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A B S T R A C T   

EU States are mandated by the 92/43/EEC Habitats Directive to generate recurring reports on the conservation 
status and functionality of habitats at the national level. This assessment is based on their floristic and, especially 
for forest habitats, structural characterization. Currently, habitat field monitoring efforts are carried out only by 
trained human operators. The H2020 Project “Natural Intelligence for Robotic Monitoring of Habitats – NI” aims 
to develop quadrupedal robots able to move autonomously in the unstructured environment of forest habitats. In 
this work, we tested the locomotion performance, efficiency and the accuracy of a robot performing structural 
habitat monitoring, comparing it with traditional field survey methods inside selected stands of Luzulo-Fagetum 
beech forests (9110 Annex I Habitat). We used a quadrupedal robot equipped with a Mobile Laser Scanning 
system (MLS), implementing for the first time a structural monitoring of EU forest habitats with a Robotically- 
mounted Mobile Laser Scanning (RMLS) platform. Two different scanning trajectories were used to automatically 
map individual tree locations and extract tree Diameter at Breast Height (DBH) from point clouds. Results were 
compared with field human measurements in terms of accuracy and efficiency of the survey. The robot was able 
to successfully execute both scanning trajectories, for which we obtained a tree detection rate of 100 %. Circular 
scanning trajectory performed better in terms of battery consumption, Root Mean Square Error (RMSE) of the 
extracted DBH (2.43 cm or 10.73 %) and prediction power (R2

adj = 0.72, p < 0.001). The RMLS platform 
improved survey efficiency with 19.31 m2/min or 1.77 trees/min in comparison with 3.45 m2/min or 0.32 trees/ 
min of traditional survey. Finally, a processing script was developed to allow the repeatability of RMLS surveys in 
similar habitat monitoring missions. In the future, a human-robotic monitoring framework might represent an 
accurate support for those repetitive and time-consuming activities in habitat monitoring, offering a valuable 
benefit for biodiversity conservation.   

1. Introduction 

Habitats are considered fundamental indicators of biodiversity and 
represent essential tools for nature conservation. Detecting their pres
ence and assessing their Conservation Status (CS) is of vital importance 
for designing networks of protected areas, management planning, 
monitoring environmental impacts and setting targets for ecological 
restoration (Chytrý et al., 2020). In the European Union territory, the 
Directive 92/43/EEC of the European Council (hereafter “Habitats 

Directive”) identifies habitats (as listed in Annex I) and species (as listed 
in Annex II, IV, and V) of Community interest, representing a corner
stone in terms of EU nature conservation policies (European Commis
sion, 1992; Evans and Arvela, 2011). Moreover, the Habitats Directive 
states that CS and trends of species and habitats of Community interest 
should be assessed every six years for all EU Countries (Art. 11 and 17) to 
verify the effectiveness of conservation measures and the achievement 
of conservation targets. Habitat monitoring campaigns implemented to 
carry out such assessments require personnel with high levels of 
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botanical expertise and the ability to move for long periods in unstruc
tured environments, i.e., environments that present obstacles, uneven 
terrains, and hindrances. These requirements constitute the limiting 
factor of the EU habitat field monitoring efforts, because their imple
mentation can only be carried out by highly specialised surveyors. This 
in turn implies elevated costs in terms of economic and human resources 
for the EU State members. 

To solve this issue, the European Union project “Natural Intelligence 
for Robotic Monitoring of Habitats – NI ” introduces an innovative 
concept to help human surveyors in performing terrestrial habitat 
monitoring. In Angelini et al. (2023a), we describe the idea of the NI 
project, which is to employ legged robotic systems to autonomously 
acquire relevant data for habitat monitoring. A legged robot enables to 
achieve higher traversability than wheeled systems and longer battery 
duration than traditional aerial systems. In fact, locomotion stands as an 
important issue for ground robots, which usually have difficulties in the 
movement over irregular and unstructured terrains (Angelini et al., 
2023a, 2023b; Oliveira et al., 2021; Pollayil et al., 2023; Torres-Pardo 
et al., 2022). The ultimate goal of the NI project is to help human sur
veyors acquire useful data for habitat monitoring and the assessment of 
habitat CS. 

Art. 1 of Habitats Directive defines the CS of a habitat as “favourable” 
if “specific structure and functions which are necessary for its long-term 
maintenance exist and are likely continue to exist for the foreseeable 
future”. This is particularly important for forest habitats, whose struc
tural characteristics are determinant to predict forest dynamics, inter
pret previous silviculture managements, define future stand-oriented 
management strategies, and interpret patterns of species richness and 
distribution (Angiolini et al., 2021; Barbati et al., 2014; Storch et al., 
2018). The modifications of structural and compositional aspects of EU 
forest habitats for specific functions (Kuuluvainen, 2009; Lindenmayer 
et al., 2000; Raison et al., 2001) emphasises the importance of moni
toring changes using accurate indicators (Evans and Arvela, 2011). 

Tree Diameter at Breast Height (DBH), their number and spatial 
location are extensively used in local and national forest inventories to 
describe forest structural characteristics (Beers, 1962; Chang et al., 
2015; Curtis and Marshall, 2005; Hyyppä and Inkinen, 1999; Köhl et al., 
2006). DBH is important to calculate parameters like individual basal 
area, annual growth, height, and crown size (Köhl et al., 2006). Tree 
location data is ecologically significant for predicting growth, density, 
and species distribution patterns (Liang et al., 2018). These variables 
have been used also in habitat monitoring for evaluating the CS of forest 
habitats, as exemplified by studies such as those conducted by Alberdi 
et al. (2019), Corona et al. (2011), Chirici et al. (2012), and Kovač et al. 
(2014). 

In the field, traditional surveys utilise callipers to directly measure 
the DBH and/or a diameter tape to measure the circumference of the 
trunk and extrapolate the tree DBH, whereas tree location data are 
predominantly obtained through close-range traversals employing a 
compass and a 100-metre tape measure (Köhl et al., 2006; West, 2015). 
Due to the time required for the repetitive task of measuring these pa
rameters, traditional field surveys are usually spatially limited and la
bour intensive (Bauwens et al., 2016; Sun et al., 2018; Tremblay et al., 
2020; Vítková et al., 2016). In recent years, other methods of collecting 
these structural data have been proposed, among which below-canopy 
photogrammetry (Krisanski et al., 2018) and the use of laser scanning 
technology (Light Detection and Ranging sensors, LiDAR; Bauwens 
et al., 2016). In particular, LiDAR sensors are widely applied in forest 
ecology under different survey approaches: Airborne Laser Scanning 
(ALS; Vauhkonen et al., 2014), Terrestrial Laser Scanning (TLS; de Conto 
et al., 2017; Liu et al., 2018; Maas et al., 2008), Mobile Laser Scanning 
(MLS; Čerňava et al., 2017; Chiappini et al., 2022; Dalla Corte et al., 
2020), or a combination of them (Paris et al., 2015). 

