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Abstract

In this paper, we describe an adaptive refinement strategy for LR B-splines. The presented strategy ensures, at each
iteration, local linear independence of the obtained set of LR B-splines. This property is then exploited in two applications:
the construction of efficient quasi-interpolation schemes and the numerical solution of elliptic problems using the isogeometric
Galerkin method.
c⃝ 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Since the ’70s, curves and surfaces in engineering are usually expressed by means of computer aided design
(CAD) technologies such as B-splines and non-uniform rational B-splines (NURBS). Thanks to properties like non-
negativity, local support and partition of unity, they allow for an easy control and modification of the geometries
they describe, and this motivates their undisputed success as modeling tools for objects with complex shapes in
engineering; see, e.g., [1–3] and references therein. On the other hand, B-splines also provide a very efficient
representation of smooth piecewise polynomial spaces, and so are a popular ingredient in the construction of
approximation schemes; see, e.g., [4–6] and references therein.

More recently, the advent of isogeometric analysis (IgA) has integrated spline and CAD technologies into finite
element analysis (FEA); see, e.g., [7–9]. IgA aims to unify the geometric description of the domain of the differential
problem with its numerical resolution, in order to expedite the simulation process and gain in accuracy. In addition
to the properties listed above, B-splines and NURBS feature other qualities, appreciated in this context, such as
(local) linear independence and high global smoothness.

Tensor structures admit a simple but powerful multivariate extension of univariate splines and B-splines.
Unfortunately, they lack adequate local refinement, while the constantly increasing demand for higher precision in
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simulations and reverse engineering processes begs for adaptive local refinement strategies, in order to reduce the
approximation error at low computational costs. This request for adaptivity triggered the interest in new formulations
of B-splines and NURBS, still based on local tensor structures [10–16]. All these new classes of functions are
defined on locally refined meshes, in which T-vertices in the interior of the domain are allowed, the so-called
T-meshes.

Locally refined B-splines, or in short LR B-splines [15], are one of these new formulations, and their definition
is inspired by the knot insertion refinement process of tensor B-splines. These latter are defined on global knot
vectors, one per direction. The insertion of a new knot in a knot vector corresponds to a line segment in the mesh
crossing the entire domain. This refines all the B-splines whose supports are crossed. Instead, LR B-splines are
defined on local knot vectors and the insertion of a new knot is always performed with respect to a particular LR
B-spline. As a consequence, the LR B-spline definition is consistent with the tensor B-spline definition when the
underlying mesh at the end of the process is a tensor mesh, and the formulation of LR B-splines remains broadly
similar to classical tensor B-splines even though they enable local refinements. This makes them one of the most
elegant extensions of univariate B-splines on local tensor structures.

LR B-splines possess almost all the properties of classical tensor B-splines. Unfortunately, they are not always
linearly independent. Heretofore, it is not yet known what are the precise conditions on the locally refined mesh
to ensure a linearly independent set of LR B-splines. Nevertheless, some progress has been made in this direction.
In [15] an efficient algorithm to seek and destroy linear dependence relations has been introduced, but it does not
handle every possible locally refined mesh. In [17] a first analysis on the necessary conditions for encountering
a linear dependence relation has been presented. There, it has also been proved that, for any bidegree, a linear
dependence relation in the LR B-spline set involves at least eight functions. In [18,19] a characterization of the local
linear independence of LR B-splines has been provided. Such a strong property is guaranteed only on locally refined
meshes with certain constraints on the lengths and positions of the line segments that yield particular arrangements
of the LR B-spline supports. On the other hand, a practical adaptive refinement strategy to produce meshes with
the local linear independence property is still missing in the literature. To the best of our knowledge, the only
mesh construction that leads to a locally linearly independent set of LR B-splines can be found in [19]. Such a
construction, however, cannot be considered as a practical strategy because the regions to be refined and the maximal
resolution, i.e., the sizes of the smallest cells in the domain induced by the mesh, must be chosen a priori.

In this paper, we describe a practical refinement strategy ensuring the local linear independence of the
corresponding LR B-splines; the resulting mesh is called N2S2 LR-mesh. With examples we illustrate that locally
refined meshes can be achieved which are only slightly larger than standard refined (structured) LR-meshes without
linear independence warranty; see Fig. 11. The strong theoretical property of local linear independence is appealing
and admits, e.g., the construction of efficient local approximation (quasi-interpolation) schemes and the unisolvency
of sparse linear systems in isogeometric discretizations of differential problems based on such LR B-splines.

As mentioned above, there are several alternative spline technologies based on local tensor structures that are
suited for adaptive refinement. The most popular are T-splines [11,14], hierarchical and truncated hierarchical B-
splines (HB-splines and THB-splines) [10,13], and polynomial splines over hierarchical T-meshes (PHT-splines)
[12]. Numerical comparisons between LR B-splines and some of these alternatives have been presented in [20]. Our
refinement strategy is endowed with interesting theoretical features: it ensures local linear independence of the basis
functions and does not require any restriction on degree and smoothness. Analysis-suitable (and dual-compatible) T-
splines also enjoy both properties [9, Section 7], but their structure entails a certain amount of non-local refinement
propagation. Local linear independence is not available for HB/THB-splines, while PHT-splines assume reduced
regularity. In this perspective, our refinement strategy strengthens LR B-splines as an attractive choice among
adaptive spline methods based on local tensor structures.

The remainder of the paper is divided into 5 sections. Section 2 contains the definition of LR B-splines and a
summary of their main properties. Section 3 describes the mesh refinement strategy and is the core of the paper.
Sections 4 and 5 present applications of the refinement strategy in the context of quasi-interpolation and isogeometric
Galerkin discretizations of elliptic problems. We end in Section 6 with some concluding remarks.

Throughout the paper, we assume the reader to be familiar with the definition and main properties of (univariate)
B-splines, in particular with the knot insertion procedure. An introduction to this topic can be found, e.g., in the
review papers [3,6] or in the classical books [4] and [5].
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Fig. 1. Example of a box-partition E of a rectangle Ω in (a), and the mesh corresponding to E in (b). The meshlines are identified by
squares showing the associated multiplicities.

2. Locally refined B-splines

In this section, we introduce locally refined B-splines, or in short LR B-splines, and discuss several of their
properties, following the terminology from [17]. We denote by Πp the space of univariate polynomials of degree
less than or equal to p, and by Πppp the space of bivariate polynomials of degrees less than or equal to ppp = (p1, p2)
component-wise. Furthermore, we denote by B[xxx, yyy] the bivariate B-spline defined on the (local) knot vectors
xxx = (x1, . . . , x p1+2) and yyy = (y1, . . . , yp2+2), where xi ≤ xi+1 and yi ≤ yi+1 for all i . The bidegree of B[xxx, yyy] is
ppp = (p1, p2) and is implicitly specified by the length of xxx and yyy.

In order to define LR B-splines, we first introduce the concept of box-partition.

Definition 2.1. Given an axis-aligned rectangle Ω ⊆ R2, a box-partition of Ω is a finite collection E of axis-aligned
rectangles in Ω such that

1. β̊1 ∩ β̊2 = ∅ for any β1, β2 ∈ E , with β1 ̸= β2;
2.

