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CLASSIFYING WORD PROBLEMS OF FINITELY GENERATED

ALGEBRAS VIA COMPUTABLE REDUCIBILITY

VALENTINO DELLE ROSE, LUCA SAN MAURO, AND ANDREA SORBI

Abstract. We contribute to a recent research program which aims at revisit-
ing the study of the complexity of word problems, a major area of research in
combinatorial algebra, through the lens of the theory of computably enumerable
equivalence relations (ceers), which has considerably grown in recent times. To
pursue our analysis, we rely on the most popular way of assessing the complex-
ity of ceers, that is via computable reducibility on equivalence relations, and its
corresponding degree structure (the c-degrees). On the negative side, building
on previous work of Kasymov and Khoussainov, we individuate a collection of
c-degrees of ceers which cannot be realized by the word problem of any finitely
generated algebra of finite type. On the positive side, we show that word problems
of finitely generated semigroups realize a collection of c-degrees which embeds rich
structures and is large in several reasonable ways.

1. Introduction

In recent years, computably enumerable (or, simply, c.e.) equivalence relations, often
called ceers after [10], have been widely studied. One of the reasons motivating this
interest lies in the fact that ceers arise naturally in combinatorial algebra as word
problems of familiar c.e. algebraic structures like groups, semigroups, rings, and
so on. By a c.e. structure A, we will mean in this paper a nontrivial algebraic-
relational structure for which there exists a c.e. presentation, i.e. a structure Aω

of the same type as A but having universe ω, possessing uniformly computable
operations, uniformly c.e. relations, and a ceer “A which is a congruence on Aω

such that A » Aω{“A
, i.e. A is isomorphic with the quotient structure obtained

by dividing Aω by “A. The ceer “A is called in this case the word problem of
A (or, rather, of its given c.e. presentation). Selivanov’s survey paper [31] (c.e.
structures are therein called positive structures) and Khoussainov’s survey paper [22]
are excellent introductions to c.e. structures.

Word problems appeared in mathematics in 1911, when Dehn [6] introduced the
word problem for finitely presented groups, with the goal of addressing the topolog-
ical issue of deciding whether two knots are equivalent. Nowadays, much is known
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about the complexity of word problems for various algebraic structures. Most no-
tably, the Novikov-Boone theorem [29, 5]—one of the most spectacular applications
of computability theory to general mathematics—states that the word problem for
finitely presented groups is undecidable.

Yet, a basic obstacle towards a full understanding of word problems is that the
computability theoretic machinery commonly employed to measure their complexity
(e.g., Turing reducibility) is defined for sets, while it is generally acknowledged that
many computational facets of word problems emerge only if one interprets them
as equivalence relations. For example, if G is a c.e. group, then it is immediate to
see that the equivalence classes of “G are uniformly computably isomorphic with
each other. It follows that in a group, the individual word problems (i.e., to decide
equality to a word w, as w changes) have all the same complexity. This is not the
case for semigroups: Shepherdson [32] proved that from any uniformly c.e. sequence
tAi : i P ωu of sets, one can construct a finitely presented semigroup S such that
the collection of the Turing degrees of the individual word problems of S (i.e. the
equivalence classes of “S) contains all the Turing degrees of the various sets Ai.

Hence, to enrich the study of word problems, one shall lift the underlying com-
putability theoretic analysis from sets to equivalence relations. In this direction, it
is important to mention that starting from [12], Khoussainov and other authors have
conducted a systematic investigation of which c.e. structures have a word problem
coinciding with a fixed ceer: see also [9, 11]. Particularly important to this line of
research is an early result of Kasymov and Khoussainov [19] implying that no ceer
whose principal transversal (see Definition 1.6) is hyperimmune can be the word
problem of any finitely generated algebra of finite type. Other relevant papers,
which investigate how the computability theoretic properties of a ceer affect the
algebraic properties of the structures having that ceer as word problem, are [18, 23].

In this paper, we take a slightly different approach, namely we are interested in
investigating which ceers can be identified in a broader sense with word problems of
which c.e. structures, where, rather than mere coincidence, being identified means
in this case to lie in the same reducibility degree with respect to some reducibility
on equivalence relations which is suitable to measure their relative complexity. Pi-
oneering attempts at this approach can be found for instance in [28, 7]. The most
popular reducibility in this sense is the one given by next definition.

Definition 1.1. Given a pair of equivalence relations R,S on ω, we say that R is
computably reducible (or, simply, c-reducible) to S (denoted by R ďc S) if there
exists a computable function f such that

p@x, yqrx R y ô fpxq S fpyqs.

