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Abstract. We study a singularly perturbed reaction-di↵usion equation with a small pa-
rameter " > 0. This problem is viewed as an approximation of the evolution of an interface
by its mean curvature with a forcing term. We derive a quasi-optimal error estimate of
order O("2| log "|2) for the interfaces, which is valid before the onset of singularities, by
constructing suitable sub and super solutions. The proof relies on the behavior at infinity
of functions appearing in the truncated asymptotic expansion, and by using a modified
distance function combined with a vertical shift.

1. Introduction. It is known that the singularly perturbed reaction-di↵usion
equation, with the quartic double equal well potential  (s) = (1� s2)2 and forcing
term g

@tu" ��u" + 1
2"2 0(u") = c0

2"g in Rn ⇥ (0, T ),

where c0 =
R 1
�1

p
 (s)ds, provides an approximation for an interface ⌃(t) evolving

by the law
V = + g,

where V is the normal velocity of the interface ⌃(t) and  the sum of its principal
curvatures [1–4, 6–9, 12–13]. Such an equation was introduced by Allen and Cahn
[1] in order to describe the motion of antiphase boundaries in crystalline solids, thus
showing its relevance in phase transitions. It was independently suggested by De
Giorgi [6] as a variational approach to the mean curvature flow. Such a connection
has been rigorously established by Evans, Soner, and Souganidis [9] and Barles,
Soner, and Souganidis [2], who proved convergence of the zero level set of u" to the
generalized motion by mean curvature [10], even beyond the onset of singularities,
provided the limit interface does not develop interior; see also [4, 12]. Asymptotic
analyses were carried out prior to those convergence results, but apply only to
smooth evolutions [3, 7, 8, 13].

The goal of this paper is to prove a quasi-optimal error estimate, valid before
the onset of singularities, for the Hausdor↵ distance between the flow ⌃(t) and
the approximate interface ⌃"(t) = {x 2 ⌦ : u"(x, t) = 0}. In fact, assuming that
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⌃= {(x, t)2⌦⇥[0, T ] : x2⌃(t)} is su�ciently regular (see (2.4)) and u"(·, 0) has
the correct shape (see (6.6)), we prove that

⌃"(t) ✓ {x 2 ⌦ : dist(x,⌃(t)))  C"2| log "|2} 8t 2 [0, T ],

⌃(t) ✓ {x 2 ⌦ : dist(x,⌃"(t)))  C"2| log "|2} 8t 2 [0, T ],

where C is a constant depending on T but independent of ". We cannot expect
estimates of order higher than two in view of the formal asymptotics and the results
of [15]. Our estimate improves the results obtained by Chen [4], who shows a
first order error estimate via comparison arguments. If  is replaced by a non
smooth potential giving rise to a double obstacle problem, similar results have been
established in [5, 14–16].

The order of the interface error estimate is a consequence of the Maximum Prin-
ciple and the explicit construction of sub and supersolutions, which in turn are
inspired by, and indeed rely on, the formal asymptotics developed in [17]. The use
of the asymptotic expansion, as in [7, 8], would also lead to a rate of convergence
for interfaces via nondegeneracy properties of both the continuous and truncated
solutions. In this light, a nontrivial by-product of the rigorous asymptotic analysis
of De Mottoni and Schatzman [7, 8] would give an O("2) interface error estimate
for the special case g = 0, but under higher regularity restrictions on ⌃ than in
the present discussion. Regardless of convergence, the formal asymptotics of §4 still
provides valuable information on the shape of u", which, together with a modified
distance function combined with a vertical shift and the nondegeneracy property of
sub and supersolutions, plays a fundamental role in our subsequent rigorous anal-
ysis; see §6. Furthermore, the functions appearing in the definition of the sub and
super solutions need to be constant far from the interface, thus requiring proper
shape corrections.

The outline of the paper is as follows. In §2 we introduce some notation. §3 is
devoted to the analysis of suitable limit problems (suggested by the formal asymp-
totics of §4) and accurate decay estimates at infinity of its solutions. These solu-
tions, properly combined, provide the sub and supersolutions of §6. For the sake
of completeness, a simple but crucial comparison result is proved in §5. The sub
and supersolutions are fully examined in §6, and then used to derive interface error
estimates.

2. Notations. In what follows ⌦ ✓ Rn will be a bounded open set with smooth
boundary, and ⌫ will denote the outward unit normal vector to @⌦.

Given T > 0 and a function v 2 H2(⌦ ⇥ (0, T )), we denote by rv and �v the
gradient and the Laplacian of v with respect to the spatial variable x 2 ⌦, and by
Hv the heat operator of v, i.e., Hv = @tv ��v.

Let
g(·, t) 2 W 3,1(⌦), @tg 2 W 1,1(⌦⇥ (0, T )); (2.1)

for any t 2 [0, T ] we indicate by ⌃(t) a mean curvature flow with forcing term g (see
(2.2)). We shall assume that, for any t 2 [0, T ], ⌃(t) is a smooth closed manifold
of dimension n � 1, oriented by the inward unit normal vector n(x, t) to ⌃(t) at
x 2 ⌃(t). Furthermore, we suppose that ⌃(t) ⇢⇢ ⌦ for any t 2 [0, T ]. The precise
regularity requirements on ⌃(t) are listed in (2.4).

We set O(t) = outside of ⌃(t), I(t) = inside of ⌃(t), and ⌃ =
S

t2[0,T ]⌃(t)⇥{t}.
We denote by 1(x, t), . . . ,n�1(x, t) the principal curvatures of ⌃(t) at x 2 ⌃(t),
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and we set

(x, t) =
n�1X
i=1

i(x, t), h(x, t) =
n�1X
i=1

2
i (x, t).

Note that (x, t) equals (n� 1)-times the mean curvature of ⌃(t) at x 2 ⌃(t). The
evolution of ⌃ is then defined by

V (x, t) = (x, t) + g(x, t) 8(x, t) 2 ⌃, (2.2)

where, for any t 2 [0, T ], V (·, t) denotes the normal velocity of ⌃(t), with the
positive sign in the direction of n(·, t).

