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Abstract
Terrestrial ecosystems affect climate by reflecting solar irradiation, evaporative cool-
ing,	and	carbon	sequestration.	Yet	very	little	is	known	about	how	plant	traits	affect	cli-
mate	regulation	processes	(CRPs)	in	different	habitat	types.	Here,	we	used	linear	and	
random forest models to relate the community- weighted mean and variance values 
of	19	plant	traits	(summarized	into	eight	trait	axes)	to	the	climate-	adjusted	proportion	
of reflected solar irradiation, evapotranspiration, and net primary productivity across 
36,630	grid	cells	at	the	European	extent,	classified	into	10	types	of	forest,	shrubland,	
and	grassland	habitats.	We	found	that	these	trait	axes	were	more	tightly	linked	to	log	
evapotranspiration	(with	an	average	of	6.2%	explained	variation)	and	the	proportion	
of	reflected	solar	irradiation	(6.1%)	than	to	net	primary	productivity	(4.9%).	The	high-
est	variation	in	CRPs	was	explained	in	forest	and	temperate	shrubland	habitats.	Yet,	
the strength and direction of these relationships were strongly habitat- dependent. 
We	conclude	that	any	spatial	upscaling	of	the	effects	of	plant	communities	on	CRPs	
must consider the relative contribution of different habitat types.

K E Y W O R D S
albedo, biodiversity change, climate change, climate- surface models, greenhouse gases, land 
use change, leaf economics spectrum, nature- based solutions, transpiration
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1  |  INTRODUCTION

Climate change and biodiversity loss pose two of the biggest 
threats to human well- being in the 21st century (Atwoli et al., 2021; 
Díaz et al., 2019;	Steffen	et	al.,	2015;	Stocker	et	al.,	2014;	World	
Resources Institute, 2005).	 Nature-	based	 solutions	 to	 protect,	
manage and restore natural ecosystems (IUCN, 2020)	could	provide	
viable options to mitigate both the climate and biodiversity crisis 
(Griscom et al., 2017;	Seddon	et	al.,	2020).	Terrestrial	ecosystems	
affect the local and global balances of energy, water, and carbon 
via their effects on the proportion of reflected solar irradiation 
(albedo),	evapotranspiration	and	carbon	sequestration	(Anderson-	
Teixeira et al., 2012; Chapin et al. 2008;	Pielke	et	al.,	1998),	which	
are	 all	 related	 to	 important	 climate	 regulation	 processes	 (CRPs).	
The mass ratio hypothesis posits that the functioning of ecosys-
tems is driven by the traits of dominant species (Grime, 1998).	
Accordingly,	 one	 could	 assume	 that	 local	 CRPs	 should	 be	 re-
lated to the trait composition of local plant communities (Chapin 
et al., 2000; Díaz et al., 2016; Garnier et al., 2016; Hinojo- Hinojo 
&	 Goulden,	 2020;	 Lavorel	 &	 Garnier,	 2002),	 also	 in	 interaction	
with	 large-	scale	climatic	gradients	 (Enquist	et	al.,	2015).	We	fur-
ther know that trait- ecosystem functioning relationships depend 
on	the	type	of	habitat	(Brun,	Violle,	et	al.,	2022).	Yet,	besides	the	
current calls to link the distribution of plant functional traits and 
vegetation demographics to the distribution and provisioning of 
CRPs	(Fisher	et	al.,	2018; He et al., 2023;	Mahecha	et	al.,	2022),	
such analyses have been hampered by the need for fine- resolution 
vegetation data of regional to continental extent and trait infor-
mation	across	many	plant	species	(cf.	Mahecha	et	al.,	2022;	Serna-	
Chavez et al., 2017).

Previous	 studies	on	 the	 relationships	between	plant	 traits	 and	
CRPs	 have	 shown	 that	 albedo,	 which	 quantifies	 the	 proportion	
of reflected irradiation, differs between habitat types (Leonardi 
et al., 2015; Oehri et al., 2022)	and	is	related	to	the	tree	cover,	leaf	
reflectance, and the leaf area index (i.e., the summed area of green 
leaves per unit of ground area, Alibakhshi et al., 2020; Ridgwell 
et al., 2009)	as	well	as	the	amount	of	plant	 litter	 in	forest	habitats	
(Serna-	Chavez	et	al.,	2017).	Evapotranspiration,	which	is	the	sum	of	

plant transpiration and evaporation from the land surface, is related 
to	plant	hydraulic	strategies	(Matheny	et	al.,	2017),	total	plant	cover,	
rooting depth and, potentially, the canopy height of plant communi-
ties	(Gates	&	Hanks,	1967).	Net	primary	productivity,	which	quanti-
fies the amount of carbon captured minus maintenance costs, differs 
between habitat types (Harper et al., 2016)	and	is	related	to	the	spe-
cific leaf area and leaf nitrogen, phosphorus, and chlorophyll content 
(He et al., 2023)	 as	well	 as	 the	carbon	pool	 in	 the	different	 layers	
of	forest	habitats	 (Serna-	Chavez	et	al.,	2017).	 In	summary,	the	 im-
pact	of	plant	communities	on	local	CRPs	has	been	estimated	to	be	of	
comparable magnitude to the impact of local climatic conditions on 
CRPs	(Oehri	et	al.,	2022;	Serna-	Chavez	et	al.,	2017).	Yet,	most	of	the	
present findings are based on simulation and studies that covered 
a restricted number of habitat types or geographic extents. Thus, 
we	still	lack	comprehensive	analyses	on	the	generality	of	traits-	CRP	
relationships, especially under consideration of the potentially con-
founding effects of local climatic conditions and the habitat type 
under investigation (Figure 1, He et al., 2023).