By means of this reducibility, we identify two equivalence relations R,S if R ďc S

and S ďc R (denoted by R ”c S). The c-degree of R is the equivalence class of R
under the equivalence relation ”c. Given a c.e. structure A, let us say that a ceer R
is c-realized by A, if R and “A have the same c-degree; let us also say that a c-degree
of ceers is c-realized by A if some ceer in the c-degree is c-realized by A (clearly,
this is equivalent to saying that all the ceers in the c-degree are c-realized by A).
Special attention should be given to the problem of finding families of structures
which are c-complete for the ceers, namely families of structures such that every
ceer R is c-realized by some structure lying in the family.
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As aforementioned, it is not difficult to see that the groups are not c-complete for
the ceers (observed in [10]; see [7, Fact 3.6] for a proof). On the other hand, it
has been shown in [7] that the semigroups are c-complete for the ceers. In fact, for
every ceer R there exists a c.e. semigroup S such that the two ceers R and “S are
c-equivalent, in fact they are isomorphic in the category of equivalence relations:
recall that two equivalence relations U, V on ω are called isomorphic if there is a
reduction f of U to V such that the range of f intersects all V -equivalence classes.
This implies that the reduction is invertible, i.e. there is a reduction g of V to U such
that f ad g invert each other on the equivalence classes, namely x U gpfpxqq and
x V fpgpxqq, for every number x: this isomorphism relation on equivalence relations
has been considered in several papers, including [11, 12, 2]; for a justificaton of the
name “isomorphism” given to it, see [8]. However, answering a question raised by
Gao and Gerdes in [10], one can build a ceer (see [7]) which is not c-realized by any
finitely generated semigroup, thus showing that the finitely generated semigroups
are not c-complete for the ceers.

In Section 2 (where, on the negative side, we are interested in describing ceers
which cannot be c-realized by finitely generated algebras of finite type) we show
(Theorem 2.4) that if R is a “hyperdark” ceer (by Definition 1.4 this means that
R has infinitely many equivalence classes and all of its infinite transversals are
hyperimmune), then R cannot be c-realized by any finitely generated algebra of
finite type. Thus, Theorem 2.4 generalizes to c-realizability the above mentioned
result of Kasymov and Khoussainov [19] which, in the terminology of Definition 1.4,
states that no hyperdark ceer can coincide with the word problem of any finitely
generated algebra of finite type: indeed our proof is a straightforward sharpening
of [19], based on the observation (see Lemma 2.3) that, for a ceer, the property
that every infinite transversal is hyperimmune is invariant under c-equivalence. In
Section 2.2 we give examples of hyperdark ceers: in particular, in Theorem 2.9 we
exhibit an example of a hyperdark ceer whose equivalence classes are all finite. On
the other hand (Theorem 2.10), we show that ceers having only finite classes are
bound to have an infinite transversal which is not hyperhyperimmune (hence, they
cannot be “hyperhyperdark”, see again Definition 1.4 below).

On the positive side, in Section 3 we investigate the collection Sf.g. of the c-degrees
of ceers which are c-realized by finitely generated semigroups. In this regard, The-
orem 2.4 is optimal, since if we drop from hyperimmunity to immunity then c-
unrealizability gets lost, as already shown by known results in the literature, in-
cluding the remarkable theorem of Myasnikov and Osin [27], proving that in fact
there exists an infinite finitely generated c.e. group with a word problem in which all
infinite transversals are immune. Another useful example (which we sketch in some
detail in Example 3.1) of an infinite two-generator c.e. semigroup with a word prob-
lem in which all infinite transversals are immune had been exhibited by Hirschfeldt
and Khoussainov [15]. The rest of Section 3 investigates the subclass of Sf.g. consist-
ing of the c-degreees of ceers possessing infinite transversals which are not immune.
We prove that this subclass of Sf.g. is large in several reasonable ways: for instance,
it contains an initial segment of the c-degrees of ceers with infinitely many equiva-
lence classes, which is order-isomorphic with the tree ωăω of finite strings of natural
numbers, partially ordered by the prefix relation on strings.

1.1. Notations and background. Our main reference for computability theory
is Soare’s textbook [33], to which the reader is referred for all unexplained notions.
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Throughout the paper when we talk about “degrees” without any further specifica-
tion, we will mean “Turing degrees”.

Let Ceers denote the collection of all ceers. A ceer is infinite if it has infinitely
many equivalence classes, it is finite otherwise. Let the symbols Inf , Fin, FinCl

and InfCl denote, respectively, the collection of infinite ceers, the collection of finite
ceers, the collection of ceers having only finite equivalence classes, and the collection
of ceers having only infinite equivalence classes.

Definition 1.2. The cylindrification of a ceer R is the ceer R8 given by

xi, xy R8 xj, yy ô i R j,

where x¨, ¨y denotes the Cantor pairing function.

Clearly R8 P InfCl, and R ”c R8.

A ceer R is dark if R P Inf and Idω ęc R, where Idω denotes the equality relation
on ω. Let the symbol dark denote the collection of dark ceers. Dark ceers have
been extensively studied in [2]. Being dark for a ceer can be conveniently described
using the notion of a transversal for an equivalence relation.

Definition 1.3. If R is an equivalence relation on ω, we say that a set T Ď ω is a
transversal of R if x��Ry, for every pair of distinct elements x, y P T .

It is now easy to check that a ceer R P Inf is dark if and only if it admits no infinite
c.e. transversal, or equivalently every infinite transversal of R is immune, i.e. it does
not contain any infinite c.e. set.1

Other stronger immunity notions have been widely considered in classical com-
putability theory, and we briefly recall their definitions. An array of sets of natural
numbers is a sequence pXnqnPω of sets of natural numbers. We say that a set X Ď ω

is intersected by a disjoint array pXnqnPω (disjoint means that Xn X Xm “ H if
n ‰ m) if, for all n, Xn X X ‰ H. An infinite set is hyperimmune if it is not
intersected by any strong disjoint array, i.e. a disjoint array pFnqnPω of finite sets,
presented by their canonical indices: hence Fn “ Dfpnq for some computable func-
tion f . Similarly, an infinite set is hyperhyperimmune if it is not intersected by any
weak disjoint array, i.e. a disjoint array pFnqnPω of finite sets, presented by their
c.e. indices: hence Fn “ Wfpnq for some computable function f .