The signed distance function d : Rn ⇥ [0, T ] ! R from ⌃(t) is defined by

d(x, t) =

8><
>:

dist
�
x,⌃(t)

�
if t 2 [0, T ] and x 2 O(t)

0 if t 2 [0, T ] and x 2 ⌃(t)
�dist

�
x,⌃(t)

�
if t 2 [0, T ] and x 2 I(t).

We then have
rd(x, t) = �n(x, t) 8t 2 [0, T ], 8x 2 ⌃(t).

We fix a positive number D in such a way that, for any t 2 [0, T ], the tubular
neighborhood T (t) of ⌃(t) defined by

T (t) = {x 2 ⌦ : |d(x, t)|  D} (2.3)

is relatively compact in ⌦. We set T =
S

t2[0,T ] T (t)⇥ {t}.
The interface error estimate in §6 will be proved under the assumptions

d, @td, @t@xxd, @i
xd 2 C0(T ) 8i = 1, 2, 3, 4. (2.4)

If D is su�ciently small, from (2.4) it follows that any point (x, t) 2 T has a unique
projection s(x, t) 2 ⌃(t) such that

dist
�
s(x, t),x

�
= |d(x, t)|.

Given a scalar or vector function f defined on ⌃, we indicate with f(x, t) the
composite function f

�
s(x, t), t

�
, which is defined on T . Hence, if f is scalar, we

have rd ·rf = 0 on T . We point out that (2.4) yields

khkL1(T ), k@thkL1(T ), krhkL1(T ), k�hkL1(T ) < +1. (2.5)

The following property holds for all (x, t)2T [11, 14.6]:

�d(x, t) =
n�1X
i=1

i(x, t)
1� d(x, t)i(x, t)

= (x, t) + d(x, t)h(x, t) +O(d2(x, t)).

Hence, as @td(x, t) = V (x, t) = (x, t) + g(x, t) for any x 2 ⌃(t) (recall (2.2)), we
have

Hd(x, t) = g(x, t) + d(x, t)h(x, t) +O(d2(x, t)) 8(x, t) 2 T . (2.6)
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We denote by  : R ! [0,+1[ the double equal well potential  (s) = (1 � s2)2,
and we set

 = 1
2 

0, c0 =
Z 1

�1

p
 (s)ds =

4
3
, (2.7)

↵ =  0(1) =  0(�1) = 4, � =  00(1) = � 00(�1) = 12. (2.8)

Finally, for any " > 0 we denote by u" the classical solution of the problem

Hu" + "�2 (u")� "�1 c0

2
g = 0 in ⌦⇥ (0, T ),

u"(·, 0) = u0
"(·) 2 C2(⌦) \ L1(⌦) on ⌦,

@u"

@⌫
= 0 on @⌦⇥ (0, T ).

(2.9)

for a given initial datum u0
" which will be specified later on (see (6.6)). Existence

of such a solution u" can be proved by classical methods (see, for instance, [18, p.
98]).

3. Decay estimates. Any absolute minimizer � of the functional
Z
R

�
|⇣ 0(x)|2 + (⇣(x))

�
dx (3.1)

defined on {⇣ 2 H1
loc(R) : limx!±1 ⇣(x) = ±1} is a solution of the problem

�00(x)�  (�(x)) = 0 8x 2 R. (3.2)

One can show that such a minimizer � must be nondecreasing. Since the functional
in (3.1) is greater than or equal to 2

R
R ⇣

0(x)
p
 (⇣(x)) dx = 2c0, it follows that �

satisfies
�0(x) =

p
 (�(x)) 8x 2 R. (3.3)

It turns out that imposing the condition �(0) = 0, the unique nondecreasing solution
� of (3.2) is given by �(x) = tgh(x), x 2 R.

Note that there exists a positive constant c such that

|1� �(x)|  c�0(x) 8x 2]0,+1[. (3.4)

3.1. Some remarks on the operator A. Let A : H1(R) ! H�1(R) be the
linear operator defined by A⇣ = ⇣ 00 �  0(�)⇣. One can verify that A is selfadjoint
and, by (3.2), that �0 2 Ker(A) ✓ H2

loc(R). Let us show that Ker(A) = span{�0}.
Denote by eA : H2

loc(R) ! L2
loc(R) the operator eA⇣ = ⇣ 00 �  0(�)⇣. Take ⇣0, ⇣1 2

]0,+1[, and let x0 > 0 be such that  0(�(x0)) > 0. Let ⇣ 2 H2
loc(R) be the unique

solution of the backward and forward Cauchy problem

⇣ 00 �  0(�)⇣ = 0, ⇣(x0) = ⇣0, ⇣
0(x0) = ⇣1.

It is not di�cult to see that limx!+1 ⇣(x) = +1, so that ⇣ 2 Ker( eA) \ Ker(A).
Since obviously �0 2 Ker( eA) and Ker( eA) is a two dimensional linear space, it follows
that Ker(A) must be one dimensional, which implies that Ker(A) = span{�0}.
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Let R : H�1(R) ! H1(R) be the isometric linear operator given by the Riesz
Representation Theorem on H1(R) endowed with the scalar product

hf, gi =
Z
R

f 0g0 dx + ↵

Z
R

fg dx,

where ↵ is defined in (2.8). Let B : H1(R) ! H�1(R) be the linear operator
defined by B⇣ = �⇣ 00 + ↵⇣ for any ⇣ 2 H1(R). Then RA : H1(R) ! H1(R), and,
as RB = Id on H1(R), we have RA = �Id+R(A+B). Now (A+B)⇣ = (↵� 0(�))⇣
for any ⇣ 2 H1(R); hence, as ↵� 0(�) decreases exponentially to zero as |x|! +1,
the operator A+B : H1(R) ! H�1(R) is compact. As R is an isometry, R(A+B)
is also compact. It follows that the composite operator RA is a Fredholm operator,
so that A⇣ = f has a solution ⇣ 2 H2(R) for f 2 L2(R) if and only if

R
R f�0 dx = 0.

