xt is copied from the past, the multinomial random
variable τt selects the time lag and, accordingly, which past realization of X we copy.

The process defined by (2.1) has the property that the autocorrelation at any lag is larger than or equal
to zero. This is by construction, since ν̃, γ̃1, ..., γ̃p are non-negative definite. Moreover, the Yule-Walker
equations associated with (2.1) are formally equivalent to the ones of the standard AR(p) process, see
[Jacobs and Lewis, 1978].

We consider the generalization of the process (2.1) to the case of a multivariate (binary) time series

X ≡ {X i
t}

i=1,...,N
t=0,1,...,T . With respect to the univariate DAR(p), the difference is that when Xt

i is copied
5



from the past it can be copied either from its own past values or from the past values of one of the other
N − 1 variables. Specifically, the binary random variable Xt

i is copied from the past with probability νi,
and in this case it selects which variable j to copy according to the probabilities λij and the time lag

according to the multinomial τ ijt . Otherwise, it is sampled from its marginal Bernoulli distribution with
parameter χi. We can write the evolution of Xi as

X i
t = V i

t X
Ji
t

t−τ
iJi

t
t

+ (1− V i
t )Z

i
t (2.2)

where X i
t ∈ {0, 1} ∀i, t, V i

t ∼ B(νi) with νi ∈ [0, 1] ∀i, τ ijt ∼ M(γij,1, ..., γij,p) ∀i, j with γij ≡
{γij,s}s=1,...,p such that

∑p
s=1 γij,s = 1, J i

t ∼ M(λi1, ..., λiN ) is a multinomial random variable with

λi ≡ {λij}j=1,...,N such that
∑N

j=1 λij = 1 ∀i, and Zi
t ∼ B(χi) with χi ∈ [0, 1], ∀i. For notational

simplicity, let us define γ ≡ {γij}i,j=1,...,N and λ ≡ {λi}i=1,...,N . We refer to (2.2) as the Vector Discrete
AutoRegressive VDAR(p) process.

If the off-diagonal interaction term λij with i 6= j is non-zero, a causal relation in the sense of Granger

is present between X i and Xj, that is, the occurrence of Xj
t = 1 (an extreme event for the underlying time

series xj) increases the probability of observing one hit X i
t+t′ = 1 at some future time t+ t′ (depending

on τ ij). Therefore, to test for Granger causality in tail between X i and Xj we must assess the statistical
significance of the off-diagonal term λij of the process (2.2).

In principle, this approach allows to analyze the time scale at which a causal relation occurs by properly
selecting the time lag associated with the mechanism of copying from the past. However, the number
of parameters of the model (2.2) grows as O(Np), thus some restrictions of the parameter space are
needed for computational reasons. For this reason, in sections 2.1 and 2.2 we present two possible such
restrictions to construct a statistical test: the bivariate case N = 2, with p > 1 and the multivariate
Markovian case p = 1 with N > 2.

2.1. Pairwise causality analysis. Pairwise analysis aims at detecting Granger causality in tail between
two time series, and it excludes the information on any other variables. This approach is sufficient if, at
least approximately, no other variable affects the dynamics of the two considered ones. In this situation,
in fact, we can ignore the risk of spurious detections discussed in section 1.4. Let {Xt}t=1,...,T and
{Yt}t=1,...,T be the binary time series representing the occurrences of extreme events. We describe their
dependence structure with the bivariate VDAR(p) process (2.2).

2.1.1. Bivariate VDAR(p). The bivariate version of the model (2.2) can be specified more explicitly as
{

Xt = V 1
t ((1− J1

t )Xt−τ11

t
+ J1

t Yt−τ12

t
) + (1− V 1

t )Z
1
t

Yt = V 2
t (J

2
t Xt−τ21

t
+ (1− J2

t )Yt−τ22

t
) + (1− V 2

t )Z
2
t

(2.3)

where Xt, Yt ∈ {0, 1} ∀t, V i
t ∼ B(νi) with νi ∈ [0, 1] ∀i = 1, 2, J i

t ∼ B(λi) with λi ∈ [0, 1] ∀i = 1, 2,

and τ ijt ∼ M(γij,1, ..., γij,p) with
∑p

s=1 γij,s = 1. The marginals Z1
t and Z2

t are also Bernoulli random
variables with distribution B(χ1) and B(χ2), respectively, with χ1, χ2 ∈ [0, 1].

The process (2.3) describes the evolution of the binary time series X , as follows. At time t, (i) V 1
t

determines whether Xt is copied from the past (with probability νi) or not; (ii) if it is, J1
t determines

whether it is copied from a past value of X , Xt−τ11

t
, (with probability 1 − λi) or from a past value of

Y , Yt−τ12

t
(with probability λi); (iii) the time lag is determined by the multinomial random variable τ11t

(for Xt−τ11

t
) or τ12t (for Yt−τ12

t
); (iv) if Xt is not copied from the past, its value is 1 with probability χ1

and 0 otherwise. Equivalently for the binary time series Y . Hence, the parameter λ1 controls the level
of dependence of X from Y (and vice versa when considering λ2): conditional on the probability that a
past event affects the current realization (i.e. ν1 > 0), the larger is λ1, the larger is the probability that
the occurrence of an extreme event Yt−τ12

t
= 1 in the past triggers an extreme event Xt = 1. If this is

the case, taking into account the past information on Y helps in forecasting X , thus there exists a causal
relation from Y to X .

We can test for Granger causality in tail by constructing a test statistic based on the Likelihood-Ratio
as follows.

2.1.2. Likelihood-Ratio (LR) statistic. In order to construct the statistical test for Granger causality in
tail between two time series, we need to assess the statistical significance of the off-diagonal autoregressive
coefficients of the bivariate VDAR(p) process (2.3). We propose to adopt the Likelihood-Ratio (LR) test
[Hansen, 1992] by stating the null hypothesis (1.1) together with the alternative hypothesis (1.2) in
terms of the likelihood of two competing models, namely VDAR(p) and DAR(p). This is further in line

6



with [Barnett et al., 2009, Barnett and Bossomaier, 2012], where authors notice that the GC (in mean)
statistic may be formalized as a likelihood-ratio test.

The null hypothesis H
0 (1.1) that the time series Y does not Granger-cause in tail the time series X

can be stated as

H
0 : PDAR(p)(Xt = 1|{Xt−s}s=1,..,p, ν̃, γ̃, χ̃)

= P
VDAR(p)(Xt = 1|{Xt−s}s=1,..,p, {Yt−s}s=1,..,p, ν1, λ1,γ, χ1) a.s.

(2.4)

versus the alternative hypothesis H
A (1.2) formulated as

H
A : PDAR(p)(Xt = 1|{Xt−s}s=1,..,p, ν̃, γ̃, χ̃)

6= P
V DAR(p)(Xt = 1|{Xt−s}s=1,..,p, {Yt−s}s=1,..,p, ν1, λ1,γ, χ1) a.s.

(2.5)

where P
DAR(p)(Xt = 1|{Xt−s}s=1,..,p, ν̃, γ̃, χ̃) is the probability of an extreme event for the DAR(p)

model (2.1), whereas P
V DAR(p)(Xt = 1|{Xt−s}s=1,..,p, {Yt−s}s=1,..,p, ν1, λ1,γ, χ1) is for the VDAR(p)

model (2.3).
Notice that the two considered models are nested, since the ‘full’ VDAR(p) model (2.3) contains all the

terms of the ‘restricted’ DAR(p) model (2.1), but including also the ‘off-diagonal’ terms of interaction.
Thus, to make testable the null hypothesis (2.4), we can apply the likelihood-ratio test [Hansen, 1992]
to assess the goodness of fit of the two competing nested models by evaluating how much better the
full model works with respect to the restricted one: if the null H

0 is supported by the observed data,
the likelihoods of the two competing models should not differ by more than sampling error. Thus, we
test whether the likelihood-ratio is significantly different from one, or equivalently whether its natural
logarithm is significantly different from zero.

For notation simplicity, let us define θ0 ≡ {ν̃, γ̃, χ̃} and θ ≡ {ν1, λ1,γ, χ1}, and indicate the likelihoods
of the DAR(p) and VDAR(p) models as

{

L0(θ0) =
∏T

t=p+1 P
DAR(p)(Xt|{Xt−s}s=1,..,p, ν̃, γ̃, χ̃),

L(θ) =
∏T

t=p+1 P
VDAR(p)(Xt|{Xt−s}s=1,..,p, {Yt−s}s=1,..,p, ν1, λ1,γ, χ1).