Here, we used 49,809 geo- referenced vegetation- plot ob-
servations	 from	 the	 European	 Vegetation	 Archive	 (Chytrý	
et al., 2016),	 classified	 into	 three	broad	habitats	 (forests,	 shrub-
lands,	and	grasslands)	and	10	more	narrowly	defined	habitat	sub-
classes	 (based	 on	 the	 expert-	based	 EUNIS	 classification,	 Chytrý	
et al., 2020, 2021)	and,	averaged	across	36,620	grid	cells	of	500 m	
resolution, assigned them with the community- weighted mean 
(CWM)	and	variance	values	of	19	plant	 functional	 traits,	 as	well	
as six bioclimatic variables and the proportion of reflected solar 
irradiation,	evapotranspiration,	and	net	primary	productivity.	We	
hypothesized	 that	 the	 three	CRPs	 jointly	depend	on	climate	and	
on habitat types (Figure 1).	 Therefore,	CRP	 values	 should	 differ	
between the investigated subclasses of forest, shrubland and 
grassland	habitats.	Since	the	effects	of	climate	on	plant	trait	dis-
tributions	 tend	 to	be	habitat-	specific	 (Kambach	et	 al.,	2023),	we	
further	 hypothesized	 that	 the	 predictive	 power	 of	 CRP-	trait	 re-
lationships should also depend on the habitat type under investi-
gation.	Yet,	if	the	selected	19	plant	traits	are	(to	a	certain	degree)	
mechanistically	 linked	 to	 the	 three	 CRPs,	 we	 hypothesized	 that	
the	 direction	 of	 the	 observed	 CRP-	trait	 relationships	 should	 be	

F I G U R E  1 Framework	depicting	the	assumed	effects	of	the	functional	composition	of	plant	communities	on	climate	regulation	processes,	
accounting for the effects of climate and habitat type.
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similar among the different subclasses of forest, shrubland, and 
grassland habitats. In testing these hypotheses, we provide the 
first comprehensive analysis of the predictability and generality 
of	 trait-	CRP	relationships	across	 large-	scale	gradients	 in	climatic	
conditions and habitat types.

2  | MATERIALS AND METHODS

2.1  | Vegetation data

Raw	 vegetation	 survey	 data	 consisted	 of	 1,735,298	 plots,	 col-
lated	 and	 curated	 by	 the	 European	 Vegetation	 Archive	 (Chytrý	
et al., 2016)	 and	 accessed	 on	May	 12th,	 2021	 (project	 number	
123).	 Species	 abundances	 were	 converted	 to	 percentage	 cover.	
Each plot was assigned to a habitat type based on the expert sys-
tem for the automatic classification of European vegetation plots 
to	EUNIS	habitats	 (European	Nature	 Information	System),	which	
was	updated	on	October	25th,	2021	 (Chytrý	et	al.,	2020, 2021).	
For this study, we selected and merged all plots into the following 
broad habitat types: forest, grassland, or shrubland habitats and, 
at a finer level, into the following more- narrowly defined habitat 
subclasses: coniferous, deciduous, or broadleaved evergreen for-
ests, alpine, heathland or temperate shrublands and alpine, dry, 
mesic,	 or	wet	 grasslands.	 The	 included	 EUNIS	 habitat	 types	 to-
gether with the respective number of vegetation records are listed 
in Table S1.

To be able to match plot data with satellite data and to reduce 
unaccounted	variability	in	CRP-	trait	relationships,	we	included	only	
those	plots	 that	met	all	of	 the	 following	criteria:	 (1)	 species	abun-
dances	 were	 recorded,	 (2)	 survey	 date	 was	 between	 January	 1,	
2000,	 and	December	31,	2017,	 (3)	 plot	 location	was	between	 the	
southernmost	point	of	34° N	and	the	northernmost	point	of	82° N	
and	east	of	the	westernmost	point	of	32° W,	(4)	location	uncertainty	
was	reported	and	 lower	than	250 m,	 (5)	water	bodies	covered	 less	
than	10%	of	 the	 area	 in	 a	 250 m	 radius	 (following	 the	 JRC	Global	
Surface	Water	map,	version	1.4,	reprojected	to	100 m	spatial	reso-
lution,	Pekel	et	al.,	2016),	(6)	all	climatic	and	satellite	variables	could	
be	extracted,	(7)	the	cumulative	percentage	cover	of	vascular	plants	
was	more	than	80%	of	the	plot	area,	and	 (8)	 trait	 information	was	
available	for	more	than	80%	of	the	summed	cover	of	the	recorded	
vascular plants. To reduce the effects of forest management, we 
excluded	 all	 plots	 that	 were	 classified	 as	 tree	 plantations	 (EUNIS	
classes	T1H,	T1K,	T29,	T2A,	T3M,	and	T3N)	or	self-	sown	forests	of	
non-	native	trees	(T1J	and	T3L).