For our purposes, we need an extension of this result. Denote by P� (respectively
by P+) the ring of all polynomials with real coe�cients defined on ] � 1,�1[
(respectively on ]1,+1[).

Lemma 3.1. Let f 2 L2
loc(R) be such that there exist p� 2 P�, p+ 2 P+ with

f|]�1,�1[ � p� 2 L2(�1,�1), f|]1,+1[ � p+ 2 L2(1,+1). (3.5)

If
R
R f�0 dx = 0 then there exist a function ⇣ 2 H2

loc(R) and two polynomials
q� 2 P�, q+ 2 P+ such that

⇣ � q� 2 H2(�1,�1), ⇣ � q+ 2 H2(1,+1), eA⇣ = f. (3.6)

Moreover, such a function ⇣ is unique up to an addition of a real multiple of �0.

Proof. Define q� 2 P� (respectively q+ 2 P+) as the unique polynomial solution
of v00 �  0(�1)v = p� on ]�1,�1[ (respectively of v00 �  0(1)v = p+ on ]1,+1[).
Let q 2 H2

loc(R) be an arbitrary function such that q = q� on ] � 1,�1[ and
q = q+ on ]1,+1[. We claim that f � eAq 2 L2(R). Indeed on ]1,+1[ we haveeAq = q00+ �  0(�)q+ = p+ + ( 0(1)�  0(�))q+, so that, using (3.5),

f � eAq = f � p+ � ( 0(1)�  0(�))q+ 2 L2(1,+1)

(recall that  0(�) tends exponentially to  0(1) at +1). The claim then follows by
a similar argument on ]�1,�1[.

Observe now that, by the exponential decrease of �0 at infinity and recalling that
�0 2 Ker(A), we get

Z
R
(f � eAq)�0 dx =

Z
R
f�0 dx�

Z
R

eAq�0 dx =
Z
R

f�0 dx�
Z
R

qA�0 dx =
Z
R
f�0 dx.

Therefore, if
R
R f�0 dx = 0, by the Fredholm Alternative there exists a function

v 2 H2(R) (which is unique up to an addition of a real multiple of �0) such that
Av = f � eAq, so that the function ⇣ = v + q satisfies properties (3.6).

As �0(0) 6= 0, by adding to ⇣ a suitable real multiple of �0, we can always obtain
⇣(0) = 0, so that ⇣ is uniquely determined. ⇤

It can be checked directly that if f is odd, then the solution ⇣ through the origin
is itself odd. Also, if f is even, ⇣ is itself even, as it follows by considering the
function 1

2 (⇣(x) + ⇣(�x))), which is still a solution of the problem.
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Lemma 3.2. Let ⇣ 2 H2(R) and assume

|A⇣|  c(1 + |x|m)�0 8x 2 R (3.7)

for some constant c > 0 and some m 2 N. Then there exists a positive constant C
such that

|⇣|  C(1 + |x|m+1)�0 8x 2 R. (3.8)

If, in addition, ⇣ 2 H3(R) and

|(A⇣)0|  c(1 + |x|m)�0 8x 2 R, (3.9)

then
|⇣ 0|  C(1 + |x|m+1)�0 8x 2 R. (3.10)

Proof. As �0 =
p
 (�) and �00 =  (�) (see (3.3) and (3.2)), we have (

�00

�0
)2 =

 (�)2

 (�)
, so that, with the notation introduced in (2.7),

lim
x!+1

�00

�0
= lim

x!+1
�

s
 (�) 0(�)
 (�)

= �
p
↵ = �2. (3.11)

Therefore we can choose x0 � m + 1 large enough in such a way that

�00(x) < ��0(x) 8x � x0, (3.12)

and
 0(�(x)) � � > 0 8x � x0. (3.13)

Let k � 1 be such that |⇣(x0)|  kxm+1
0 �0(x0), and let z(x) = kxm+1�0(x) for any

x � x0. Recalling that A�0 = 0 and using (3.12), we have

Az = kxm+1A�0 + 2(m + 1)kxm�00 + m(m + 1)kxm�1�0

= 2(m + 1)kxm�00 + m(m + 1)kxm�1�0  �k�0(m + 1)(2xm �mxm�1).

Then, using the assumption (3.7),

�A(�z � ⇣) = Az +A⇣  �k�0(m + 1)(2xm �mxm�1) + |A⇣|  0,

for any x � x0, provided that k is large enough (depending on c). Since �z(x0)�
⇣(x0)  0, by the Maximum Principle (recall (3.13)) we have �z(x)� ⇣(x)  0 for
any x � x0, i.e.,

�kxm+1�0(x)  ⇣(x) 8x � x0. (3.14)

In a similar way, one can prove that �A(⇣ � z)  0, so that

⇣(x)  kxm+1�0(x) 8x � x0. (3.15)

Since analogous results are valid on ]�1,�x0], assertion (3.8) follows from (3.14),
(3.15), and the compactness of [0, x0], provided that C is large enough.
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Let us prove (3.10). Recalling the definition of A, it follows that

|A(⇣ 0)|  |(A⇣)0|+ | 00(�)�0⇣|.

Since  00(�) = 12� 2 L1(R) and ⇣ 2 L1(R) by (3.8), using assumption (3.9) we
get

|A(⇣ 0)|  c(1 + |x|m)�0 8x 2 R.

The result then follows from the first part of the Lemma. ⇤

3.2. Estimates on the functions ⇠, ⌘,!,⇡. We denote by ⇠ 2 H2(R) the
solution of the problem

A⇠ = x�0, ⇠(0) = 0,

which exists by the Fredholm Alternative, since x�0 is odd. Furthermore ⇠ is odd.
By Lemma 3.2 we have

|⇠|, |⇠0|  c(1 + |x|2)�0 8x 2 R. (3.16)

We denote by ⌘ 2 H2
loc(R) the polynomially increasing solution of the problem

eA⌘ = �0 � c0

2
, ⌘(0) = 0, (3.17)

where c0 is defined in (2.7). Such a solution exists by Lemma 3.1 applied with
f = �0 � c0

2 , p� = p+ = � c0
2 (an easy calculation yields

R
R(�0 � c0

2 )�0 dx = 0).
Furthermore ⌘ is even, since �0 � c0

2 is even. With the notation of Lemma 3.1, we
find q� = q+ = c0

2↵ , where ↵ is defined in (2.8). Hence

lim
x!±1

⌘(x) =
c0

2↵
= ⌘1.