⋃
β∈E β = Ω .

Given a box-partition E , we define the vertices of E as the vertices of its elements. A meshline is an axis-aligned
segment contained in an edge of an element of E , connecting two and only two vertices of E located at its end-
points. The collection of all the meshlines of the box-partition is called mesh, and denoted by M. A meshline can
be expressed as the Cartesian product of a point in R and a finite interval. Let α ∈ R be the value of such a point and
let k ∈ {1, 2} be its position in the Cartesian product. If k = 1 the meshline is vertical and if k = 2 the meshline is
horizontal. We sometimes write k-meshline to specify the direction of the meshline, and (k, α)-meshline to specify
exactly on which axis-parallel line in R2 the meshline lies. A vertex of E is called T-vertex if it is the intersection
of two collinear meshlines and another meshline, say γ , orthogonal to them. We call the T-vertex vertical if γ is
vertical, and horizontal otherwise.

For defining splines of a certain bidegree ppp = (p1, p2) and smoothness across the meshlines, we also need
the notion of multiplicity of a meshline. This is a positive integer associated with every meshline in M. For a
k-meshline this number is assumed to be maximally pk+1. A meshline in M has full multiplicity if its multiplicity
is maximal, and we say that M is open if every boundary meshline has full multiplicity. If all the meshlines of
the box-partition have the same multiplicity m we say that M has multiplicity m. When the T-vertices of E occur
only on ∂Ω and all collinear meshlines have the same multiplicity, the corresponding mesh is called tensor mesh.
Fig. 1 shows an example of a box-partition and its associated mesh.

Given a bivariate B-spline B[xxx, yyy], let xi1 , . . . , xir and y j1 , . . . , y js be the distinct knots in xxx and yyy, respectively.
The mesh

M(xxx, yyy) := {{xiℓ} × [y jn , y jn+1 ] : ℓ = 1, . . . , r; n = 1, . . . , s − 1}
∪ {[xin , xin+1 ]× {y jℓ} : ℓ = 1, . . . , s; n = 1, . . . , r − 1}

(1)

is a tensor mesh in supp B[xxx, yyy]. The multiplicities of the meshlines in M(xxx, yyy) are given by the multiplicities of
the knots of B[xxx, yyy]. For instance, the (1, xiℓ )-meshlines {xiℓ} × [y jn , y jn+1 ] for n = 1, . . . , s − 1 have all the same
multiplicity equal to the multiplicity of xiℓ in xxx .
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Fig. 2. Some supports of B-splines of bidegree (2, 2) on a mesh M of multiplicity 1. The mesh is shown in (a). The B-splines whose
supports are depicted in (b) and (c) have minimal support on M. The tensor meshes defined by the B-spline’s knots are highlighted with
thicker lines. On the other hand, the B-spline in (d) does not have minimal support on M: the collection of meshlines contained in the
dashed line disconnects its support.

Definition 2.2. Given a mesh M and a B-spline B[xxx, yyy], we say that B[xxx, yyy] has support on M if

• the meshlines in M(xxx, yyy) can be obtained as unions of meshlines in M, and
• their multiplicities are less than or equal to the multiplicities of the corresponding meshlines in M.

Furthermore, we say that B[xxx, yyy] has minimal support on M if

• it has support on M,
• the multiplicities of the interior meshlines in M(xxx, yyy) are equal to the multiplicities of the corresponding

meshlines in M, and
• there is no collection γ of collinear meshlines in M\M(xxx, yyy) such that supp B[xxx, yyy]\γ is not connected.

Fig. 2 shows examples of supports of B-splines of bidegree (2, 2) on a mesh of multiplicity 1. In particular,
the B-splines in (b)–(c) have minimal support, while the support of the B-spline in (d) can be disconnected by the
collection of meshlines γ , visualized by dashed lines in the figure.

Given a mesh M and a B-spline B[xxx, yyy] with support in M, assume that it does not have minimal support on
M. Then, there exists a collection of (k, α)-meshlines γ such that supp B[xxx, yyy]\γ is not connected and either γ is
in M\M(xxx, yyy) or γ ⊆M(xxx, yyy), i.e., α is an internal knot of xxx for k = 1 or yyy for k = 2 but its meshlines have
lower multiplicities in M(xxx, yyy) than in M. Assume that the meshlines in γ have all the same multiplicity m in
M. Denoting by µ(α) ≥ 0 the number of times α appears in the knot vector of B[xxx, yyy] in the kth direction, then
m − µ(α) is strictly positive as B[xxx, yyy] has support, but not minimal support, on M. One could consider such α

as an extra knot, of multiplicity m − µ(α), with respect to the knot vector of B[xxx, yyy] in the kth direction (in xxx if
k = 1 and in yyy if k = 2), and perform knot insertion on B[xxx, yyy]. If α was already a knot of B[xxx, yyy], so µ(α) ≥ 1,
this means raising its multiplicity by m−µ(α). The resulting generated B-splines will still have support on M and
eventually they will also have minimal support on M. As an example, the collection γ highlighted with dashed
lines in Fig. 2(d) is made of (2, α)-meshlines, for some α, of multiplicity 1. Such α can be inserted as new knot of
multiplicity 1 in the knot vector in the y-direction of the considered B-spline to refine it in two B-splines via knot
insertion.

The LR B-splines are generated by means of the above procedure. We start by considering a coarse tensor mesh
and we refine it by inserting collections of collinear meshlines, one at a time, of the same multiplicity. On the
initial mesh we consider the standard tensor B-splines and whenever a B-spline in our collection has no longer
minimal support during the mesh refinement process, we refine it by using the knot insertion procedure. The LR
B-splines will be the final set of B-splines produced by this algorithm. In the following definitions we formalize
this by describing the mesh refinement process in our framework.

Definition 2.3. Given a box-partition E and an axis-aligned segment γ , we say that γ traverses β ∈ E if γ ⊆ β

and the interior of β is divided into two parts by γ , i.e., β\γ is not connected. A split is a finite union of contiguous
and collinear axis-aligned segments γ = ∪iγi such that every γi either is a meshline of the box-partition or traverses
some β ∈ E . A mesh M has constant splits if each split in it is made of meshlines of the same multiplicity.
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Fig. 3. Two meshes. Assume that the boundary has a multiplicity large enough so that it is possible to define a B-spline of bidegree ppp
on it. Then, the mesh in (a) is not an LR-mesh because it cannot be built through a sequence of split insertions. Indeed, the initial coarse
tensor mesh is formed by the boundary, and no other meshline traverses the only element of this initial box partition. The mesh in (b) is
an LR-mesh similar to the one in (a).

Like for meshlines, we sometimes write k-split with k ∈ {1, 2} to specify the direction of the split or (k, α)-split
to specify on what axis-parallel line in R2 the split lies.

When a split γ is inserted in a box-partition E , any traversed β ∈ E is replaced with the two subrectangles β1, β2
given by the closures of the connected components of β\γ . The resulting new box-partition will be denoted by
E + γ and its corresponding mesh by M+ γ . We also assume that a positive integer µγ has been assigned to any
split γ . The multiplicities of the meshlines in M∩ (M+ γ ) and not contained in γ are unchanged. Contrarily, the
multiplicities of the meshlines in γ that were already in M are raised by µγ , and the new meshlines in γ have
multiplicity equal to µγ on M+ γ .