To match trait data to individual species, we harmonized the 
species	 names	 with	 the	 Taxonomic	 Name	 Resolution	 Service	 5.0	
(tnrs. biend ata. org),	merged	subspecies	and	varieties	at	the	species	
level	 (keeping	higher	 level	taxa)	and	matched	the	resulting	species	
list	with	the	taxonomic	backbone	3.0	of	the	sPlot	Global	Vegetation	
Database	 (Bruelheide	 et	 al.,	 2019).	 The	 resulting	 species	 names	
complied	with	the	taxonomy	of	the	TRY	plant	trait	database	(Kattge	
et al., 2020).	 We	 omitted	 all	 algae,	 bryophyte,	 fungi,	 and	 lichen	

species and, separately for each of the 10 habitat subclasses, we re-
tained	only	the	most	recent	record	for	each	unique	location,	which	
resulted in 49,809 plots with 1,334,114 occurrence observations 
from	 6,214	 species,	 distributed	 between	 10.3° W	 and	 50° E	 and	
35.2° N	and	59.5° N,	with	the	highest	density	in	Central	Europe	(indi-
vidual databases are listed in Table S2).

2.2  |  Community- weighted trait means

To	assign	species-	level	trait	averages,	we	used	the	gap-	filled	TRY	
plant	trait	database,	version	5	(Kattge	et	al.,	2020),	which	covered	
species-	level	 mean	 values	 for	 33	 traits	 from	 50,404	 species.	 In	
this gap- filled dataset, any missing trait values were predicted at 
the	individual	level	with	Bayesian	hierarchical	probabilistic	matrix	
factorization	 based	 on	 observed	 trait	 records,	 bivariate	 Pearson	
correlations between all pairs of traits (Figure S1),	and	the	taxo-
nomic	hierarchy	 (see	Kambach	et	al.,	2023;	Schrodt	et	al.,	2015; 
Shan	et	al.,	2012).	The	original	publications	for	the	trait	data	are	
listed in Table S3. From this gap- filled dataset, we extracted spe-
cies-  and genus- level average values of 19 traits that we deemed 
potentially	important	for	the	analyzed	CRPs	(listed	at	the	bottom	
of Table 1 and described in Table S4).	We	matched	and	extracted	
species- level trait values for 4,139 species and, when no species- 
level estimates were available, we assigned the genus- level mean 
values	 to	 an	 additional	 number	of	385	 species.	 For	 each	 trait	 in	
each	plot,	we	calculated	a	community-	weighted	mean	(CWM)	and	
community-	weighted	 variance	 (CWV)	 value	 based	 on	 the	 trait	
value t	and	the	abundance	(i.e.,	relative	cover)	p of species i = 1 … n 
(as	presented	in	Bruelheide	et	al.,	2018).

All	CWMs	were	log-	transformed.
To match the spatial resolution between vegetation and satel-

lite	data,	we	calculated	an	average	value	for	each	of	the	19	CWMs	
and	CWVs	within	each	trait × habitat	combination	within	the	500 m	
grid	cells	of	the	albedo	raster	data	(which	is	described	below).	The	
resulting	dataset	contained	36,620	grid	cell	records	(Figure S2)	from	
coniferous	 (3,452	 grid	 cells),	 deciduous	 (10,742),	 and	 broadleaved	
evergreen	forests	(532),	alpine	(600),	heathland	(922),	and	temper-
ate	 shrublands	 (854)	and	alpine	 (1,051),	dry	 (6,163),	mesic	 (8,546),	
and	wet	grasslands	(3,758).	For	the	following	analyses,	we	scaled	all	
grid	cell-	averaged	CWM	and	CWV	values	to	unit	variance	(via	sub-
traction	of	the	mean	followed	by	division	of	the	standard	deviation).

To	 remove	 the	 covariation	 among	 the	 19	 CWMs,	 we	 con-
ducted	 separate	 principal	 component	 (PC)	 analyses	 (within	 the	
EUNIS	 level	 1classification,	 i.e.,	 within	 forests,	 shrublands	 and	
grasslands)	and	extracted	the	first	eight	PCs,	which	we	varimax-	
rotated	to	maximize	the	correspondence	of	the	PCs	to	individual	
plant	traits	(hereafter	main	trait	axes).	The	resulting	first	four	trait	
axes were related to known gradients of plant trait syndromes 

CWM =

n
∑

i

piti CWV =

n
∑
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ti−CWM
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along the leaf economics spectrum, leaf size/leaf mass and plant 
height/seed size (Díaz et al., 2016;	Weigelt	et	al.,	2021),	whereas	
trait axes five to eight were mostly related to single traits (Table 1; 
Tables S5–S7).