A top-to-bottom scanning direction and high elevation flights create 
limitations in direct DBH measurements from ALS surveys due to the 
derived scarce number of trunk points (Kankare et al., 2014). TLS 

surveys, preferred for direct DBH measurements, provide high-density 
point clouds but require multiple scanning stations to limit trunk oc
clusion, leading to lengthy surveys and substantial manpower needs 
(Bauwens et al., 2016; Gollob et al., 2020, 2023; Holopainen et al., 2013; 
Liu et al., 2018; Srinivasan et al., 2015; Wilkes et al., 2017). Recent 
exploration focuses on Unmanned Aerial Vehicles (UAV)-based MLS 
(ULS) surveys to extract, among other parameters, direct DBH mea
surements (Buchelt et al., 2024). However, challenges related to canopy 
occlusion persist (Brede et al., 2017, 2019; Dalla Corte et al., 2020; 
Schneider et al., 2019; Terryn et al., 2022; Vandendaele et al., 2021). 
Solutions to the canopy occlusion problems require specific acquisition 
planning, including high pulse repetition rates, multiple flight di
rections, and acquisition angles below 20◦ (Brede et al., 2022). More
over, ULS have strict logistic requirements in terms of visual line of sight 
between the pilot and the aerial vehicle, which is challenging in forest 
environments (Sivanpillai et al., 2019). Terrestrial MLS methods over
come the canopy occlusion problem derived from the top-to-bottom 
scanning direction by using an under-canopy moving laser scanner 
(Cabo et al., 2018; Gollob et al., 2020, 2023; Mokroš et al., 2021). 
Terrestrial MLS are usually carried by operators with a backpack system 
or hand-held (Handheld Mobile Laser Scanning, HMLS; Wearable Laser 
Scanning, WLS; or Portable Laser Scanning, PLS) or are mounted on 
manned terrestrial vehicles. This way, the dynamic scanning derived by 
the terrestrial MLS systems significantly reduces times and costs of the 
survey. 

Few studies used MLS sensors mounted on robotic platforms in semi- 
structured to unstructured forest environments (see Oliveira et al., 
2021). Pierzchała et al. (2018) pioneered the use of a wheeled robot 
equipped with a LiDAR sensor and a microcontroller with an Inertial 
Measurement Unit (IMU) and GPS in a semi-structured flat forest. 
Employing a 3D graph-SLAM (Simultaneous Localization And Mapping) 
approach, they extracted DBH measurements and assessed their accu
racies. For similar aims in various forest types, Tremblay et al. (2020) 
utilised a different teleoperated wheeled robot equipped with a LiDAR 
sensor and an IMU. Conversely, Chirici et al. (2023) employed for the 
first time a teleoperated legged robot with a LiDAR sensor for carrying 
out forest inventories. However, a resulting noisy point cloud produced 
DBH RMSE values not inferior to 39.6 % and permitted the identification 
of only a few trees with a DBH <20 cm. These studies, collectively, 
demonstrated the viability of robotic approaches for 3D mapping, tree 
localization, and DBH extraction during forest inventories along tran
sects. However, these works focused on the implantation of new and 
more efficient practices for forest inventories and, hence, do not follow 
standardized protocols for meeting the monitoring requirements out
lined in the Habitats Directive. These requirements, in the case of EU 
habitats, involve habitat-specific monitored surfaces of fixed size and 
shape, where both floristic and structural data are extracted (Angelini 
et al., 2016; Chytrý and Otýpková, 2003; Gigante et al., 2016). To the 
best of our knowledge, the use of easily deployable mobile quadrupedal 
robots equipped with a MLS represents a previously unexplored method 
to acquire structural data in EU Annex I forest habitat monitoring. These 
data are commonly plot-based rather than transect-based, because the 
structural monitoring constitutes a portion of the field monitoring effort 
for the surveyors, which as well includes floristic relevés. The latter 
consist in the recording of presence and cover abundance of each species 
growing in the plot (Ellwanger et al., 2018; Gigante et al., 2016). 

In Angelini et al. (2023a), we describe the NI project idea of 
employing a quadrupedal robot to assist humans in habitat monitoring. 
Specifically, we use the ANYmal C robot (Hutter et al., 2017) for data 
gathering. In Angelini et al., (2023b), Angelini et al., (2023c), Angelini 
et al. (2024) and Pollayil et al. (2023), we provide examples of relevant 
data acquisition for habitat monitoring in four different habitats: 
grasslands, screes, dunes, and forests. In Kaur et al. (2023) and Manh 
et al. (2022), these data are used for species identification. 

In this study, our main aim is to improve the human-based efforts in 
field monitoring EU forest habitats through the use of a robotic 
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workforce. Specifically, we explored the feasibility of a monitoring 
structural survey in forests through the employment of a quadrupedal 
robot equipped with a MLS. The objectives of this study are: i) assess the 
ability and performance of a legged robot in performing a EU forest 
structural habitat survey; ii) measure the accuracy of the extracted DBH 
using a Robotically-mounted Mobile Laser Scanning (hereafter “RMLS”) 
survey compared to traditional field measurements; iii) evaluate the best 
scanning trajectory suitable for monitoring the forest structure using a 
RMLS survey; iv) estimate the efficiency of the RMLS survey in terms of 
monitoring time compared to traditional field surveys. 

2. Materials and methods 

2.1. Study area and traditional field survey 

The study area is located within the Natura 2000 Network, in the 
Special Area of Conservation (SAC) “Vallombrosa e Bosco di San Anto
nio” (code IT5140012), in central Italy. The survey was carried out in a 
temperate forest of the EU habitat 9110 “Luzulo-Fagetum beech forests”, 
an acidophilus beech forest type (Fig. 1). This habitat is characterised by 
a tree layer dominated by Fagus sylvatica, and a pauci-specific herba
ceous layer composed of graminoid species such as Luzula nivea and 
Avenella flexuosa. Moreover, habitat 9110 has a relatively dense layer of 
leaf litter and decaying wood of different dimensions (Fig. 1b, c). The 
study area was selected for the ample presence of a mosaic among 
Habitat 9130 “Asperulo-Fagetum beech forests” and our investigated 
habitat, evaluated from the habitat map provided by the HaSCITu 
project (Habitat in the Sites of Conservation Interest in Tuscany; Tus
cany Region, 2022) (Fig. 1b, c). 

As for other EU forest habitats, the assessment of the CS of the habitat 
9110 is performed with the measurement of parameters related to its 
structure and function, such as tree DBH, stem density, floristic data, and 
identification of typical and diagnostic species (Angelini et al., 2016; 

Gigante et al., 2016). 
The structural survey was conducted in Autumn 2022. In accordance 

with similar works that monitored forest habitats listed in Annex I 
(Angiolini et al., 2021), we employed circular plots of circa 200 m2 

(radius = 8 m) inside an area characterised by the habitat 9110. Three 
plots were selected with similar stem densities, slopes, and the mono
specific presence of mature individuals of F. sylvatica in the tree layer 
(Table 1). 

Each plot centre coincided with the stem centre of a tree. The loca
tion of each plot centre was marked using a visible spray paint on the 
circumference of the central tree and its coordinates were recorded with 
a portable GPS device (Garmin Colorado 300). Georeferencing of each 
plot was executed with a minimum positional accuracy of 10 m (Garmin 
Colorado 300 owner manual). We used a measuring tape pivoting on the 
plot centre to delineate the circular plot boundaries (Baker and Pearson, 
1981; Brown, 1974), outlining the surface where both the floristic and 
structural survey occurs and its centre, according to EU Habitat moni
toring protocols (Angelini et al., 2016; Bunce et al., 2011). 