The LR B-splines are defined on a class of meshes with constant splits, called LR-meshes. Thus, from now on,
we restrict our attention to meshes that have constant splits. In particular, we note that when refining a mesh M
by inserting a split γ , either γ is made solely of new meshlines or it is made solely of meshlines already on M,
in order for M+ γ to have constant splits.

Definition 2.4. Given a mesh M with constant splits, a B-spline B[xxx, yyy] with support on M and a split γ , we say
that γ traverses B[xxx, yyy] if the interior of supp B[xxx, yyy] is divided into two parts by γ , i.e., supp B[xxx, yyy]\γ is not
connected and either γ is in M\M(xxx, yyy) or γ ⊆M(xxx, yyy) but the multiplicity of its meshlines is lower in M(xxx, yyy)
than in M.

We are now ready to define the mesh refinement process and the LR B-splines. The meshes generated by this
procedure will be called LR-meshes.

Definition 2.5. Given a bidegree ppp = (p1, p2), let M1 be a tensor mesh such that the set of standard tensor
B-splines of bidegree ppp on M1 is non-empty, and denote it by B1. We then define a sequence of meshes
M2,M3, . . . and corresponding function sets B2,B3, . . . as follows. For i = 1, 2, . . ., let γi be a split such that
Mi+1 :=Mi + γi has constant splits and such that the support of at least one B-spline in Bi is traversed by a split
in Mi+1. On this refined mesh Mi+1, the new set of B-splines Bi+1 is constructed by the following procedure.

1. Initialize the set by Bi+1 ← Bi .
2. As long as there exists B[xxx j , yyy j ] ∈ Bi+1 with no minimal support on Mi+1:

(a) Apply knot insertion: ∃B[xxx j
1, yyy j

1], B[xxx j
2, yyy j

2] : B[xxx j , yyy j ] = α1 B[xxx j
1, yyy j

1]+ α2 B[xxx j
2, yyy j

2].
(b) Update the set: Bi+1 ← (Bi+1\{B[xxx j , yyy j ]}) ∪ {B[xxx j

1, yyy j
1], B[xxx j

2, yyy j
2]}.

The mesh generated at each step is called LR-mesh and the corresponding function set is called LR B-spline set.

Not every mesh is an LR-mesh. For instance, one could consider meshes that do not have constant splits or
meshes that cannot be built through a sequence of split insertions, as illustrated by the mesh depicted in Fig. 3(a).
The LR-mesh in Fig. 3(b) is generated by four split insertions and the order of insertion is fixed in this case. In
general, however, the mesh refinement process producing a given LR-mesh M =MN is not unique because the
split insertion ordering can often be changed. Nevertheless, the LR B-spline set on M is well defined because it is
independent of such insertion ordering, as proved in [15, Theorem 3.4].
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Fig. 4. Example of linear dependence in the LR B-spline set. The parameterization of an LR-mesh M of multiplicity 1 is considered in (a),
and the linear dependence relation among some of the LR B-splines of bidegree (2, 2) defined on M is illustrated in (b). The LR B-splines
are represented by means of their supports on the mesh and the tensor meshes induced by their knots are highlighted with thicker meshlines.

Given an LR-mesh, the corresponding LR B-splines have several desirable properties for applications. By their
definition, it is clear that

• they are non-negative,
• they have minimal support, and
• they can be expressed by the LR B-splines on finer LR-meshes using non-negative coefficients (provided by

the knot insertion procedure).

Furthermore, it is possible to scale them by means of positive weights so that they also form a partition of unity;
see [15, Section 7].

Unfortunately, they are not always linearly independent. Fig. 4 shows an example of linear dependence among
the LR B-splines of bidegree (2, 2) defined on an LR-mesh of multiplicity 1. Heretofore, it is not yet known what
are the precise conditions on the LR-mesh to ensure a linearly independent set of LR B-splines.

In [19] a characterization of the local linear independence of LR B-splines has been provided. Such a strong
property is guaranteed only on LR-meshes with certain constraints on the split lengths and positions that yield
particular arrangements of the LR B-spline supports. This last statement is formalized in the following.

Definition 2.6. Given a mesh M, let B[xxx1, yyy1] and B[xxx2, yyy2] be two different LR B-splines defined on M. We
say that B[xxx2, yyy2] is nested in B[xxx1, yyy1], and we write B[xxx2, yyy2] ⪯ B[xxx1, yyy1], if

• supp B[xxx2, yyy2] ⊆ supp B[xxx1, yyy1], and
• any meshline γ of M in ∂supp B[xxx1, yyy1]∩∂supp B[xxx2, yyy2] has a higher (or equal) multiplicity when considered

in M(xxx1, yyy1) than in M(xxx2, yyy2).

An open mesh where no LR B-spline is nested is said to have the non-nested support property, or in short the
N2S-property.

The definition of nested LR B-splines was formulated for the first time in [18]. Definition 2.6 is different but
equivalent to it (see Appendix). Fig. 5 shows an example of an LR B-spline nested into another. The following
result from [19, Theorem 4] relates the local linear independence of LR B-splines to the N2S-property of the mesh.

Theorem 2.7. Given a bidegree ppp = (p1, p2), let M be an open LR-mesh corresponding to a box-partition E
and let BLR(M) be the set of LR B-splines of bidegree ppp on M. The following statements are equivalent.

1. The elements of BLR(M) are locally linearly independent.
2. M has the N2S-property.
3. For any element β ∈ E , the number of non-zero LR B-splines over β satisfies

#{B ∈ BLR(M) : supp B ⊇ β} = (p1 + 1)(p2 + 1).

4. The LR B-splines form a partition of unity, without the use of scaling weights.
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Fig. 5. Example of nested LR B-splines on the mesh M shown in (a). All the meshlines have multiplicity 1 except those in the left
edge of M, highlighted with a double line, which have multiplicity 2. In (b)–(d) three LR B-splines (B[xxx1, yyy1], B[xxx2, yyy2], B[xxx3, yyy3],
respectively) of bidegree (2, 2) with minimal support on M are represented by means of their supports and the tensor meshes induced by
their knots. All the knots of these LR B-splines have multiplicity 1 except x3

1 which has multiplicity 2. Therefore, B[xxx2, yyy2] ⪯ B[xxx1, yyy1]
but B[xxx3, yyy3] ⪯̸ B[xxx2, yyy2] and B[xxx3, yyy3] ⪯̸ B[xxx1, yyy1], despite that supp B[xxx3, yyy3] ⊆ supp B[xxx2, yyy2] and supp B[xxx3, yyy3] ⊆ supp B[xxx1, yyy1],
because the shared meshlines in the left edge of supp B[xxx3, yyy3], supp B[xxx2, yyy2] and supp B[xxx1, yyy1] have multiplicity 2 in M(xxx3, yyy3) and
multiplicity 1 in M(xxx2, yyy2) and M(xxx1, yyy1).