In analogy with the definition of a dark ceer, these stronger immunity notions suggest
accordingly the following definition.

Definition 1.4. A ceer R is hyperdark (respectively, hyperhyperdark) if R P Inf and
all of its infinite transversals are hyperimmune (respectively, hyperhyperimmune).

Let us use the notations hdark and hhdark to denote, respectively, the collections
of hyperdark ceers and hyperhyperdark ceers. Clearly hhdark Ď hdark Ď dark,
as hyperhyperimmunity implies hyperimmunity, which in turn implies immunity.
Counterexamples witnessing proper inclusions among these classes of ceers can be
found by taking suitable unidimensional ceers RX , i.e. ceers of the form x RX y

if and only if x, y P X or x “ y, where X is a given c.e. set, and recalling some
well know facts of classical computability theory, which allow to draw the following

1We point out that, in the context of c.e. structures (for example in [15] and [23]), the terminology
algorithmically finite algebra is used to denote a c.e. algebra whose word problem is dark.
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conclusions: if X is simple but not hypersimple then RX P darkrhdark, and if X
is hypersimple but not hyperhypersimple then RX P hdarkrhhdark. Obviously,
RX P hhdark if X is hyperhypersimple, hence all these classes are nonempty.

Remark 1.5. In order to distinguish between ceers and their c-degrees, given a
class P of ceers we shall adopt the convention of denoting by Pc the collection of
c-degrees of the members of P.

1.2. On the transversals of a ceer. We conclude this section with some easy but
useful observations about the transversals of ceers, in particular of hyperdark ceers.
If R is an equivalence relation on ω, let us denote

TrpRq :“ tT P 2ω : T is a transversal of Ru.

The following definition points out an important element of TrpRq.

Definition 1.6. Given an equivalence relation R, its principal transversal TR is the
set comprised of the least elements of all R-equivalence classes.

It is immediate to see that if R is a ceer then its principal transversal is co-c.e..

The relevance of the principal transversal in the investigation of hyperdarkness is
highlighted by the following observations, where given any infinite set A of numbers,
we denote by pA the principal function of A, i.e. the function which enumerates A
in order of magnitude.

Lemma 1.7 (Folklore). If R is an equivalence relation on ω with infinitely many
equivalence classes, then for every infinite transversal T of R, the principal function
pT of T majorizes the principal function pTR

of the principal transversal, i.e. pT piq ě
pTR

piq for every i P ω.

Proof. Let T be an infinite transversal of R and for simplicity write pTR
piq :“ mi

and pT piq :“ ni. Now, either for every j ă i there exists k ă i such that nj R mk,
but then mi ď ni since ni R

Ť
kăirmksR; or there exists j ă i such that nj ��R mk for

every k ă i, but then nj R
Ť

kăirmksR hence mi ď nj ă ni. �

Corollary 1.8. If R P Inf then R P hdark if and only if TR is hyperimmune.

Proof. A well-known theorem by Kuznecov, Medvedev, and Uspenskii (see [33, The-
orem 5.3.3]) states that an infinite set A is not hyperimmune if and only if there
exists a computable function majorizing the principal function of A. Therefore if
TR is hyperimmune then so is any infinite transversal of R. �

2. Ceers not c-realized by finitely generated algebras of finite type

Theorem 2.4, the main result of this section, is essentially a consequence of Theo-
rem 2.1 in [19] (see also [11, 12]), with the addition of our Lemma 2.3.

Theorem 2.1. [19] If A “ pA,F q is an infinite c.e. algebra of finite type (i.e., F is
a finite set of operations) and the word problem “A is hyperdark, then every finitely
generated subalgebra of A is finite.

Proof. For later reference we sketch the proof, taken from [12]. Let A be as in the
statement of the theorem, and for every f P F let nf denote the arity of f . Suppose
that X Ď A is finite, with X ‰ H, but the subalgebra AX of A, generated by X, is



6 V. DELLE ROSE, L. SAN MAURO, AND A. SORBI

infinite. Define the sequence pXiqiPω of sets as follows. Let X0 :“ X; having defined
Xi let

Xi`1 :“ Xi Y ty : pDf P F qpD~x P X
nf

i qry “ fp~xqsu.

Clearly each Xi is a finite set of which one can uniformly compute the canonical
index, and the union

Ť
iPω Xi gives the universe of AX . Since AX is infinite, we have

that for every i there exists y P Xi`1 such that y ‰A z for every z P Xi. Thus we
can define a sequence pyiqiPω such that yi P Xi`1 and yi ‰A yj if i ‰ j, yielding that
the set T “ tyi : i P ωu is a transversal of “A. The function mpiq :“ maxpXi`1q
is obviously computable and maxptyi : i ď nuq ď mpnq, for every n. On the other
hand, it is clear that pT pnq ď maxptyi : i ď nuq, for every n. Therefore, “A is not
hyperdark, as its infinite transversal T is not hyperimmune. �

Corollary 2.2. If A is an infinite finitely generated c.e. algebra of finite type then
the word problem “A of A is not hyperdark.