(2.6)

The likelihood-ratio is defined as

LR ≡
supθ0∈Θ0

L0(θ0)

supθ∈ΘL(θ)
=

L0(θ̂0)

L(θ̂)
(2.7)

where Θ0 and Θ represent the domains of the parameters θ0 and θ, and θ̂0 and θ̂ are the Maximum
Likelihood Estimators (MLE) of the DAR(p) and VDAR(p) models, respectively. Therefore, in order
to apply the test, we need to know the quantiles of the distribution of LR corresponding to the desired
significance of the test and the MLE of the two models.
In most cases, the exact distribution of LR is difficult to determine. However, assuming H

0 is true, there
is a fundamental result by Samuel S. Wilks [Wilks, 1938, Casella and Berger, 2002]: as the sample size
T → ∞, the test statistics

Λ ≡ −2(logL0(θ̂0)− logL(θ̂)). (2.8)

is asymptotically chi-squared distributed with number of degrees of freedom equal to the difference in
dimensionality of Θ and Θ0

3. Hence, this implies that we can calculate the test statistics Λ given the
data {Xt, Yt}t=0,1,...,T for finite T , and then compare Λ with the quantile of the chi-squared distribution
corresponding to the desired statistical significance. We clearly expect that the larger is T , the better
the test works.4

The MLE of the DAR(p) and VDAR(p) models is relatively simple to derive, see Appendix A. To
improve the accuracy of the maximum likelihood estimation, it is convenient to use as a starting point
of the algorithm the parameters obtained with the method of moments, namely the solution of the Yule-
Walker equations for the DAR(p) and VDAR(p) models. In fact, Yule-Walker equations for DAR(p)
and VDAR(p) are entirely equivalent to the ones of the autoregressive AR(p) and VAR(p) processes,
respectively. The solution is a standard result of time series analysis, see [Tsay, 2005]. See Appendix A
for the technical details about the inference process.

3In our case, this difference is equal to p, i.e. the order of the discrete autoregressive process (2.3).
4In fact, the convergence to the asymptotic χ2-distribution for the test statistic Λ is mirrored by the convergence of the

rejection rate under the null hypothesis to the adopted confidence level, usually considered equal to 5%. In our case, this is
verified for very large sample size (T > 5 × 106), thus pointing out the numerical consistency of the approach, despite the
slow convergence rate. This behavior, however, opens to the possibility of considering other approaches, different from the
Likelihood-Ratio test based on the Wilks’ theorem, to define the test statistic of Granger causality in tail. For instance, a
statistical test based on bootstrapping methods can be devised. This is left for future research.
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2.2. Multivariate causality analysis. The aim of the multivariate causality analysis is to detect a
Granger causality in tail relation between a pair of time series, but extending the information set to all
the relevant variables of the system under investigation. This framework accounts for the situation in
which a variable is affected by several other variables (network effect). Let the N binary time series

{X i
t}

i=1,...,N
t=1,...,T describe the sequences of extreme events. We describe their dependence structure at unit

time lag with the Markovian VDAR(1) model (2.2) with p = 1. The Markovian restriction, as mentioned
before, is necessary for computational reasons.

The VDAR(1) model is specified as

X i
t = V i

t X
Ji
t

t−1 + (1− V i
t )Z

i
t (2.9)

where X i
t ∈ {0, 1} ∀i, t, V i

t ∼ B(νi) with νi ∈ [0, 1] ∀i = 1, ..., N , J i
t ∼ M(λi1, ..., λiN ) is a multinomial

random variable with λi ≡ {λij}j=1,...,N such that
∑N

j=1 λij = 1 ∀i = 1, ..., N , and Zi
t ∼ B(χi) with

χi ∈ [0, 1], ∀i = 1, ..., N .
The generic entry λij of the matrix λ ≡ {λij}i,j=1,...,N determines the level of interaction between

X i and Xj if i 6= j, or self-interaction if i = j (diagonal elements). Hence, the presence of a Granger
causality relation from Xj to X i in the multivariate case can be tested by validating non-zero λij .

In Statistical Inference, there exist many regularization methods that force the estimation algo-
rithm to infer a less complex model by putting some parameters to zero, when not statistically sig-
nificant. The two most widely used types of regularization are the so-called L1 (i.e. LASSO) and L2
regularization [Hastie et al., 2005]. Recently, Decimation [Decelle and Ricci-Tersenghi, 2014] has been
proposed to infer the topology of the interaction network in models with pairwise interactions be-
tween binary random variables. The Decimation method has proved to be very efficient in recovering
the network of interactions for a specific logistic regression model, namely the Ising model, in both
static [Decelle and Ricci-Tersenghi, 2014] and kinetic [Decelle and Zhang, 2015, Campajola et al., 2019,
Campajola et al., 2020B] cases, by setting the weakest interaction couplings to zero iteratively. Here, we
adopt the Decimation method to validate the entries of the matrix λ estimated by maximum likelihood
(see Appendix A for the technical details). The validated off-diagonal couplings constitute the detected
causality relations.

3. Monte Carlo simulations

In this section we use Monte Carlo simulations to analyze the performance of the proposed methods
and to compare it with [Hong et al., 2009]. A first analysis (section 3.1) is performed simulating two
time series using the bivariate VDAR(p) (2.3) as data generating process and then testing for a causality
relation with the two methods. The two methods’ performances are compared on the basis of their
False Positive Rate (FPR) and True Positive Rate (TPR). Then, in section 3.2, we perform the same
analysis using alternative data generating processes, specifically the GARCH-type models (adopted in
[Hong et al., 2009]) and the bivariate VDAR(1) with non-independent marginals, to verify the numerical
consistency of the proposed parametric Likelihood-Ratio test of Granger causality in tail even when the
data generating process is not correctly specified. In these pairwise settings, we point out the drawbacks
of the method of [Hong et al., 2009] which are naturally solved by using the proposed approach. Then, in
section 3.3 we move to a setting in which the pairwise approximation is not correct, by simulating time
series with a multivariate VDAR(1) process. We show that the multivariate generalization of our method
does not give rise to the spurious effects that are instead found by the [Hong et al., 2009] method in this
case.

3.1. Bivariate VDAR(p) as data generating-process. In the bivariate VDAR(p) process (2.3), a
causal interaction from Y to X is present when λ1 > 0. Therefore, the null hypothesis H

0 in (2.4) is true
when λ1 = 0, while the alternative hypothesis H

A in (2.5) is true when λ1 > 0. We generated time series
of X and Y of length T for different values of T with the bivariate VDAR(p) model for p = 1, 2 and
different values of λ1. Table 1 reports the rejection rate of Λ in (2.8) for the proposed test of Granger
causality in tail, in particular the False Positive Rate (FPR), i.e. the percentage of rejections of the null
hypothesis when λ1 = 0, and the True Positive Rate (TPR), i.e. the percentage of rejections of the null
hypothesis when λ1 > 0. The Likelihood-Ratio (LR) test has appropriate size for all T , i.e. FPR is below
the 5% significance level. It also has a good power under the alternative hypothesis H

A in (2.5), i.e. it
is successful at recognizing true causality when λ1 > 0, and it becomes more powerful as T increases.
The TPR, as expected, increases with the degree of causal interaction (i.e. λ1), that is, interactions are
increasingly detected when they are stronger.
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Size and power at the 5% significance level of the proposed test of GC in tail.