It is worth mentioning that monitoring of EU forest habitats requires 
the georeferenced location of the plot rather than trees such as in forest 
inventories. However, since our aim was to compare traditional and 
RMLS surveys, a team of two botanists mapped within each plot the 
position and identity of each F. sylvatica tree. First, the location of each 
tree within the plot surface was mapped using a visible spray paint to 
colour a spot on the bark located at 1.2 m from the ground level. A 
unique identification number (assigned ID), in addition to the bearing 
and distance from the plot centre were subsequently measured for each 
tree (Vastaranta et al., 2009). We used a laser distance metre (Bosch 
GLM 50–22 professional) to measure the distance from the plot centre to 
the stem of each tree and a field compass to measure the bearing. Then, 
for each mapped tree within the plot, we measured the DBH using 
traditional field methods. Tree DBH was measured at a height of 1.20 m 
above ground in the uphill direction using a calliper (Köhl et al., 2006). 

Fig. 1. Study area. a) Orthophoto of the study area with its geographic localization (top left) and the investigated circular plots. EPSG: 4326. b, c) Photos of EU 
Habitat 9110 in the study area. 

Table 1 
Plot location, slope, number of trees encountered in the field and DBHR values collected in the traditional field survey.  

Plot Coordinates (EPSG:4326) Slope [deg ◦] Number of trees DBHR range [cm] Mean DBHR (σ) [cm] Stem density [trees/m2] 

1 43.745017 N 17 19 16–32.5 23.47 (4.59) 0.1 
11.567416 E 

2 43.745161 N 18 19 14.5–28.5 21.87 (4.39) 0.1 
11.567486 E 

3 43.744871 N 16 17 18.5–29.5 22.56 (3.08) 0.09 
11.567449 E 

Overall   55 14.5–32.5 22.64 (4.16) 0.09  
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To limit the effect of elliptical stems on DBH measurements, for each tree 
we recorded two calliper readings at right angles of the DBH and 
calculated the arithmetic mean to obtain the reference DBH value 
(DBHR; Moran and Williams, 2002). To standardise the measurement of 
DBH among plots, readings were performed along the North-South and 
East-West axes. 

2.2. Robotically-mounted MLS survey 

As described in the previous section, EU habitat 9110 is typical of 
mountainous regions, and can occur on steep slopes. Moreover, the 
forest floor is characterised by a dense litter layer, which includes leaves, 
twigs and fallen branches, in addition to rocks and exposed tree roots. 
All these elements represent potential obstacles for ground robot loco
motion, especially in the case of traditional wheeled systems. Legged 
robots can overcome this issue thanks to their greater ability to cope 
with irregular terrains (Angelini et al., 2023a; Torres-Pardo et al., 2022). 

Fig. 2 shows the quadrupedal robot employed in this study, i.e., 
ANYmal C (Hutter et al., 2017). This robot is 0.6 m tall, has a body size of 
1.05 m by 0.52 m, and weighs 50 kg. Each of its four legs presents three 
joints to enable hip abduction/adduction, hip flexion/extension, and 
knee flexion/extension. ANYmal C is equipped with a battery composed 
of lithium-ion based cells, whose energy is 932.4 Wh. As reported on the 
official specification, this robot can operate for 2–4 h on a single charge 
(Anybotics, 2022). Furthermore, according to official specification 
(Anybotics, 2022), ANYmal C can be operated in a temperature range of 
0–40 ◦C, even in harsh environment. Indeed, the robot ingress protection 
is ruggedized, and water and dust-proof according to IP67. 

The self-awareness of ANYmal C is achieved through a combination 
of sensors, including an IMU and joint encoders. The IMU is composed of 
an accelerometer and a gyrometer to measure body accelerations and 
angular rates, while the encoders measure the position of the leg joints. 
Joint actuators can also give information about joint torque, which is 
then used for estimating which foot is in contact with the ground. In
formation collected by these sensors are then used by a sensor fusion 
algorithm to estimate the robot state, consisting of its position, orien
tation, velocity, and leg orientation w.r.t. the robot body. 

The ability of the robot to perceive and understand its surroundings 
comes from a wide range of sensors, i.e., six cameras and a LiDAR sensor. 
The six cameras are: two wide-angle cameras located respectively on the 
front and back, and four depth cameras (one on each side) with a 
mounting angle with respect to horizon equal to 30◦ downwards. The 
LiDAR sensor is placed on top of the robot in the rear part (Fig. 2). The 

main sensors used to reconstruct the surrounding environment are the 
four depth cameras and the LiDAR sensor. Depth cameras, also known as 
RGB-D cameras, are able to provide range information in addition to 
colour image data. This is achieved by projecting a randomised pattern 
of light onto a scene, and then measuring the distortion of the pattern to 
calculate the distance to objects. The RGB-D cameras mounted on 
ANYmal C are Intel RealSense D435, whose specifications are reported 
in Table 2. The LiDAR sensor generates a three-dimensional represen
tation of the environment by emitting laser pulses to then measure the 
time taken for the reflected light to return. The LiDAR sensor mounted 
on ANYmal C is a Velodyne VLP-16 puck LITE, whose specifications are 
reported in Table 2. Given these specifications, these types of range 
sensors return different point clouds with specific fields of views and 
frequency. An onboard sensor fusion algorithm merges these data 
sources to create a richer and more complete point cloud. This is ach
ieved by selecting high information content, removing unnecessary 
points (e.g., robot body or legs), and transforming data to a common 
reference frame also thanks to the robot state information. 

ANYmal C has three onboard computers to enable locomotion and 

Fig. 2. ANYmal C robot surveying Habitat 9110.  

Table 2 
Specifications of the RGB-D cameras and LiDAR.  

RGB-D cameras 

Model Intel Realsense D435 

Mounting angle with respect to horizon 30◦ downwards 
Depth Camera Field of View (DxHxV) 95◦×87◦×58◦

Depth Camera Shutter Type Global 
Max. Depth Image Resolution 1280×720 pixels 
Max. Depth Image Framerate (at full resolution) 30 frames per second 
Depth Range 0.1 to 10 m 
Color Camera Field of View (DxHxV) 77◦×69.4◦×42.5◦

Color Camera Shutter Type Rolling 
Max. Color Image Resolution 1920×1080 pixels 
Max. Color Image Frame rate (at full resolution) 30 frames per second  

LiDAR sensor 
Model Velodyne VLP16 Puck LITE 
Number of Channels 16 
Accuracy (typical) 3 cm 
Measurement Range 0 to 100 m 
Horizontal Field of View 360◦

Horizontal Angular Resolution 0.1◦ to 0.4◦

Vertical Field of View − 15◦ to 15◦ (30◦) 
Vertical Angular Resolution 2.0◦

Rotation Rate 5 Hz to 20 Hz  
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task execution. Additionally, wireless communication can be set be
tween the robot and the computer used by a human operator to enable 
real-time visualisation of the robot status and exteroception informa
tion, e.g., a live video stream of the robot cameras or SLAM output. 
Additionally, two operating modes can be used: autonomous and tele
operated. In the autonomous mode, the robot executes a pre-planned 
mission composed of a set of waypoints without the intervention of 
the human operator. Conversely, in teleoperated mode, the robot motion 
is controlled by a human operator. This is achieved by providing velocity 
commands to the robot through a remote controller, which is directly 
connected to the robot through a wireless communication network. In 
this study, the robot is used in teleoperated mode. 

