
Citation: Bongini, P.; Pancino, N.;

Bendjeddou, A.; Scarselli, F.;

Maggini, M.; Bianchini, M. Composite

Graph Neural Networks for

Molecular Property Prediction. Int. J.

Mol. Sci. 2024, 25, 6583. https://

doi.org/10.3390/ijms25126583

Academic Editors: Amarda Shehu

and Dong-Jun Yu

Received: 15 April 2024

Revised: 21 May 2024

Accepted: 11 June 2024

Published: 14 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Molecular Sciences

Article

Composite Graph Neural Networks for Molecular
Property Prediction
Pietro Bongini , Niccolò Pancino , Asma Bendjeddou , Franco Scarselli , Marco Maggini
and Monica Bianchini *

Department of Information Engineering and Mathematics, University of Siena, 53100 Siena, Italy;
pietro.bongini@unisi.it (P.B.); niccolo.pancino@unisi.it (N.P.); biofamily@live.it (A.B.); franco@diism.unisi.it (F.S.);
marco.maggini@unisi.it (M.M.)
* Correspondence: monica.bianchini@unisi.it

Abstract: Graph Neural Networks have proven to be very valuable models for the solution of a
wide variety of problems on molecular graphs, as well as in many other research fields involving
graph-structured data. Molecules are heterogeneous graphs composed of atoms of different species.
Composite graph neural networks process heterogeneous graphs with multiple-state-updating
networks, each one dedicated to a particular node type. This approach allows for the extraction of
information from s graph more efficiently than standard graph neural networks that distinguish
node types through a one-hot encoded type of vector. We carried out extensive experimentation on
eight molecular graph datasets and on a large number of both classification and regression tasks. The
results we obtained clearly show that composite graph neural networks are far more efficient in this
setting than standard graph neural networks.

Keywords: artificial intelligence; deep learning; graph neural networks; molecular property
prediction; composite graph neural networks; open graph benchmark; molecular graphs

1. Introduction

Graphs are a ubiquitous and very important form of data representation, providing in-
formation on data entities— represented by nodes—and their relationships, represented by
edges. Graph neural networks (GNNs) have become a gold standard for solving problems
defined on graphs. These powerful models, first introduced in 2008 [1], are designed to
process graphs, replicating their structure in the model architecture. Moreover, thanks to
their mathematical formulation, GNNs ensure minimal loss of structural information and
have been shown to be universal approximators on graphs. In order to measure the compu-
tational capabilities of GNNs, the unfolding tree method and the Weisfeiler–Lehman [2]
test are used. These methods, which were demonstrated to be equivalent, also allow for the
classification of different models according to the expressive power they can reach [3]. It is
always recommended to use models that are at least as capable of distinguishing isomor-
phic graphs as the Weisfeiler–Lehman test of the first order (WL–1 class). GNNs can be used
for both the regression and classification of properties defined on the nodes (or a subset
thereof) in a dataset composed of one or more graphs, as well as the property regression and
classification of edges (or a subset thereof) and the property regression and classification
of graphs. Additionally, they can efficiently solve link prediction and ablation problems,
as well as graph generation tasks. In recent years, GNNs have experienced a consistent
spike in popularity and have been applied to a huge variety of different problems, covering
almost every field of science and technology [4–6]. This great versatility is due to the large
variety of models that have been developed, belonging to two large families—recurrent
GNNs and graph convolution networks (GCNs)—and it is also thanks to the well-founded
mathematical properties of GNNs [7]. Convolutional models diffuse and pool information
over a graph by replicating a convolution operator over the neighborhoods. This can

Int. J. Mol. Sci. 2024, 25, 6583. https://doi.org/10.3390/ijms25126583 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms25126583
https://doi.org/10.3390/ijms25126583
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-9074-0587
https://orcid.org/0000-0003-2212-4728
https://orcid.org/0009-0009-7798-2907
https://orcid.org/0000-0003-1307-0772
https://orcid.org/0000-0002-6428-1265
https://orcid.org/0000-0002-8206-8142
https://doi.org/10.3390/ijms25126583
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms25126583?type=check_update&version=1

Int. J. Mol. Sci. 2024, 25, 6583 2 of 12

be carried out in both the spatial [8] and spectral domains [9,10]. The relevant models
of this family also include graph attention networks (GATs) [11], which exploit a graph
attention mechanism over graph nodes, and GraphSAGE [12], which uses various aggrega-
tion mechanisms, including long short–term memories (LSTMs), to make the information
flow between node neighbourhoods. In contrast, recurrent GNNs make the information
flow through the graph structure using a message-passing mechanism. Along with the
original model [1], they include message-passing neural networks (MPNNs) [13] and graph
isomorphism networks (GINs) [3]. Moreover, recurrent GNNs can also be stacked into a
more complex architecture known as Llyered GNN (LGNN), which iteratively refines the
outputs of the first GNN in the stack, using the upper GNNs to improve the understanding
of the problem and, consequently, the proposed solution. GNNs of every type have been
employed in a wide variety of different applications, from social network analysis [14] and
spam node detection on the web to weather forecasting [15], power network analysis [16],
and telecommunication network optimization [17]. In the biological domain, GNNs and
GCNs have been applied to drug discovery [18], the prediction of compound mutagenic-
ity [19], anti–HIV activity [20,21], and protein–protein interactions [22], just to name a few
tasks. In particular, our method [23], which is specifically well-suited to biological applica-
tions [24], has been successfully applied to the following: molecular graph generation [25],
integrating the generation method to a full pipeline of GNN-based filters for candidate
selection in the drug discovery domain [26]; drug side-effect prediction on a heteroge-
neous graph integrating many different sources of information [27], on molecular graphs
only [28], and on a combination of these two setups; the identification of protein–protein
interactions [22]; link prediction for suggesting possible matches in a caregiver support
network [29].