DGP:
VDAR(1)

FPR
λ1 = 0

TPR
λ1 = 0.01

TPR
λ1 = 0.025

TPR
λ1 = 0.05

TPR
λ1 = 0.1

TPR
λ1 = 0.25

TPR
λ1 = 0.5

TPR
λ1 = 0.75

T = 500 0.02 0.04 0.08 0.11 0.24 0.57 0.94 1.00

T = 1000 0.02 0.03 0.08 0.17 0.36 0.89 1.00 1.00

T = 2000 0.02 0.04 0.10 0.25 0.60 0.99 1.00 1.00

T = 5000 0.02 0.05 0.20 0.49 0.92 1.00 1.00 1.00

T = 10000 0.03 0.10 0.33 0.79 0.99 1.00 1.00 1.00

DGP:
VDAR(2)

FPR
λ1 = 0

TPR
λ1 = 0.01

TPR
λ1 = 0.025

TPR
λ1 = 0.05

TPR
λ1 = 0.1

TPR
λ1 = 0.25

TPR
λ1 = 0.5

TPR
λ1 = 0.75

T = 500 0.01 0.02 0.03 0.05 0.09 0.32 0.71 0.92

T = 1000 0.02 0.03 0.05 0.06 0.19 0.68 0.93 0.99

T = 2000 0.01 0.02 0.05 0.12 0.40 0.94 1.00 1.00

T = 5000 0.01 0.02 0.10 0.26 0.76 1.00 1.00 1.00

T = 10000 0.01 0.05 0.14 0.51 0.96 1.00 1.00 1.00

Table 1. False Positive Rate (FPR) and True Positive Rate (TPR) of the test statistic
Λ (2.8) under the null H

0 that Y ‘does not Granger cause’ X in (2.4) with data generated
according to the VDAR(p) model (2.3) for different values of λ1 and different sample sizes
T . The parameters of the VDAR(p) model are: ν1, ν2 = 0.5, χ1, χ2 = 0.05, λ2 = 0, and
γij = 0.5 ∀i, j = 1, 2 in the case p = 2. Notice that data are generated with p = 1 (above)
or p = 2 (below), but in obtaining the test statistic Λ (2.8) p is inferred according to the
Bayesian Information Criterion (see Appendix A), thus no prior information on the time
lag order is used when applying the proposed test. Each rejection rate is computed over
a sample of 500 seeds.

Size and power at the 5% significance level of the test of GC in tail by [Hong et al., 2009].

DGP:
VDAR(1)

FPR
λ1 = 0

TPR
λ1 = 0.01

TPR
λ1 = 0.025

TPR
λ1 = 0.05

TPR
λ1 = 0.1

TPR
λ1 = 0.25

TPR
λ1 = 0.5

TPR
λ1 = 0.75

T = 500 0.13 0.18 0.23 0.30 0.47 0.75 0.96 1.00

T = 1000 0.20 0.19 0.27 0.38 0.55 0.94 1.00 1.00

T = 2000 0.21 0.23 0.31 0.43 0.75 0.99 1.00 1.00

T = 5000 0.19 0.28 0.41 0.67 0.95 1.00 1.00 1.00

T = 10000 0.23 0.32 0.51 0.87 0.99 1.00 1.00 1.00

DGP:
VDAR(2)

FPR
λ1 = 0

TPR
λ1 = 0.01

TPR
λ1 = 0.025

TPR
λ1 = 0.05

TPR
λ1 = 0.1

TPR
λ1 = 0.25

TPR
λ1 = 0.5

TPR
λ1 = 0.75

T = 500 0.13 0.14 0.17 0.18 0.34 0.67 0.94 0.99

T = 1000 0.19 0.18 0.23 0.29 0.41 0.88 0.99 1.00

T = 2000 0.20 0.22 0.27 0.33 0.63 0.98 1.00 1.00

T = 5000 0.18 0.21 0.30 0.51 0.90 1.00 1.00 1.00

T = 10000 0.20 0.28 0.40 0.73 0.98 1.00 1.00 1.00

Table 2. False Positive Rate (FPR) and True Positive Rate (TPR) associated with the
test by [Hong et al., 2009] under the null H

0 that Y ‘does not Granger cause’ X with
data generated according to the VDAR(p) model (2.3) for different values of λ1 and
different sample sizes T . The test statistic is computed by using the Daniell kernel with
M = 5. The parameters of the VDAR(p) model are: ν1, ν2 = 0.5, χ1, χ2 = 0.05, λ2 = 0,
and γij = 0.5 ∀i, j = 1, 2 in the case p = 2. Each rejection rate is computed over a
sample of 500 seeds.

We repeated the same analysis using the test of Granger causality in tail by [Hong et al., 2009], see
Table 2. The test of Hong et al. tends to over-reject significantly the null hypothesis at the 5% level, when
data are generated with zero causal interaction, i.e. FPR is much larger than 0.05. This effect seems
independent from the sample size T . At the same time, it displays a good power under the alternative
hypothesis for λ1 > 0, and the performances become better as T increases.

We remark that, for a given value of the significance level, the method by Hong et al. shows a higher
TPR with respect to our method (for fixed λ1), but at the expense of a higher FPR. A fairer comparison

9



0 0.2 0.4 0.6 0.8 1
FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
T

P
R

ROC (low causality)

Hong et al. (M=5)
Hong et al. (M=10)
BiDAR(1)
BiDAR(p)

0 0.2 0.4 0.6 0.8 1
FPR

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
P

R

ROC (high causality)

Hong et al. (M=5)
Hong et al. (M=10)
BiDAR(1)
BiDAR(p)

Figure 1. Receiving Operating Characteristic (ROC) curves built with the p-values
associated with the test statistics of either the Likelihood-Ratio (LR) method (2.8) and
the kernel-based non-parametric approach of [Hong et al., 2009], used as binary classifiers
depending on some threshold value, i.e. the test significance level. Data are generated
by the bivariate VDAR(1) model with T = 10000, under the null H

0 in (2.4) or under
the alternative hypothesis H

A in (2.5), with one half probability over a sample of 5000
simulations. The adopted model parameters are: ν1 = 0.1, ν2 = 0, χ1, χ2 = 0.05, λ2 = 0,
and λ1 = 0 under the null H

0, λ1 ∼ U(0, 0.25) (left) or λ1 ∼ U(025, 0.75) (right) under
the alternative hypothesis H

A. In implementing the LR test, the blue curve is obtained
by imposing the order p = 1 of the autoregressive process, whereas the black dotted
curve (hidden under the blue curve) is obtained by optimally selecting the order p with
the Bayesian Information Criterion (see Appendix A). The method by Hong et al. is
implemented with the Daniell kernel with a M = 5 (red solid line) or M = 10 (red dotted
line).

between the two methods can be performed building the Receiving Operating Characteristic (ROC) curve
associated with the two statistical methods, which allows to compare the TPRs of the two methods for
a given FPR (Fig. 1). The curve corresponding to one method is built by plotting the points (FPR,
TPR) obtained with the corresponding method for varying threshold values (i.e. significance levels). We
therefore simulated data according to the VDAR(1) process (details in the caption of Fig. 1), both with
and without causality, and computed the FPR and TPR obtained by the two methods, resulting in the
curves in Figure 1. For a given FPR, the best causality method displays the largest TPR. The results are
shown in Figure 1 for the two cases of low or high causality. In the low causality case, time series with
causality are generated by the VDAR(1) model with λ1 ∼ U(0, 0.25), while in the high causality case with
λ1 ∼ U(0.25, 0.75). In both cases, we can notice that the novel approach outperforms the non-parametric
method by [Hong et al., 2009]. It is worth noting that we are able to identify correctly the time scale
of the causal interaction, as evident from the superposition of the ROC curves built for VDAR(1) and
VDAR(p) models: in the first case, the order of the autoregressive process is imposed by hand, whereas
in the second case the order p is optimally selected (i.e. p = 1) by the Bayesian Information Criterion
during the Maximum Likelihood Estimation process, as explained in Appendix A.

Now, we show that when there is a unidirectional causal relation between two time series (e.g., Y
causes X but not the converse), in the presence of non-zero autocorrelation the test by Hong et al. shows
a very high FPR due to the mistaken detection of the inverse causal relation (from X to Y ), while our LR
test has a small FPR rate. To show this, we consider data generated by the VDAR(1) model (2.3) with
λ1 = 0.5 (Y Granger-causes X) but λ2 = 0 (X does not Granger cause Y ), and varying the parameter
ν2 which determines how much the binary time series of Y is autocorrelated. We then test for a Granger
causality from X to Y with the method by Hong et al. Table 3 shows the results of the numerical exercise.
The rate of false rejections for the test of Hong et al. is increasing as the autocorrelation of binary time
series increases, eventually converging to one. For the novel LR test based on the VDAR(p) model,
instead, the rate is below the level of the test significance, i.e. 5% (see the values in the brackets in Table
3). The poor performance of the non-parametric method by [Hong et al., 2009] can be understood by
the following argument. The method tests for non-zero lagged cross-correlations between the two binary
time series. Now, assume that the series are generated according to the VDAR(1) model with λ1 > 0,
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Size at the 5% significance level of the test of GC in tail by Hong et al. [Hong et al., 2009].