An element of E for which item 3 of Theorem 2.7 holds is said to be non-overloaded. Note that (p1+1)(p2+1)
is the dimension of the polynomial space over the element.

In [19] one can also find an algorithm to construct LR-meshes so that the N2S-property is fulfilled. This approach,
however, has a relevant drawback for practical purposes: the regions to be refined and the maximal resolution have
to be chosen a priori. Moreover, the algorithm cannot be stopped prematurely, before having inserted all the splits
determined initially. In practice, one rarely knows in advance where the error will be large and how fine the mesh
has to be chosen to reduce it under a certain tolerance.

In the next section, we present an alternative way to generate LR-meshes so that the N2S-property is guaranteed.

3. N2S-structured mesh refinement strategy

In this section, we define a local refinement strategy that ensures the N2S-property for the obtained meshes. It
consists of two steps. First, we apply the so-called structured mesh refinement, defined in [21], to the LR B-splines
whose contribution to the approximation error is larger than a given tolerance. Then, we slightly modify the obtained
mesh by prolonging some splits, to recover the N2S-property. The meshes generated by this refinement are open
meshes with internal meshlines of multiplicity one.

As opposed to the classical finite element method, in which the refinement is applied to the box-partition
elements, the structured mesh refinement is a refinement applied to the function space, i.e., we select for
refinement the LR B-splines contributing more to the approximation error rather than the box-partition elements
where a larger error occurs. This approach is justified by the fact that on an LR-mesh, any new split inserted must
traverse at least the support of one LR B-spline. If we choose to select the elements where the error is larger,
then the refinement has to be extended anyway to traverse the support of at least one LR B-spline containing the
elements, resulting in a refinement of the LR B-spline basis. Moreover, since several LR B-splines contain such
elements, those chosen for the refinement extension could be not those contributing more to the error, resulting in
a suboptimal refinement, or we could refine more LR B-splines than necessary, wasting degrees of freedom.

Once the LR B-splines are selected, we refine them by halving the interval steps in their knot vectors. This
corresponds to the insertion of a net of meshlines in the B-spline supports on the mesh. We therefore perform the
LR B-spline generation algorithm described in Definition 2.5. Every selected LR B-spline is fragmented into LR
B-splines of smaller support and replaced with them. The LR-mesh obtained in this way will be called a structured
LR-mesh.

In summary, the structured mesh refinement consists of two steps:

1. LR B-splines are selected to be refined and not box-partition elements;
2. the interval steps of their knot vectors are halved to obtain the new LR-mesh.
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Fig. 6. Two iterations of the structured mesh refinement of bidegree (2, 2). We consider the initial open tensor mesh with internal meshlines
of multiplicity 1 in (a). Figure (b) shows the support of an LR B-spline selected for refinement. We refine it by halving the interval steps
in its knot vectors. This results in the insertion of a net of meshlines in the LR-mesh as shown in (c). In (d) we select another LR B-spline
in the new set of LR B-splines and we refine it as illustrated in (e). Figure (f) depicts the final mesh obtained.

Fig. 7. An LR B-spline nested in another LR B-spline, which in turn is nested in another LR B-spline on a structured LR-mesh for bidegree
(2, 2). Consider again the mesh in Fig. 6(f). In (a)–(c) we depict the supports of three LR B-splines on this mesh. The support in (a) is
contained in the interior of the support in (b) and (c), and the support in (b) is contained in the interior of the support in (c), as shown in
(d). Therefore, the LR B-spline considered in (a) is nested both in the LR B-splines in (b) and (c), and the LR B-spline in (b) is nested in
the LR B-spline in (c). Hence, the considered mesh does not have the N2S-property.

Fig. 6 shows two iterations of such refinement. In general, the structured mesh refinement does not generate
LR-meshes with the N2S-property. The LR-mesh in Fig. 6(f) is an example as explained in Fig. 7. Furthermore,
the structured mesh refinement may produce linearly dependent sets of LR B-splines. Fig. 8 shows an example for
bidegree (4, 4).

On the other hand, the standard B-splines defined on a plain tensor mesh are locally linearly independent, and
the meshes generated by the structured mesh refinement are locally tensor meshes far from the boundary of the
region where the structured mesh refinement is applied. The LR B-splines defined in these zones of the mesh behave
like the standard B-splines, and therefore are locally linearly independent. On the boundary of the region where
the refinement has been applied, LR B-splines of smaller support can be nested in LR B-splines of larger support.
Hence, in such case the resulting LR-mesh does not have the N2S-property.

The idea for our refinement strategy, which will be called N2S-structured mesh refinement, is therefore to
recover the N2S-property in the mesh by slightly modifying it in these transition regions. When an LR B-spline
B[xxx2, yyy2] is nested into another LR B-spline B[xxx1, yyy1], one could prolong the splits in M(xxx2, yyy2) in some direction
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Fig. 8. A structured LR-mesh with a linear dependence relation among the LR B-splines of bidegree (4, 4) defined on the highlighted region
in (c). We start by considering an open tensor mesh with interior meshlines of multiplicity 1 as in (a). Then, we apply two iterations of
structured mesh refinement as shown in (b)–(c). The LR B-splines with support in the region highlighted in (c) are linearly dependent. In
particular, the region corresponds to the support of an LR B-spline that has many nested LR B-splines in it. One can prove the existence of
the linear dependence relation by computing the spline space dimension and the number of LR B-splines defined on the mesh as explained
in the examples of [17]. This configuration can be reproduced for any bidegree (p1, p2) with pk ≥ 4 for k = 1, 2.

to traverse entirely supp B[xxx1, yyy1]. This, by Definition 2.5, would refine B[xxx1, yyy1] in LR B-splines that turn out not
to have nested LR B-splines in their supports anymore. This last statement is formalized in Corollary 3.3. To this
end, we first prove the N2S-property for LR-meshes with a particular structure.

Definition 3.1. An LR-mesh M on the domain Ω is said to be tensorized in the kth direction, for k ∈ {1, 2}, if
all the internal k-meshlines in M are contained in k-splits crossing Ω entirely, i.e., there are no vertical, if k = 1,
or horizontal, if k = 2, T-vertices in the interior of Ω .

Proposition 3.2. Let M be an LR-mesh tensorized in the kth direction for some k ∈ {1, 2}. Then, the LR B-splines
defined on M are all non-nested.

Proof. Without loss of generality, we can assume that M is tensorized in the first direction, i.e., the vertical
meshlines are all contained in vertical splits crossing the domain entirely. This means that in M no vertical meshline
ends in the interior of the domain and therefore in the interior of the support of any LR B-splines defined on M.
We now proceed by contradiction and assume that there exists an LR B-spline in M, say B2

= B[xxx2, yyy2], nested
in another, say B1

= B[xxx1, yyy1]; see Definition 2.6. Because of the tensorization in the first direction, this can
only happen if they share the same knot vector in the x-direction, xxx1

= xxx2. In particular, their supports have the
same extreme values in the x-direction. This implies that all the horizontal splits, counting the multiplicities, of M
traversing supp B2 must traverse supp B1 as well. Since B2 is nested in B1 and B1 has minimal support (it is an LR
B-spline), it follows that yyy1

= yyy2, and as a consequence we have B1
= B2. This is a contradiction and concludes

the proof. □

Corollary 3.3. Given an LR-mesh M, let B = B[xxx, yyy] and B1
= B[xxx1, yyy1], . . . , Bn

= B[xxxn, yyyn] be LR B-splines
defined on M such that B1, . . . , Bn

⪯ B. Let N be the mesh defined by the restriction of M to the meshlines of
M(xxx, yyy),M(xxx1, yyy1), . . . ,M(xxxn, yyyn). Then,

1. there are at least one horizontal T-vertex and one vertical T-vertex of N in the interior of supp B;
2. by extending all the splits of N in some direction to cross supp B entirely, B is refined, by Definition 2.5, in

LR B-splines that do not have any nested LR B-splines anymore.