Proof. Immediate. �

Before proving Theorem 2.4, we observe:

Lemma 2.3. If R P hdark, E P Inf , and E ďc R, then E P hdark.

Proof. Suppose that R P hdark, E ďc R, and E P Inf rhdark. As E ”c E8 and
R ”c R8, we have that E8 ďc R8. It is easy to see that if U, V are ceers with
U ďc V and V P InfCl then U ďc V via a 1-1 computable function, see for instance
[1, Remark 1.2]. Thus, suppose that f0, f1 are 1-1 computabe functions reducing
E ďc E8 and E8 ďc R8, respectively. Let T be an infinite non-hyperimmune

transversal of E. Clearly the set pT :“ pf1 ˝ f0qrT s (i.e. the image of T under the

composition f1 ˝f0) is an infinite transversal of R8, and one easily sees that pT is not
hyperimmune, since, by injectivity, f1˝f0 maps any strong disjoint array intersecting

T to a strong disjoint array intersecting pT . By Lemma 1.7, it follows that the
principal transversal TR8 of R8 is not hyperimmune, and thus the principal function
pTR8

of this transversal is majorized by some computable function g. On the other
hand by definition of cylindrification, for every i we have that pTR8

piq “ xni, 0y for
some ni, and the set tni : i P ωu coincides with the principal transversal TR of R,
with principal function pTR

piq “ ni. It immediately follows by Corollary 1.8 that
TR is not hyperimmune, as pTR

piq “ ni ď xni, 0y “ pTR8
piq ď gpiq. �

Theorem 2.4. If R P hdark then R is not c-realized by any finitely generated
algebra of finite type.

Proof. The claim follows by Corollary 2.2, and the fact that, by Lemma 2.3, mem-
bership in hdark is ”c-invariant, i.e. if E,R are ceers with R ”c E then E P hdark

if and only if R P hdark. �

2.1. Π0
1 classes consisting of infinite transversals. An easy consequence of

Theorem 2.4 is that for every infinite finitely generated c.e. algebra A of finite type
there exists a nonempty Π0

1 class containing only infinite transversals of the word
problem of A. Recall that a subset A of the Cantor space 2ω is called a Π0

1 class
if A has a Π0

1 definition, i.e. is of the form A “ tA P 2ω : p@n qRpA,nqu, for some
decidable predicate R Ď 2ω ˆ ω. (The Π0

1 classes are also known as the effectively
closed subsets of the Cantor space; it is well-known that a class A Ď 2ω is a Π0

1 class
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if and only if A coincides with the collection of the infinite paths of some decidable
tree).

Lemma 2.5. For every ceer R, TrpRq is a nonempty Π0
1 class of the Cantor space.

Proof. The claim follows from the observation that if R is a ceer then

TrpRq “ tT P 2ω : p@x, yqrx, y P T & x ‰ y ñ x ��R ysu,

which provides a description of TrpRq as a Π0
1 set since the complement of R is

co-c.e. . �

Lemma 2.6. If A is an infinite finitely generated c.e. algebra of finite type, then
Trp“Aq contains a nonempty Π0

1 class of the Cantor space, consisting of infinite
non-hyperimmune transversals.

Proof. Let A be as in the statement of the lemma and let tXi : i P ωu be the class of
finite sets constructed in the proof of Theorem 2.1, starting with X0 :“ X, a finite
set of generators of A. Consider

A :“ Trp“Aq X tT P 2ω : p@i ą 0 qrT X Xi ‰ Hsu.

By its very definition, all members of A are infinite and non-hyperimmune, and A is
nonempty because it contains the transversal T built in the proof of Theorem 2.1. �

Remark 2.7. By well-known basis theorems for Π0
1 classes of the Cantor space

(see e.g. [17]) we have that the class A in the proof of Lemma 2.6 always contains
transversals of special computability-theoretic interest, for instance transversals of
low Turing degree, and transversals of hyperimmune-free degree (we recall that a set
X ďT H1 is low if X 1 ”T H1, and a set is of hyperimmune-free degree if its Turing
degree does not contain any hyperimmune set).

In particular we see that the class A in the proof of Lemma 2.6 contains transver-
sals of hyperimmune-free degree. Of course, none of these transversals can be the
principal transversal if “A is undecidable, since for every undecidable ceer R P Inf ,
we have that its principal transversal TR, being co-c.e. and not decidable, has hy-
perimmune degree.

2.2. Hyperdark ceers: some examples. By the discussion immediately follow-
ing Definition 1.4 we know that hyperdark ceers do exist, as if X is a hyper-
simple set then RX is hyperdark. This gives an example of a hyperdark ceer
R R FinClY InfCl. Its cylindrification R8 provides an example of a hyperdark
ceer R8 P InfCl. We now provide an example lying in FinCl. We first prove the
following lemma.

Lemma 2.8. There exists a ceer R P FinCl such that H1 ďT T , for every infinite
transversal T of R.