DGP:
VDAR(1)

FPR
ν2 = 0

FPR
ν2 = 0.05

FPR
ν2 = 0.25

FPR
ν2 = 0.3

FPR
ν2 = 0.4

FPR
ν2 = 0.5

FPR
ν2 = 0.75

M = 5 0.07 (0.02) 0.07 (0.03) 0.15 (0.02) 0.36 (0.02) 0.87 (0.02) 0.99 (0.01) 1.00 (0.01)

M = 10 0.06 (0.02) 0.06 (0.02) 0.16 (0.02) 0.31 (0.02) 0.84 (0.01) 0.99 (0.02) 1.00 (0.03)

M = 15 0.06 (0.02) 0.07 (0.01) 0.16 (0.02) 0.27 (0.02) 0.80 (0.02) 0.99 (0.01) 1.00 (0.01)

M = 20 0.08 (0.02) 0.08 (0.02) 0.16 (0.02) 0.30 (0.02) 0.77 (0.02) 0.99 (0.02) 1.00 (0.01)

Table 3. False Positive Rate (FPR) obtained for the test by [Hong et al., 2009] under
the null H

0 that X ‘does not Granger cause’ Y with data generated according to the
VDAR(1) model (2.3) for different values of ν2 and sample sizes T = 10000. The test
statistic is computed by using the Daniell kernel with different values of M . The param-
eters of the VDAR(1) model are: ν1 = ν2, χ1, χ2 = 0.05, λ1 = 0.5, and λ2 = 0. Each
rejection rate is computed over a sample of 500 seeds. Values in the brackets represent
instead the FPR of the LR test based on the test statistic (2.8).

DGP:
VDAR(1) H

0
H

A

χ1,2 = 3× 10−4 0.001 0.831

χ1,2 = 2.6× 10−3 0.013 0.958

χ1,2 = 8.6× 10−2 0.020 0.986

Table 4. Size and power at the 5% significance level of the LR test of GC in tail, with
statistic Λ (2.8) under the null H

0 that Y ‘does not Granger cause’ X , with data generated
according to the VDAR(1) model for T = 98000 with ν1, ν2 ∼ U([0, 1]), λ1, λ2 = 0, and
χ1, χ2 as indicated. Then, under the alternative hypothesis H

A that Y ‘does Granger
cause’ X , data are generated with ν1, ν2, λ1, λ2 ∼ U([0, 1]) and χ1, χ2 as indicated. Each
rejection rate is computed over a sample of 1000 seeds.

λ2 = 0, ν2 > 0. The fact that λ1 > 0 implies, clearly, a non-zero covariance E(X̃tỸt−1) 6= 0, where the
tilde is for indicating the mean subtracted variable. However, since Y is autocorrelated (ν2 > 0), this
will also imply a non-zero covariance

E(ỸtX̃t−1) = E(V 2
t (J

2
t X̃t−1X̃t−1 + (1− J2

t )Ỹt−1X̃t−1) + (1− J2
t )Z̃

2
t X̃t−1) =

= ν2E(X̃t−1Ỹt−1) =

= ν2E(V
2
t−1(J

2
t−1X̃t−1X̃t−2 + (1− J2

t−1)X̃t−1Ỹt−2) + (1− J2
t−1)X̃t−1Z̃

2
t−1) =

= (ν2)
2
E(X̃t−1Ỹt−2) 6= 0,

(3.1)

where we used E(X̃t) = 0, E(Z̃2
t ) = 0, E(V 2

t ) = ν2, and E(J2
t ) = 0. Therefore, the method by Hong et

al. tends to falsely detect causation from X to Y because of this non-zero lagged cross-correlation. This
spurious effect is increasing with the autocorrelation itself. Our novel approach, on the contrary, is able
to capture both cross- and auto- correlations between binary time series, separately, thus validating the
correct direction of the causality relation (within the significance level).

To conclude this section, we repeat a similar Monte Carlo exercise for the Likelihood-Ratio test, but
with data generated by the VDAR(1) model with sample size T = 98, 000 and three specific values for
the χ1, χ2 parameters. This is done in view of the empirical application below, where financial time series
of extreme events display often a very low frequency of tail events, thus associated with small χ1 and χ2.
In particular, in Table 4 we report the size and power of the LR test associated with the minimum, the
mean, and the maximum values of χ1, χ2 observed in empirical data. In all cases, we can notice that the
LR test has appropriate size under the null H

0 (below the 5% significance level), and good power under
the alternative hypothesis H

A.

3.2. Alternative data generating process. We repeat the Monte Carlo exercise for pairwise causality
analysis with the data generating process adopted in [Hong et al., 2009]. They consider a GARCH-type
model for the underlying time series x1 and x2, from which the binary time series of extreme events are
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extracted. The model is the following:


















xi,t = βi1x1,t−1 + βi2x2,t−1 + ui,t, i = 1, 2

ui,t = σi,tǫi,t

σ2
i,t = γi,0 + γi,1σ

2
i,t−1 + γi,2u

2
1,t−1 + γi,3u

2
2,t−1

ǫi,t ∼ N(0, 1), i.i.d. r.v. ∀i = 1, 2,

(3.2)

where the variance of x1 and x2 is described by a GARCH(1,1) process, but including also off-diagonal
dependencies through the mixed terms u2

2 and u2
1, respectively for x1 and x2. Then, the realization at

time t of the process is the sum of the innovation term (as in the standard GARCH(1,1)) plus a linear
combination of the past realizations at time t − 1 of the two processes (similarly to standard vector
autoregressive VAR(1) model). The following parameterization is used

{

(β11, β12, γ10, γ11, γ12, γ13) = (0.5, b, 0.1, 0.6, 0.2, c)

(β21, β22, γ20, γ21, γ22, γ23) = (0, 0.5, 0.1, 0.6, 0, 0.2).
(3.3)

In particular, the authors consider the following cases: NULL (no Granger causality in tail) when b =
c = 0; ALTER1 (Granger causality in tail from mean) b = 2, c = 0; ALTER2 (Granger causality in tail
from variance) when b = 0, c = 0.7.

For each individual time series, the authors propose to estimate by means of the Quasi-MLE method
the following GARCH-type model (without off-diagonal interaction terms)



















xi,t = βi1x1,t−1 + ui,t, i = 1, 2

ui,t = σi,tǫi,t

σ2
i,t = γi,0 + γi,1σ

2
i,t−1 + γi,2u

2
i,t−1

ǫi,t ∼ N(0, 1), i.i.d. r.v. ∀i = 1, 2,

(3.4)

then using both the estimated parameters and the filtered series to find at each time the Value at Risk
V aR5%, i.e. the 5% left quantile corresponding to −1.64 σ̂i,t under the hypothesis of Gaussianity. Hence,
we can obtain the binary time series of extreme events according to the condition xi,t < −1.64 σ̂i,t which
identifies the (left) tail events for the the time series xi.

5

We apply the two tests for Granger causality in tail to data generated in the three different cases,
namely NULL, ALTER1, and ALTER2. Under NULL, there is no Granger causality in tail from x2 to
x1, thus we can study the size of each method, i.e. the False Positive Rate (FPR), by testing under the
null hypothesis that x2 ‘does not Granger-cause in tail’ x1. On the other hand, there exists Granger
causality in tail from x2 to x1 under both ALTER1 and ALTER2, but for different underlying effects.
Under ALTER1, x2 triggers an extreme event for x1 by ‘moving’ the conditional mean of the distribution
of x1. Under ALTER2, x2 modifies the conditional variance of the distribution of x1, thus increasing, e.g.
, the probability of a tail event. In both cases, we can study the power of each test of Granger causality
in tail by finding the rate of rejections of the null hypothesis that x2 ‘does not Granger-cause in tail’ x1.
The results for both tests are shown in Table 5. In comparing the finite size performances, the method
by [Hong et al., 2009] slightly outperforms ours.

As in the previous section, for a fair comparison we build the ROC curves associated with the two
methods, see Figure 2. We simulated data according to the GARCH-type model, either without (NULL
case) and with (ALTER1 case in the left panel, ALTER2 case in the right panel) causality, and computed
the FPR and TPR obtained by the two methods. We used a large sample size T = 10000. For both
mechanisms of causality, ALTER1 and ALTER2, our method displays a very good performance as testified
by the area under the (ROC) curve really close to one, a signal of high prediction power. Nevertheless,
the test by Hong et al. is more powerful in detecting causality, especially under ALTER2. Therefore,
when data are generated by the considered GARCH-type models and in the pairwise scenario, the non-
parametric approach by [Hong et al., 2009] performs slightly better than the proposed LR test.