The robot locomotion is enabled by the onboard control algorithm. 
This is trained using a reinforcement learning-based method (Lee et al., 
2020). In simulations, the algorithm learns a policy for controlling the 
robot by exploiting information about the robot’s contact with the 
ground, the terrain profile, friction, and disturbances. Then, a student 
policy is trained to imitate the learned policy. The student policy only 
has access to the robot’s command vector and the history of its joint and 
IMU measurements. The result is a controller that outputs desired joint 
positions, allowing the robot to robustly navigate challenging terrains at 
a maximum speed of 1 m/s. 

Shortly after the completion of the traditional survey, the same day a 
team of two roboticists operated the robot for RMLS-based 3D point 
cloud collection within the same plot surfaces. The robot was trans
ported to the study area using a van, which was parked on the roadside. 
Here, the robot was unloaded, placed on the ground, and turned on. At 
this point, one of the roboticists used the robot remote controller to 
teleoperate the robot toward the plot surfaces, which were identified 
using the previously recorded GPS coordinates of each plot centre. The 
distance between the parked van and the plot centres was approximately 
100 m. Once arrived in the 10 m radius value of unknown around the 
true position of the plot centre, the roboticists used the visible spray 
paint on the central tree to place the robot in the plot centre. At this 
point, the other roboticists used a laptop to set a local wireless 
connection to the robot, then, using the ANYmal research Graphic User 
Interface, the MLS was initialised without the need of any dataset. This 
procedure requires less than one minute. Then, the RMLS survey started 
teleoperating at a walking speed pace. Thanks to the laptop-robot 
connection, the output of the SLAM can be visualized online on the 

laptop. This enables the roboticist to have a rough estimation of the 
position of the robot, w.r.t. the plot area to perform the structural survey 
without the need of physically marking the plot actual boundaries. 
Indeed, given the range of the LiDAR sensor (Tab. 2), and the informa
tion acquired by it, the actual plot area can be clipped a-posteriori from a 
larger scanned surface directly using the measured point cloud (Figs. 3 
and 4). 

ANYmal C surveyed each plot twice, using two different scanning 
trajectories. Scanning trajectories were repeated similarly in each plot 
and were designed to: i) acquire a complete coverage of the survey area; 
ii) avoid stem occlusion and blind spots; and iii) reduce the drift error of 
the SLAM algorithm. The first scanning trajectory (scan A) was 
approximately circular, following the outer perimeter of the plot. The 
second scanning trajectory (scan B) followed a star-shaped trajectory 
adapted from Bauwens et al. (2016) and Gollob et al., (2020; Fig. 3). The 
point cloud data derived from each scan were registered in real time, 
allowing an instant visualisation of the survey data. Such real time 
feedback enabled the roboticist team to better perform data acquisition 
and avoid possible stem occlusions during the survey. 

The resulting point clouds from the RMLS surveys were saved in .ply 
format and used a local coordinate system with the centre coinciding 
with the plot centre. 

2.3. Point cloud processing and DBH extraction 

Point cloud processing was performed using a PC with an AMD 
Ryzen 7 3700x 8-Core CPU, a DDR4 32 GB RAM and a NVIDIA GeForce 
GTX 1050 Ti 4 GB graphic card. The point cloud data processing 
workflow is described in Fig. 4. 

After the completion of field data acquisition, each couple of point 
clouds pertaining to the same plot (scan A and scan B) were imported in 
the software CloudCompare (2023) for registration. To register scan A 
and scan B of each plot, we implemented a two-step process. First, we 
roughly registered the two scans using the tree location map and the 
assigned tree IDs. Then, we refined the alignment using the Iterative 
Closest Point (ICP) algorithm (Zhang, 1994). In this step, we used a 
threshold error (RMS) difference between iterations with a value of 
1e− 8. 

After the registration, each couple of registered point clouds of the 
same plot was filtered to select only points belonging to the corre
sponding plot space. For this purpose, all points positioned outside the 
inner volume of a cylinder with a radius of 8 m centred in the plot were 
deleted. 

After this step, we calculated in CloudCompare the point verticality 
using a local neighbourhood radius of 0.5 m. Verticality is a geometric 
feature based on the eigenvector of the structure tensor (see Hackel 
et al., 2016) and is used in this work to better differentiate ground 
points. 

Each point cloud was then exported in the format .las. All further 
analyses were performed using the R statistical software (R core team, 
2022), importing each point cloud using the function readLAS of the 
package lidR (Roussel et al., 2020). DBH extraction was performed on 
each point cloud separately following a series of preparing steps. 
Though, all point clouds underwent the same steps and equal parameters 
were used along the entire workflow. 

First, point clouds were filtered from outliers to reduce noise points 
using the Statistical Outlier Removal algorithm (Rusu and Cousins, 
2011). For this purpose, we used the function classify_noise in the 
package lidR. The algorithm computed the mean distance of each point 
to all its k-nearest neighbours and used it m-times as a threshold to 
segment outliers. We used k = 6 and m = 1 as parameters for this step 
(Kükenbrink et al., 2022). 

Next, we classified ground points in the denoised point clouds to 
normalise tree heights using a Cloth Simulation Filter (CSF) using the 
function classify_ground in the package lidR (see Zhang et al., 2016). 
After several iterations, we used a class threshold of 0.5 m and a cloth 

Fig. 3. Scanning trajectories of the RMLS survey. Only a 20×20×10 m portion 
of the original point cloud centred in the plot position is shown in figure. 
Starting and ending points and the different scanning trajectories are shown. 
Colour gradient denotes the values of coordinate Z. (a) scanning trajectory A; 
(b) scanning trajectory B. 
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resolution of 0.1 m for this step. All other parameters were left as 
default. However, visual inspections of point clouds showed that some 
points pertaining to the tree trunks were erroneously classified as 
ground points. We then filtered the tree trunk points which were erro
neously classified as ground points and subsequently reclassified them 
as above ground points by using their verticality value (a value which 
ranges from 0 to 1). For this purpose, we included all points with a 
verticality value higher than or equal to 0.5 (threshold based on visual 
inspection). 

After ground classification, point clouds were height normalised to 
automatically extract their DBH (hereafter DBHE [cm]). This step was 
necessary for DBHE extraction to obtain measurements taken at the same 
height relative to the ground for each tree. This process involved the 
interpolation of the elevation for each individual point in relation to 
points classified as ground, as opposed to relying on elevations at spe
cific predefined locations using a Digital Terrain Model. To normalise 
point clouds, we used the function normalize_height in the package lidR 
using a spatial interpolation algorithm that employs a k-nearest neigh
bour approach with inverse-distance weighting for interpolation. For 
this step, we left all parameters as default. 