In this paper, we will explore the capabilities of composite graph neural networks
(CGNNs) in molecular analysis tasks. CGNNs are a variant of the original recurrent GNN
model [1], in which a state-updating network is defined for every type of node in the graph.
While the predictive capabilities of GNNs have been widely studied [7], the predictive capa-
bilities of CGNNs have not been thoroughly analyzed so far. As a consequence, we propose
a comparison between the standard and composite versions of the original recurrent GNN
model [1]. We use some very well-known and solid benchmark datasets that are part of
the open graph benchmark (OGB) [30]. Each dataset is composed of molecular graphs.
The tasks are also defined by the OGB and are a mix of the classification of molecules
based on their activities or categories and the regression of molecular properties. In some
cases, multiple tasks are required to be carried out in parallel. The main contributions
of the paper are as follows: a comprehensive method based on GNNkeras [23] to train
and evaluate CGNNs and GNNs on graph-focused regression or classification tasks on
any molecular graph dataset; an extensive comparison between CGNNs and GNNs on
benchmark datasets taken from the OGB.

The rest of this paper is organized as follows. Section 4.1 describes the datasets
and associated learning tasks on which we trained and tested our model. Section 4.2
describes the GNN and CGNN models and explains the basics of the message-passing
mechanism behind recurrent GNNs. Section 4.3 explains the experimental methodology,
model hyperparameters, and technical features. Section 2 presents the experimental results
and discusses their significance. Finally, Section 3 draws the conclusions of the research
work and explains how it can be useful for future investigation.

2. Results

The evaluation was carried out using the "Evaluator" provided with the OGB package;
the metrics are determined by the OGB itself and vary according to the dataset. This
occurs both in the grid-search phase, where multiple configurations of the same model
are validated, and in the test phase, where the best configurations of the two models are
compared. The best configurations obtained on every dataset are summarized in Table 1,
reporting the hyperparameters of the best models.

Int. J. Mol. Sci. 2024, 25, 6583 3 of 12

Table 1. Hyperparameter values of the best GNN and CGNN configuration on every dataset.
Hyperparameters are defined as the following: Initial learning rate (ILR), hidden units of state
updating network (HS), hidden units of output network (HO), state dimension (SD), and activation
function (AF). See Table 5 for the hyperparameter value combinations used in all the experiments.

Dataset Best GNN Best CGNN
ILR HS HO SD AF ILR HS HO SD AF

HIV 10−2 30 70 10 tanh 10−3 50 20 5 tanh
FreeSolv 10−2 20 40 30 tanh 10−2 10 100 30 selu
Tox-21 10−2 50 20 15 relu 10−2 50 40 30 relu
BACE 10−3 50 20 10 relu 10−2 30 20 30 selu
BBBP 10−2 10 40 10 tanh 10−3 20 20 15 relu

ClinTox 10−3 50 40 10 selu 10−3 30 70 15 relu
MUV 10−2 30 20 3 selu 10−3 50 70 10 relu
Sider 10−3 50 100 5 selu 10−3 10 40 15 relu

In particular, the evaluation metrics used by the OGB Evaluator are area under receiver
operator characteristic curve (AUROC) and average precision (AP) for binary classification
problems, and it uses the root mean squared error (RMSE) for regression problems. These
metrics are the standard metrics provided by the OGB for the evaluation of models on
their datasets. In particular, AUROC is used for its robustness to dataset imbalancement.
The AUROC metric measures the area under the ROC curve, a function that associates a
true positive rate (TPR) value with each false positive rate (FPR) value, which is possible
given the predictions of the model, and we varied the classification threshold over the [0, 1]
interval. The expected curve for a random classifier is the line representing the function
TPR = FPR. In order to do better, the curve must trend towards a function that grows
rapidly and then stabilizes just below the TPR = 1 line. A perfect classifier would have a
curve corresponding only to TPR = 1. The area under such a curve, therefore, gives a score
(between 0 and 1) that accounts for how accurate the classifier is. For a random classifier,
AUROC = 0.5 is expected. A classifier should, therefore, perform better than AUROC = 0.5
in order for it to be acceptable (better than random guessing). The AP metric measures
the average value of precision across a set of parallel binary classification tasks instead.
The precision is measured as the ratio of true positives over the sum of true positives and
false positives. Finally, the RMSE is the (positive) root of the MSE between the predicted
values and target values. The results are reported in Table 2, showing the AUROC, RMSE,
or AP of the best model on every dataset. The metric to be used depends on the dataset and
is defined by the OGB benchmark itself to best represent the model’s predictive capacity
depending on the type of task and on data unbalance.

Table 2. Comparison between the best GNN and the best CGNN configuration on every dataset.
Metrics are defined by the OGB [30]: Area under ROC curve (AUROC), root mean squared error
(RMSE), and average precision (AP). The best method between the GNNs and CGNNs is highlighted
in bold.