However, there are cases when, even if the data generating process is not correctly specified, the
parametric approach works better. In fact, consider the bivariate VDAR(1) model (2.3) with p = 1
as data generating process, but with a general dependence structure between the Bernoulli marginal
distributions, i.e. Z1

t and Z2
t in (2.3), described by a Gaussian copula. A positive (instantaneous)

correlation structure between extreme events of prices (usually referred as jumps in this context) is quite
common in financial markets, see e.g. an empirical study on synchronization of large price movements

5Here, we are considering the left tail of the distribution by finding the Value at Risk for the 5% probability level. We
can consider equivalently the right tail by using, e.g. , the 95% probability level.
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Size at the 5% significance level of the test by Hong et al. or the LR test.

GARCH-type m.
NULL

FPR
Hong et al.

M = 5

FPR
Hong et al.

M = 10

FPR
Hong et al.

M = 15

FPR
Hong et al.

M = 20

FPR
LR test

T = 500 0.07 0.06 0.08 0.07 0.02

T = 1000 0.05 0.06 0.07 0.06 0.02

T = 2000 0.05 0.07 0.06 0.06 0.02

T = 5000 0.08 0.06 0.07 0.06 0.03

T = 10000 0.07 0.09 0.07 0.08 0.02

Power at the 5% significance level of the test by Hong et al. or the LR test.

GARCH-type m.
ALTER1

TPR
Hong et al.

M = 5

TPR
Hong et al.

M = 10

TPR
Hong et al.

M = 15

TPR
Hong et al.

M = 20

TPR
LR test

T = 500 0.30 0.31 0.34 0.25 0.23

T = 1000 0.56 0.48 0.46 0.40 0.37

T = 2000 0.72 0.70 0.63 0.42 0.57

T = 5000 0.98 0.95 0.94 0.92 0.93

T = 10000 1.00 1.00 1.00 1.00 0.99

Power at the 5% significance level of the test by Hong et al. or the LR test.

GARCH-type m.
ALTER2

TPR
Hong et al.

M = 5

TPR
Hong et al.

M = 10

TPR
Hong et al.

M = 15

TPR
Hong et al.

M = 20

TPR
LR test

T = 500 0.37 0.39 0.40 0.36 0.19

T = 1000 0.51 0.53 0.51 0.46 0.27

T = 2000 0.70 0.78 0.70 0.75 0.44

T = 5000 0.97 0.98 0.97 0.97 0.81

T = 10000 1.00 1.00 1.00 1.00 0.98

Table 5. FPR and TPR of the two statistical tests (Hong et al. test for different values
of M and the LR test with the statistic Λ (2.8) based on the VDAR(p) model) with data
generated by the GARCH-type model as in [Hong et al., 2009] under the three different
cases explained in the text (Upper: NULL, Middle: ALTER1, Bottom: ALTER2). T
indicates the sample size of each time series. The Danielsson kernel used for the Hong
et al. test is with M as indicated in the Tables. Each value is the average over a sample
of 500 seeds.

in the US stock market [Calgagnile et al., 2018]. Again, we compare the ROC curves built for the two
methods of Granger causality in tail, see Figure 3. In this case, the test by Hong et al. is quite sensitive
to the presence of instantaneous “co-jumps”, resulting in an increased rate of false rejections (left panel),
whereas our method assures a high performance in assessing causality relations at the unit time lag. For
completeness, we report also the result for negative correlation between extreme events (i.e. very low
probability for the co-occurrence) in the right panel. Also in this case, our method outperforms the Hong
et al. test. Therefore, the bivariate VDAR(1) with non-independent marginals is an example in which our
parametric method works better than the non-parametric one even though the data generating process
does not coincide with the one assumed by the method.

3.3. VDAR(1) as data generating process. Let us consider now the VDAR(1) model (2.9) as data
generating process. We consider a system of N = 40 variables with star-shaped network of causal
interactions, meaning that the off-diagonal interaction terms λij are present between a central node
(representing one of the variables) and each of the other N − 1. The extreme states of these variables
are described by binary time series evolving according to (2.9) with causal interactions captured by the
matrix λ parameterized as

λ =

(

λ1
self λinu

′

λoutv diag(λi
self )

)

, (3.5)

where diag(λi
self ) is a N − 1×N − 1 diagonal matrix having entries λi

self , sorted according to the node

index i = 2, ..., N . The first node is the center of the star. It interacts with itself (at the past time
lag) with probability λ1

self , and with each of the other nodes with probability λout or λin, respectively
13
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Figure 2. Receiving Operating Characteristic (ROC) curves built with the p-values
associated with the test statistics of either the Likelihood-Ratio (LR) method (2.8) and
the kernel-based non-parametric approach by [Hong et al., 2009], used as binary clas-
sifiers depending on some threshold value, i.e. the test significance level. We use the
GARCH-type model with T = 10000 as Data Generating Process (DGP), under the null
hypothesis NULL or under the alternative hypothesis ALTER1 (left) or ALTER2 (right),
with one half probability over a sample of 5000 simulations. The model parameters are
as in the main text. In implementing the LR test, the blue curve is obtained by imposing
the order p = 1 of the autoregressive process, whereas the black dotted curve is obtained
by optimally selecting the order with the Bayesian Information Criterion. The method
by Hong et al. is implemented with the Daniell kernel with a M = 5 (red solid line) or
M = 10 (red dotted line).
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Figure 3. Receiving Operating Characteristic (ROC) curves built for both the
Likelihood-Ratio (LR) test (2.8) and the kernel-based non-parametric approach by
[Hong et al., 2009]. Data are generated by the VDAR(1) model (2.3) with p = 1 and
sample size T = 10000, but Bernoulli marginals with a dependence structure described
by a Gaussian copula having zero mean and correlation parameter equal to 0.75 (left)
or −0.75 (right). The model parameters are: ν1 = 0.05, ν2 = 0, χ1, χ2 = 0.05, λ2 = 0,
and λ1 = 0 under the null H

0, or λ1 ∼ U(0, 1) under the alternative hypothesis H
A.

In implementing the LR test, the blue curve is obtained by imposing the order p = 1
of the autoregressive process, whereas the black dotted curve is obtained by optimally
selecting the order with the Bayesian Information Criterion. The method by Hong et al.
is implemented with the Daniell kernel with a M = 5 (red solid line) or M = 10 (red
dotted line).
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Figure 4. Pictorial representation of both out and mixed stars, as explained in the main
text, (a and d) together with the validated networks of interactions by means of the two
methods of Granger causality in tail, namely Hong et al. (b and e) and LR test (c and
f).

for outward or inward interactions. Any other node i interacts with itself (at the past time lag) with
probability λi

self , i = 2, ..., N , and with the central node. In particular, we consider two cases: (i) the out

star where the N − 1 nodes are ‘Granger-caused’ by the first node, obtained setting λin = 0, λout = 1/2,
and v ≡ 1N−1 (the vector of N − 1 ones). In this case, λ1

self = 1 and λi
self = 1/2 ∀i = 2, ..., N (as

required by normalization); (ii) the mixed star, where a subset of the nodes is ‘Granger-caused’ by the
first node, which, in turn, is ‘Granger-caused’ by the complementary set, obtained by setting λout = 1/2,

u and v random vectors of ones and zeros such that u + v = 1N−1
6, and λin = 1/

(

1 +
∑N−1

j=1 uj

)

. In

this case, λ1
self = 1/

(

1 +
∑N−1

j=1 uj

)

while λi
self with i 6= 1 is 1/2 if i is ‘Granger-caused’, 1 otherwise

(again, as required by normalization). In both cases, we set νi = 1/2 and χi = χ ∀i = 1, ..., N , with
varying χ ∈ (0, 1/2]. A pictorial representation of the two cases is shown in panels a and d of Figure 4.

Hence, a node ‘Granger-causes’ another node if a directional link exists in the star. Thus, once the
data are generated by the VDAR(1) model, we can obtain both the power and the size of the statistical
tests of Granger causality in tail by considering how each method is able to reconstruct on average the
network of interactions. Notice that both the statistical method by [Hong et al., 2009] and the LR test
based on the statistic Λ (2.8), being pairwise approaches, detect causal interactions in the network by
considering sequentially couples of nodes, whereas the statistical validation of the interactions in the
VDAR(1) process by means of Decimation is an effectively multivariate approach.