Now
A(⌘ � c0

2↵
) = �0 � c0

2↵
(↵�  0(�)),

and
lim

x!±1
↵�  0(�)

�0
= lim

x!±1
� 

00(�)�0

�00
=

1
2
 00(±1) (3.18)

(see (3.11)). It follows that there exists a constant c > 0 such that

|A(⌘ � c0

2↵
)|  c�0 8x 2 R, (3.19)

and hence, by Lemma 3.2,

|⌘ � c0

2↵
|  c(1 + |x|)�0 8x 2 R. (3.20)

We denote by ! 2 H2(R) the solution of the problem

A! = ⌘0, !(0) = 0. (3.21)
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Such a solution exists by the Fredholm Alternative, since ⌘ is even and hence ⌘0 is
odd. Furthermore ! is odd. Using (3.17) we have

|(A(⌘ � c0

2↵
))0| = |(�0 � c0

2
+

c0

2↵
 0(�))0| = |�00 + c0

2↵
 00(�)�0|  c�0

for a suitable positive constant c, so that, by (3.19), using Lemma 3.2, we have

|A!| = |⌘0|  c(1 + |x|)�0 8x 2 R. (3.22)

Using again Lemma 3.2 and (3.21), it follows that

|!|  c(1 + |x|2)�0 8x 2 R. (3.23)

In addition

(A!)0 = ⌘00 = eA⌘ +  0(�)⌘ = �0 � c0

2
+  0(�)⌘

= �0 +  0(�)(⌘ � c0

2↵
) +

c0

2↵
( 0(�)� ↵),

so that, by (3.18) and (3.20), we have |(A!)0|  c(1 + |x|)�0 on R, which, together
with (3.22) and Lemma 3.2, gives

|!0|  c(1 + |x|2)�0 8x 2 R. (3.24)

Finally, we denote by ⇡ 2 H2
loc(R) the polynomially increasing solution of the

problem
eA⇡ =

1
2
⌘2 00(�), ⇡(0) = 0. (3.25)

Such a solution exists by Lemma 3.1 applied with f = 1
2⌘

2 00(�), p� = �p+ =
�1

2 ( c0
2↵ )2�, (recall that 1

2⌘
2 00(�) is odd), where � is defined in (2.8). Furthermore

⇡ is odd, since 1
2⌘

2 00(�) is odd. With the notation of Lemma 3.1, we find q� =
�q+ = c2

0�
8↵3 . Hence,

lim
x!±1

⇡(x) = ⌥ c2
0�

8↵3
= ±⇡1.

Now, setting q as in the proof of Lemma 3.1, we have

A(⇡ � q) =

(
1
2⌘

2 00(�)� c2
0�

8↵3 0(�)� + c2
0�

8↵3 �00 on ]�1,�1],
1
2⌘

2 00(�) + c2
0�

8↵3 0(�)� � c2
0�

8↵3 �00 on [1,+1[,

and

lim
x!±1

⌘2 00(�)⌥ c2
0�

4↵3 0(�)�
x�0

 lim
x!±1

⌘2 000(�)�0⌥ c2
0�

4↵3 00(�)�0�⌥ c2
0�

4↵3 0(�)�00

�0 + x�00
+ lim sup

x!±1

2⌘⌘0 00(�)
�0 + x�00

.

It is easy to see that the first limit is zero, and, by (3.22),

lim sup
x!±1

2⌘⌘0 00(�)
�0 + x�00

 c(1 + |x|)�0⌘ 00(�)
�0 + x�00

 c,
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for a suitable positive constant c. It follows that there exists a constant c > 0 such
that

|A(⇡ � q)|  c(1 + |x|)�0 8x 2 R,

and hence, by Lemma 3.2,

|⇡ � q|  c(1 + |x|2)�0 8x 2 R. (3.26)

Since by (3.25) and (3.22) we have

|( eA⇡)0|  |⌘⌘0 00(�)|+ 1
2
⌘2 000(�)�0  c(1 + |x|)�0,

using Lemma 3.2 we conclude that

|⇡0|  c(1 + |x|2)�0 8x 2 R. (3.27)

4. Formal asymptotics. The shape of the subsolution is suggested by a formal
asymptotic expansion that can be obtained following the ideas in [17]. Since the
way such an expansion is obtained is not important in our context, we simply give
the final result.

Let u" be a classical solution of problem (2.9). Introduce the vector en, the
stretched variable ey =

ed(x,t)
" , and the projection es, as in §2 with ⌃(t) replaced by

the set {x 2 ⌦ : u"(x, t) = 0}, and define

U"(ey, t) = u"

�es(x, t)� "ey en(x, t), t
�
.

Then U" can be expressed formally in terms of " (inner expansion) as follows:

U"(ey, t) =
2X

i=0

"iUi(ey, t) +O("3),

where

U0(ey, t) =�(ey),
U1(ey, t) =g(x, t)⌘(ey),

U2(ey, t) =
�
h(x, t)� 2red(x, t) ·rg(x, t)

�
⇠(ey)

+
�
g2(x, t)� 2red(x, t) ·rg(x, t)

�
!(ey) + g2(x, t)⇡(ey).

5. Comparison Lemma. In this section we prove an elementary Comparison
Lemma for subsolutions similar to that in [5] (see also [18, p. 98]).

