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Abstract

We study the spectral behavior of (sequences of) matrices resulting from immersed isogeometric discretizations on
trimmed geometries. They enjoy an asymptotic spectral distribution, described by a (spectral) symbol, and we
discuss some properties of this symbol. In particular, we show that the structure and properties of the symbol
are completely analogous to the untrimmed case when a suitable natural restriction of the parametric domain is
considered. This spectral knowledge can be exploited to identify potentially fast preconditioners for the considered
immersed discretization matrices and we propose a specific CG preconditioner based on the symbol. We also provide
numerical experiments that support the correctness of the theoretical results and illustrate the performance of the
proposed preconditioner.

Keywords: Isogeometric analysis, Immersed methods, Trimmed geometries, Cardinal B-splines

1. Introduction

An important step for the development of mathematical models governing physical phenomena and the reliability
and efficiency of their numerical treatment is a proper representation of the physical domains of interest at different
levels of refinement. In computer-aided design (CAD) models, a physical domain is usually represented by one or
more boundary surfaces, described by suitable geometry maps over a parametric domain. Trimming is a popular
procedure in CAD: it is used to define visible areas over surfaces independent of the underlying parametric space
and consequently it allows for a simple representation of surfaces with non-rectangular structure.

Dealing with trimmed geometries is one of the current challenges both in CAD and isogeometric analysis (IgA), a
powerful paradigm that aims to close the gap between design and analysis by performing numerical simulations based
on CAD technologies [6, 24]. Borrowing the CAD philosophy, in the classical IgA approach the physical domain
is described by a geometry map defined over a parametric domain (usually possessing an elementary rectangular
structure) and most often expressed in terms of polynomial B-splines or their rational extensions called NURBS.
The unknown fields are then approximated by means of the same primitives (composed with the inverse of the
geometry map); see [6]. When dealing with trimmed geometries, the trimmed part of the parametric domain has
to be taken into account. In this perspective, coupling the isogeometric paradigm with the framework of so-called
immersed boundary methods — also known as immersed interface, fictitious domain, or embedded domain methods
[21, 27] — emerges as a natural choice. According to the philosophy of immersed boundary methods, the trimmed
parametric domain is embedded in a tensor-product mesh and simple, mesh-aligned numerical schemes can be
applied. Clearly, immersed methods need to treat the mesh elements that are cut by the trimming curves with
some special, and often ad-hoc, techniques to achieve acceptably accurate results.

The efficiency and accuracy of a numerical simulation process are the result of a synergistic interaction between
different players. Among the others, fast and robust (iterative) solvers for the resulting linear systems are of
importance. In this perspective, knowledge about the spectral behavior of the involved discretization matrices is
very helpful. Such knowledge for matrices arising from various IgA discretizations with boundary conditions in
strong form was investigated in a sequence of papers; we refer the reader to [13] and references therein.
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The spectral behavior of matrices resulting from immersed isogeometric methods based on spline spaces of
maximal smoothness, with Dirichlet boundary conditions imposed in a weak form [1, 25], was recently analyzed
in [10] for general variable-coefficient Poisson problems. In particular, by exploiting the theory of reduced gener-
alized locally Toeplitz (GLT) sequences [2, 26], it was shown that immersed B-spline discretization matrices enjoy
an asymptotic spectral distribution when the matrix size tends to infinity. This asymptotic distribution can be
compactly described by a function called (spectral) symbol. The symbol does not depend on the method used to
impose the boundary conditions but it incorporates the discretization technique and the diffusion coefficients of the
differential problem.

In this paper, we deepen the spectral analysis for immersed isogeometric methods presented in [10] focusing
on domains obtained by a trimmed geometry map. More specifically, we study the corresponding spectral symbol
and we prove that its structure and properties are completely analogous to the untrimmed case: we only need to
replace the standard full parametric domain [0, 1]d by G−1(Ω), where G is the trimmed geometry map and Ω the
physical domain; see Theorem 4.4. We also illustrate how this knowledge can be exploited to identify potentially
fast preconditioners for the linear systems arising from the considered immersed isogeometric discretizations. Based
on the symbol, we propose a specific CG preconditioner and we test its performance.