The TPR and FPR for the three methods in each of the two cases, namely the out and the mixed stars,
are shown in Figure 5. The rejection rates are plotted for varying frequency of tail events, controlled by
the parameter χ. In the left panels, we notice that all three methods are powerful in rejecting in both
cases the null hypothesis when a causal link is present in the stars. However, the right panels show that
the rate of false rejections is quite high when we adopt the method by Hong et al. or the LR test. When
considering the out star, the FPR associated with the method by Hong et al. converges quickly to one as
the frequency of tail events increases, i.e. the null hypothesis is always rejected for any possible couple
of non-interacting nodes. The approach based on the LR test outperforms slightly the method by Hong
et al., nevertheless it displays a very high FPR. When considering instead the mixed star, the rate of
false rejections of both tests is significantly larger than the significance level of 5% (with the exception
of the LR test in the case of really low frequency of tail events), and, again, the approach based on
the test statistics Λ (2.8) outperforms the method by Hong et al. Both the pairwise tests, therefore,
have a non-satisfactory performance in presence of network effects. On the contrary, the multivariate
approach based on the statistical validation of the interaction terms in the VDAR(1) process by means of

6u is a random vector having each entry equal to either one or zero, depending on the realization of a Bernoulli random
variable with one half success probability. The vector v is complementary to u, such that u+ v = 1N−1.
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Figure 5. True Positive Rate (TPR) and False Positive Rate (FPR) as a function of
the frequency of tail events (or, equivalently, χi = χ ∈ (0, 1/2), ∀i = 1, ..., N in (2.9))
for the three methods: the test by Hong et al., the LR test with statistic Λ (2.8), and
the statistically validation of the interaction terms of the VDAR(1) process by means
of Decimation. Data are generated by the VDAR(1) model as described in the main
text. Top panels refer to the case of out star, while bottom panels to mixed star. The
significance level is 5%, but corrected with the False Discovery Rate (FDR) method
to take into account the effect of multiple testing comparison. Each value and the
corresponding error bar are the mean and the standard deviation, respectively, over a
sample of 100 simulation.

Decimation shows a False Positive Rate below the threshold of the significance level, very close to zero,
for both the out and the mixed stars.

The very high rate of false rejections associated with the pairwise causality analysis is the combination
of two effects: first, a misspecification of the information set and, second, non-zero autocorrelation.
When considering the out star, the central node ‘Granger-causes’ all the others, but false positives are
detected in both directions between non-interacting nodes when the information on the central node is
not considered (compare panels a and c of Figure 4). This happens both for the LR test based on the
statistic Λ (2.8) and for the Hong et al. test. Moreover, when the binary time series have non-zero
autocorrelation, the test by Hong et al. mistakenly detects an additional causal interaction from the
outer nodes to the central node (panel b of Figure 4). In this case, the validated network of interactions
becomes, on average, the complete graph, i.e. a graph with all possible links, since both the TPR and
the FPR converge to one. Similar spurious causality arises for the mixed star. When A causes B, and B
causes C, a spurious causality can be detected from A to C, if B is not considered. This causes spurious
links in the network reconstructed by the LR test (compare panels d and f of Figure 4) and also by the
Hong et al. test. The latter also detects spurious links in presence of non-zero autocorrelation, see panel
e. The multivariate approach is not prone to any of these mistakes, since it reconstructs correctly the
networks of interactions shown in panels a and d.

4. Empirical application on the US Stock Exchange market

To illustrate our novel method for testing Granger causality in tail, we now consider an application to
high frequency data of a portfolio of financial stocks belonging to the Russell 3000 Index, traded in the
US equity markets (mostly NYSE and NASDAQ). An empirical characterization of such high frequency
data can be found in [Calgagnile et al., 2018]. Here, we adopt the same filtering procedure introduced in
[Bormetti et al., 2015] to obtain the time series of the extreme events of stock returns, then we apply our
method to detect the causal relations between stocks.

4.1. Data filtering and extreme events of stock returns. We consider 39 highly liquid stocks
traded in the US markets from 2000 to 2012. We use one-minute closing price data during the regular
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US trading session, i.e. from 9:30 am to 4:00 pm. Hence, we define the return at the one minute time
scale as r̃it ≡ logP i

t /P
i
t−1 where P i

t is the price of stock i at time t, with i = 1, ..., 39 and the t = 1, ..., T
where T is about 98000 per year (this number depends on the effective number of trading days within
the year).

Intraday returns are first filtered because of the presence of the well-known U-shape pattern for volatil-
ity within a trading day, i.e. prices exhibit typically larger movements at the beginning and at the end
of the day. The raw return r̃id,t of generic stock i at day d and intraday time t is rescaled by a factor ui

t,

rid,t =
r̃id,t
ui
t

,

where

ui
t =

1

Ndays

∑

d′

|r̃id′,t|

sid′

,

with Ndays indicating the number of days in the sample and sid′ the standard deviation of absolute

intraday returns of day d′. Rescaled returns {rit}
i=1,...,39
t=1,...,T no longer possess any daily regularities.7

To estimate the spot (i.e. instantaneous) volatility σi
t, we use the method of realized bipower varia-

tion8 by [Barndorff-Nielsen and Shephard, 2004] with threshold correction for the presence of jumps by
[Corsi et al., 2010] and using exponentially weighted moving averages of returns, see also [Bormetti et al., 2015].
That is, volatility is estimated through returns which are not identified as jumps (i.e. returns whose abso-
lute value is not larger than a threshold value θ times the local volatility). Using exponentially weighted
moving averages, the spot variance is estimated recursively as

(σi
t)

2 = µ−2
1 α|rit′′ ||r

i
t′ |+ (1− α)(σi

t−1)
2

with µ1 =
√

2/π, α = 2/61, and where t′′ and t′ are such that t′′ < t′ 6 t − 1,
|ri

t′′
|

σi

t′′
6 θ,

|ri
t′
|

σi

t′
6 θ, and

|riτ |
σi
τ

> θ for each t′′ < τ < t′ and for each t′ < τ < t. The value of the parameter of the exponentially

weighted moving average α corresponds to an effective time window of about 20 minutes.
Finally, we say that an extreme return occurs for stock i at time t when

rit
σi
t

< −θ. (4.1)

Notice that, after removing intraday seasonality and volatility patterns, returns are approximately
Gaussian distributed [Cont, 2001]. Then the parameter θ determines the quantile of the return distribu-
tion which is considered to be a tail, i.e. −θ × σi

t. We use θ = 4 in the present analysis, corresponding
to a probability of a tail event equal to about 0.1%. This choice is motivated by a sensitivity analysis of
Granger causality networks built for different values of θ, where we have found that the outputs of the
causality analysis are qualitatively similar in a range around θ = 4.

By using condition (4.1), we build the binary time series {X i
t}

i=1,...,39
t=1,...,T of extreme events for the US

stocks.

4.2. Causal relations in the US stock exchange market. We now consider the directed network
of causal interactions between extreme events of the underlying stock return dynamics. Again, we stress
that the output of the causality analysis depends largely on the adopted method, thus the importance of
understanding strengths and weaknesses of each statistical test of Granger causality in tail.

In building the Granger causality network, we can adopt either a multiple hypothesis testing approach
based on pairwise causality analysis or the multivariate approach based on the statistical validation of
off-diagonal couplings. In the first case, given N time series of extreme events and considering either the
novel LR test or the one by Hong et al., we construct the network by applying the Granger causality
test to all the possible N(N − 1) pairs. Then, assume we aim to obtain some overall significance level
for the multiple testing. Because of N(N − 1) simultaneous tests, a correction to the significance level

7In principle, the described procedure to filter out the intraday pattern could be problematic since it uses future returns
to rescale the return at the current time, thus introducing future information in a testing procedure which is based on
forecasting. Nevertheless, the intraday seasonality pattern tends to be quite constant in our sample. For this reason it can
be expected that the filtering procedure does not significantly affect the output, as we verified by using rescaling factors
estimated using only past information. The latter procedure, however, requires removing from the analysis a significant
amount of data, while we prefer to present here results for the whole sample.