Dataset Metric GNN CGNN

HIV AUROC 0.777 0.792
FreeSolv RMSE 2.925 2.257
Tox-21 AUROC 0.698 0.726
BACE AUROC 0.756 0.839
BBBP AUROC 0.688 0.685

ClinTox AUROC 0.733 0.925
MUV AP 0.042 0.056
Sider AUROC 0.598 0.617

The results clearly show the superiority of the CGNN on a large majority of molecular
datasets, with BBBP representing the only exception by a narrow 0.003 AUROC gap. This

Int. J. Mol. Sci. 2024, 25, 6583 4 of 12

confirms that CGNNs are capable of exploiting the heterogeneous nature of molecular
graphs and can, therefore, better classify molecules according to their activity and predict
their properties with a smaller error. Moreover, this is true for both single-task problems, in
which only one property is predicted and evaluated, and for multi-task problems, where a
multi-class-multi-label approach is required to predict a set of the parallel, relevant proper-
ties of the graphs in the dataset. The better results of CGNNs were obtained thanks to the
specialization of the state-updating network on more precise subtasks. Each MLP special-
izes in a single node type, allowing for a more accurate estimation of the following node
state given all the input quantities (current node state, the current state of the neighbors,
and the label of the node, its neighbors, and the relative edges). This specialization of
the MLPs allows for a better local understanding of the graph structural properties and
node/edge labels, which translates to a better classification/regression performance by
the output network (which, instead, is not specialized on node types). This benefit comes
with a computational overhead, with the model’s complexity (in terms of time) increasing
due to the fact that more MLPs are utilized. The complexity in terms of memory increases
because more neural networks need to be kept in memory, yet the state-updating MLPs
typically require fewer parameters because their task is more specialized. This paper proves
the properties of CGNNs for graph-focused molecular problems, yet such properties are
expected to also hold on node-focused problems, in which the output is defined on a subset
of nodes Nout ⊆ N, and on edge-focused problems, where the output is defined on a subset
of edges Eout ⊆ E. These two categories of problems can be seamlessly solved by using
the same GNN and CGNN models and by changing only the output function, gw, which
is still calculated with a single (non-specialized) output network. Having a set of output
networks, with each one specialized in approximating the output function, gw, on types
of nodes or edges, is expected to bring an advantage proportional to the one introduced
by the different state-updating networks. Extending these results to node-focused and
edge-focused problems will be a matter of future research.

As an additional measure of the significance of the results obtained, we propose a
comparison between our best models and the current state-of-the-art (SotA) methods on
each specific task. In principle, domain-specific applications can be tuned to the problem
much more than a general model, thus obtaining much better results. However, our CGNN
model can be easily integrated and hybridized with other deep learning solutions, refining
the architecture for a specific task and improving its performance. For instance, even just
applying the Layered graph neural network paradigm to our CGNNs would very likely
improve the performance level. We have collected the SotA methods for the tasks for
analysis in Table 3, and we compared them to our CGNN models.

Table 3. Comparison between our best model configuration on every dataset and the corresponding
SotA method. Metrics are defined by the OGB [30]: Area under roc curve (AUROC), root mean
squared error (RMSE), and average precision (AP). The metrics of the SotA methods for each dataset
were taken from the paper cited in the corresponding row. The best method between the CGNNs
models and the SotA methods is highlighted in bold.

Dataset SotA Method Metric SotA CGNN

HIV Graphormer + FPs [31] AUROC 0.8225 0.792
FreeSolv GIN [30] RMSE 2.151 2.257
Tox-21 GIN citeOGB AUROC 0.776 0.726
BACE GCN [30] AUROC 0.792 0.839
BBBP GIN [30] AUROC 0.697 0.685

ClinTox GCN [30] AUROC 0.913 0.925
MUV GCN [30] AP 0.109 0.056
Sider GCN [30] AUROC 0.598 0.617

As shown in Table 3, different datasets require different model characteristics to extract
the relevant information from the molecular graphs. GINs [3] and GCNs [8] expectedly

Int. J. Mol. Sci. 2024, 25, 6583 5 of 12

represent the best methods in most tasks. On HIV, instead, a domain-specific adaptation
of Graphormer [31] outperforms all the other methods. CGNNs outperform previous
SotA methods on three datasets out of eight. In particular, they outperform GCNs on
BACE, ClinTox, and Sider. On the latter dataset, standard GNNs are perfectly on par with
GCNs, while CGNNs outperform both. These experimental results are in line with the
expectations because CGNNs share the same theoretical properties of standard GNNs,
including WL-1 isomorphism recognition and universal approximation on graphs, while
they also exploit the heterogeneous nature of molecular graphs, thanks to the specialization
of state-updating MLPs. This makes CGNNs capable of outperforming WL-0 GCNs in
most cases, while the latter is still better for some classes of graph-focused tasks, thanks to
graph pooling operations that are not available for recurrent GNNS and CGNNs.