The paper is organized as follows. Section 2 summarizes some notation and basic definitions that will be used
in the paper. In Section 3 we describe our model problem and the considered Galerkin discretization with the
adopted weak imposition of boundary conditions. Moreover, we outline some properties of tensor-product cardinal
B-splines, which are the functions employed in our discretization, and we briefly discuss the strategy we apply to
modify the basis functions that have tiny overlaps with the trimmed domain in order to improve the conditioning.
In Section 4 we show that the resulting discretization matrices enjoy an asymptotic spectral distribution described
by a symbol and we study the properties of this symbol. We also propose a specific CG preconditioner based on the
symbol. Section 5 presents some numerical experiments to validate the obtained theoretical results and to illustrate
the performance of the proposed preconditioner. Finally, in Section 6 we end with some concluding remarks.

2. Preliminaries

In this section we collect some preliminaries on multi-index notation and spectral analysis tools.

2.1. Multi-index notation

A multi-index i of size d, also called a d-index, is a (row) vector in Zd; its components are denoted by i1, . . . , id.
We indicate by 0 and 1 the vectors of all zeros and all ones, respectively (their size will be clear from the context).

For any h ∈ Rd, we set N(h) =
∏d

j=1 hj . If h,k ∈ Rd, an inequality such as h ≤ k means that hj ≤ kj for all

j = 1, . . . , d. If h,k are d-indices such that h ≤ k, the d-index range {h, . . . ,k} is the set {i ∈ Zd : h ≤ i ≤ k}.
We assume for this set the standard lexicographic ordering:[

. . .
[
[ (i1, . . . , id) ]id=hd,...,kd

]
id−1=hd−1,...,kd−1

. . .

]
i1=h1,...,k1

.

For instance, in the case d = 2 the ordering is

(h1, h2), (h1, h2 + 1), . . . , (h1, k2), (h1 + 1, h2), (h1 + 1, h2 + 1), . . . , (h1 + 1, k2),

. . . . . . . . . , (k1, h2), (k1, h2 + 1), . . . , (k1, k2).

When a d-index i varies in a finite set I ⊂ Zd (this is simply written as i ∈ I), it is understood that i follows the
lexicographic ordering. Operations involving d-indices (or general vectors with d components) that have no meaning
in the vector space Rd must always be interpreted in the componentwise sense. For instance, nx = (n1x1, . . . , ndxd),
ν2 = (ν21 , . . . , ν

2
d), αi/j = (αi1/j1, . . . , αid/jd) for all α ∈ R, etc. If a, b ∈ Rd with a ≤ b, we denote by

(a, b) and [a, b] the open d-dimensional rectangle (a1, b1) × · · · × (ad, bd) and the closed d-dimensional rectangle
[a1, b1]× · · · × [ad, bd], respectively.

2.2. Singular value and spectral distribution of a sequence of matrices

A sequence of matrices is a sequence of the form {An}n, where n varies in some infinite subset of N and An is
a square matrix of size mn such that mn → ∞ as n → ∞. Let Cc(R) (resp., Cc(C)) be the space of continuous
complex-valued functions with bounded support defined on R (resp., C). If A ∈ Cm×m then the singular values
and eigenvalues of A are denoted by σ1(A), . . . , σm(A) and λ1(A), . . . , λm(A).
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Definition 2.1. Let {An}n be a sequence of matrices, with An of size mn, and let f : D ⊂ Rk → C be a measurable
function defined on a set D with 0 < µk(D) < ∞.

• We say that {An}n has a spectral (or eigenvalue) distribution described by f , and we write {An}n ∼λ f , if

lim
n→∞

1

mn

mn∑
i=1

F (λi(An)) =
1

µk(D)

∫
D

F (f(x))dx, ∀F ∈ Cc(C). (2.1)

In this case, f is called the spectral (or eigenvalue) symbol of {An}n.
• We say that {An}n has a singular value distribution described by f , and we write {An}n ∼σ f , if

lim
n→∞

1

mn

mn∑
i=1

F (σi(An)) =
1

µk(D)

∫
D

F (|f(x)|)dx, ∀F ∈ Cc(R). (2.2)

In this case, f is called the singular value symbol of {An}n.

Remark 2.1. The informal meaning behind the spectral distribution (2.1) is the following: assuming that f is
continuous almost everywhere, the eigenvalues of An, except possibly for o(mn) outliers, are approximately equal
to the samples of f over a uniform grid in the domain D (for n large enough). A completely analogous meaning
can be given for the singular value distribution (2.2).