Proof. We prove the two statements separately as follows.

1. Assume that there are no vertical T-vertices of N in the interior of supp B. Then, N would be tensorized in
the first direction. By Proposition 3.2, it would imply that all the LR B-splines defined on N are non-nested,
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Fig. 9. Example of a vertical tensor expansion. We consider five LR B-splines of bidegree (2, 2), namely B and B1, . . . , B4, with
supp B1, . . . , supp B4 contained in the upper left corner of supp B. The mesh N , of multiplicity 1, generated by the meshlines of
B, B1, . . . , B4 is depicted in (a), and the supports of the LR B-splines are shown in (b). In (c) we perform a vertical tensor expansion of
B1, . . . , B4 in B, and in (d) the supports of the new set of LR B-splines are shown: none of them has a nested LR B-spline anymore. Here
local linear independence is achieved by replacing the LR B-spline B with the three LR B-splines corresponding to the bottom row of (d).

which is a contradiction. Analogously, one can prove that at least one horizontal T-vertex of N must be in
the interior of supp B.

2. Since B contains the support of other B-splines, N ̸= M(xxx, yyy) and in particular there exist at least one
horizontal T-vertex and one vertical T-vertex by the previous item. We now focus on the vertical T-vertices,
but of course the same argument can also be carried out for the horizontal T-vertices. We extend all the vertical
splits in N to cross supp B entirely, and denote this new mesh as Ñ . By Definition 2.5, the extensions trigger
a refinement of B via knot insertions. Ñ is tensorized in the first direction and, by Proposition 3.2, no LR
B-spline defined on Ñ is nested into another. □

The extension of the splits considered in item 2 of Corollary 3.3 will be called a one-directional tensor
expansion of B1, . . . , Bn in B. An example of such an expansion is shown in Fig. 9.

The N2S-structured mesh refinement is defined algorithmically as follows. We start from a structured mesh
refinement to obtain a new set of LR B-splines. We then collect in a set B all those LR B-splines that have nested
LR B-splines in their supports. If B is non-empty, we select an LR B-spline B in B and we apply a one-directional
tensor expansion to it. This triggers a refinement of the LR B-spline set, and therefore it changes also the set B.
We repeat this procedure till B becomes empty. In Theorem 3.5 we shall prove that this always happens in a finite
number of steps. The complete algorithm is described by Algorithm 3.4.

Algorithm 3.4 (N2S-structured mesh refinement).

1. B1 is the B-spline set on the open tensor mesh equal to the domain’s boundary;
2. for i = 1, 2, . . . do
3. perform a structured mesh refinement of Bi ;
4. initialize Bi+1 as the LR B-spline set defined on the new LR-mesh;
5. define B = {B ∈ Bi+1 : ∃ B ′ ∈ Bi+1 with B ′ ⪯ B};
6. while B ̸= ∅ do
7. select B ∈ B;
8. perform a one-directional tensor expansion of the LR B-splines nested in B;
9. update Bi+1 as the LR B-spline set defined on the new LR-mesh;

10. update B = {B ∈ Bi+1 : ∃ B ′ ∈ Bi+1 with B ′ ⪯ B};

The one-directional tensor expansions (line 8 of Algorithm 3.4) are performed by alternating the direction for
i even and odd, respectively, in order to bound the thinning of the box-partition elements in a specific direction
and preserve the uniformity of the mesh as much as possible. The LR-mesh obtained in this way will be called an
N2S-structured LR-mesh, or in short N2S2 LR-mesh.

Theorem 3.5. Given an axis-aligned rectangular domain Ω ⊆ R2, let B1 be the set of standard bivariate B-splines
defined on the open tensor mesh whose meshlines are the edges of ∂Ω . Then,
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Fig. 10. Visual comparison between meshes of bidegree (2, 2) obtained by performing seven iterations of different mesh refinement strategies
along the diagonal: (a) the structured LR-mesh, (b) the N2S2 LR-mesh, and (c) the LR-mesh proposed in [19].

1. the LR B-spline sets Bi provided by Algorithm 3.4 are well defined, i.e., the set B of the algorithm becomes
empty in a finite number of iterations, for every index i ≥ 2;

2. all the LR B-splines in Bi are non-nested, for every i ≥ 1.

Proof. Without loss of generality, we can assume that Ω = [0, 1]× [0, 1]. We proceed by induction on the index
of the B-spline set. For i = 1, B1 is the set of standard B-splines on the open tensor mesh equal to the domain’s
boundary and we know they are locally linearly independent. By Theorem 2.7, this is equivalent to be all non-nested.
Assume now that Bi for some i ≥ 1 is well defined and that the functions in it are all non-nested. Let us then prove
that also Bi+1 is well defined and there is no LR B-spline nested into another LR B-spline of it. At every loop
iteration in the algorithm, the LR B-splines that have a nested LR B-spline in their support are collected in the set
B. Therefore, whenever we can show that B becomes empty after a certain iteration of the loop, we can immediately
conclude both statements in the theorem.

By Corollary 3.3, all the one-directional tensor expansions performed to define the set Bi+1 can be done in the
same direction k ∈ {1, 2}, which is therefore fixed once and for all by the index i+1. The length of the LR B-spline
supports in the (3− k)th direction at any iteration of the loop cannot become shorter than 2−(i+1) regardless of the
number of one-directional tensor expansions applied until then. This is because the (3− k)-splits on the LR-meshes
defined in the loop are fixed by the structured mesh refinement performed on Bi at the beginning of the process and
the minimal length of the box-partition elements in the (3− k)th direction is 2−(i+1). Therefore, the split extensions
applied when performing a one-directional tensor expansion in the kth direction have lengths bounded from below
by 2−(i+1) in all the steps of the loop. This means that in a finite number of one-directional tensor expansions a
k-split could be extended up to the domain’s boundary, if needed, to remove nestedness issues, as these extensions
cannot become arbitrarily small. In the worst case scenario, we must extend all the k-splits to cross entirely the
domain. However, in this case, the resulting LR-mesh would be tensorized in the kth direction. By Proposition 3.2,
there are only non-nested LR B-splines on this LR-mesh and thus B becomes empty in a finite number of loop
iterations. □

In practice, the loop related to B stops quickly and the N2S2 LR-meshes are far from being entirely tensorized
in one direction. In Fig. 10 we depict (a) the structured LR-mesh, (b) the corresponding N2S2 LR-mesh, and (c) the
LR-mesh proposed in [19], obtained by performing seven iterations of diagonal refinement in [0, 1]2, using bidegree
(2, 2). For ease of comparison, we also indicate the number of LR B-splines defined on each of these meshes. We
recall that the LR B-splines are not locally linearly independent on the structured LR-mesh, while they are on the
N2S2 LR-mesh and the LR-mesh proposed in [19].