8The method of realized bipower variation with threshold estimation for volatility filtering is preferred to the estima-
tion method based on realized variance, since it has been proved the existence of a bias in the presence of jumps, see
[Barndorff-Nielsen and Shephard, 2004], by assuming the existence of an underlying continuous-time stochastic volatility
process.
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Figure 6. Link density (left), reciprocity coefficient (middle), and normalized number of
closed triangles (right) of the Granger causality networks obtained with the three different
methods, i.e. the LR test with test statistic (2.8) (black), the test by [Hong et al., 2009]
(red), and Decimation applied to the VDAR(1) model (blue).
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Figure 7. Fraction of causal links validated by the LR test and described by the
VDAR(p) model with p (as in the legend) optimally selected by the Bayesian Infor-
mation Criterion (left). Mean node degree for both outgoing (middle) and incoming
(right) causal links of the US stocks belonging to the Financial Sector, namely BAC, C,

AXP, and WFC, i.e. k̄finout and k̄finin respectively, are rescaled by the mean overall degree
k̄ of the corresponding Granger causality network. Dotted lines represent the mean over
the period, for the Granger causality networks obtained according to the LR test (black)
or Hong et al. (red). In the right panel, the mean value of the rescaled in-degree for the
LR test is computed over two disjoint time windows, before and after 2006.

of each single test needs to be considered to take into account the increased chance of rare events and
therefore, the increased probability of false positive (i.e. rejections) [Tumminello et al., 2011]. In the
present analysis, the overall significance level is set to 5% and the False Discovery Rate (FDR) method
[Benjamini and Hochberg, 1995] is applied to correct the p-value of each single test. In the second case,
adopting the multivariate approach based on the VDAR(1) model, the network of causal interactions is
validated by means of Decimation, thus the overall significance level is implicitly defined by the validation
procedure. Finally, we use the three different methods to build the corresponding Granger causality
networks with the data of (left) extreme events of 39 US stocks filtered as above, and considering one
year at the time from 2000 to 2012.

Figure 6 shows some characteristics of the different causality networks. First, the number of validated
causal interactions differs significantly if we use the methods based on discrete autoregressive processes or
the one proposed by Hong et al., the latter describing an almost complete graph, see the left panel of Figure
6. By using the Jaccard index9 to compare two causality networks, we measure a value between 0.4 and
0.5 for the Granger networks obtained with both the pairwise VDAR and the multivariate approach for
almost all periods, signalling many common causal links between the two networks. On the contrary, we

9The Jaccard similarity coefficient between two sample sets is defined as the size of their intersection divided by the size
of their union (of the links in the two networks).
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measure a much smaller value (between 0.1 and 0.2) when comparing the Granger network obtained with
the test of Hong et al. with the others. In the previous section, we noticed how spurious effects may be
present in the multivariate case if we adopt a pairwise approach. In particular, the detection of causality
in both directions or in triangular loops may be due to non-zero autocorrelation and misspecification
of the information set. Possible metrics capturing such network effects are the reciprocity coefficient10

measuring the likelihood of nodes to be mutually linked, and the number of closed triangles11. The middle
panel and the right panel of Figure 6 show the two network metrics for the three Granger networks and,
again, we can notice how reciprocated casual links and triangular interactions are largely over-expressed
in the causality network obtained with the method of Hong et al., thus suggesting the presence of spurious
detections. It is interesting to notice that during the first year of the US financial crisis of 2007− 2008
reciprocity of causal links in the network obtained with the LR test displays a significant increase with
respect to the mean level of reciprocity during the whole considered period.

An interesting empirical observation concerns how memory in causal links depends on the financial
cycle. We notice that during turmoil periods for the US stock exchange markets, i.e. the dot-com bubble
of 2000 − 2001 and the subprime mortgage crisis of 2007 − 2008, non-Markovian effects become more
important, as testified by the fraction of causal links better described by a VDAR(p) model with p > 1
(optimally selected by the Bayesian Information Criterion), see the left panel of Figure 7.

Finally, we consider the stocks belonging to the financial sector, i.e. BAC, C, AXP, and WFC. The
middle and right panel of Figure 7 show the average value over this set of stocks of both the out-degree
and the in-degree, i.e. the mean number of outgoing and incoming causal links, respectively. Each value
is rescaled by the average degree of the causality network. We compare the Granger causality network
obtained by either our method or the one of Hong et al. We find that the two methods describe the
subsystem of financial stocks quite differently: while, according to Hong et al., the financial sector is on
average equivalent to any other one, the VDAR method suggests that the financial sector ‘Granger-causes’
more than the others over all the considered period, since the ratio in the middle panel of Figure 7 is above
one. Moreover, there is a transition around 2005− 2006 in the average number of causal links pointing to
the financial stocks, thus highlighting a scenario where the other sectors began to cause less the financial
sector before the crisis, while, at the same time, financial stocks started to cause more the other sectors.
This example application shows how our novel method reveals causal patterns that go undetected using
other approaches, thanks to its proper accounting of both auto-correlations, instantaneous correlations
(i.e. “co-jumps”), and/or network effects between financial time series of extreme events.

5. Conclusions

Based on the definition of Granger causality in tail, we propose a novel statistical approach in the
original spirit of Granger, to test whether the information on extreme events of one time series is statis-
tically significant in forecasting extreme events of a second time series, by introducing the multivariate
generalization of the discrete autoregressive process, namely VDAR(p). We devise a method based on
the Likelihood-Ratio test statistic which is able to detect causal interactions between two time series,
while also correctly identifying the time scale of the causal interaction. Then, to overcome the limit of
the pairwise causality analysis resulting in spurious detections because of neglected variables, we also
propose a statistical method for the multivariate case with Markovian dynamics. Finally, we highlight
the importance of disentangling true causalities from false detections, and we prove the dependence of
the results from the used statistical method. To this end, we present also a comparative study with the
current standard in literature represented by the test of [Hong et al., 2009].

Simulation studies show that the proposed test of Granger causality in tail has both good power and
good size in finite samples, against a large variety of data generating processes. We show numerically that
the proposed method and the test of Hong et al. differ under some circumstances. In particular, the test
by Hong et al. displays some sensitivity to auto-correlation of the time series of extreme events, resulting
in spurious effect of two-way causality detection in the presence of unidirectional relations, a drawback
which is solved by our method. Then, we prove numerically how network effects may result in spurious
detections of triangular interactions due to the misspecification of the information set in the pairwise
causality analysis, a second drawback which is solved by our multivariate approach. Furthermore, we

10The reciprocity coefficient is defined as the ratio of the number of links pointing in both directions to the total number
of links.

11A normalized measure for the number of closed triangles in a network can be defined as the ratio of the number of
subgraphs of three nodes (i.e. triplets) which are connected each other independently from link directions, with the number
of all possible triplets, both open and closed.
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highlight some signals which may be associated with false detections in networked systems, namely the
high rate of either reciprocated causal links or triangular loops.

The empirical application to high frequency data of the US stock exchange points out how the output
of the causality analysis depends significantly on the adopted statistical procedure. In particular, we
find that the network of causal interactions is sparse and the memory of the causation process depends
on the financial cycles, with significant non-Markovian effects during financial crises. A focus on the
financial sector reveals that financial stocks ‘Granger-cause’ more than the others, especially during
turmoil periods, and started to be ‘Granger-caused’ less before the financial crisis of 2007− 2008. On the
contrary, the method by Hong et al. describes a network which is dense, without displaying any specific
pattern for the financial sector, whose stocks are on average equivalent to the others.
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Appendix A. Inference of Discrete Autoregressive Models

The Maximum Likelihood Estimators (MLE) of the VDAR(p) models (2.3) and (2.9) is as follows.

A.1. MLE of bivariate VDAR(p). Assume to observe the binary time series {X,Y } ≡ {Xt, Yt}t=1,...,T

and we aim to obtain the maximum likelihood estimator of the parameters ν1, λ1, χ1, and γ11 ≡ {γ11,k}k=1,...,p,
γ12 ≡ {γ12,k}k=1,...,p (or, equivalently, ν2, λ2, χ2, and γ21 ≡ {γ21,k}k=1,...,p, γ22 ≡ {γ22,k}k=1,...,p). The
log-likelihood of observing the time series X given the information on Y according to the bivariate
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VDAR(p) model is

logP(X|Y , ν1, λ1, χ1,γ11,γ12) = log

T
∏

t=p+1

P(Xt|Xt−1, ..., Xt−p, Yt−1, ..., Yt−p, ν1, λ1, χ1,γ11,γ12) =

=
T
∑

t=p+1

log

[

ν1

(

(1− λ1)

p
∑

k=1

γ11,kδXt,Xt−k
+ λ1

p
∑

k=1

γ12,kδXt,Yt−k

)

+ (1− ν1)(χ1)
Xt(1− χ1)

1−Xt

]

,

(A.1)

by using the chain rule and conditioning on Y and the first p observations X1, ..., Xp, where δA,B is the
Kronecker delta taking value equal to one if A = B and zero otherwise.