2.3  |  Bioclimatic variables

For each plot, we extracted the 19 bioclimatic variables from the 
CHELSA	Climatologies,	version	1.2	 (Karger	et	al.,	2017, 2018),	and	
the	following	CHELSA-	BIOCLIM+	variables	(at	a	resolution	of	30 arc	
sec [~1 km],	 Brun,	 Zimmermann,	 et	 al.,	2022;	 Karger	 et	 al.,	2017):	
climate moisture index, growing season length, growing season 
precipitation, growing season temperature, potential net primary 
productivity, potential evapotranspiration, surface downwelling 
shortwave radiation, near- surface wind speed and soil water bal-
ance	(Brun,	Zimmermann,	et	al.,	2022).	To	match	the	spatial	resolu-
tion between vegetation and satellite data, we calculated an average 
value	for	each	of	the	19	bioclimatic	and	the	six	BIOCLIM+ variables 
in	each	trait × habitat	combination	within	the	500 m	grid	cells	of	the	
albedo	raster	data	(which	is	described	below).	To	reduce	the	number	
of bioclimatic variables for the following analyses, we conducted a 
PC	analysis	with	all	bioclimatic	and	BIOCLIM+ variables and, after 
visual	 inspection	 of	 the	 resulting	 PCs	 (Figure S3),	 we	 decided	 to	
keep	the	following	six	BIOCLIM+ variables for all further analyses: 
climate moisture index, growing season length, temperature, precip-
itation, surface downwelling shortwave radiation and near- surface 
wind	speed.	These	six	BIOCLIM+ variables were reasonably weakly 
correlated	with	each	other	(pairwise	Pearson's	r < .6).	Yet,	they	cap-
tured	94.2%	of	all	the	variability	of	the	19	bioclimatic	variables,	as	

estimated	with	a	constrained	PC	analysis.	The	spatial	distributions	of	
the	grid-	cell	averaged	values	of	the	six	selected	BIOCLIM+ variables 
are shown in Figure S4.

2.4  |  Climate regulation variables

For	each	vegetation	plot,	we	calculated	(1)	the	annual	proportion	of	
reflected	 irradiation,	 (2)	 the	annual	evapotranspiration,	and	 (3)	 the	
net primary productivity from satellite data.

1.	 To	 quantify	 the	 proportion	 of	 reflected	 irradiation,	 we	 used	
monthly mean albedo and monthly mean solar surface radia-
tion	 estimates	 from	 2001	 to	 2017.	 Monthly	 mean	 albedo	 was	
determined as the black- sky albedo for the shortwave broad-
band	from	the	Moderate	Resolution	Imaging	Spectroradiometer	
(MODIS)	 product	MCD43A3	 version	 6	 (Schaaf	&	Wang,	 2015),	
which	 provides	 daily	 albedo	 estimates	 (based	 on	 16 days	 of	
observation)	 at	 a	 resolution	 of	 500 m	 and	 was	 pre-	processed	
by the Google Earth Engine Catalogue (Gorelick et al., 2017).	
Monthly	 mean	 solar	 irradiation	 was	 quantified	 using	 monthly	
mean	 surface	 incoming	 shortwave	 radiation	 from	 the	 Satellite	
Application	 Facility	 on	 Climate	 Monitoring	 of	 the	 European	
Organization	 for	 the	 Exploitation	 of	 Meteorological	 Satellites	
(EUMESAT	 CM	 SAF)	 product	 SARAH-	2.1,	 which	 is	 available	
at	 a	 resolution	 of	 0.05° × 0.05°	 (~5 km)	 and	 was	 processed	 to	
a	 500 m	 resolution	 (Pfeifroth	 et	 al.,	 2019).	 Monthly	 average	
albedo values were multiplied with the monthly average solar 
irradiation to determine the absolute amount of monthly re-
flected irradiation. These monthly reflected irradiation values 

TA B L E  1 Varimax-	rotated	principal	components	of	19	community-	weighted	mean	traits.

Main axes structuring the relationships among community- weighted mean trait values

Forests Shrublands Grasslands

PCA	1 25.4% Leaf economics spectruma 27.1% Leaf economics spectruma 18.5% Leaf economics spectruma

PCA	2 16.8% Leaf size 17.8% Leaf size 17.8% Leaf size

PCA	3 10.8% Stem	diameter/plant	height 11.5% Stem	conduit	diameter/leaf	
delta 15N

12.4% Leaf water content

PCA	4 9.8% Stem	conduit	density 9.1% Stem	diameter/plant	height 8.4% Stem	diameter/plant	height

PCA	5 8.1% Leaf thickness 6.5% Leaf thickness 7.7% Rooting depth

PCA	6 6.1% Rooting depth 6.1% Specific	root	length 6.8% Stem	specific	density

PCA	7 6.1% Specific	root	length 5.8% Rooting depth 6.1% Stem	conduit	density

PCA	8 5.9% Stem	conduit	diameter 5.6% Stem	specific	density 6% Stem	conduit	diameter

∑ = 88.9% ∑ = 89.4% ∑ = 83.7%

Note: Numbers show the individual and summed variation captured by the first eight varimax- rotated principal component axes within forests, 
shrublands and grasslands (see Tables S5–S7).	Axis	naming	was	based	on	the	most	strongly	correlated	traits.	Vegetation	traits	included	in	principal	
component analyses: Leaf dry matter content, leaf nitrogen isotope signature* (leaf delta 15N),	leaf	area*,	leaf	carbon	content,	leaf	carbon	to	nitrogen	
ratio, leaf dry mass, leaf fresh mass, leaf nitrogen content, leaf phosphorous content, leaf thickness, leaf water content, plant height*, rooting depth*, 
specific leaf area*, specific root length*, stem conduit density*, stem conduit diameter*, stem specific density, and stem diameter. “*” Indicates traits 
included	in	supplementary	analyses	on	the	effects	of	single	CWMs	(Figure S8a–d)	and	CWVs	(Figure S9a–d).
Abbreviations:	CWM,	community-	weighted	mean;	CWV,	community-	weighted	variance.
aRefer Díaz et al. (2016).
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    | 5 of 14KAMBACH et al.

were summed across the year to obtain the annual reflected 
irradiation and divided by the summed monthly mean solar irra-
diation to obtain the annual proportion of reflected irradiation.