In Figs. 10(b) and 11 one can see how the refinement in the N2S2 LR-meshes propagates from the region where
the structured mesh refinement has been applied. In all the considered cases, the refinement does not heavily spread
out. It is important to highlight, however, that the prolongation of the splits needed to recover the N2S-property
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Fig. 11. Meshes of bidegree (2, 2) obtained by performing eight iterations of mesh refinement on three different regions resulting in a
structured LR-mesh (top row) and an N2S2 LR-mesh (bottom row).

is not unique. Indeed, when refining an LR B-spline to remove nestedness issues, the inserted split prolongations
refine not only the considered LR B-spline but in general also other LR B-splines in the neighborhood. Then, some
of the newly introduced neighboring LR B-splines might not need a one-directional tensor expansion anymore and
the ordering used for removing nestedness has thus an effect on the resulting mesh.

One might consider to treat all the LR B-splines “in parallel”, i.e., first collect all the split extensions needed
to remove nestedness in all the LR B-splines requiring a treatment and then insert all of them at the same time to
refine the function basis. This could result in a more uniform propagation of the refinement out of the region where
the structured mesh has been applied. On the other hand, by doing this, some split extensions could be unnecessary
for recovering the N2S-property. Therefore, in general, also the number of LR B-splines on these meshes would be
higher than the number obtained when treating one LR B-spline at a time. In the examples presented in this paper
we do not remove nestedness “in parallel”. Hence, the resulting N2S2 LR-meshes depend on the order used when
the one-directional tensor expansions are applied. On the other hand, the number of LR B-splines will be closer
to the number of LR B-splines obtained when performing only the structured mesh refinement, i.e., closer to the
“optimal” number of LR B-splines needed to reduce the error while preserving the local linear independence.

We finally remark that one could also opt for full tensor expansions in the supports, instead of one-directional
tensor expansions, to solve nestedness issues. The proof of Theorem 3.5 can be rephrased for the case of full tensor
expansions. The key is that we only prolong splits provided by the structured mesh refinement performed at the
beginning of the process. Therefore, if we do full tensor expansions, in the worst case scenario we would end up
with a standard tensor mesh of size h = 2−(i+1) to define the set Bi+1, instead of an LR-mesh tensorized in one
direction. In such case, B would still become empty in a finite number of loop iterations. However, we decided to
do the expansion of the splits only in one direction at a time because it results in fewer propagation. Our choice of
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alternating the direction in each refinement step was motivated by the wish to preserve the uniformity of the mesh
as much as possible. However, this choice could be improved and optimized towards the specific problem to be
addressed (for instance, to achieve a certain amount of anisotropy).

4. Application I: Quasi-interpolation

A quasi-interpolation method is a procedure to compute the coefficients assigned to the basis elements of a
prescribed function space, with the aim of approximating a given arbitrary function or data set. The resulting
approximant is called a quasi-interpolant (QI). The computation of any of such coefficients may depend only on the
data/function restricted to the corresponding basis element’s support (local method), and perhaps some neighboring
other basis elements’ supports, or it may depend on the data/function in the entire domain (global method), as in
the least-squares method. Given a function f and an approximation space, whose basis is denoted by B, we write
a related QI in the form

Q f :=
∑
B∈B

λB( f )B, (2)

where λB( f ) is the coefficient of the basis element B ∈ B computed by the selected method.

Definition 4.1. A quasi-interpolation method such that Q f = f for all f in a space V is said to reproduce the
space V .

When using spline spaces of bidegree ppp as approximation spaces, a common requirement is that the polynomial
space Πppp is reproduced by the quasi-interpolation method, in order to ensure good approximation properties. A
general recipe for constructing local quasi-interpolation methods for tensor spline spaces, with the polynomial
reproduction property, can be found in [22]. We summarize it for the convenience of the reader.

Recipe 4.2. Let f be a given function defined on the rectangle Ω . Given a bidegree ppp, let M̃ be an open tensor
mesh on Ω , and let B(M̃) be the set of tensor B-splines of bidegree ppp on M̃. For every B = B[xxx, yyy] ∈ B(M̃), we
compute the coefficient λB( f ) as follows.

1. Let U ⊆ R2 be an open set that intersects the interior of supp B (for instance, U can be a box-partition
element of M(xxx, yyy)), and let B(U ) be the subset of B(M̃) consisting of all the tensor B-splines not identically
zero on U.

2. Choose a local polynomial approximation method PU such that PU g = g for all g ∈ Πppp defined on U
(typical choices are least-squares or interpolation methods). Letting g|U be the restriction of g to U, we can
write

(PU f )|U =
∑

B̃∈B(U )

bB̃( f )B̃|U ,

for some coefficients bB̃( f ) provided by the chosen local approximation method.
3. Since B ∈ B(U ), set λB( f ) := bB( f ).

Then, according to (2), the quasi-interpolant to f in the space spanned by B(M̃) is defined as

Q f :=
∑

B∈B(M̃)

λB( f )B.

Note that the choice of the local polynomial approximation method is an open ingredient in the above recipe
for tensor splines (step 2). Actually, it is even allowed to take different polynomial approximation schemes for
different B-splines B ∈ B(M̃). In the same spirit and similar to the local quasi-interpolation strategy developed for
THB-splines in [23,24], we can formulate a general recipe for constructing QIs in the space spanned by BLR(M)
on a given open LR-mesh M as follows: for every LR B-spline B in BLR(M), select any local tensor space
containing B, and pick the coefficient corresponding to B in the expression of any QI in such a tensor space. We
have here the flexibility of choosing both the local space and the local QI for determining the coefficient of an LR
B-spline. In particular, when the smallest local tensor space is considered, we arrive at the following recipe.
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Recipe 4.3. Let f be a given function defined on the rectangle Ω . Given a bidegree ppp, let M be an open LR-mesh
on Ω , and let BLR(M) be the set of LR B-splines of bidegree ppp on M. For every B = B[xxx, yyy] ∈ BLR(M), we
compute the coefficient λB( f ) as follows.

1. Let M̃B be the open tensor mesh obtained by raising the boundary meshline multiplicities of MB =M(xxx, yyy)
to full multiplicity, and let B(M̃B) be the set of tensor B-splines defined on M̃B .

2. Consider a quasi-interpolation method in the space spanned by B(M̃B),

QB f =
∑

B̃∈B(M̃B )

bB̃( f )B̃,

reproducing all g ∈ Πppp (for instance, use Recipe 4.2).
3. Since B ∈ B(M̃B), set λB( f ) := bB( f ).

Then, according to (2), the quasi-interpolant to f in the space spanned by BLR(M) is defined as

Q f :=
∑

B∈BLR(M)

λB( f )B.