Lemma 5.1. Fix " > 0, let u, v 2 L2(0, T ;H2(⌦))\H1(0, T ;L2(⌦)), and consider
the following three conditions:

Hu+"�2 (u)�"�1 c0

2
g � Hv+"�2 (v)�"�1 c0

2
g a.e. in ⌦⇥(0, T ),

u(x, 0) � v(x, 0) for a.e. x 2 ⌦,

@u

@⌫
� @v

@⌫
a.e. on @⌦⇥ (0, T ).

(5.1)
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Then
u � v a.e. in ⌦⇥(0, T ). (5.2)

Proof. Set e = max(v � u, 0). Multiply (5.1) by e, integrate over ⌦ and subtract.
We get

d

dt
ke(·, t)k2L2(⌦)  2"�2h (u)�  (v), eiL2(⌦) for a.e. t 2 [0, T ]. (5.3)

Let t 2 (0, T ) be a point where (5.3) holds, and write  =  l +  i, where  l is
Lipschitz continuous on R, and  i non decreasing on R. Integrating (5.3) on (0, t)
and recalling that by assumption e(x, 0) = 0 for almost every x 2 ⌦, we get

ke(·, t)k2L2(⌦)  2"�2

Z t

0
|h l(u)�  l(v), e(·, ⌧)iL2(⌦)|d⌧

 2lip( l)"�2

Z t

0
ke(·, ⌧)k2L2(⌦)d⌧.

Then for almost every t 2 [0, T ] Gronwall’s Lemma implies that ke(·, t)kL2(⌦) = 0
and thus, by Fubini’s Theorem, e = 0 almost everywhere in ⌦⇥(0, T ), i.e., (5.2). ⇤

6. Subsolution and supersolution. In this section we construct a sub and
supersolution for problem (2.9). Such functions will be used to derive the desired
interface error estimate.

Let � � 3 be a fixed natural number; for any " > 0 let x" = �| log "|. Note that
�(x") = 1� 2"2�(1 + "2�)�1 = 1�O("2�), and �0(x") = 1� �2(x") = O("2�). As a
consequence, using (3.20), (3.22), (3.16), (3.23), (3.24), (3.26) and (3.27), we get

|�(x")� 1|, |�0(x")| = O("2�),

|⌘(x")� ⌘1|, |⌘0(x")| = | log "|O("2�),

|⇠(x")|, |⇠0(x")|, |!(x")|, |!0(x")|, |⇡(x")� ⇡1|, |⇡0(x")| = | log "|2O("2�).

We construct five functions

�", ⇠", ⌘",!",⇡" 2 C1,1(R) \ C1(R \ {±x",±2x"}),

which coincide, respectively, with �, ⇠, ⌘,!,⇡ on [�x", x"] and are constant outside
the interval [�2x", 2x"], as follows:

�"(x) =

8>>><
>>>:

�(x) 0  x < x"

P�(x) x"  x  2x"

1 x > 2x"

��"(�x) x < 0,

⇠"(x) =

8>>><
>>>:

⇠(x) 0  x < x"

P⇠(x) x"  x  2x"

0 x > 2x"

�⇠"(�x) x < 0,

⌘"(x) =

8>>><
>>>:

⌘(x) 0  x < x"

P⌘(x) x"  x  2x"

c0
2↵ x > 2x"

⌘"(�x) x < 0,

!"(x) =

8>>><
>>>:

!(x) 0  x < x"

P!(x) x"  x  2x"

0 x > 2x"

�!"(�x) x < 0,



QUASI-OPTIMAL ERROR ESTIMATES 745

⇡"(x) =

8>>><
>>>:

⇡(x) 0  x < x"

P⇡(x) x"  x  2x"

� c2
0�

8↵3 x > 2x"

�⇡"(�x) x < 0.

Here P� , P⇠, P⌘, P!, P⇡ : [x", 2x"] ! R are the five polynomials of degree 3 such
that �", ⇠", ⌘",!",⇡" 2 C1,1(R). For example, for any x 2 [x", 2x"]

P�(x) =
⇣2x" � x

x"

⌘3
[2(1� �(x"))� x"�

0(x")]

+
⇣2x" � x

x"

⌘2
[x"�

0(x")� 3(1� �(x"))] + 1,

P⇠(x) =
⇣2x" � x

x"

⌘3
[�2⇠(x")� x"⇠

0(x")] +
⇣2x" � x

x"

⌘2
[x"⇠

0(x") + 3⇠(x")].

Note that these polynomials are not necessarily monotone (for instance P� is de-
creasing at the point 2x").

One can check by direct computation that

kP⇣ � ⇣1kL1(x",2x")  C(|⇣(x")� ⇣1|+ x"|⇣ 0(x")|),

kP 0⇣kL1(x",2x") 
C

x"
(|⇣(x")� ⇣1|+ x"|⇣ 0(x")|),

kP 00⇣ kL1(x",2x") 
C

x2
"

(|⇣(x")� ⇣1|+ x"|⇣ 0(x")|),

where ⇣ stands for any one of the functions �, ⇠, ⌘,!,⇡, ⇣1 = limx!+1 ⇣(x), and
C is a suitable positive constant. As a consequence, we get the following estimates:

kP� � 1kL1(x",2x") = | log "|O("2�) = O("2��1),

kP 0�kL1(x",2x") = O("2�), kP 00� kL1(x",2x") = | log "|�1O("2�) = O("2�),

kP⌘ � ⌘1kL1(x",2x") = | log "|2O("2�) = O("2��1),

kP 0⌘kL1(x",2x") = | log "|O("2�) = O("2��1), kP 00⌘ kL1(x",2x") = O("2�),

kP⇠kL1(x",2x"), kP!kL1(x",2x"), kP⇡ � ⇡1kL1(x",2x") = | log "|3O("2�),

kP 0⇠kL1(x",2x"), kP 0!kL1(x",2x"), kP 0⇡kL1(x",2x") = | log "|2O("2�),

kP 00⇠ kL1(x",2x"), kP 00!kL1(x",2x"), kP 00⇡ kL1(x",2x") = | log "|O("2�).