2.	 Mean	 annual	 evapotranspiration	 from	 2001	 to	 2017	 was	 ex-
tracted	 from	 the	 MODIS	 product	 MOD16A3GF	 version	 6.1	
(Running et al., 2021),	which	provides	the	annual	total	of	evapo-
transpiration (in kg/m2)	 at	 a	 resolution	 of	 500 m.	 The	 obtained	
values of evapotranspiration were log- transformed prior to the 
following statistical analyses.

3.	 Mean	annual	net	primary	productivity	(in	kg C m−2)	from	2001	to	
2017	 was	 extracted	 from	 the	MODIS	 product	 MOD17A3HGF	
version	6	(Running	&	Zhao,	2019),	which	provides	gap-	filled	yearly	
estimates	at	a	resolution	of	500 m.

To match the spatial resolution between vegetation and satellite 
data, we calculated an average value for each of the three climate 
regulation	 variables	 in	 each	 trait × habitat	 combination	 within	 the	
500 m	grid	 cells	of	 the	albedo	 raster	data.	The	 spatial	 distribution	
and relationships between the grid cell- averaged values of the three 
CRPs	are	shown	in	Figures S5 and S6.

2.5  |  Statistical analyses

Variations	in	mean	CRP	values	among	the	10	more	narrowly	defined	
habitat types were analyzed with separate analyses of variances, 
followed	by	post-	hoc	pairwise	Tukey	Honest	Significant	Difference	
tests for multiple comparisons at p < .05	(two-	sided).

All following analyses were separately conducted for each com-
bination	of	the	10	habitats	and	the	three	CRPs.	We	accounted	for	
the	effects	of	 climate	on	 the	distribution	of	CRPs	by	applying	 lin-
ear	regression	models	with	the	CRPs	as	the	dependent	and	the	six	
BIOCLIM+ variables as independent predictor variables and we 
extracted the model residuals (i.e., the climate- adjusted variation in 
CRPs)	for	further	analyses.

We	 analyzed	 the	 relationships	 between	 the	 climate-	adjusted	
CRPs	and	the	eight	main	trait	axes	as	predictor	variables	with	ran-
dom forest models because they can capture complex non- linear and 
interaction	patterns.	For	each	combination	of	habitat	type	and	CRP,	
we constructed a separate random forest model from 2,000 indi-
vidual trees with two randomly sampled candidate variables at each 
split, which should minimize the out- of- bag error rates, according to 
prior tests with different numbers of candidate variables. From each 
random	 forest	 model,	 we	 quantified	 the	 relative	 importance	 and	
the significance of each predictor variable. Relative importance was 
determined	as	the	mean	increase	 in	mean	squared	error	when	the	
focal	 variable	was	 randomly	 permuted.	 Predictor	 significance	was	
determined by comparing the value of the variable importance met-
ric against a null distribution obtained from 99 random permutations 
of the response variable (based on random data subsets of up to 
2,000	grid-	cell	observations	to	speed	up	computations).	Significant	
trait-	CRP	relationships	were	 illustrated	by	calculating	the	marginal	
effects from the respective random forest model. To increase the 

interpretability of the resulting partial dependence splines, we ap-
plied	 a	 locally	 estimated	 scatterplot	 smoothing	 (loess	 smoothing)	
with an alpha parameter of 0.2.

To check if the observed variability and multimodality of the 
obtained	 trait-	CRP	 relationships	 could	be	 an	 artifact	 from	 the	 ap-
plied random forest approach, we repeated all analyses with ordi-
nary linear regression instead of random forest models. From each 
linear- effects model, we determined the set of significant predictors 
by selecting the best model from the pool of all potential predic-
tor	combinations	(based	on	the	lowest	Akaike	information	criterion)	
and we inferred the relative importance of the resulting significant 
predictors from the absolute of the t- statistic of the corresponding 
coefficient estimates. Individual relationships between significant 
predictors	and	individual	CRPs	were	calculated	as	marginal	regres-
sion slopes.

To	 check	 if	 our	 aggregation	 of	 19	CWMs	 into	 eight	main	 trait	
axes could have blurred any individual effects of single traits means 
or variances, we repeated the outlined linear- effects analyses with 
the	grid	cell-	averaged	CWMs	and	CWVs	of	the	following	eight	traits:	
plant height, leaf area, specific leaf area, leaf nitrogen isotope signa-
ture, rooting depth, specific root length, stem conduit density and 
stem conduit diameter.

2.6  |  Software

We	extracted	plot-	level	information	from	satellite-	derived	CRP	and	
bioclimatic data with the Google Earth Engine platform (Gorelick 
et al., 2017)	and	the	NASA	Application	for	Extracting	and	Exploring	
Analysis	 Ready	 Samples	 (appee ars. earth datac loud. nasa. gov, ac-
cessed	on	November	1st,	2021).	An	example	of	the	generated	earth-	
engine code is stored at github.	com/	Steph	anKam	bach/	trait	-		clima	te_	
regul	ation_	relat	ionships. All statistical analyses were conducted in 
R (R Core Team, 2022)	using	the	packages	edarf for partial depend-
ence	plots	(Zachary	&	Linder,	2017),	FactoMineR	for	PC	analysis	(Lê	
et al., 2008),	ggeffects for marginal regression slopes (Lüdecke, 2018),	
ggplot2 for data visualization and smoothing via generalized addi-
tive	models	 (Wickham,	 2016),	MuMIn for AIC- based model selec-
tion	(Bartoń,	2022),	randomForest	for	random	forest	models	(Liaw	&	
Wiener,	2002),	and	rfPermute to determine the significance of ran-
dom forest predictor variables (Archer, 2023).