3. Discussion

This work proposes a comparison between the standard recurrent GNN model, operat-
ing on homogeneous versions of molecular graphs, and the CGNN model, which processes
heterogeneous graphs and maps the atoms of different species to different node types.
Both models are defined and implemented using the GNNkeras framework [23]. Eight
molecular graph datasets from the OGB [30] were used in the experimentation; we com-
pared the models for the regression of molecular properties, the classification of molecules
according to their activity, and in a parallel multi-task approach. The experimental results
clearly show that CGNNs significantly outperform standard GNNs on all datasets but one
(where they perform similarly), confirming that the capability of processing heterogeneous
graphs is key for molecular property prediction. This holds true for both regression and
classification tasks and also in multi-class, multi-label classification scenarios. Moreover,
a comparison with previous SotA methods on each dataset demonstrated that CGNNs
outperform them in three cases out of eight, showing that the CGNN paradigm combined
with the approximation capabilities of recurrent GNNs can boost current learning method-
ologies on molecular graphs in a variety of scenarios. The key conclusion of this work
is that using CGNNs can boost the capabilities of GNNs with regard to many biological
problems. This comes with a computational overhead that is absolutely manageable due to
the fact that GNNs are very lightweight in comparison to many other deep learning models,
and thanks to the specialization of the state-updating networks contained in CGNNs. This
is, of course, a partial result, as the same capabilities need to be proved in the future in
many other application fields where GNNs could be potentially useful, e.g., the analysis of
social networks, knowledge graphs, and power networks. Yet, given the importance of the
biological problem and the volume of application of GNNs to such complex environments,
this represents a key step towards a more generalized methodology for tackling problems
on heterogeneous graphs. In the biological domain, for instance, a direction to be investi-
gated in the near future is that of protein structures, which can be represented by graphs
composed of aminoacids. In this scope, it will also be possible to prove the same properties
of CGNNs on node-focused problems, for instance, by applying CGNNs to protein–protein
interface identification and edge-focused problems, such as polypharmacy effect prediction,
in which drug nodes can be linked according to the probability they have of interacting
with each other. Moreover, as graph generation algorithms are becoming more efficient
and specialized, investigating the impact of heterogeneous graph processing would also be
very interesting in this application field.

4. Materials and Methods

In this section, we describe every aspect of the methodology of our study. In particular,
we will introduce the datasets, describe the models developed in this work, and discuss the
experimental setup.

Int. J. Mol. Sci. 2024, 25, 6583 6 of 12

4.1. Datasets

We evaluated our method on eight molecular graph benchmarks from the open graph
benchmark (OGB) collection [30]. The OGB is a widely used and high-quality repository for
graph-based model development and evaluation. The OGB proposes datasets of different
sizes for every graph-based task. Both classification and regression tasks—focused on nodes,
edges, and whole graphs—are provided. Multi-class classification, multi-task regression,
and link prediction problems are available as well. Moreover, though downloaded and
evaluated through the OGB platform, all datasets come from the MoleculeNet project [32].
Both classification and regression tasks were addressed, sometimes with multiple tasks
being carried out in parallel on the same dataset. Table 4 lists all the datasets, together
with their main characteristics, used in our experimentation and the number and type
of tasks. In particular, for HIV, the task is to predict if a molecule has anti-HIV activity.
This task is unbalanced because most molecules belong to the negative class (no activity).
FreeSolv consists of a graph-based regression of the free energy of solvation of the molecule
represented by the graph. In Tox–21, we aimed to identify 12 (nonmutually exclusive)
categories of toxicity for the compounds in the dataset. In BACE, the objective is to
identify which of the molecules are inhibitors of human β–secretase 1. On the BBBP dataset,
we aimed to identify which molecules can penetrate the blood–brain barrier, therefore
representing possible drugs for the brain. For ClinTox, the target is to classify molecules
based on two nonmutually exclusive macro-categories of toxicity. Regarding MUV, we
aimed to classify compounds based on 17 different virtual screening compliance classes.
Again, the classes are not mutually exclusive and, therefore, require (binary) multi-class
multi-label classification. Finally, concerning the Sider dataset, we aimed to produce a
(binary) multi-class multi-label classification of the drugs contained in the dataset based on
their adverse reactions, grouped into 27 system–organ nonmutually exclusive classes.

Table 4. Datasets used in the experimentation. The number of graphs in each dataset, the number of
tasks to be performed, and their type are reported for each dataset.

Dataset Graphs Tasks Task Type

HIV 41,127 1 Binary Classification
FreeSolv 642 1 Regression
Tox-21 7831 12 Binary Classification
BACE 1513 1 Binary Classification
BBBP 2039 1 Binary Classification

ClinTox 1477 2 Binary Classification
MUV 93,087 17 Binary Classification
Sider 1427 27 Binary Classification

We downloaded the datasets through the OGB Python package (https://pypi.org/
project/ogb/) (accessed on 25 April 2024) and used the standard dataset splits defined
by the OGB [30]. As a consequence, the training–validation–test split is the standard
one provided by the benchmark, and it is the same throughout all the experimentation.
Moreover, the percentages of the training set examples, validation set examples, and test
set examples are 80%, 10%, and 10%, respectively, for every dataset. The validation set
is used for an early stopping module, which prevents overfitting and stops the training
procedure when validation loss starts to increase. The early stopping module has a patience
of 10, and it is applied after every training epoch. We preprocessed OGB graphs in order
to send them as input to GNNs and CGNNs, transforming them into “GraphObjects”
and “CompositeGraphObjects”, respectively. These two latter data types are defined by
GNNkeras and allow for the optimal processing of the graphs using the GNN and CGNN
models [23]. The CGNNs were given heterogeneous molecular graphs as input, with
each atom species mapped to a dedicated node type. Standard GNNs, which can only
process homogeneous graphs, were, instead, given a homogeneous version of the molecular
graphs as input, with one-hot encoded vectors representing the atom species as node labels.