(6.1)

Finally, from (6.1), it follows that

k�" � �kL1(R) = k�" � �kL1(x",2x") = O("2��1), (6.2)

and similarly

k⇠" � ⇠kL1(R), k⌘" � ⌘kL1(R), k!" � !kL1(R), k⇡" � ⇡kL1(R) = O("2��1). (6.3)

6.1. Subsolution. For any " > 0 and any (x, t) 2 ⌦ ⇥ [0, T ] we define the
modified distance function d�" (x, t) as

d�" (x, t) = d(x, t)� c1(t)"2| log "|2,
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where c1 : [0, T ] !]0,+1[ is a continuous (exponentially increasing) function to be
determined later on independently of " (see (6.16)). For any t 2 [0, T ], let

T �" (t) = {x 2 ⌦ : |d�" (x, t)| < 2�"| log "|}, T �" =
[

t2[0,T ]

T �" (t)⇥ {t}.

For convenience, we remove the superscript �, thus denoting d" = d�" , T �" (t) =
T"(t), and T �" = T".

Observe that there exists "0 > 0 (depending on �, c1(·),D) such that T"(t) ✓ T (t)
for any 0 < "  "0 and any t 2 [0, T ], so that T" ✓ T for any 0 < "  "0. Moreover

d(x, t) = O("| log "|) 8(x, t) 2 T". (6.4)

Note that rd" = rd and (rd",rh) = 0 on T" (see §2). In addition, on T", using
(2.6), (2.5), and (6.4), we have

Hd" = Hd� c01"
2| log "|2 = g + d"h + "2| log "|2

�
c1h� c01

�
+O("2| log "|2). (6.5)

Our aim is to introduce a subsolution v�" for problem (2.9). As we shall see, the
definition of v�" is suggested by the formal asymptotics of §4. Define the real
stretched variable y = y(x, t) = "�1d"(x, t), set

b = (h�rd ·rg, g2 � 2rd ·rg, g2), p" = (⇠",!",⇡"),

and define on ⌦⇥ [0, T ]

v�" (x, t)=

8><
>:
�"(y) + "g(x, t)⌘"(y) + "2b(x, t) · p"(y)� c2"3| log "|2 on T",

1 + "⌘1g(x, t) + "2⇡1g2(x, t)� c2"3| log "|2 on {d" � 2�"| log "|},
�1+"⌘1g(x, t)�"2⇡1g2(x, t)�c2"3| log "|2 on {d"�2�"| log "|},

where c2 > 0 is a constant to be determined later on independently of ". For
simplicity, we will use the notation v" = v�" . It is clear, from the regularity of d" and
the properties of the functions �", ⇠", ⌘",!",⇡", that v" belongs to L2(0, T ;H2(⌦))\
H1(0, T ;L2(⌦)).

Note that, in view of the definition of d", the term �"(y) corresponds to a right
shift of the function �" of order ", which is natural when looking for a subsolution.
On the other hand, the term "g⌘" + "2b · p" is a shape correction suggested by
the formal asymptotic expansion given in §4; one can prove that this correction is
of higher order with respect to the previous right translation. Finally, the term
c2"3| log "|2 provides a further downward translation, and it is necessary both for
the comparison with the initial datum and to provide control of “bad” terms far
from the interface.

6.2. Comparison with the initial datum. Fix " > 0; inspired by the
asymptotics in §4, we assume that

u"(x, 0) = �("�1d(x, 0)) + "
c0

2↵
g(x, 0)� "2

c2
0�

8↵3
g2(x, 0)�("�1d(x, 0)). (6.6)

Let z = "�1d(x, 0), and, as before, let y = "�1d"(x, 0). Note that z = y +
c1(0)"| log "|2 > y. We have to check

v"(x, 0)  u"(x, 0) 8x 2 ⌦. (6.7)
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Define p = (⇠,!,⇡), and

w"(x, t) = �(y(x, t)) + "g(x, t)⌘(y(x, t)) + "2b(x, t) · p(y(x, t))� c2

2
"3| log "|2.

To prove (6.7) it will be enough to show

w"(x, 0)  u"(x, 0) 8x 2 ⌦. (6.8)

Indeed, by (2.1), (6.2) and (6.3) we have

|v" � w" +
c2

2
"3| log "|2|  O("2��1),

so that, if (6.8) is true,

v" =(v" � w") + w"  w" �
c2

2
"3| log "|2 + O("2��1)

u"(x, 0)� c2

2
"3| log "|2 + O("2��1)  u"(x, 0),

as "! 0.
Let us show (6.8). We have

w"(x, 0)� u"(x, 0) = (�(y)� �(z)) + "g(x, 0)(⌘(y)� c0

2↵
) + "2(b(x, 0) · p(y)

+
c2
0�

8↵3
g2(x, 0)�(z))� c2

2
"3| log "|2 =: I + II + III� c2

2
"3| log "|2.

We need the following result.

Lemma 6.1. Let z = "�1d(x, 0), y = "�1d"(x, 0) = z � c1(0)"| log "|2. We have

1
2
�0(y)  �0(t)  2�0(y) (6.9)

for all t 2 [y, z] and " su�ciently small.

Proof. Observe that (log(�0))0 = �00

�0 = �2� 2 L1(R), so that log(�0) is Lipschitz
continuous with Lipschitz constant 2. Therefore,

| log(
�0(t1)
�0(t2)

)| = | log(�0(t1))� log(�0(t2))|  2|t2 � t1|.