Height normalised point clouds were processed to extract DBHE 
automatically using the package TreeLS (de Conto et al., 2017). First, 
normalised point clouds underwent the removal of points below 0.1 m 
and above 6 m. This step had the purpose to streamline the processing 
and emphasise the representation of stem segments for their DBHE 
extraction, significantly reducing processing time and potential outliers. 
Then, we used the function treeMap to locate tree occurrence regions 
employing a Hough transform circle search algorithm. The Hough 
transform is a robust algorithm valued for its ability to handle noisy data 
effectively (Chiappini et al., 2022; de Conto et al., 2017; Kuželka et al., 
2022; Simonse et al., 2003). It is used for identifying basic shapes 
(Illingworth and Kittler, 1987) such as circles, whose search stands out 
as a widely adopted method for detecting tree stems. For this step, we 
used a minimal point density of <0.0001 and a height threshold of 
points higher than 0.5 m to exclude understorey vegetation and lower 
tree trunks. All other parameters were maintained as default. Furtherly, 
the function treePoints was employed to classify and assign a unique tree 
identification number (extracted tree ID) to those points located within a 
circle of 1 m radius of each tree region. Tree points were subsequently 
filtered from outliers and classified as stem points using the function 

Fig. 4. Research workflow of point cloud processing to extract and compare data from the 3D point cloud. SOR = Statistical Outlier Removal; CSF = Cloth Simulation 
Filter; RANSAC = Random Sample And Consensus. 
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stemPoints. For this purpose, we applied again the Hough transform 
circle search algorithm to further filter noise points. In this work, we 
used the following parameters to carry out stem points classification: i) 
maximum stem diameter of 35 cm (a value higher than the largest DBHR 
measurement in the dataset) to filter out larger clusters of points that 
might be associated with lower tree branches and leaves; ii) a minimum 
point density within a pixel evaluated on the Hough transform of 0.2 
points/m2 to allow only dense clusters of points to undergo circle search; 
iii) a minimum number of three circle intersections over a pixel to assign 
it as a circle centre candidate (for details, see de Conto et al., 2017). All 
other parameters were maintained as default. 

Finally, tree position and their DBHE were automatically extracted 
from point clouds that underwent stem point classification using the 
function tlsInventory with the RANdom Sample And Consensus (RAN
SAC) circle fitting method. For this process, we executed the function by 
selecting a vertical segment of 0.4 m of points classified as a stem that is 
centred at a height of 1.20 m from ground level, whereas all other pa
rameters were maintained as default. The location of detected trees was 
manually searched for a correspondence with the location of trees 
encountered in the field. Using field-acquired data on bearing and dis
tance from the plot centre of each tree, a detected tree was deemed a 
correspondence if it was situated within a radius of 2 m of the tree 
encountered in the field (adapted from Kükenbrink et al., 2022). 
Detected trees that were situated at the borders of the plot region were 
discarded from the analysis. The complete point cloud dataset and the 
processing script are available in Appendix (supplementary material 1- 
7). 

2.4. Comparison evaluation 

To analyse the performance of the robot, we observed whether it 
could walk on the inclined terrain within the study area. From the point 
of view of the energetic cost of the RMLS survey, we measured the total 
travelled distance and the total battery consumption for each scanning 
trajectory. 

The evaluation of the accuracy and the efficiency of the RMLS survey 
was performed using an overall dataset, i.e. merging the partial results 
derived from single plots that were scanned using the same trajectory. 

Accuracy of tree detection was evaluated using: i) Tree Detection 
Rate (TDR [%], Eq. (1); ii) omission error or the number of not detected 
trees; and iii) commission error or the number of falsely detected trees. 

TDR [%] =
ηmatch

ηref
× 100 (1)  

where ηmatch is the number of trees that were correctly matched with 
trees encountered in the field, and ηref is the total number of trees 
encountered in the field. 

The accuracy of the automatically extracted DBHE measurements 
was evaluated by a linear regression to assess the degree of correspon
dence of DBHE to the reference measurements. We also calculated the 
absolute and relative Root Mean Square Error (RMSE [cm], Eq. (2); and 
RMSE [%], Eq. (3)), which is the square root of the mean quadratic 
deviation between DBHE and DBRR. To calculate RMSE [%], we used the 
mean DBHR (Eq. (4)). 

RMSE [cm] =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

ηmatch

∑ηmatch

i=1
(DBHE − DBHR)

2

√

(2)  

RMSE [%] =
RMSE [cm]

DBHR
× 100 (3)  

DBHR [cm] =
1

ηmatch

∑ηmatch

i=1
DBHR (4)  

Moreover, we calculated the absolute and relative bias (bias [cm], Eq. 

(5); and bias [%], Eq. (6)), which is the mean deviation between DBHE 
and DBRR. 

bias [cm] =
1

ηmatch

∑ηmatch

i=1
(DBHE − DBHR) (5)  

bias [%] =
bias [cm]

DBHR
× 100 (6)  

To assess the efficiency of RMLS survey, we recorded and compared 
survey times used to complete the traditional and the RMLS monitoring 
mission. The overall survey time using traditional methods was calcu
lated as the sum of the time used to: i) place the plot boundaries; ii) map 
the position of each tree in the plots and assign its reference number; and 
iii) measure the DBHR. The overall survey time using the RMLS survey 
was calculated as the sum of the time used to: i) scan and record the 
point clouds; and ii) process the 200 m2 point clouds to extract DBHE 
values. We measured survey time in field operations with a chronometer 
and in point cloud processing with the PC internal clock. Survey effi
ciency was calculated using two indices, accounting for both survey 
methods and for each scanning trajectory of the RMLS survey: surface 
monitored [m2/min] (Eq. (7), Chen et al., 2019; Ko et al., 2021) and 
trees monitored [trees/min] (Eq. (8). 

surface monitored [
m2

min
]=

overall plot surface [m2]

overall survey time [min :sec]×number of surveyors
(7)  

trees monitored
[trees

min

]
= stem density

[trees
m2

]
× surface monitored [

m2

min
]

(8)  

The latter index was created to enable future comparisons of this 
methodology with forest habitats that have different stem densities. 

3. Results 

In all plots and scanning trajectories, the robot was able to success
fully walk on the inclined terrain of habitat 9110 despite the presence of 
leaves and other ground obstacles such as fallen branches, rocks, and 
roots. This is mainly achieved thanks to the performance and robustness 
of the employed reinforcement learning based controller (Lee et al., 
2020). Fig. 5 shows a sequence of images where the robot is performing 
a scanning. A video recording of ANYmal C performing the RMLS survey 
is available in Appendix (supplementary material 8). 

Results on the robot travelled distance for each scanning trajectory 
and its related energetic cost are reported in Table 3. 

A total of 55 trees of F. sylvatica were found in our survey, with an 
almost similar number of trees among plots (Table 1). Table 4 shows the 
accuracy comparison among scanning trajectories. 

No omission errors were detected both in scanning trajectory A and 
B, hence all trees encountered in the field were detected in the corre
sponding point clouds, achieving a TDR = 100 %. Conversely, falsely 
detected trees were more frequent in Scan A (7) than in Scan B (1). In 
scan A, the highest number of falsely detected trees was found in plot 1 
[5], whereas the sole falsely detected tree of scan B was found in plot 2. 

Scan A produced better results than Scan B in terms of RMSE: 2.43 
cm or 10.73 % and 3.25 cm or 14.34 %, respectively. By contrast, bias 
was lower in scan B (− 0.2 cm or − 0.88 %) compared to scan A (0.44 cm 
or 1.96 %). 

Fig. 6 shows how the two scanning trajectories used in the study lead 
to different performances of the DBHE compared to DBHR. Linear 
regression of DBHE in scan A shows a higher correspondence to the 
reference measurements than in scan B (R2

adj = 0.72, P < 0.001 and R2
adj 

= 0.52, P < 0.001, respectively). 
Table 5 compares the efficiency of the traditional and RMLS surveys. 