Since B ∈ B(M̃B) for any B ∈ BLR(M), the function Q f in Recipe 4.3 is well defined. Moreover, it
will reproduce polynomials on the entire domain if the LR-mesh has the N2S-property as stated in the following
proposition.

Proposition 4.4. Given a bidegree ppp, let M be an open LR-mesh and let BLR(M) be the set of LR B-splines of
bidegree ppp on M. Assume that M has the N2S-property, then

Qg = g, ∀g ∈ Πppp,

where the quasi-interpolation operator Q is defined in Recipe 4.3.

Proof. From [18, Theorem 4.6], if M has the N2S-property, then for all g ∈ Πppp we have

g =
∑

B∈BLR(M)

gB B, gB ∈ R,

where for all B ∈ BLR(M), the coefficient gB only depends on g and on the knots defining the LR B-spline B.
Therefore, gB remains the same if we represent g in any set of tensor B-splines containing B. Since, according to
Recipe 4.3, each QB reproduces all polynomials in Πppp we have

gB = λB(g), ∀B ∈ BLR(M), g ∈ Πppp,

which completes the proof. □

We have tested the quasi-interpolation strategy described in Recipe 4.3 on N2S2 LR-meshes to approximate
polynomials and transcendental functions. Given an N2S2 LR-mesh M, this recipe requires the construction of a
QI based on B(M̃B) for each of the LR B-splines B ∈ BLR(M) of bidegree ppp = (p1, p2). Following Recipe 4.2,
we have used interpolation as local approximation method in the computation of these QIs. More precisely, we have
selected a unisolvent set of (p1+1)(p2+1) interpolation points, organized in a tensor grid over a single box-partition
element of M̃B , and then we have set a linear system by evaluating f and the tensor B-splines in B(M̃B) at these
points. This guarantees polynomial reproduction (actually spline reproduction) of the quasi-interpolation method in
the spaces spanned by B(M̃B), for B varying in BLR(M). Therefore, also the resulting quasi-interpolation method
in the space spanned by BLR(M) has the polynomial reproduction property thanks to Proposition 4.4. Indeed, in
all the tests with polynomial functions of bidegree at most ppp, the maximal error was in the order of the machine
precision, regardless of the number of iterations performed to construct the N2S2 LR-mesh. The maximal error was
computed on a uniform 150 × 150 grid.

As test with a transcendental function, we have considered

f (x, y) =
2
3

e−
√

(10x−3)2+(10y−3)2
+

2
3

e−
√

(10x+3)2+(10y+3)2
+

2
3

e−
√

(10x)2+(10y)2
, (3)
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Fig. 12. The transcendental function (3) defined on [−1, 1]2.

Table 1
Dimensions of LR B-spline spaces of bidegree (2, 2) used to approximate the transcendental function (3) on tensor meshes and N2S2
LR-meshes for different levels of maximal resolution, and the corresponding optimal maximal errors.

Dimension of LR B-spline space

Tensor mesh 36 100 324 1156 4356 16 900 66 564
N2S2 LR-mesh 36 86 161 254 363 450 537

Max error 5.686e-01 4.645e-01 2.575e-01 1.472e-01 5.955e-02 2.156e-02 1.415e-02

Level 1 2 3 4 5 6 7

which is characterized by three steep peaks on the square [−1, 1]2 located at (−0.3,−0.3), (0, 0) and (0.3, 0.3);
see Fig. 12. This function has also been used in [23] to investigate the approximation power of a similar quasi-
interpolation method developed for THB-splines. In Table 1 we compare the dimensions of LR B-spline spaces
of bidegree (2, 2) on global tensor meshes and local N2S2 LR-meshes for different levels of maximal resolution.
For level ℓ, the smallest box-partition elements on the mesh have length 2−ℓ. Each N2S2 LR-mesh is obtained
by refining the LR B-splines whose supports contain one of the three points where a peak occurs via structured
mesh refinement and then by recovering the N2S-property via one-directional tensor expansions; see Fig. 13. For
a given maximal resolution level, the optimal maximal error, i.e., the maximal error when using the global tensor
mesh, is preserved by the N2S2 LR-mesh. However, the corresponding spline dimensions (degrees of freedom) are
significantly different and the discrepancy exponentially grows with the maximal resolution level.

5. Application II: Isogeometric analysis

Isogeometric analysis, or in short IgA [7], is a numerical technique to perform computational simulations on
complex geometries. The numerical solutions are represented by means of the same functions as used for the
domain modeling. Nowadays, complex geometries are expressed in terms of CAD technologies such as B-splines,
NURBS, and their generalizations to address adaptive refinements.

In this section, we adopt the IgA approach, using our refinement strategy for LR B-splines, to approximate the
solution of the Poisson problem on Ω = [0, 1]2,{

−∆u = f, in Ω̊ ,

u = uD, on ∂Ω ,
(4)

whose exact solution is

u(x, y) = arctan
(

100
(√

(x − 1.25)2 + (y + 0.25)2 −
π

3

))
;

see Fig. 14. This example is a good benchmark for numerical schemes, as the sharp interior layer of the
exact solution highlights the approximation quality, and it has been used extensively in the literature; see, e.g.,
[21,25,26].
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Fig. 13. N2S2 LR-meshes produced to approximate the transcendental function (3) for different levels of maximal resolution.

In the context of Galerkin discretizations, two properties are desirable:

• (local) linear independence of the space generators,
• refinement adaptivity.

The linear independence of the functions used as building blocks of the numerical solution avoids the numerical
complexity posed by the singularity of the matrices associated to the problem discretization. The refinement
adaptivity is desired for balancing accuracy and computational cost as it allows for a higher precision, only in
the regions where it is needed to reproduce large variations of the exact solution. LR B-splines on N2S2 LR-meshes
are suitable candidates as both the (local) linear independence of the space generators and the adaptivity of the
refinement are guaranteed.
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Fig. 14. Exact solution of the Poisson problem (4) defined on [0, 1]2.

Fig. 15. Error versus spline dimension (degrees of freedom) when approximating the solution of the Poisson problem (4) with LR B-splines
of bidegree (2, 2) on tensor meshes (solid line) and N2S2 LR-meshes (dashed line) for different levels of maximal resolution. The L∞-norm
of the error is depicted in (a) and the L2-norm of the error in (b).

In Fig. 15 we compare the L∞-norm and the L2-norm of the error (Fig. 15(a) and (b), respectively), using LR
B-spline spaces of bidegree (2, 2) on global tensor meshes and local N2S2 LR-meshes for different levels of maximal
resolution to approximate the solution of the Poisson problem (4). Again, for level ℓ, the smallest box-partition
elements on the mesh have length 2−ℓ. Each N2S2 LR-mesh is computed by first applying the structured mesh to
the LR B-splines whose supports intersect the curve where the sharp interior layer in the exact solution occurs, and
then by performing one-directional tensor expansions to recover the N2S-property; see Fig. 16. The error norms,
which are computed discretely on a uniform grid of 1000 × 1000 points, are plotted in log–log scale with respect to
the spline dimensions (degrees of freedom). The solid line with circular markers shows the decay when using global
tensor meshes, while the dashed line with star markers shows the decay for the N2S2 LR-meshes. In the figures, the
first marker corresponds to the 4 × 4 tensor mesh, for maximal resolution level ℓ = 2, and it is the maximal level
for which the LR B-spline and standard tensor B-spline sets coincide. When considering a comparable number of
degrees of freedom, the N2S2 LR-mesh leads to a significant reduction of both the L∞-norm and the L2-norm of
the error with respect to the tensor mesh, thanks to the adaptivity of the refinement. In Table 2 we show the 2-norm
condition numbers and dimensions of the corresponding stiffness matrices. Note that the dimension of the stiffness
matrix does not take into account the degrees of freedom related to the boundary condition.