https://pypi.org/project/ogb/
https://pypi.org/project/ogb/

Int. J. Mol. Sci. 2024, 25, 6583 7 of 12

Moreover, both node types for CGNNs and the corresponding one-hot encodings for GNNs
were grouped according to atom groupings on the periodic table; this step was necessary
to avoid using too many node types and excessively long one-hot vectors. In particular,
many atom species appear only a handful of times throughout the dataset, making them
impossible to learn. Once grouped, they amount to reasonable quantities instead. Since
the grouping follows the classes of equivalence defined by the periodic table of elements,
the atom species mapped to the same type will have similar chemical behavior. The most
common atom species have their own group, while uncommon atom species with similar
characteristics were put together, obtaining a total of eight element groups: 1—Metals,
2—Metalloids, 3—Halogens, 4—Carbon, 5—Nitrogen, 6—Oxygen, 7—Phosphorus, and
8—Sulfur.

4.2. Model

Due to its expressive power, we used the original recurrent GNN model [1] for our
experimentation. In particular, we exploited its recent Tensorflow2–Keras implementation,
known as GNNkeras [23]. GNNs process structural information by calculating a state over
every node. The node state should acquire all the relevant information on the node itself,
the local graph structure, and the features of the edges and neighbor nodes. In an iterative
process called “message passing,” each node sends its state to all of its neighbors and
receives the states from all of them. In order to calculate the state value at the following time
instant (iteration), all the incoming messages are aggregated, encapsulating information
on the edges on which they traveled. The node state at the previous iteration and the
aggregated messages are fed as input to a state-updating network, which produces the new
node state in output. The state-updating network is a neural network (usually an MLP).
This network is copied on every graph node, acting as a sort of building block to make up
the architecture of the GNN (which retraces the input graph structure). All of the copies of
the state-updating network share the same weights, limiting the number of parameters of
the model and preventing the vanishing gradient problem. The message-passing process
is sketched in Figure 1. After a fixed number of message-passing iterations, an output
function is calculated. In order to do so, a dedicated output network was replicated over the
nodes or the edges, similar to what was carried out using the state-updating network. The
output network is another MLP, and all of its copies share the same weights. If the problem
is node-focused, the output network is replicated over every node (or a relevant subset of
graph nodes). Each copy takes only the final state (after the last message-passing iteration)
of the corresponding node. If the problem is graph-focused, the output is calculated in
the same way, and it is then aggregated on the whole graph by summing or averaging
the single node outputs. If the problem is edge-focused instead, the output network is
replicated over every edge (or a relevant subset of graph edges). In this case, its input is
composed of the state of both nodes connected by the corresponding edge concatenated to
the edge feature vector. The network composed of all the state-updating MLP copies and
output MLP copies is called the encoding network; this replicates the structure of the input
graph in its architecture. This network also unfolds in time, replicating each state-updating
MLP copy once for every message-passing iteration. The structure we obtain from this
latter step is called the unfolded encoding network, and it is the architecture on which the
backpropagation through the structure algorithm is applied [1].

GNNkeras defines a standard GNN model, corresponding to the original formulation
described above, and a composite GNN (CGNN) model, which is an adaptation of the
original model for heterogeneous graphs. Heterogeneous graphs are graphs that have
nodes that belong to different types according to their properties or different natures. In
chemistry and biology, molecular graphs are heterogeneous by nature, being composed of
atoms of different species. These species of atoms are mapped to one-hot feature vectors for
standard GNNs and to different node types for CGNNs (see Section 4.1 for the description
of node types). CGNNs process each type of node with a dedicated state-updating network,
therefore learning a specialized version of the state-updating function for each different

Int. J. Mol. Sci. 2024, 25, 6583 8 of 12

node type. In the following, we have reported the equations that define both models. For a
more detailed description of the models, please refer to the GNNkeras paper [23].

Figure 1. The graph neural network model places a copy of the state-updating network over every
node of each input graph. After a fixed number of “message-passing” iterations, in which the state of
every node is updated based on its previous state, the previous states of its neighbors and the node
and edge labels as output are calculated based on the final state. The state-updating network copies
share their weights and can be seen as twin building blocks that compose the adaptive architecture of
the GNN, replicating the structure of the input graph.

When given a graph, G = (N, E), where N is the set of nodes and E = {(n, m) : n, m ∈ V}
represents the set of edges, we can define a neighborhood function Ne(n) = m ∈ N : (n, m) ∈ E
that maps every node to the set of its neighbors. Nodes can be associated with labels ln ∀n ∈ N,
describing their properties. Edges can be associated with labels em,n ∀(m, n) ∈ E, describing the
corresponding relationships.