It resulted that using the RMLS survey, a single surveyor can structurally 
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monitor 19.31 m2/min of habitat 9110 or 1.77 trees/min using a circular 
scanning trajectory (scan A) and 13.94 m2/min or 1.28 trees/min using 
a star-shaped trajectory (scan B). In comparison, a surveyor that uses the 
traditional survey method can structurally monitor 3.45 m2/min or 0.32 
trees/min. 

4. Discussion 

A significant amount of time in the activity of EU habitat monitoring 
can be usually accounted for gathering structural data, which are a 
fundamental indicator of the dynamic differences and conservation 
status within forest habitat patches (Angelini et al., 2016, Angiolini 
et al., 2021). Our results proved for the first time that the use of a 
robotical assistance in performing accurate, time efficient EU forest 
habitat monitoring of structural data, such as habitat 9110 and similar 
forests, is achievable in the present time using a RMLS survey. Moreover, 
employing a legged robot with this RMLS-based monitoring protocol can 
enhance the efficiency of structural habitat monitoring by nearly sixfold 
using a circular trajectory in a forest habitat with a stem density of 0.1 
stems/m2. 

Our quadrupedal robot demonstrated to be able to walk in unstruc
tured environments despite the presence of ground obstacles and non- 
negligible terrain inclination. This condition was considered chal
lenging in similar studies (Pierzchała et al., 2018; Tremblay et al., 2020). 
The motion controller running on ANYmal C (Lee et al., 2020) enables it 
to blindly walk over challenging terrains and to autonomously cope with 
ground obstacles like rocks, roots, and slippery grounds. Obstacles of 
size 10–15 cm are thus not avoided by the tele-operator and left to-be- 

dealt with to the robot itself. Larger obstacles like trees or boulders 
are instead avoided by slightly varying the location trajectory steering 
the robot. This overall behavior allows us to prevent major incidents like 
collisions or falls. Indeed, at the moment, the employed robot is able to 
cope with some external disturbances, but it is not able to autonomously 
recover from falls. However, in the state of the art there are algorithms 
(Lee et al., 2019; Yang et al., 2023) that enable this feature, and future 
version of ANYmal software will include autonomous fall recovery. 
From the efficiency point of view, scan B resulted in larger total travelled 
distance and total battery consumption and longer duration. Despite the 
fact that the percentage of increase of travelled distance between scan A 
and scan B was only ~ 16 %, the percentage of increase in battery 
consumption was more than 60 % (62.5 %). This result highlights that 
scanning trajectories requiring longer mission duration over an uneven 
terrain (such as that of our study area) lead a quadrupedal robot to 
sustain larger cumulative elevation gains. Then, following a more 
complex star-shaped trajectory such as that of scan B, required a larger 
energy consumption. Conversely, a simpler circular trajectory (scan A) 
resulted in a smoother and milder terrain inclination variation and less 
energy consumption. Hence, by using this scanning trajectory in similar 
environments, future RMLS surveys for structural habitat monitoring 
will be able to carry out the measurement of approximately eighteen 
200 m2 circular plots per single battery charge. 

Both scanning trajectories produced a complete 100 % TDR in beech 
forests of EU habitat 9110 and, thus, represent both valid acquisition 
patterns to obtain a complete representation of the mapping area. In 
fact, MLS-derived point clouds have generally high TDR, with values 
ranging between 57 and 100 % (Balenović et al., 2021; Gollob et al., 
2020; Kuželka et al., 2022). In general, MLS-derived point cloud oc
clusions are lower compared to above canopy point cloud acquisitions 
(ALS and ULS) due to the reduced canopy occlusion effect (Bauwens 
et al., 2016, Cabo et al., 2018, Kuželka et al., 2022; Oveland et al., 
2018). 

Conversely, the difference in falsely detected trees among the scan
ning trajectories might have been caused by a difference in acquisition 
point densities among the two mapping approaches. In addition, most of 

Fig. 5. Photo-sequence of the ANYmal C robot performing Scan B for Plot 3.  

Table 3 
Comparison of travelled distance and battery consumption for the two scanning 
trajectories.  

Scanning trajectory Travelled distance [m] Battery consumption [%] 

Scan A 178 16 
Scan B 206 26  

Table 4 
Comparison of tree detection and DBHE accuracy obtained from different scanning trajectories in relation to the overall 55 reference trees encountered in the field.  

Scanning trajectory Detected trees Omission error Commission error TDR [%] RMSE [cm] RMSE [%] Bias [cm] Bias [%] 

Scan A 55 0 7 100  2.43  10.73  0.44  1.96 
Scan B 55 0 1 100  3.25  14.34  − 0.2  − 0.88  
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falsely detected trees are located in plot 1 (five out of seven). It is then 
possible that a higher presence of tree lateral branches and/or shrubs in 
this zone were more intensively detected by scan A, creating a local 
higher amount of falsely detected trees. It is also worth mentioning that 
the amount of falsely detected trees is closely related to the noise levels 
of the point cloud and the influence of tree branches and understory 
vegetation. Point cloud filtering is then a crucial step of point cloud data 
pre-processing. However, methods for point cloud filtering and setting 
threshold limits are often based on empirical evaluations and vary in 
literature according to visual inspection of the point cloud (Kuželka 
et al., 2022). In our study, we applied the same point cloud filtering 

method for all plots and scanning trajectories. This filtering stand
ardisation might have caused the difference in falsely detected trees 
among scanning trajectories. 

Our study demonstrated that structural data collection using our 
RMLS survey protocol in beech forest of habitat 9110 provides satis
factory DBHE values, with a RMSE of 10.73 % (2.43 cm) using circular 
scan trajectories. These values are in line with general requirements for 
DBH accuracy, which are approximately 2 cm (Liang et al., 2016). Also, 
our results on DBHE using a quadrupedal robot to carry out a RMLS 
survey are in line with other studies that evaluate SLAM-based MLS 
accuracy in forest inventories, demonstrating a better performance of 

Fig. 6. Scatterplot of DBHR versus DBHE values and regression analyses. Points and fitted lines are coloured according to the scanning trajectory. Shaded colours 
show the 0.95 confidence region of the regression analyses. The dashed black line shows the 1:1 trend line for reference. The regression equations, proportions of the 
adjusted variance of DBHE explained by DBHR (R2

adj) and statistical significances (P) are shown. 

Table 5 
Comparison of efficiency among traditional and RMLS survey methods.  