MLE of the parameters is obtained by maximizing the log-likelihood via gradient descendent methods
[Hastie et al., 2005], or finding the point estimate by solving iteratively the following system of equations











∂φ logP(X|X, ν1, λ1, χ1,γ11,γ12) = 0, ∀φ = ν1, λ1, χ1,

∂γ11,k
logP(X|Y , ν1, λ1, χ1,γ11,γ12) = 0, ∀k = 1, ..., p− 1,

∂γ12,k
logP(X|Y , ν1, λ1, χ1,γ11,γ12) = 0, ∀k = 1, ..., p− 1,

(A.2)

together with the conditions γ11,p = 1− γ11,1 − ...− γ11,p−1 and γ12,p = 1− γ12,1 − ...− γ12,p−1.
In both cases, the estimation algorithm needs a starting point. A random point in the parameter space

can be used. However, we suggest to adopt the solution of the Yule-Walker equations for the VDAR(p)
model.

A.1.1. Yule-Walker equations for VDAR(p). By taking expectations of both sides of Equation (2.3), we
obtain

{

E(Xt) = ν1((1 − λ1)
∑p

k=1 γ12,kE(Xt−k) + λ1

∑p
k=1 γ12,kE(Yt−k)) + (1− ν1)χ1

E(Yt) = ν2(λ2

∑p
k=1 γ21,kE(Xt−k) + (1 − λ2)

∑p
k=1 γ22,kE(Yt−k)) + (1− ν2)χ2.

(A.3)

This is formally equivalent to the expectation of a bivariate VAR(p) model [Tsay, 2005]

E(Zt) = φ0 +

p
∑

k=1

ΦkE(Zt−k) (A.4)

with φ0 ≡ {φ0,1, φ0,2} and Φk as 2 × 2 matrix ∀k = 1, ..., p, by using a suitable one-to-one mapping of
parameters and with Zt ≡ (Xt, Yt)

′.
It is also trivial to show the following identity

E(Z̃tZ̃
′
t−k) = ΦkE(Z̃t−1Z̃

′
t−k) ∀k = 1, ..., p, (A.5)

where the tilde indicates the mean subtracted variable.
The Yule-Walker estimator of the parameters φ0,Φk, ∀k = 1, ..., p is a standard result of time series

analysis, see [Tsay, 2005] for a reference, and can be obtained by solving the linear system (A.5) for the
entries of Φk ∀k = 1, ..., p, then solving (A.4) for φ0. Finally, the estimated parameters of the bivariate
VDAR(p) model are obtained by inverting the one-to-one mapping between (A.3) and (A.4).

A.1.2. Optimal selection of p. Assume to estimate the bivariate VDAR(p) model (2.3) for different orders
p, thus asking for the value of p describing better the data. The optimal p can be selected by using the
Bayesian Information Criterion (BIC) [Hastie et al., 2005], as follows. The BIC statistic is defined as

BIC(p) = 2(2p+ 1) logT − 2 logP(X,Y |Θ̂(p)) (A.6)

where Θ̂(p) is the MLE of the 2(2p+ 1) VDAR(p) parameters and T is the sample size. Notice that

logP(X,Y |Θ̂(p)) = logP(X|Y , Θ̂(p)) + logP(Y |X, Θ̂(p)), (A.7)

where logP(X|Y , Θ̂(p)) is as in (A.1) (and a similar relation holds for logP(Y |X, Θ̂(p))), by using the
chain rule. Finally, the optimal value of p is the one associated with the lowest BIC.

A.2. MLE of DAR(p). In implementing the Likelihood-Ratio test, the MLE of the DAR(p) model is
required to obtain the test statistics (2.8). The maximum likelihood inference of the DAR(p) model (2.1)
is similar to the case of VDAR(p), but without dependence on Y , thus resulting in imposing λ1 = 0
and γ12,k = 0 ∀k = 1, ..., p in (A.1). Then, the inference process follows similarly as described before.
The Yule-Walker estimator of the DAR(p) model is described in [Jacobs and Lewis, 1978]. The optimal
selection of the order p is as before.
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A.3. MLE of multivariate VDAR(1) and Decimation of coupling parameters. Assume to ob-

serve the binary time series X ≡ {X i
t}

i=1,...,N
t=1,...,T following the VDAR(1) process (2.9) and looking at the

maximum likelihood estimator of model parameters ν ≡ {νi}i=1,...,N , λ ≡ {λij}i,j=1,...,N with conditions
∑N

j=1 λij = 1 ∀i = 1, ..., N , and χ ≡ {χi}i=1,...,N . The log-likelihood of observing the time series X is

ℓ(X,ν,λ,χ) ≡ logP(X2, ...,XT |X1,ν,λ,χ) = log

T
∏

t=2

P(Xt|Xt−1,ν,λ,χ) =

=

T
∑

t=2

N
∑

i=1

log



νi

N
∑

j=1

λijδXi
t ,X

j

t−1

+ (1− νi)(χi)
Xi

t (1 − χi)
1−Xi

t



 ,

(A.8)

by using the chain rule and conditioning on the first observation X1, where δA,B is the Kronecker delta
taking value equal to one if A = B and zero otherwise.

MLE of the parameters is obtained by maximizing the log-likelihood via gradient descendent methods
[Hastie et al., 2005]. Since the number of parameters is of order O(N2), thus sharply increasing with the
number of variables N , it is preferable to adopt the solution of the Yule-Walker equations associated with
the VDAR(1) model (2.9), instead of a random input, as starting point of the gradient descent method.

A.3.1. Yule-Walker equations for VDAR(1). Similarly to before, The Yule-Walker equations of the VDAR(1)
model are formally equivalent to the ones of the VAR(1) model [Tsay, 2005]

E(Xt) = φ0 + Φ1E(Xt−1) (A.9)

with φ0 ≡ {φ0,i}i=1,...,N and Φ1 ≡ {Φ1,ij}i,j=1,...,N , and by using a suitable one-to-one mapping between
the two sets of parameters {ν,λ,χ} and {φ0,Φ1}. In particular, it is















νi =
∑N

j=1 Φ1,ij , ∀i = 1, ..., N

λij =
Φ1,ij∑

N
j=1

Φ1,ij
, ∀i, j = 1, ..., N − 1

χi =
φ0,i

1−
∑

N
j=1

Φ1,ij
, ∀i = 1, ..., N

(A.10)

where
∑N

j=1 λij = 1, by construction.
It is also trivial to show the following identity

E(X̃tX̃
′
t−1) = Φ1E(X̃t−1X̃

′
t−1), (A.11)

where the tilde is for indicating the mean subtracted variable.
Thus, the Yule-Walker estimator of the parameters φ0,Φ1 is a standard result of time series analysis,

see [Tsay, 2005] for a reference, and can be obtained by solving the linear system (A.11) for Φ1, then
solving (A.9) for φ0. Finally, the Yule-Walker estimator of the parameters of the V-DAR(1) model is
obtained by inverting the one-to-one mapping (A.10).

A.3.2. Decimation of VDAR(1). The MLE λ̂ of the parameter {λij}i,j=1,...,N need to be validated to
reveal the causal interactions between the random variables {Xi}i=1,...,N , and a possible procedure is the
so-called Decimation [Decelle and Ricci-Tersenghi, 2014, Decelle and Zhang, 2015]. It was shown to be
working best for the kinetic Ising model [Campajola et al., 2019], which is a logistic regression model for
binary random variables. Decimation aims at pruning any parameter which is considered as unnecessary
to increase the likelihood. The process starts by setting parameters to zero based on their absolute size,
starting with the smallest one, and stops when a transformed likelihood function ℓ̃ is maximized,

ℓ̃(q) = ℓ(q)− [(1− q)ℓmax + qℓ0], (A.12)

where q is the fraction of pruned parameters, ℓ(q) is the log-likelihood (A.8) of the model (2.9) with

q pruned parameters, ℓmax is the log-likelihood of the full model obtained with MLE λ̂, and ℓ0 is the
log-likelihood (A.8) of the VDAR(1) model with parameters λij set to 0, ∀i, j = 1, ..., N (i.e. considering
data as generated by Bernoulli marginal distributions). The output of the regularization method is a set

of validated parameters, in particular a matrix λ̃ of couplings which is sparser than the initial MLE λ̂.
Thus, a non-zero entry λ̃ij of the matrix λ̃ describes a Granger causality in tail relation from j to i.
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