3  |  RESULTS

Mean	 values	 of	 the	 grid-	cell	 averaged	 CRPs	 differed	 significantly	
between the investigated habitat types (see Figure 2, p < .001	with	
F9,	 36,610 = 2,212,	 3,98.7	 and	 1,277	 for	 the	 proportion	 of	 reflected	
irradiation, log evapotranspiration, and net primary productivity, 
respectively).	In	comparison	to	all	other	habitats,	we	observed	that	
broadleaved evergreen forests had the highest productivity and 
evapotranspiration and the lowest proportion of reflected irradia-
tion. Alpine shrubland and grassland habitats, on the contrary, had 
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the highest proportion of reflected irradiation and the lowest net 
primary productivity.

Across	all	habitats,	climate	explained,	on	average,	37.9%	of	the	
observed	variation	in	the	proportion	of	reflected	irradiation,	28.0%	
of	the	variation	in	evapotranspiration	and	43.8%	of	variation	in	net	
primary productivity (Figure 3).	Here,	the	highest	proportion	of	CRP	
variability	could	be	explained	in	alpine	grasslands	(66%	and	66.6%	in	

the proportion of reflected irradiation and net primary productivity, 
respectively).

After accounting for the effects of climate, the eight main trait 
axes explained the highest proportion of remaining climate- adjusted 
variation	 in	 log	evapotranspiration	 (6.2%),	 followed	by	the	propor-
tion	 of	 reflected	 irradiation	 (6.1%),	 and	 net	 primary	 productivity	
(4.9%).	Yet,	 the	 specific	 proportion	of	 explained	variation	 in	CRPs	

F I G U R E  2 Distributions	and	box-	whisker-	plots	of	observed	climate	regulation	processes	in	forest,	shrubland,	and	grassland	habitats.	
Different letters indicate significant differences between habitats according to Tukey honest significant difference tests for multiple 
comparisons at p < .05.
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depended	 on	 the	 CRP	 and	 habitat	 type	 investigated	 and	 ranged	
from	0%	for	the	proportion	of	reflected	irradiation	and	net	primary	
productivity	 in	heathland	shrublands	to	17%	for	the	proportion	of	
reflected irradiation in evergreen forests (Figure 3).

The relative predictive importance of the first four main trait 
axes	for	the	three	climate-	adjusted	CRPs	was	highly	habitat-	specific,	
even among habitat types that belonged to the same broad habi-
tat class (Figure 4).	The	lowest	number	of	significant	CRP	predictors	
was found in heathland shrublands and for log evapotranspiration in 
deciduous and evergreen forests. Individual relationships between 
climate-	adjusted	CRPs	and	the	gradients	in	the	leaf	economics	spec-
trum,	leaf	mass	and	plant	height	were	also	habitat-		and	CRP-	specific,	
indicating	mostly	monotone	 (linear	and	nonlinear),	 sometimes	uni-
modal, and rarely multimodal relationships (Figure 5).

This observed habitat- specificity of the importance and direc-
tion	 of	 trait-	CRP	 relationships	 also	 emerged	 when	 analyzed	 with	
linear- effects models (Figure S7a–c).	 In	 comparison	 with	 random	
forest models, the linear- effects analyses yielded fewer significant 
predictors with altered relative importance ranks. Across habi-
tats, we found consistent negative relationships between the plant 
height axis and the proportion of reflected irradiation, positive rela-
tionships between the leaf size axis and log evapotranspiration and 
positive relationships between the leaf economics spectrum and net 
primary productivity (Figure S7a–c).

Regarding	the	effects	of	the	CWMs	and	CWVs	of	single	traits,	
we found that the pattern in the explained variation in climate- 
adjusted	CRPs	was	similar	between	CWMs	and	CWVs,	albeit	CWVs	
had	a	generally	lower	predictive	power	than	CWMs	(cf.,	Figures S8a 
and S9a).	Analogue	to	the	importance	of	the	main	trait	axes,	the	rel-
ative	predictive	 importance	of	single	CWMs	and	CWVs	depended	
on	the	CRP	and	habitat	investigated	(cf.,	Figures S8b and S9b).	Only	
for	the	proportion	of	reflected	irradiation,	the	CWV	of	plant	height	
emerged as the first-  or second- best predictor in eight out of the 10 
habitats.	In	search	for	consistency	patterns	in	trait-	CRP	relationships	

(cf., Figures S8c,d and S9c,d),	we	observed	 that	 the	proportion	of	
reflected	 irradiation	was	negatively	correlated	with	 the	CWM	and	
CWV	 of	 plant	 height	 (except	 for	 broadleaved	 evergreen	 forests).	
Log	 evapotranspiration	 was	 positively	 correlated	 with	 the	 CWM	
and	CWV	of	plant	height,	leaf	area,	specific	leaf	area,	and	stem	con-
duit diameter (except for broadleaved evergreen forests and alpine 
shrublands)	and	negatively	correlated	with	the	CWM	and	CWV	of	
rooting depth. Net primary productivity was positively correlated 
with	the	CWM	and	CWV	of	plant	height	and	specific	leaf	area	(ex-
cept	for	forest	habitats).