Proof. The proof will make use of the well-known result (proved by Martin [26], and
independently by Tennenbaum [34]) that a sufficient condition for H1 ďT A is the
existence of a function g ďT A which dominates every partial computable function,
i.e. for every e there exists a number ie such that for every i ě ie, if ϕepiq Ó then
ϕepiq ă gpiq. Hence, to complete our task, it will be enough to build a ceer R with
only finite equivalence classes and such that the function n ÞÑ pTR

pn` 1q dominates
every partial computable function (where we recall that TR denotes the principal
transversal of R, and, given an infinite set A, the symbol pA denotes the principal
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function of A). This will show, as argued at the end of the proof, that for every
infinite transversal T of R, the function gpnq :“ pT pn ` 1q dominates all partial
computable functions, and clearly g ďT T .

Construction. Without loss of generality, we assume that for every e, i, s, if ϕe,spiq Ó
then ϕe,spiq ă s. For every e, s, let

fspeq :“ max pt0u Y ty : pDi, j ď e qrϕi,spjq Ó“ ysuq .

For all e, s, it holds that fspeq ď fspe`1q and fspeq ď fs`1peq. Moreover, for every e

there is a stage u such that, for every s ě u, fspeq “ fupeq. Hence, fpeq “ lim
sÑ8

fspeq

is well-defined for every e. To achieve our goal, we will try to satisfy, for every e,
the requirement

Re : fpeq ă pTR
pe ` 1q,

while guaranteeing that each R-equivalence class is finite: this latter goal will be
achieved by building R as a ceer yielding a partition of ω in consecutive closed finite
intervals. Notice that if fpeq ă pTR

pe ` 1q for every e, then ϕepiq ă pTR
pi ` 1q, for

every pair of numbers e, i such that e ď i, and ϕepiq Ó.

For the requirements, consider the priority ordering Ri ă Rj , if i ă j.

We define R in stages, building a uniformly computable sequence tRsusPω of decid-
able ceers, such that Rs Ď Rs`1 and R “

Ť
sPω Rs. At each stage s, our approxi-

mation Rs to R will be an equivalence relation partitioning ω in consecutive closed
finite intervals tIj,s : j P ωu, in such a way that the Rs-equivalence of any x ě s is
a singleton.

Stage 0. Start up with Ij,0 :“ tju, for every j. Consequently, R0 “ Idω.

Stage s ` 1. We say that a requirement Re requires attention at stage s ` 1 if
fs`1peq ą maxpIe,sq. By our assumption on how to approximate the partial com-
putable functions, we may suppose that fs`1peq ă s ` 1. So, at stage s ` 1, see if
there is a requirement Re with e ď s which requires attention. If not, then go to
stage s ` 2, leaving unchanged each Ij . Otherwise, let Re be the highest priority
requirement which requires attention. Define

Ij,s`1 :“

$
’&
’%

Ij,s, if j ă e,

rminpIe,sq, ss , if j “ e,

ts ` j ´ eu, if j ą e.

We say in this case that Re acts; clearly, we have that fs`1peq ď maxpIe,s`1q after
acting. Notice that every Ij,s`1 is obtained by collapsing finitely many consecutive
intervals into just one interval; clearly maxpIj,sq ď maxpIj,s`1q, for every j. The ceer
Rs`1 is the ceer corresponding to the new family of intervals tIj,s`1 : j P ωu; clearly
Rs Ď Rs`1; notice also that the Rs`1-equivalence of any x ě s ` 1 is a singleton.
Go to the next stage.

Verification. A straightforward argument by induction on the priority of the re-
quirements shows that for every e the requirement Re eventually stops requiring
attention, the set Ie reaches its limit, and fpeq ď maxpIeq. To see these claims,
let s0 be the least stage such that for all i ă e, we have that Ri does not receive
attention and Ii does not change at any stage s ą s0. Notice that Re may require
attention at most finitely many times after s0, as fspeq may change only finitely
many times, and if Re acts at a stage u such that fupeq “ fpeq, then it will never
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require attention again at any later stage t since fpeq ď maxpIe,uq ď maxpIe,tq for
every t ě u. As a consequence, either Re never requires attention at any s ě s0,
and thus Ie,s “ Ie,s0 for every s ě s0, or Re requires attention for the last time at
some s1 ě s0, giving that Ie,s “ Ie,s1 for every s ě s1. In either case Ie,s reaches its
limit Ie, and fpeq ď maxpIeq.

Having shown that for every e, the interval Ie reaches its limit and fpeq ď maxpIeq,
it is now straightforward to conclude that fpeq ă minpIe`1q “ pTR

pe ` 1q. By
Lemma 1.7, if T is any infinite transversal of R, then pTR

pe ` 1q ď pT pe ` 1q, and
thus the function gpeq :“ pT pe ` 1q dominates all partial computable functions. �

Theorem 2.9. hdarkXFinCl ‰ H.

Proof. We first show that if R P Inf is a ceer such that H1 ďT T for every infinite
transversal T of R, then R P hdark. Clearly, for such an R we have R P non-low,
where non-low denotes the class of infinite ceers possessing no low infinite transver-
sal. On the other hand, one can show that non-low Ď hdark. To see this, assume
that U is an infinite ceer such that U R hdark, thus U possesses an infinite transver-
sal T which is not hyperimmune as witnessed by a strong disjoint array pDfpnqqnPω,
and consider the class of sets

A :“ TrpUq X tX P 2ω : p@n qrX X Dfpnq ‰ Hsu.