We can define a GNN as a model that approximates an output function, gw, that
can be defined on the nodes or a subset of them, Nout ⊆ N, on the edges or a subset of
them, Eout ⊆ E, or on the whole graph, G. In our case, gw will always be defined as a
property of the whole graph, G. In order to calculate this approximation, the GNN will
process the graph structure and the labels (features) of the nodes and edges. The GNN
will associate a state, xn, to each node, n ∈ N, which will be iteratively updated by a
learnable state-updating function, fw. The state is a vector of dimension dx, which is set
as a hyperparameter of the GNN and initialized by sampling from a random distribution,
usually centered on the origin of Rdx . The states are updated for K iterations, where K is a
model hyperparameter. Given the randomly sampled initial states x0

n, ∀n ∈ N, the state
of any node, n, at iteration t can be calculated using the state-updating function fw, as in
Equation (1):

xt
n = fw(xt−1

n , ln, ∑
m∈Ne(n)

(xt−1
m , lm, em,n)) (1)

When the maximum number of iterations, K, is reached, the final versions of the node states,
xK

n , ∀n ∈ N, are fed as input into the output network, which approximates the output func-
tion, gw. The formulation of the output function depends on the type of problem. In this
paper, since only graph-focused problems are addressed, we only report the graph-focused
version of gw, as described in Equation (2):

yG =
1

|Nout| ∑
n∈Nout

gw(xK
n , ln) (2)

As can be seen in Equation (2), the output is calculated on each node, n ∈ Nout,
for which the output is defined. The contributions of all the nodes are then averaged
throughout the whole graph, obtaining a global graph output, yG. This allows for an
analysis of the graph structure from multiple different local points of view. The local results
are then merged, obtaining a global understanding of the graph comprising both the graph
structure and the features of nodes and edges. In the standard GNN model, an MLP called
the state-updating network is dedicated to the calculation of fw, whereas another MLP,
called the output network, is dedicated to the calculation of gw. In composite graph neural
networks (CGNNs), there are multiple state-updating networks, with each calculating a
dedicated version, fw,i, of the state-updating function for a node of type i. In order to map

Int. J. Mol. Sci. 2024, 25, 6583 9 of 12

each node to its type, a function, T(n), is defined, associating a type i to n. Remarkably, all
the state-updating functions, fw,i, have the same output dimension, corresponding to the
state dimension dx; this allows nodes of different types to exchange messages in a seamless
way. The state-updating function can, therefore, be rewritten as in Equation (3):

xt
n = fw,i(xt−1

n , ln, a ∑
m∈Ne(n)

(xt−1
m , em,n)) : i = T(n) . (3)

Of course, we will have a number of fw,i and, consequently, a number of state-updating
networks, which is equal to the number of node types present in the dataset. The output
function and the output network are identical to the standard case instead. Since the node
states are all the same size, one output network is sufficient to calculate gw, even in the
heterogeneous case [33].

4.3. Experiments

We carried out a comparison between the performance of CGNNs and standard GNNs
on each dataset. A grid-search procedure was applied to find the best configuration of
each model on every dataset; then, we compared the best configurations of the two models.
The grid search was performed on a set encompassing all of the hyperparameters that
have a key role in determining model performance. Both models were equipped with a
state-updating MLP (with a single hidden layer) and an output MLP (with a single hidden
layer). We also tried configurations with more than one hidden layer, but these never
performed on par with single-layer versions, demonstrating that these were not fit for
this particular problem setting. The hidden layer of both networks and the output layer
of the state-updating network share the same activation function, which was chosen as
a hyperparameter. The output layer of the output network is equipped with a logistic
sigmoid for both binary classification and regression problems (in which the output is
normalized accordingly). The hyperparameters and their values are reported in Table 5.
The other hyperparameters were kept fixed throughout all the experiments. In particular,
we trained every configuration with the Adam optimizer [34] for a maximum of 300 epochs,
with a maximum number of GNN state-updating iterations equal to 6; we used the sum as
the aggregation function for incoming messages from neighbor nodes. The optimizer is
equipped with an early stopping module based on validation loss; this checks the model
every epoch, with a patience of 10. In case of early stopping, the best model parameters
(previously saved after the iteration with the best validation loss) are restored.

Table 5. Hyperparameters (and their values) used in each grid search: Initial learning rate (ILR),
hidden units of state updating network (HS), hidden units of output network (HO), state dimension
(SD), and activation function (AF).

Hyperparameter Values

ILR 10−2, 10−3, 10−4, 10−5

HS 10, 20, 30, 50
HO 20, 40, 70, 100
SD 3, 5, 10, 15, 30
AF relu, tanh, selu

The same hyperparameters and values were taken into account on every dataset.
Since all the combinations of hyperparameter values were validated in all the grid-search
experiments, each of the latter consisted of training and validating a total of 960 GNN
model configurations and 960 CGNN model configurations. Each model underwent this
experimentation, thanks to a Python script that automatically initialized, trained, and tested
each of the 960 configurations, using GNNkeras [23] to build and run the GNN and CGNN
models. In summary, for the grid-search experiments carried out on the eight datasets,
we trained and tested 8 × (960 + 960) = 15,360 models. Nevertheless, the computational
burden was not too heavy. GNNs are very lightweight [1] and usually require a small

Int. J. Mol. Sci. 2024, 25, 6583 10 of 12

amount of parameters to generalize a task [23]. CGNNs follow the same computation
scheme as regular GNNs but with a larger number of state-updating MLPs (one for every
node type). These state-updating MLPs, however, require fewer parameters to generalize
their more specialized tasks, and most importantly, they are applied only to the subset of
nodes of their type. As a worst-case scenario, we can consider the computational complex-
ity of a CGNN to be roughly twice the computational complexity of the corresponding
standard GNN, while memory complexity is multiplied by the number of node types
for what concerns the network parameters, and this is the same for what concerns the
input data. As a consequence, both models are very easy to apply to most graph datasets.
For instance, our entire experimentation (as described above) was carried out on a single
Nvidia 3080 GPU, and it took a cumulative time of 19 d, 3 h, and 43 m to carry out all the
15,360 training + evaluation procedures; the approximate average was 1.8 min per experi-
ment. The computation requirements and also the difference in performance between the
two models vary according to the dataset. On average, the CGNN models took approxi-
mately 2.3 min per experiment to be trained and tested, while the standard GNN models
took approximately 1.3 min per model.