4  | DISCUSSION

In this study, we showed that, after accounting for the effects of 
local climatic conditions, the functional composition of plant com-
munities within certain habitat types is significantly related to the 
local	 provisioning	 of	CRPs.	Our	 results	 demonstrated	 that	CWMs	
and	CWVs	of	 individual	 traits	 are	 linked	 to	differences	 in	 the	ob-
served proportion of reflected irradiation, evapotranspiration, and 
net primary productivity. These relationships are stronger for the 
means than for the variances of individual traits, suggesting that cli-
mate regulation functions are rather determined by the functional 
composition than by the functional diversity of plant communi-
ties.	Yet,	as	often	observed	 in	ecology,	 the	strength	and	direction	
of	 the	 resulting	 trait-	CRP	 relationship	 depended	 on	 the	 CRP	 and	
the habitat type investigated (e.g., Alibakhshi et al., 2020;	Kambach	
et al., 2023; Oehri et al., 2022).

Overall, the climate- adjusted predictive power of vegetation 
traits	 was	 relatively	 low	 and	 the	 distribution	 of	 all	 three	 CRPs	
was more strongly related to differences in locally prevailing cli-
matic	 conditions	 (like	 in	 Serna-	Chavez	 et	 al.,	 2017).	 In	 particular,	
habitats	 covered	 by	 snow	 for	 longer	 periods	 (i.e.,	 alpine	 habitats)	
showed the highest proportion of reflected solar irradiation and the 

F I G U R E  3 Proportion	of	variation	in	climate	regulation	processes	(CRPs)	explained	by	climate	(with	linear	models)	and	the	eight	main	
trait	axes	(with	random	forest	models).	The	variation	explained	by	climate	(in	grey)	refers	to	the	total	explained	variation	between	CRPs	
and	six	bioclimatic	variables.	The	variation	explained	by	the	trait	composition	(in	color)	refers	to	the	explained	variation	between	the	
climate-	adjusted	CRPs	(i.e.,	the	residuals	from	the	climate	models)	and	the	eight	varimax-	rotated	principal	components	from	the	community-	
weighted mean values of 19 plant traits.
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8 of 14  |     KAMBACH et al.

lowest	 productivity.	 Since	 climatic	 gradients	 across	 the	 European	
continent are a significant driver of the distribution of plant traits 
(Kambach	et	al.,	2023),	the	remaining	predictive	power	of	commu-
nity	mean	 traits	 for	 the	climate-	adjusted	CRPs	might	be	expected	
to	be	rather	low.	Yet,	for	temperate	forests,	our	approach	of	using	
non- linear relationships with the main trait axes yielded a compara-
ble or higher predictive power than previous linear analyses among 
North	American	forests	(12.6%	vs.	12%	for	albedo,	4.7%	vs.	1%	for	
evapotranspiration,	 and	4.6%	vs.	 0%	 for	 net	 primary	productivity,	
cf.	 Serna-	Chavez	et	 al.,	2017).	The	 relatively	high	predictability	of	
reflected irradiation in broadleaved evergreen forests might be a 
result of the less pronounced seasonality and the absence of snow. 
Tighter	trait-	CRP	relationships	for	forests	and	shrublands	(as	com-
pared	 to	 grasslands)	 might	 be	 explained	 by	 the	 co-	occurrence	 of	
woody and non- woody plant species, resulting in a wider range of 
plant traits and higher structural complexity, which has been found 
to be a significant predictor for the reflection of solar irradiation 
(Alibakhshi et al., 2020; Ridgwell et al., 2009).	We	hypothesize	that	

higher	predictive	power	for	CRPs	could	be	achieved	if	future	studies	
of	trait-	CRP	relationships	 include	additional	mechanistic	traits.	For	
instance, the proportion of reflected irradiation is also shaped by 
leaf angle, glaucousness, and cuticular waxes, mesophyll compart-
mentation and canopy nitrogen content (Grant et al., 2003; Harding 
&	 Pomeroy,	 1996; Hollinger et al., 2010;	 Holmes	 &	 Keiller,	2002; 
Thomas	 &	 Rowntree,	 1992).	 Evapotranspiration	 is	 influenced	 by	
the water- use strategy and its associated traits, such as diffusion 
resistance,	 stomata	 density	 and	 type	 of	 photosynthesis	 (Gates	 &	
Hanks, 1967;	Kannenberg	et	 al.,	2022;	Matheny	et	 al.,	2017).	Net	
primary productivity is additionally affected by the leaf CO2 uptake, 
chlorophyll content, and the structural density of the plant commu-
nity	 as	 quantified	 by	 the	 leaf	 area	 index	 (He	 et	 al.,	2023; Hinojo- 
Hinojo	&	Goulden,	2020).	Yet,	most	of	the	required	trait	data	are	not	
(yet)	available	for	a	sufficient	large	number	of	plots	or	plant	species.