It is easy to see that A is a Π0
1 class of the Cantor space, as by Lemma 2.5 A is the

intersection of two Π0
1 classes. Moreover, by the very definition of A, it is clear that

all members of A must be infinite, and A ‰ H since T P A. Therefore, by the Low
Basis Theorem for Π0

1 classes (see e.g. [33]), A contains a low member, that is an
infinite low transversal of U , thus U R non-low. By contrapositive, this shows that
non-low Ď hdark.

The theorem now follows from Lemma 2.8. �

Theorem 2.9 exhibits a ceer R P FinCl such that every infinite transversal of R is
of hyperhyperimmune degree. In fact, our example is built so that every infinite
transversal of R computes H1, and thus it is of hyperhyperimmune degree by [16,
Corollary 4.2]. On the other hand at least one of the infinite transversals of R is
not hyperhyperimmune, because our next theorem shows that hyperhyperdarkness
becomes an empty notion, when considering only ceers in FinCl.

Theorem 2.10. hhdarkXFinCl “ H.

Proof. Suppose that R P FinCl. We are going to show that there exists a transver-
sal T P TrpRq and a weak disjoint array pFnqnPω which intersects T , so that T is
not hyperhyperimmune. Throughout the proof we refer to some fixed computable
approximation tRs : s P ωu to R, namely a sequence of uniformly decidable equiva-
lence relations tRsusPω, such that R0 :“ Idω, Rs Ď Rs`1, and R :“

Ť
sPω Rs: every

ceer has such an approximation, see e.g. [1, Lemma 1.4]. We construct pFnqnPω in
stages, so that at stage s we define Fn,s for every n, and pFn,sqn,sPω is a strong array
which provides a uniformly computable approximation to the desired weak array
pFnqnPω, where Fn :“

Ť
sPω Fn,s.

At stage 0 let Fn,0 :“ H for every n. At stage s ` 1, let n be the least number
such that Fn,s Ď

Ť
iănrFi,ssRs (such an n exists since all but finitely many Fm,s are
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empty). Pick the least fresh number x (thus x does not lie in any Fm,s) and define
Fn,s`1 :“ Fn,s Y txu; for all m ‰ n let Fm,s`1 :“ Fm,s.

Verification. The array pFnqnPω is clearly disjoint. An easy inductive argument
shows: for every n there exists a least stage sn such that Fn,s “ Fn,sn for all s ą sn
(we use here that R P FinCl); for all n, Fn r

Ť
mănrFmsR ‰ H. Therefore pFnqnPω

is a weak disjoint array, such that for every n, the set Tn :“ Fn r

Ť
mănrFmsR is

nonempty. For every n, pick tn :“ minpTnq. Then T :“ ttn : n P ωu is an infinite
transversal of R, which is not hyperimmune since it is intersected by the disjoint
weak array pFnqnPω. �

3. Ceers c-realized by finitely generated semigroups

In the previous section we have isolated a class of infinite ceers (the hyperdark
ceers) which are not c-realized by any finitely generated algebra of finite type. If
we restrict our attention to finitely generated semigroups, and denote by Sf.g. the
structure of c-degrees of ceers which are c-realized by word problems of finitely
generated semigroups, it follows by the results of the previous section that Sf.g. X
hdarkc “ H. In the present section we will face the opposite problem, trying to
individuate classes of c-degrees of ceers which lie in Sf.g.. It is clear that every
finite c-degree is in Sf.g. since every finite ceer is c-realized by some finite finitely
presented group. Therefore, we will confine ourselves to discuss how large the class
S8
f.g. :“ Sf.g. X Infc is, i.e. the class consisting of the c-degrees in Sf.g. containing

infinite ceers, or equivalently of the c-degrees of ceers realized by word problems of
infinite finitely generated semigroups.

We will work over the free semigroup on two generators: hence, let us consider the
alphabet X :“ ta, bu and denote by X` the set of nonempty finite words of elements
of X, with λ denoting the empty word, and the binary operation on X` given by
the concatenation of words. It is well known that X` together with this binary
operation is the free semigroup on two generators. In the rest of this discussion, X`

will be identified by coding with the set of natural numbers ω.

3.1. Finitely generated semigroups with dark word problem. First, we re-
mark that, for the case of semigroups, Theorem 2.4 is optimal, in the sense that,
while the word problem of any finitely generated semigroup cannot be c-equivalent
to a hyperdark ceer, there exist two-generator semigroups with dark word prob-
lem. The following example is taken from Hirschfeldt and Khoussainov [15] (see, in
particular, Lemmas 2.2, 2.3, 2.4 and Theorem 3.7).

Example 3.1. [15] Let us first introduce some terminology and notation. Given
words x, y P X`, we say that y is a subword of x if there are words u1, u2 P X` Ytλu
such that x “ u1yu2. Similarly, y P X` is a subword of an infinite sequence f P Xω if
there exist a word u P X` Y tλu and an infinite sequence g P Xω such that f “ uyg.
We say that a word or an infinite sequence α avoids a finite word y whenever α does
not contain y as a subword. Finally, for every l P ω, let us denote by Xďl and Xěl

the set of words on the alphabet X of length, respectively, at most l and at least l.

For Z Ď X`, let

Z :“ tu P X` : pDz P ZqpDu1, u2 P X` Y tλuqru “ u1zu2su.
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In other words, Z is the set of words in X` containing a word of Z as a subword.
Notice that Z Ď Z. It is easy to see that the unidimensional ceer RZ is a congruence
of X` for every set Z Ď X`: hence, for any c.e. set Z Ď X`, we get a finitely
generated c.e. semigroup SZ “ X`{R

Z
.