Survey 
method 

Personnel Scanning 
trajectory 

Survey task Time taken [min: 
sec] 

Surface monitored [m2/ 
min] 

Trees monitored [trees/ 
min] 

Traditional 2  Plot placement 37:42 3.45 0.32 
DBHR measurement 49:18 
Overall 87:00  

RMLS 2 A Point cloud acquisition 12:32 19.31 1.77 
Point cloud processing and DBHE 

measurement 
3:00 

Overall 15:32 
B Point cloud acquisition 18:31 13.94 1.28 

Point cloud processing and DBHE 

measurement 
3:00 

Overall 21:31  
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LiDAR technologies instead of traditional calliper measurements 
(Giannetti et al., 2018; Spadavecchia et al., 2022). Early studies 
involving backpack-mounted MLS surveys reached DBH RMSE values 
higher than 12 % (Liang et al., 2014). More recent works usually equip 
handheld MLS such as Zeb-Revo lidar by Geoslam company, assessing 
DBH accuracies that are ranging from 0.8 to 2.46 cm (less than 10 %: 
Vatandaşlar and Zeybek, 2021; 10.8 %: Chiappini et al., 2022; 12.01 %: 
Gollob et al., 2020). In comparison, previous DBH acquisition protocols 
applied using a teleoperated legged robot in a European mixed fir and 
beech forest reached RMSE values between 16.9 cm (39.6 %) and 24.3 
cm (56.9 %), achieving the identification of 37.78 to 97.77 % trees with 
a DBH >20 cm (Chirici et al., 2023). 

Furthermore, our results also showed, even though both scanning 
trajectories successfully represented the plot in terms of TDR, that exist a 
difference in DBHE accuracy among the scanning trajectories, featuring 
a better result of 10.73 % RMSE in circular trajectory (scan A) compared 
to 14.34 % RMSE in star-shaped trajectory (scan B). This result is 
partially contrasting with previous works on the argument (Kuželka 
et al., 2022). In their work, Kuželka et al. (2022) compared three 
different trajectories in forest handheld MLS point cloud acquisition and 
found that star-shaped trajectories were the most stable in terms of ef
ficiency and point density uniformity. However, as these authors 
confirmed, the point density of a MLS acquisition depends on several 
factors that influence the speed of point cloud acquisition. A different 
localised speed of our legged robot due to obstruction of lying dead 
wood might then explain the difference in accuracy among the scanning 
trajectories. In fact, several studies warn on excessively dense acquisi
tions, which may cause drifts within the point cloud (Mokroš et al., 
2021) or increase the number of outliers and the representation of twigs, 
lateral branches, leaves and shrubs in the point cloud (Chen et al., 2019). 
Finally, as also pointed out by the study of Kükenbrink et al. (2022), our 
choice to analyse all plots for both scanning trajectory types using the 
same filtering parameters might have negatively influenced the amount 
of falsely detected trees and DBHE accuracy. Structural complexity, 
understory occlusion and the consequent number of outliers may have in 
fact varied among each plot and each scanning trajectory. Hence, we 
advocate that the application of RMLS surveys in EU forest structural 
habitat monitoring should take in consideration a plot-based point cloud 
processing to optimise results. Moreover, our results suggest that 
different DBHE accuracies and falsely detected trees in RMLS point cloud 
acquisitions are trajectory-dependent. 

The simpler circular trajectory of scan A was less difficult to perform 
and more efficient than scan B. However, even by moving on a longer 
trajectory, scan B was four times more efficient than a traditional 
structural survey. It is worth noting that the structural monitoring of 
forest habitats was not previously assessed with the use of a legged 
robot, hence there is a lack of information on the comparison between 
the efficiency of RMSL and traditional surveys. Moreover, previous 
studies that compared the efficiency of human-carried MLS in forest 
inventories with traditional survey methods measured different survey 
tasks, survey areas and stem densities, furtherly reducing the compa
rability of the survey efficiency among methods. For example, Ryding 
et al. (2015) used a handheld MLS (ZEB1) to measure DBH in semi- 
natural deciduous woodlands with a variable stem density ranging 
from 0.27 to 0.79 stems/m2. They measured only time spent for field 
data acquisition and found that a surveyor equipped with handheld MLS 
was able to acquire the point cloud of a 100 m2 plot in 20 m2/min. In 
comparison, four people surveyed 2500 m2 using traditional survey 
methods, achieving a surface coverage per surveyor of 0.43 m2/min. 
Conversely, Ko et al. (2021) used a backpack-mounted MLS (Libackpack 
D50) in a wood plantation with an average stem density of 0.39 stems/ 
m2. They compared both fieldwork and office work among methods, 
measuring DBH and height of trees. They found that the handheld MLS 
survey was carried out at a surface coverage per surveyor of 20.2 to 25.5 
m2/min compared to 4.7 to 7.9 m2/min of the traditional survey. It is 
possible then to speculate that the stem density of the surveyed area, its 

total surface and the different measurement operations have a higher 
influence on traditional survey time compared to the MLS survey. 
Hence, to better interpret the efficiency of structural survey methods, we 
advocate to standardise the measurement of survey efficiency on the 
basis of the number of measured trees per minute and differentiate the 
survey time according to single measurement operations (tree DBH, 
height, etc.) and single survey tasks (DBHR measurement, point cloud 
acquisition, point cloud processing, etc.). In future, with the advance
ment of RMLS surveys, field measurements will be carried out by a single 
surveyor equipped with a legged robot able to autonomously carry out 
the structural survey (Pollayil et al., 2023). This will further enhance the 
efficiency of the RMLS structural survey by twofold compared to our 
results. 

Future works should better focus on robot energetic efficiency and 
accuracy of extracted structural parameters based on point cloud pro
cessing parameters. For instance, employing autonomous locomotion 
and implementing terrain-aware locomotion algorithms could enable 
the robot to autonomously choose the most energetically efficient path 
to scan the plot depending on the specific ground and terrain conditions. 
Moreover, exploring the variation in different forest settings can provide 
valuable insights into the applicability and adaptability of RMLS-based 
surveys in structural EU habitat monitoring. Finally, the workflow and 
the derived processing script implemented by this research can be used 
as a reference to perform habitat monitoring assessments of CS using 
robotic assistance to extract structural data in similar forest habitats. 

Future developments of this research could include the study of the 
effectiveness of RMLS in different forest habitats with diverse overstory 
and understory composition and structure. Additionally, it can be 
possible to consider measuring other important structural parameters 
such as tree height. Incorporating the measurement of tree height can 
enhance the capability of the method to assess the forest vertical 
structure, providing a more detailed perspective on the forest three- 
dimensional arrangement. With a wider adoption of RMLS surveys, 
future works will focus on efficiency and accuracy comparisons with 
HMLS surveys. Also, a combination of RMLS and ULS data acquisition 
modalities and multi-year measures to detect changes over time (e.g. 
Spadavecchia et al., 2022) will be developed. In fact, efficient above and 
below tree canopy data will be of use to capture a more complete vision 
of forest habitats (Ehrlich-Sommer et al., 2024). These approaches may 
also uncover unique patterns and dynamics in different EU forest habi
tats, contributing to a more robust habitat CS monitoring. 
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Schaminée, J.H., 2020. EUNIS habitat classification: expert system, characteristic 
species combinations and distribution maps of european habitats. Applied 
Vegetation Science 23 (4), 648–675. https://doi.org/10.1111/avsc.12519. 

CloudCompare (version 2.12) [GPL software]., 2023. Retrieved from http://www. 
cloudcompare.org/. 

Corona, P., Chirici, G., McRoberts, R.E., Winter, S., Barbati, A., 2011. Contribution of 
large-scale forest inventories to biodiversity assessment and monitoring. Forest 
Ecology and Management 262 (11), 2061–2069. https://doi.org/10.1016/j. 
foreco.2011.08.044. 

Curtis, R.O.; Marshall, D.D., 2005. Permanent-plot procedures for silvicultural and yield 
research. Gen. Tech. Rep. PNW-GTR-634. Portland, OR: U.S. Department of 
Agriculture, Forest Service, Pacific Northwest Research Station. 86 p. 