The observed high degree of habitat- specificity in trait effects 
on ecosystem functioning has also been reported for the productiv-
ity	of	grassland	types	(Brun,	Violle,	et	al.,	2022)	and	is	supported	by	

F I G U R E  4 Relative	importance	of	the	first	four	main	trait	axes	for	predicting	the	three	climate-	adjusted	climate	regulation	processes	
with random forest models. The numbers in the circles indicate the relative importance rank of significant trait axes (cf., Table 1)	within	each	
combination	of	climate	regulation	process	and	habitat	(non-	significant	trait	axes	are	omitted).	%	Increase	in	MSE − mean	increase	in	mean	
squared	error	when	the	focal	trait	axis	randomly	permuted.	Trait	pc3/4	refers	to	trait	axes	that	represent	stem	conduit	density	in	forests,	
stem conduit diameter/leaf delta 15N in shrublands and leaf water content in grasslands.
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    | 9 of 14KAMBACH et al.

F I G U R E  5 Partial	dependence	plots	from	random	forest	models	showing	the	marginal	effects	of	the	first	four	main	trait	axes	on	
climate-	adjusted	climate	regulation	processes.	Partial	dependence	splines	were	smoothed	with	generalized	additive	models	to	increase	
interpretability. Trait pc3/4 refers to trait axes that represent stem conduit density in forests, stem conduit diameter/ leaf delta 15N in 
shrublands and leaf water content in grasslands (cf., Table 1).

 13652486, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.17189 by U

niversity O
f Siena Sist B

ibliot D
i A

teneo, W
iley O

nline L
ibrary on [05/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 14  |     KAMBACH et al.

different effects of specific leaf area on light reflectance in tropical 
versus northern hardwood forests (Doughty et al., 2018; Limberger 
et al., 2021;	 Sullivan	 et	 al.,	 2013).	 Further	 inconsistencies	 in	 the	
observed	 strength,	 direction	 and	 non-	linearity	 of	 trait-	CRP	 rela-
tionships might be partly explained by the application of complex 
random forest models as well as the classification into 10 habitat 
types	of	which	each	one	included	multiple	Level-	3	EUNIS	habitats	
(Table S1)	that	might	differ	in	biophysical	properties	and	trait-	climate	
relationships	(Kambach	et	al.,	2023).	Accordingly,	linear-	effect	mod-
els tended to yield more consistent trait- climate relationships (at 
least	for	some	traits),	such	as	plant	height	and	leaf	area	being	mostly	
positively associated with a lower proportion of reflected irradia-
tion and higher evapotranspiration and net primary productivity 
rates. In temperate and boreal forest, these results are supported by 
findings of short- statured or broadleaved stands showing a higher 
proportion of reflected irradiation than comparable stands (Halim 
et al., 2019;	Serna-	Chavez	et	al.,	2017).

Since	our	 analyses	were	 based	on	plot-	level	 plant	 surveys,	we	
could not account for unreported variables such as soil conditions, 
topography, ecosystem management, or the effects of the sur-
rounding	landscape	(Serna-	Chavez	et	al.,	2017, 2018).	Our	analyses	
did	 not	 account	 for	 the	 spatial	 scale	 of	 trait-	CRP	 analyses	 (Fisher	
et al., 2018),	although	previous	investigations	concluded	that	trait-	
CRP	relationships	might	be	more	pronounced	at	grid-	cell	resolution	
>500 m	 (Serna-	Chavez	et	 al.,	2018).	Our	dataset	 further	only	per-
mitted the assignment of plant trait values at the scale of species 
and not at the site- level, which neglected any specific characteristics 
of local populations and might have reduced the predictive power 
of	 the	analyzed	trait-	CRP	relationships.	CWM	and	variance	values	
were only based on species abundances and, thus, did not account 
for potentially significant effects of individual keystone species 
(shown	for	productivity	by	Brun,	Violle,	et	al.,	2022)	or	the	effects	of	
canopy versus understory species in forest and shrubland habitats 
(as	shown	by	Serna-	Chavez	et	al.,	2017).	Also,	we	could	not	include	
the effects of leaf area index, as this important measure of vege-
tation structural density was already used to calculate evapotrans-
piration	and	net	primary	productivity	 in	the	MODIS	data	 (Running	
et al., 2021;	Running	&	Zhao,	2019).

In this study, we demonstrated that changes in the functional 
composition of local plant communities (especially in forest habi-
tats)	 can	 significantly	 affect	 the	 local	 reflectivity	 and	 evapotrans-
piration, with likely effects on local temperature regimes (Alkama 
&	Cescatti,	 2016).	 Considering	 the	 limitations	 of	 our	 approach	 to	
link plot- level vegetation data with satellite- based climate regulation 
data, the actual effects of vegetation traits on the provisioning of 
CRPs	might	be	expected	to	be	stronger	than	shown	here.	Still,	the	
extent to which our correlative results can be translated into nature- 
based solutions to mitigate the effects of climate warming on the 
local scale (Alkama et al., 2022)	 is	 far	 from	understood.	 In	 search	
for management options to mitigate the climate and biodiversity cri-
sis (Gardner et al., 2020),	we	 still	 need	 a	 better	 understanding	 of	
how the structure, functional composition, and potentially the di-
versity of different habitats is related to the provisioning, stability, 

seasonality,	or	trade-	offs	among	different	CRPs.	Based	on	the	find-
ings	of	 this	 study,	we	emphasize	 (i)	 a	 need	 for	 further	 fine-	scaled	
studies that help us to better predict the local effects vegetation 
shifts	and	(ii)	the	necessity	of	any	upscaling	approaches	and	climate	
models to consider the proportions of different habitats, as the cli-
mate regulation effects of plant communities tend to be site-  and 
habitat- specific.
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