6. Conclusion

LR B-splines are one of the most elegant extensions of univariate B-splines on local tensor structures that allow
for local refinement. They possess almost all the properties of classical B-splines, but they are not always linearly
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Fig. 16. N2S2 LR-meshes produced to approximate the solution of the Poisson problem (4) for different levels of maximal resolution.

independent. Recently, a characterization of LR-meshes ensuring local linear independence of the corresponding
LR B-splines has been presented in the literature [18,19]. However, a practical adaptive refinement strategy for
LR-meshes that maintain such a property was missing. In this paper, we have filled this gap by describing
an adaptive refinement strategy that generates LR-meshes where the corresponding LR B-splines are locally
linearly independent. Subsequently, we have exploited the local linear independence of the LR B-splines to
construct efficient quasi-interpolation schemes and to solve elliptic problems using the isogeometric Galerkin
method.
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Table 2
Condition numbers and dimensions of the stiffness matrices assembled to approximate the solution of the Poisson problem (4) with LR
B-splines of bidegree (2, 2) on tensor meshes and N2S2 LR-meshes for different levels of maximal resolution.

Condition number and dimension of stiffness matrix

Tensor mesh
4.00e00 5.22e00 1.98e01 7.81e01 3.12e02 1.24e03 4.98e03
16 64 256 1024 4096 16 384 65 536

N2S2 LR-mesh
4.00e00 5.79e00 3.02e01 9.44e01 2.73e02 9.86e02 2.76e03
16 59 163 390 835 1728 3515

Level 2 3 4 5 6 7 8

Besides the structural properties of LR B-splines, the refinement strategy we have proposed relies on the results
in [18] which extend to any higher dimensional setting. It seems thus reasonable that our bivariate construction can
be generalized to the multivariate case with similar definitions and proofs; see also [19].
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Appendix. Nested LR B-splines

The purpose of this appendix is to show the equivalence of the definition of nestedness used in this paper
(Definition 2.6) and the original definition provided in [18, Definition 2.4] for LR B-splines. The latter definition is
formulated in terms of repeated knot insertion and, in view of [18, Proposition 2.5], it is equivalent to the following
definition.

Definition A.1. Let B[xxx1, yyy1] and B[xxx2, yyy2] be two different tensor B-splines. Let µxxxk (z) and µyyyk (z), for k = 1, 2,
denote the number of times z ∈ R occurs in the vectors xxxk and yyyk , respectively. Then, we say that B[xxx2, yyy2] is
nested in B[xxx1, yyy1], and we write B[xxx2, yyy2] ⪯ B[xxx1, yyy1], if

1.

{
µxxx2 (z) ≥ µxxx1 (z), ∀ z ∈ ]x2

1 , x2
p1+2[,

µyyy2 (z) ≥ µyyy1 (z), ∀ z ∈ ]y2
1 , y2

p2+2[,

2.

{
µxxx2 (z) ≤ µxxx1 (z), ∀ z /∈ ]x1

1 , x1
p1+2[,

µyyy2 (z) ≤ µyyy1 (z), ∀ z /∈ ]y1
1 , y1

p2+2[.

We now prove the equivalence of the two definitions for LR B-splines.

Proposition A.2. Given a mesh M, let B[xxx1, yyy1] and B[xxx2, yyy2] be two different LR B-splines defined on M. For
B[xxx1, yyy1] and B[xxx2, yyy2], Definition 2.6 is equivalent to Definition A.1.

Proof. Let B1
:= B[xxx1, yyy1] and B2

:= B[xxx2, yyy2] be two LR B-splines defined on the mesh M. Assuming that they
satisfy the conditions in Definition A.1, we prove that they also satisfy the conditions in Definition 2.6. Let us first
show that supp B2

⊆ supp B1. This means that [x2
1 , x2

p1+2] ⊆ [x1
1 , x1

p1+2] and [y2
1 , y2

p2+2] ⊆ [y1
1 , y1

p2+2]. Suppose
x2

1 < x1
1 . Then, µxxx1 (x2

1 ) = 0 and µxxx2 (x2
1 ) > 0, but this contradicts item 2 in Definition A.1, and hence x2

1 ≥ x1
1 . The
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other inequalities can be proved in a similar way to have the interval inclusions. Let now γ ⊆ ∂supp B1
∩∂supp B2.

Assume without loss of generality that γ is a 1-meshline. Then, γ is a (1, z)-meshline for some z ∈ {x1
1 , x1

p1+2}. For
any choice of such z, we have µxxx2 (z) ≤ µxxx1 (z), by item 2 of Definition A.1, and, by the definition of multiplicity
of γ in M(xxx1, yyy1) and M(xxx2, yyy2), this implies that µ(γ ) is higher (or equal) in M(xxx1, yyy1) than in M(xxx2, yyy2).
Therefore, both the conditions in Definition 2.6 are satisfied if those in Definition A.1 are satisfied.

Let us now show the converse. Assuming that the conditions in Definition 2.6 are fulfilled, we prove that
the conditions in Definition A.1 are satisfied as well. Let z ∈ ]x2

1 , x2
p1+2[. Since supp B2

⊆ supp B1, we have
]x2

1 , x2
p1+2[ ⊆ ]x1

1 , x1
p1+2[. If z /∈ xxx1, then µxxx1 (z) = 0 and therefore µxxx2 (z) ≥ µxxx1 (z) for any value of µxxx2 (z). If

z ∈ xxx1, then it must be also in xxx2, otherwise the (1, z)-split {z} × [y1
1 , y1

p2+2] would traverse B2, which would
not have minimal support. For the same reason, it must also hold that µxxx2 (z) = µxxx1 (z). This proves item 1 of
Definition A.1. Assume now z /∈ [x1

1 , x1
p1+2]. Since supp B2

⊆ supp B1, we have x1
1 ≤ x2

1 and x2
p1+2 ≤ x1

p1+2.
Therefore, µxxx1 (z) = µxxx2 (z) = 0. If z ∈ {x1

1 , x1
p1+2} but z /∈ xxx2, then trivially µxxx2 (z) ≤ µxxx1 (z). If z ∈ xxx2, then z

corresponds to (1, z)-meshlines in ∂supp B1
∩ ∂supp B2. By assumption, these meshlines have a higher (or equal)

multiplicity in M(xxx1, yyy1) than in M(xxx2, yyy2), which means µxxx2 (z) ≤ µxxx1 (z). The same line of arguments also
applies to the knots in the second direction. This proves item 2 of Definition A.1. □
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