Dalla Corte, A.P., Rex, F.E., Almeida, D.R.A.D., Sanquetta, C.R., Silva, C.A., Moura, M.M., 
Broadbent, E.N., 2020. Measuring individual tree diameter and height using 
GatorEye high-density UAV-Lidar in an integrated crop-livestock-forest system. 
Remote Sensing 12 (5), 863. https://doi.org/10.3390/rs12050863. 

de Conto, T., Olofsson, K., Görgens, E.B., Rodriguez, L.C.E., Almeida, G., 2017. 
Performance of stem denoising and stem modelling algorithms on single tree point 
clouds from terrestrial laser scanning. Computers and Electronics in Agriculture 143, 
165–176. https://doi.org/10.1016/j.compag.2017.10.019. 

Ehrlich-Sommer, F., Hoenigsberger, F., Gollob, C., Nothdurft, A., Stampfer, K., 
Holzinger, A., 2024. Sensors for digital transformation in Smart forestry. Sensors 24 
(3), 798. https://doi.org/10.3390/s24030798. 

Ellwanger, G., Runge, S., Wagner, M., Ackermann, W., Neukirchen, M., Frederking, W., 
Sukopp, U., 2018. Current status of habitat monitoring in the European Union 
according to article 17 of the habitats directive, with an emphasis on habitat 
structure and functions and on Germany. Nature Conservation 29, 57–78. https:// 
doi.org/10.3897/natureconservation.29.27273. 

European Commission, 1992. Council directive 92/43/EEC of 21 may 1992 on the 
conservation of natural habitats and of wild fauna and flora. Official journal L 206, 
22/07/1992. P. 0007-0050. Off. J. Eur. Union 206, 7–50. 

Evans, D., Arvela, M., 2011. Assessment and reporting under article 17 of the habitats 
directive. explanatory notes & guidelines for the period 2007–2012. European 
Commission, Brussels.  

Giannetti, F., Puletti, N., Quatrini, V., Travaglini, D., Bottalico, F., Corona, P., Chirici, G., 
2018. Integrating terrestrial and airborne laser scanning for the assessment of single- 

L. de Simone et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.ecolind.2024.111882
https://doi.org/10.1016/j.ecolind.2024.111882
https://doi.org/10.1007/s13595-019-0820-4
https://doi.org/10.1038/s41597-023-02312-x
https://doi.org/10.1038/s41597-023-02312-x
https://doi.org/10.1038/s41597-023-02764-1
https://doi.org/10.1038/s41597-024-03063-z
https://doi.org/10.1038/s41597-024-03063-z
https://doi.org/10.1016/j.foreco.2021.119432
http://refhub.elsevier.com/S1470-160X(24)00339-X/h0045
http://refhub.elsevier.com/S1470-160X(24)00339-X/h0045
https://doi.org/10.5552/crojfe.2021.858
https://doi.org/10.5552/crojfe.2021.858
https://doi.org/10.1016/j.foreco.2013.07.004
https://doi.org/10.1016/j.foreco.2013.07.004
https://doi.org/10.3390/f7060127
http://refhub.elsevier.com/S1470-160X(24)00339-X/h0070
https://doi.org/10.3390/s17102371
https://doi.org/10.1016/j.rse.2019.111355
https://doi.org/10.1016/j.jag.2022.103056
https://doi.org/10.1016/j.jag.2022.103056
https://doi.org/10.1016/j.foreco.2023.121530
https://doi.org/10.1016/j.foreco.2023.121530
https://doi.org/10.3390/rs10040540
https://doi.org/10.3390/rs10040540
https://doi.org/10.17221/28/2017-JFS
https://doi.org/10.1080/2150704X.2015.1035770
https://doi.org/10.1080/2150704X.2015.1035770
http://refhub.elsevier.com/S1470-160X(24)00339-X/h0120
http://refhub.elsevier.com/S1470-160X(24)00339-X/h0120
https://doi.org/10.1016/j.compag.2022.107069
https://doi.org/10.1016/j.compag.2022.107069
https://doi.org/10.5849/forsci.12-003
https://doi.org/10.3390/f14112170
https://doi.org/10.1111/j.1654-1103.2003.tb02183.x
https://doi.org/10.1111/j.1654-1103.2003.tb02183.x
https://doi.org/10.1111/avsc.12519
https://doi.org/10.1016/j.foreco.2011.08.044
https://doi.org/10.1016/j.foreco.2011.08.044
https://doi.org/10.3390/rs12050863
https://doi.org/10.1016/j.compag.2017.10.019
https://doi.org/10.3390/s24030798
https://doi.org/10.3897/natureconservation.29.27273
https://doi.org/10.3897/natureconservation.29.27273
http://refhub.elsevier.com/S1470-160X(24)00339-X/h0185
http://refhub.elsevier.com/S1470-160X(24)00339-X/h0185
http://refhub.elsevier.com/S1470-160X(24)00339-X/h0185


Ecological Indicators 160 (2024) 111882

12

tree attributes in Mediterranean forest stands. European Journal of Remote Sensing 
51 (1), 795–807. https://doi.org/10.1080/22797254.2018.1482733. 

Gigante, D., Attorre, F., Venanzoni, R., Acosta, A.T.R., Agrillo, E., Aleffi, M., Zitti, S., 
2016. A methodological protocol for annex I habitats monitoring: the contribution of 
vegetation science. Plant Sociology 53 (2), 77–87. https://doi.org/10.7338/ 
pls2016532/06. 

Gollob, C., Ritter, T., Nothdurft, A., 2020. Forest inventory with long range and high- 
speed personal laser scanning (PLS) and simultaneous localization and mapping 
(SLAM) technology. Remote Sensing 12 (9), 1509. https://doi.org/10.3390/ 
rs12091509. 

Gollob, C., Krassnitzer, R., Ritter, T., Tockner, A., Erber, G., Kühmaier, M., 
Hönigsberger, F., Varch, T., Holzinger, A., Stampfer, K., Nothdurft, A., 2023. 
Measurement of individual tree Parameters with Carriage-based laser scanning in 
cable Yarding operations. Croatian Journal of Forest Engineering: Journal for Theory 
and Application of Forestry Engineering 44 (2), 401–417. https://doi.org/10.5552/ 
crojfe.2023.2252. 

Hackel, T., Wegner, J. D., & Schindler, K., 2016. Contour detection in unstructured 3D 
point clouds. In Proceedings of the IEEE conference on computer vision and pattern 
recognition (pp. 1610-1618). 

Holopainen, M., Kankare, V., Vastaranta, M., Liang, X., Lin, Y., Vaaja, M., Alho, P., 2013. 
Tree mapping using airborne, terrestrial and mobile laser scanning–a case study in a 
heterogeneous urban forest. Urban Forestry & Urban Greening 12 (4), 546–553. 
https://doi.org/10.1016/j.ufug.2013.06.002. 

Hutter, M., Gehring, C., Lauber, A., Gunther, F., Bellicoso, C.D., Tsounis, V., Meyer, K., 
2017. Anymal-toward legged robots for harsh environments. Advanced Robotics 31 
(17), 918–931. https://doi.org/10.1080/01691864.2017.1378591. 
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