Hence, if |t2 � t1|  c1(0)"| log "|2, we have

�0(t1)
�0(t2)

� exp(�2|t2 � t1|) � exp(�2c1(0)"| log "|2) ! 1

as "! 0, and the left inequality of (6.9) follows. Similarly,

�0(t1)
�0(t2)

 exp(2|t2 � t1|)  exp(2c1(0)"| log "|2) ! 1

as "! 0, and the Lemma follows. ⇤
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Using Lemma 6.1, we find

I  �1
2
�0(y)c1(0)"| log "|2; (6.10)

moreover, by (2.1) and (3.20), there exists a positive constant c such that

|II|  c"(1 + |y|)�0(y). (6.11)

In addition, by (2.1), the fact that b(·, 0) 2 L1(⌦), and (3.16), (3.23), (3.26), (3.4),
and Lemma 6.1, we have

|III| "2|b(x, 0) · p(y) +
c2
0�

8↵3
g2(x, 0)�(y)|+ "2

c2
0�

8↵3
g2(x, 0)|�(z)� �(y)|

"2|b(x, 0) · p(y)� g2(x, 0)q|+ "2g2(x, 0)| c
2
0�

8↵3
�(y)� q|

+ "2
c2
0�

8↵3
g2(x, 0)|�(z)� �(y)|  c"2(1 + |y|2)�0(y),

where q is as in the proof of Lemma 3.1 with q� = q+ = c2
0�

8↵3 .
Let us distinguish two di↵erent cases. If |y| > 2| log "|, by direct computation

we have �0(y) < c"4 for some positive constant c, hence the terms II and III can
be controlled by the negative term � c2

2 "
3| log "|2. On the contrary, if |y|  2| log "|,

they are easily controlled by the term I. This proves (6.8), and so the proof of (6.7)
is concluded.

6.3. v" is a subsolution. In order to apply the Comparison Lemma 5.1 we
must show

Hv" + "�2 (v")� "�1 c0

2
g  0 for a.e. (x, t) 2 ⌦⇥ (0, T ). (6.12)

We first restrict ourselves to points (x, t) 2 T". Direct computations yield

rv" = "�1�0"(y)rd" + g⌘0"rd" + "b · p0"rd" + "⌘"rg + "2p" ·rb in T",

where, if b = (b1, b2, b3), then rb = (rb1,rb2,rb3). Enforcing the equality
|rd"| = 1 and (2.1), we get

@tv" ="�1�0"@td" + g⌘0"@td" + "b · p0"@td" + "⌘"@tg + "2p" · @tb,

�v" ="�2�00" + "�1g⌘00" + "�1�0"�d" + g⌘0"�d" + b · p00"
+ "b · p0"�d" + 2⌘0"rg ·rd" +O(").

Hence, using (6.5), in the layer T" we have

Hv" =� "�2�00" � "�1g⌘00" � b · p00" + ("�1�0" + g⌘0")Hd" � 2⌘0"rg ·rd" +O(")

=� "�2�00" � "�1g⌘00" + "�1�0"g � b · p00" � 2⌘0"rg ·rd" + gg⌘0" + y�0"h

+ c1"| log "|2�0"h� c01"| log "|2�0" +O("| log "|2).

Now observe that, on T",

g(x, t) =g(s(x, t) + drd, t) = g + drd ·rg +O(d2)

=g + "yrd" ·rg + c1"
2| log "|2rd" ·rg +O("2| log "|2),
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so that
gg⌘0" = g2⌘0" +O("| log "|), (6.13)

and

"�1�0"g = "�1�0"g � y�0"rd" ·rg � c1"| log "|2�0"rd" ·rg +O("| log "|2). (6.14)

Inserting (6.13) and (6.14) into the previous expression of Hv", we get

Hv" = �"�2�00" �"�1g⌘00" +"�1�0"g�y�0"rd" ·rg�c1"| log "|2�0"rd" ·rg�b · p00"
�2⌘0"rg ·rd"+g2⌘0"+y�0"h+c1"| log "|2�0"h�c01"| log "|2�0"+O("| log "|2).

Enforcing the formula

"�2 (v") ="�2 (�") + "�1g⌘" 
0(�") + b · p" 

0(�")

+
1
2
g2⌘2

" 
00(�")� c2"| log "|2 0(�") +O("),

we finally get that, on T",

Hv" + "�2 (v")� "�1 c0

2
g = I" + II" + III" + IV" +O("| log "|2),

where, recalling also the expression of b and p" and the equality rd" = rd,

I" =� "�2(�00" �  (�")),

II" =� "�1g[⌘00" � ⌘" 
0(�") +

c0

2
� �0"],

III" =�b·p00" +b·p" 
0(�")�2⌘0"rg ·rd+g2⌘0"+y�0"h+

1
2
g2⌘2

" 
00(�")�y�0"rd·rg

=� (h�rd ·rg)(⇠00"� 0(�")⇠"�y�0") + y�0"rd · (rg�rg)

� (g2�2rd ·rg)(!00"� 0(�")!"�⌘0")� g2(⇡00"� 0(�")⇡" �
1
2
⌘2

" 
00(�")),

IV" =c1"| log "|2�0"h�c01"| log "|2�0"�c2"| log "|2 0(�")�c1"| log "|2�0"rd ·rg

=IV1
" + IV2

" + IV3
" + IV4

".

Observe now that

�00" �  (�") = O("2��1) 8y 2 R \ {±x",±2x"}. (6.15)

Indeed �00" �  (�") = 0 on the set ] � 1,�2x"[[] � x", x"[[]2x",+1[. Let now
y 2]� 2x",�x"[[]x", 2x"[. By the definition of �" and the second relation in (6.1),
one has �00" (y) = O("2�); in addition, by the first relation in (6.1),

 (�"(y)) = O("2��1),

and this gives (6.15). Similarly, the definitions of ⇠", ⌘",!",⇡" and iterated applica-
tions of formulae (6.1) yield

⌘00" �  0(�")⌘" +
c0

2
� �0" =O("2��1),

⇠00" �  0(�")⇠" � y�0" =!00" �  0(�")!" � ⌘0"

=⇡00" �  0(�")⇡" �
1
2
⌘2

" 
00(�") = O("2��1),
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for any y 2 R \ {±x",±2x"}. Noting that y�0"rd · (rg � rg) = O("| log "|), the
previous estimates imply that, on T",

I" = II" = III" = O("2��3) +O("| log "|).
Take

c1(t) = c exp((1 + K)t), (6.16)

where c and K are positive constants. Then we have

IV1
" + IV2

" + IV4
"  �c1"| log "|2�0".