By the discussion following Definition 1.4 we know that a unidimensional ceer RX

is dark if and only if X is simple. Therefore, in order to get that SZ is infinite
with a dark word problem, it suffices to build a simple set Z Ď X` such that Z is
coinfinite: this ensures that Z is simple, being a coifinite c.e. superset of a simple
set. This can be achieved using the following result by Miller [30, Corollary 2.2]: If
a set Y Ď X` contains, for each i, at most one word of length i ` 5 and no words
of length ď 4, then there is an infinite sequence f P Xω such that f avoids all the
words in Y .

So suppose that Z Ď X` is a set such that Z XXďk`4 contains at most k elements
for every number k. From this and using the fact that avoiding a word implies
avoiding all its extensions, it is easy to build a set Y Ď X`, such that Y contains
exactly a string of length i ` 5 for every number i, it contains no string of length
ď 4, and if a string avoids all words in Y then it avoids all words in Z as well. By
Miller’s result there is an infinite sequence f P Xω avoiding Y , and thus there are
infinitely many finite words avoiding Z, implying that Z is coinfinite.

Therefore, to complete our example it remains only to show that there exists a
simple set Z Ď X` such that for every k, Z contains at most k words of length
ď k ` 4. This follows along the lines of the standard Post’s construction of a simple
set (see, e.g. [33], Theorem 5.2.3): Given a standard numbering tWi : i P ωu of the
c.e. subsets of X`, we let

Z “ tu P X` : pDiqpDsqru P Wi,s`1 X Xěi`5 and Wi,s X Xěi`5 “ Hsu.

In other words, we enumerate each set Wi until a word u of length at least i ` 5
appears: whenever this happens, we enumerate u into Z, and we do not put any
more elements from Wi into Z. Notice that Z is simple as every infinite c.e. set
Wi must contain words of arbitrary length. Moreover, by definition of Z, a word
u P Z X Xďk`4 must have been taken from a set Wi with i ď k ´ 1, which ensures
that Z contains at most k such words.

As already anticipated in the introduction, we also notice that the above example
has been strikingly strengthened by Myasnikov and Osin in [27], where it is even
built a finitely generated c.e. group with dark word problem.

3.2. Finitely generated semigroups with non-dark word problem. We par-
tition X`, the set of nonempty words on the alphabet ta, bu, as follows:

(1) C :“ tabia : i ‰ 0u (where for any string u, we denote by ui the string
obtained by concatenating i times u with itself). We refer to the elements
of C as coding words.

(2) C` consists of the words in X` which properly contain coding words as
subwords, i.e.

C` :“ tw P X`
r C : pDv, v1 P X` Y tλu qpDu P C qrw “ vuv1su.

(3) C´ :“ X`
r pC Y C`q.
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Observe that the sets C´, C, and C` are computable, infinite, and they partition
X`.

Next, given any ceer R, let SpRq be the two-generator semigroup presented by

SpRq :“ xX | tabi`1a “SpRq abj`1a : i R j u Y tv “SpRq w : v,w P C`u y.

Thus, the “SpRq-closure of the set C is partitioned in classes, with representatives

abia for each i ‰ 0, and abia “SpRq abja if and only if pi ´ 1q R pj ´ 1q. The
“ SpRq-closure rC`s“SpRq

of C` consists of just an equivalence class, say the “SpRq-

equivalence class of aaba. Finally the set rC´s“SpRq
consists of an infinite bunch of

singletons (namely the singletons of words which avoid the words of the form abia

with i ‰ 0).

Recall that the uniform join U ‘ V of two equivalence relations U, V on ω is the
equivalence relation on ω defined as U ‘V :“ tp2x, 2yq : x U yu Y tp2x` 1, 2y ` 1q :
x V yu.

Lemma 3.2. “SpRq is c-equivalent (in fact, isomorphic, as defined in the paragraph
following Definition 1.1) with R‘ Idω, where we recall that Idω denotes the equality
relation on ω.

Proof. We recall the notion of the restriction of a ceer R to a nonempty c.e. set W ,
see for instance [3]: fix a computable surjection π : ω Ñ W , and define RæW to be
the ceer

x RæW y ô πpxq R πpyq.

It is immediate to see that, up to ”c, RæW does not depend on the chosen com-
putable surjection.

By pairwise disjointness of the “SpRq-closures of the computable sets C, C`, C´

which yield a partition of ω, we have that

“SpRq”c

`
p“SpRq æCq ‘ p“SpRq æC`q ‘ p“SpRq æC´q

˘
.

On the other hand, it is easily seen that “SpRq æC ”c R, “SpRq æC` ”c Id1 (where
Id1 is the ceer with just one equivalence class) and “SpRq æC´ ”c Idω. Hence
“SpRq”c R ‘ Id1 ‘ Idω, and from Idω ”c Id1 ‘ Idω we conclude

“SpRq”c R ‘ Idω .

Finally it is easy to see that all the bi-equivalences ”c mentioned in the proof are in
fact isomorphisms of equivalence relations, so “SpRq is isomorphic with R‘ Idω. �

Theorem 3.3. If R is a ceer such that R ”c R‘ Idω, then there is a two-generator
semigroup S such that “S”c R.