Author Contributions: Conceptualization, P.B. and M.B.; methodology, F.S.; software, N.P. and P.B.;
validation, F.S. and M.M.; formal analysis, P.B. and A.B.; investigation, F.S. and M.B.; resources,
N.P. and A.B.; data curation, P.B.; writing—original draft preparation, P.B.; writing—review and
editing, all the authors; visualization, N.P.; supervision, M.B. and M.M.; funding acquisition, M.B.
and M.M.; project administration, M.M. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was co-funded by the European Union—Next Generation EU, in the context
of The National Recovery and Resilience Plan—Investment 1.5 Ecosystems of Innovation, Project
Tuscany Health Ecosystem (THE), Spoke 3—Advanced technologies, methods and materials for
human health and well-being. ECS00000017, CUP: B63C22000680007.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data used in these experiments were downloaded from the
OGB online freely available database: https://ogb.stanford.edu/ (accessed on 6 June 2024).

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
OGB Open Graph Benchmark
MPNN Message Passing Neural Network
GNN Graph Neural Network
LGNN Layered Graph Neural Network
CGNN Composite Graph Neural Network
GCN Graph Convolutional Network
GAT Graph Attention Network
GIN Graph Isomorphism Network
LSTM Long Short Term Memory
RMSE Root Mean Squared Error
TPR True Positive Rate
FPR False Positive Rate
AP Average Precision
AUROC Area Under the Receiver Operating characteristic Curve

References
1. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. The Graph Neural Network Model. IEEE Trans. Neural Netw.

2009, 20, 61–80. [CrossRef] [PubMed]

https://ogb.stanford.edu/
http://doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426

Int. J. Mol. Sci. 2024, 25, 6583 11 of 12

2. Weisfeiler, B.; Leman, A. The reduction of a graph to canonical form and the algebra which appears therein. NTI Ser. 1968,
2, 12–16.

3. Xu, K.; Hu, W.; Leskovec, J.; Jegelka, S. How Powerful are Graph Neural Networks? In Proceedings of the ICLR 2018, Vancouver,
BC, Canada, 30 April–3 May 2018.

4. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. AI Open 2020, 1, 57–81. [CrossRef]

5. Pradhyumna, P.; Shreya, G.P. Graph neural network (GNN) in image and video understanding using deep learning for computer
vision applications 2021. In Processdings of the Second International Conference on Electronics and Sustainable Communication
Systems (ICESC), Coimbatore, India, 4–6 August 2021.

6. Liang, F.; Qian, C.; Yu, W.; Griffith D.; Golmie N. Survey of graph neural networks and applications Wirel. Commun. Mob. Comput.
2022, 1, 9261537

7. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A comprehensive survey on graph neural networks. IEEE Trans. Neural
Networks Learn. Syst. 2020, 32, 4–24. [CrossRef] [PubMed]

8. Kipf, T.N.; Welling, M. Semi–Supervised Classification with Graph Convolutional Networks. In Proceedings of the ICLR 2017,
Toulon, France, 24–26 April 2017.

9. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and deep locally connected networks on graphs. In Proceedings
of the 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014.

10. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In
Proceedings of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; pp. 3844–3852.
[CrossRef]

11. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph attention networks. Stat 2017, 1050, 10-48550.
12. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the Advances in Neural

Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1024–1034.
13. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for Quantum chemistry. In Proceedings of

the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70, pp. 1263–1272.
14. Guo, Z.; Wang, H. A deep graph neural network-based mechanism for social recommendations. IEEE Trans. Ind. Inform. 2020,

17, 2776–2783. [CrossRef]
15. Lam, R.; Sanchez-Gonzalez, A.; Willson, M.; Wirnsberger, P.; Fortunato, M.; Alet, F.; Ravuri, S.; Ewalds, T.; Eaton-Rosen, Z.; Hu,

W.; et al. GraphCast: Learning skillful medium-range global weather forecasting. arXiv 2022, arXiv:2212.12794.
16. Owerko, D.; Gama, F.; Ribeiro, A. Optimal power flow using graph neural networks. In Proceedings of the ICASSP 2020—2020

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020;
pp. 5930–5934.

17. Rusek, K.; Suárez-Varela, J.; Almasan, P.; Barlet-Ros, P.; Cabellos-Aparicio, A. RouteNet: Leveraging graph neural networks for
network modeling and optimization in SDN. IEEE J. Sel. Areas Commun. 2020, 38, 2260–2270. [CrossRef]

18. Kim, J.; Park, S.; Min, D.; Kim, W. Comprehensive Survey of Recent Drug Discovery Using Deep Learning. Int. J. Mol. Sci. 2021,
22, 9983. [CrossRef] [PubMed]

19. Bianchi, F.M.; Grattarola, D.; Livi, L.; Alippi, C. Hierarchical representation learning in graph neural networks with node
decimation pooling. IEEE Trans. Neural Netw. Learn. Syst. 2020, 33, 2195–2207. [CrossRef] [PubMed]

20. Wu, B.; Liu, Y.; Lang, B.; Huang, L. DGCNN: Disordered graph convolutional neural network based on the gaussian mixture
model. Neurocomputing 2018, 321, 346–356. [CrossRef]

21. Lee, J.B.; Rossi, R.; Kong, X. Graph classification using structural attention. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 1666–1674.