Choose now K = khkL1(⌃)+krgkL1(⌦⇥(0,T )). As c3�0"+ 0(�") is uniformly positive
for a proper choice of the positive constant c3, we realize that, if c and c2 are large
enough (independently of "), then

Hv" + "�2 (v")� "�1 c0

2
g  0 on T",

for " su�ciently small (depending on c1 and c2).
On the other hand, outside the transition layer T", we have

v" = ±1 + "
c0

2↵
g ⌥ "2

c2
0�

8↵3
g2 � c2"

3| log "|2,

so that, by the assumption (2.1), one easily gets

@tv" = O("), �v" = O(").

Moreover,

"�2 (v") = "�2 (±1) + "�2↵("
c0

2↵
g ⌥ "2

c2
0�

8↵3
g2 � c2"

3| log "|2)

± 1
2
"�2("

c0

2↵
g +O("2))2� +O(") = "�1 c0

2
g � c2↵"| log "|2 +O(").

Therefore,
Hv" + "�2 (v")� "�1 c0

2
g = �c2↵"| log "|2 +O("),

so that Hv"+"�2 (v")�"�1 c0
2 g  0 as "! 0 for any choice of the positive constant

c2.
Hence, applying the Comparison Lemma 5.1 with u replaced by the solution u"

of problem (2.9) with initial datum (6.6) and v replaced by v", we conclude

v�" (x, t)  u"(x, t) 8 (x, t) 2 ⌦⇥[0, T ].

If (x, t) 2 ⌦⇥(0, T ), the construction of a supersolution

v+
" (x,t)=

8><
>:
�"(y) + "g(x, t)⌘"(y) + "2b(x, t) · p"(y) + c2"3| log "|2 on T +

" ,

1 + "⌘1g(x, t) + "2⇡1g2(x, t) + c2"3| log "|2 on {d+
" � 2�"| log "|},

�1+"⌘1g(x, t)�"2⇡1g2(x, t)+c2"3| log "|2 on {d+
" �2�"| log "|},

where y = d+
" (x,t)

" , and

d+
" (x, t) = d(x, t) + c1(t)"2| log "|2,

is similar, and thus is omitted.
Using the sub-solution v�" and supersolution v+

" defined in §6, it is now possible
to deduce the following error estimates, valid before the onset of singularities, for
interfaces evolving by mean curvature with a forcing term g satisfying (2.1).
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Theorem 6.1. Let ⌃(t) be a mean curvature flow with forcing term g which sat-
isfies (2.4). For any " > 0 let u" be a solution of problem (2.9) with initial datum
(6.6). Let ⌃"(t) = {x 2 ⌦ : u"(x, t) = 0}. Then there exist 0 < "0 < 1 and a
constant C depending on ⌃, g, and T such that for all 0 < "  "0

⌃"(t) ✓ {x 2 ⌦ : dist(x,⌃(t)))  C"2| log "|2} 8t 2 [0, T ], (6.17)

⌃(t) ✓ {x 2 ⌦ : dist(x,⌃"(t)))  C"2| log "|2} 8t 2 [0, T ]. (6.18)

Proof. Let us prove (6.17). Fix t 2 [0, T ], and let x 2 ⌃"(t). We claim that
x 2 T (t) (see (2.3)). Indeed, if x 2 ⌃"(t), then u"(x, t) = 0, so that

v�" (x, t)  u"(x, t) = 0  v+
" (x, t). (6.19)

If by contradiction x /2 T (t), by the inclusions T ⌥" (t) ✓ T (t) we have x /2 T �" (t)
and x /2 T +

" (t). Recalling the definitions of v⌥" , we deduce that, for " su�ciently
small, v�" (x, t) and v+

" (x, t) have the same sign, a contradiction with (6.19). We
have

v�" (x, t) = �"(
d�" (x, t)

"
) +O(")  0,

so that

�"(
d�" (x, t)

"
)  O(").

As �0(0) = 1, we deduce that d�" (x,t)
"  O("); hence, recalling the definition of d�" ,

we get d(x, t)  O("2| log "|2). A similar argument applied with v�" replaced by
v+

" gives d(x, t) � O("2| log "|2). We conclude that |d(x, t)|  O("2| log "|2), which
proves (6.17).

Let us prove (6.18). Fix t 2 [0, T ], and let x 2 ⌃(t). We indicate by I the
connected component of the intersection between T (t) and the normal line to ⌃(t)
at x which contains x. Set {x�,x+} = I \ @T (t), where v�" (x+) > 0 (see the
definition of v�" ).

Set ⌃⌥" (t) = {x 2 ⌦ : v⌥" (x, t) = 0}. We claim that there exist x⌥" 2 I \ ⌃⌥" (t)
such that |x⌥" � x|  C"2| log "|2, for a suitable absolute positive constant C and
" small enough. Indeed, we have v�" (x, t) = �"(�c1(t)"| log "|2) + O(") < 0, and
v�" (x+, t) > 0, so that there exists a point x" 2 I lying between x and x+ such that
v"(x�" , t) = 0, i.e., x�" 2 I \ ⌃�" (t). Moreover,

|v�" (x�" , t)� v�" (x, t)| = |v�" (x, t)|  C"| log "|2, (6.20)

and, in view of the non degeneracy property of v", namely |rv�" · n| = 1
" , we have

|v�" (x�" , t)� v�" (x, t)| = |x�" � x||rv�" (⇠, t) · n| � C
|x�" � x|

"
, (6.21)

for a suitable absolute positive constant C and a suitable ⇠ between x�" and x. Then
(6.20) and (6.21) yield |x�" � x|  C"2| log "|2.

A similar argument applied with v�" replaced by v+
" concludes the proof of the

claim.
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As x⌥" 2 ⌃⌥" (t), we have u"(x�" , t) � v"(x�" , t) = 0, and u"(x+
" , t)  v"(x�" , t) = 0,

so that there exists a point z 2 I between x�" and x+
" such that u"(z, t) = 0.

Therefore
dist(x,⌃"(t))  |z� x|  C"2| log "|2,

and this gives (6.18), and concludes the proof of the theorem. ⇤
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