Proof. Given R, take S :“ SpRq. �

Remark 3.4. Notice that “SpRqP Inf rdark. The ceers in Inf rdark are fre-
quently called light, and their class is denoted as light, see e.g. [2].

3.3. How large is Sf.g.? We conclude this section with a few remarks which sug-
gests that the class of ceers which are c-realized by finitely generated semigroups is
unexpectedly large.

Theorem 3.3 allows indeed to show that S8
f.g. (in fact the subclass of S8

f.g. consisting

of the c-degrees of light ceers) embeds rich structures. First, recall the reducibility
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notion of the following definition, where, for every n ě 1, we fix a ceer Idn with
exactly n equivalence classes.

Definition 3.5. [2] For ceers R and S, R ďI S if and only if R ďc S ‘ Idn, for
some number n ě 1.

It is known (see [2, 4]) that the structure of the I-degrees of dark ceers, denoted as
dark{I , is in a reasonable sense as complicated as possible: its first order theory is
computably isomorphic with first order arithmetic.

Corollary 3.6. dark{I embeds into S8
f.g..

Proof. Let R and S be any pair of dark ceers. Andrews and Sorbi [2, Theorem 6.2]
proved that R”I S if and only if R ‘ Idω ”c S ‘ Idω. This implies that the map

ι : R ÞÑ R ‘ Idω

induces an embedding of dark{I into light{I , see [4, Lemma 6.2], where of course
light{I denotes the I-degrees of light ceers. To conclude, it suffices to note that, by
Theorem 3.3, the image of the embedding induced by ι is contained in S8

f.g.. �

Finally, we recall that (as proved in [3]) one can embed the tree pωăω,Ďq of finite
strings of natural numbers, partially ordered by the prefix relation on strings, as an
initial segment of Inf c.

Corollary 3.7. The tree pωăω,Ďq embeds as an initial segment of Infc in such a
way that the range of the embedding is included in S8

f.g..

Proof. The proof follows by Theorem 3.3 and by the fact that [3, Corollary 3.1]
shows that the tree ωăω can be embedded as an initial segment of Inf c in such a
way that the range of the embedding is included in the c-degrees of the ceers R such
that R ”c R ‘ Idω. �

Notice that the embeddings mentioned in the proofs of both Corollary 3.6 and
Corollary 3.7 take as images c-degrees of light ceers, in particular of ceers of the
form R ‘ Idω.

3.4. What about finitely presented semigroups? It might be worth noticing
that if R P FinCl and R is undecidable then SpRq, as described above, is not
finitely presentable. Indeed, Litvinceva [25] showed that, if S is a finitely presented
semigroup such that “S has only finitely many infinite equivalence classes, then
“S is decidable. Now, if R P FinCl and R is undecidable then “SpRq has only
one infinite equivalence class, namely rC`s“SpRq

, but on the other hand “SpRq is
undecidable, as R ďc“SpRq.

If one looks only for finitely generated semigroups S such that “S P FinCl, then a
slight modification of the proof of Lemma 3.2 shows how to build a finitely generated
semigroup S, such that “S P FinCl and R ďc“S, starting from any ceer R P FinCl.
For this, it is enough to take S :“ xX | tabi`1a “S abj`1a : iRjuy. To show that
“S P FinCl, one easily sees that if v P C` and u1, . . . , un are the subwords of v of
the form abij`1a for some number ij with 1 ď j ď n, occurring in distinct places
of v, and kj is the number of elements in the R-class of ij , then the cardinality of
the “S-class of v equals the product k1 ¨ k2 ¨ . . . ¨ kn. Once again, by [25] if R is
undecidable then no such S is finitely presentable.
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4. Future research

The research program of locating which c-degrees of ceers are c-realized by word
problems of suitable algebras is vast and, to our knowledge, plenty of questions
remain, untouched. We conclude by listing a few research lines that may inspire
future work.

(1) Let Sf.p. and Sc.e. denote the c-degrees of ceers which are c-realized by the
word problems of, respectively, finitely presented semigroups and c.e. semi-
groups. As aforementioned in the introduction, Sc.e. coincides with Ceersc
and, by Theorem 2.4 above, Sc.e. r Sf.g. contains every hyperdark c-degree.
Then, it is natural to ask if Sf.g.rSf.p. is also nonempty. If this is the case,
one may try to compare Sf.g. and Sf.p. with respect to the initial segments
of Infc that they realize in the sense of Corollary 3.7.

(2) More generally, it may be interesting to move the focus from semigroups
to other algebraic varieties V, and to investigate which c-degrees of ceers
are c-realized by members of V, and in particular by finitely presented or
finitely generated members of V. The case of groups appears to be natural
and challenging at the same time.

(3) The literature is also rich of papers studying presentations of structures
but using coceers instead of ceers (a coceer is an equivalence relation whose
complement is c.e.), and investigating which structures have a “word prob-
lem” coinciding with a given coceer: see for instance [24, 20, 13]. A more
recent variation ([21, 14]) studies which random structures have a “word
problem” coinciding with a given ceer or coceer. In all these cases, it would
be interesting to generalize these approaches to c-realizability, aiming at de-
scribing those structures having word problems which are c-realizable (not
just merely coinciding) with given ceers or coceers.
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