22. Pancino, N.; Rossi, A.; Ciano, G.; Giacomini, G.; Bonechi, S.; Andreini, P.; Scarselli, F.; Bianchini, M.; Bongini, P. Graph Neural
Networks for the Prediction of Protein–Protein Interfaces. In Proceedings of the ESANN 2020, Bruges, Belgium, 22–24 April 2020;
pp. 127–132.

23. Pancino, N.; Bongini, P.; Scarselli, F.; Bianchini, M. GNNkeras: A Keras–based library for Graph Neural Networks and
homogeneous and heterogeneous graph processing. SoftwareX 2022, 18, 101061. [CrossRef]

24. Bongini, P.; Pancino, N.; Scarselli, F.; Bianchini, M. BioGNN: How Graph Neural Networks Can Solve Biological Problems. In
Artificial Intelligence and Machine Learning for Healthcare: Vol. 1: Image and Data Analytics; Artificial Intelligence and Machine
Learning for Healthcare, Springer International Publishing: Cham, Switzerland, 2023; Chapter 11, pp. 211–231.

25. Bongini, P.; Bianchini, M.; Scarselli, F. Molecular generative Graph Neural Networks for Drug Discovery. Neurocomputing 2021,
450, 242–252. [CrossRef]

26. Bongini, P. Graph Neural Networks for Drug Discovery: An Integrated Decision Support Pipeline. In Proceedings of the 2023
IEEE International Conference on Metrology for eXtended Reality, Artificial Intelligence and Neural Engineering (MetroXRAINE),
Milano, Italy, 25–27 October 2023; Volume 1, pp. 218–223. [CrossRef]

27. Bongini, P.; Scarselli, F.; Bianchini, M.; Dimitri, G.M.; Pancino, N.; Liò, P. Modular Multi–Source Prediction of Drug Side–Effects
with DruGNN. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 1211–1220. [CrossRef] [PubMed]

28. Bongini, P.; Messori, E.; Pancino, N.; Bianchini, M. A Deep Learning Approach to the Prediction of Drug Side–Effects on Molecular
Graphs. In IEEE/ACM Transactions on Computational Biology and Bioinformatics; IEEE: Washington, DC, USA, 2023.

http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.5555/3157382.3157527
http://dx.doi.org/10.1109/TII.2020.2986316
http://dx.doi.org/10.1109/JSAC.2020.3000405
http://dx.doi.org/10.3390/ijms22189983
http://www.ncbi.nlm.nih.gov/pubmed/34576146
http://dx.doi.org/10.1109/TNNLS.2020.3044146
http://www.ncbi.nlm.nih.gov/pubmed/33382662
http://dx.doi.org/10.1016/j.neucom.2018.09.008
http://dx.doi.org/10.1016/j.softx.2022.101061
http://dx.doi.org/10.1016/j.neucom.2021.04.039
http://dx.doi.org/10.1109/MetroXRAINE58569.2023.10405789
http://dx.doi.org/10.1109/TCBB.2022.3175362
http://www.ncbi.nlm.nih.gov/pubmed/35576419

Int. J. Mol. Sci. 2024, 25, 6583 12 of 12

29. Guerranti, F.; Mannino, M.; Baccini, F.; Bongini, P.; Pancino, N.; Visibelli, A.; Marziali, S. CaregiverMatcher: Graph neural
networks for connecting caregivers of rare disease patients. Procedia Comput. Sci. 2021, 192, 1696–1704. [CrossRef]

30. Hu, W.; Fey, M.; Zitnik, M.; Dong, Y.; Ren, H.; Liu, B.; Catasta, M.; Leskovec, J. Open graph benchmark: Datasets for machine
learning on graphs. Adv. Neural Inf. Process. Syst. 2020, 33, 22118–22133.

31. Ying, C.; Cai, T.; Luo, S.; Zheng, S.; Ke, G.; He, D.; Shen, Y.; Liu, T.Y. Do transformers really perform badly for graph representation?
Adv. Neural Inf. Process. Syst. 2021, 34, 28877–28888.

32. Wu, Z.; Ramsundar, B.; Feinberg, E.N.; Gomes, J.; Geniesse, C.; Pappu, A.S.; Leswing, K.; Pande, V. MoleculeNet: A benchmark
for molecular machine learning. Chem. Sci. 2018, 9, 513–530. [CrossRef] [PubMed]

33. Bongini, P. Graph Neural Networks for Molecular Data. Ph.D. Thesis, University of Florence, Firenze, Italy, 2022.
34. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization (2014). arXiv 2017, arXiv:1412.6980.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.procs.2021.08.174
http://dx.doi.org/10.1039/C7SC02664A
http://www.ncbi.nlm.nih.gov/pubmed/29629118

	Introduction
	Results
	Discussion
	Materials and Methods
	Datasets
	Model
	Experiments

	References