3. Immersed B-spline discretization of diffusion problems

Consider the d-dimensional diffusion problem{
−∇ ·A∇u = f, in Ω,

u = g, on Γ,
(3.1)

where Ω is an open Lipschitz domain in Rd, Γ = ∂Ω, A = [aαβ ]
d
α,β=1 is a symmetric positive definite matrix of

(variable) diffusion coefficients, and f, g are given functions. In this section we expound the immersed Galerkin
method from [10] to discretize (3.1), which makes use of tensor-product (cardinal) B-splines.

3.1. Weak boundary discretization

Suppose the domain Ω is covered by a (mapped) finite element mesh. Let Ωin be the union of the closed elements
contained in Ω and ΩΓ the union of the closed elements intersecting both Γ and Ω. We define ΩΓ,in = ΩΓ ∩ Ω so
that Ω = Ωin∪ΩΓ,in. Following the approach in [10], we introduce an additional unknown flux σ and problem (3.1)
can be translated into the following weak form: find u ∈ H1(Ω) and σ ∈ (L2(ΩΓ,in))

d such that
(A∇u,∇v)Ω − ⟨σ · nΓ, v⟩Γ +

1

η
(σ −A∇u,∇v)ΩΓ,in

= ⟨f, v⟩Ω, ∀ v ∈ H1(Ω),

−1

η
(A−1σ −∇u, τ )ΩΓ,in

− ⟨u, τ · nΓ⟩Γ = −⟨g, τ · nΓ⟩Γ, ∀ τ ∈ (L2(ΩΓ,in))
d,

where η is a free a priori fixed parameter, nΓ is the outward unit normal to Γ, and the symbols ⟨·, ·⟩E and (·, ·)E
denote the L2 inner products for scalar and vector functions over E, respectively:

⟨α, β⟩E =

∫
E

αβ, α, β ∈ L2(E),

(α,β)E =

∫
E

α · β, α,β ∈ (L2(E))d.

We choose two finite dimensional vector spaces V ⊂ H1(Ω) and W ⊂ (L2(ΩΓ,in))
d, and we look for an approximation

uV of u by solving the following discrete problem: find uV ∈ V and σW ∈ W such that
(A∇uV,∇vV)Ω − ⟨σW · nΓ, vV⟩Γ +

1

η
(σW −A∇uV,∇vV)ΩΓ,in = ⟨f, vV⟩Ω, ∀ vV ∈ V,

−1

η
(A−1σW −∇uV, τW)ΩΓ,in

− ⟨uV, τW · nΓ⟩Γ = −⟨g, τW · nΓ⟩Γ, ∀ τW ∈ W.

(3.2)
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Table 3.1: Schematic representation of the blocks involved in the linear systems (3.3) and (3.4).

(A∇uV,∇vV)Ω −→ KuuU −→ Kuu =
[
(A∇φj ,∇φi)Ω

]N
i,j=1

− 1
η (A∇uV,∇vV)ΩΓ,in

−→ Kuu
in U −→ Kuu

in = − 1
η

[
(A∇φj ,∇φi)ΩΓ,in

]N
i,j=1

− 1
η (A

−1σW, τW)ΩΓ,in −→ KσσΣ −→ Kσσ = − 1
η

[
(A−1ψs,ψr)ΩΓ,in

]L
r,s=1

1
η (σW,∇vV)ΩΓ,in

−→ KuσΣ −→ Kuσ = 1
η

[
(ψs,∇φi)ΩΓ,in

]
i=1,...,N
s=1,...,L

1
η (∇uV, τW)ΩΓ,in

−→ KσuU −→ Kσu = 1
η

[
(∇φj ,ψr)ΩΓ,in

]
r=1,...,L
j=1,...,N

−⟨σW · nΓ, vV⟩Γ −→ GuσΣ −→ Guσ =
[
−⟨ψs · nΓ, φi⟩Γ

]
i=1,...,N
s=1,...,L

−⟨uV, τW · nΓ⟩Γ −→ GσuU −→ Gσu =
[
−⟨φj ,ψr · nΓ⟩Γ

]
r=1,...,L
j=1,...,N

⟨f, vV⟩Ω −→ f −→ f =
[
⟨f, φi⟩Ω

]N
i=1

−⟨g, τW · nΓ⟩Γ −→ g −→ g =
[
−⟨g,ψr · nΓ⟩Γ

]L
r=1

In the case where A = kId, with k > 0 and Id being the d× d identity matrix, it was proved in [1] that the discrete
problem (3.2) is stable for η > 1 and the model is not sensitive to the choice of η. For that reason, the model is
essentially free of user-defined parameters. In the numerical experiments the value is fixed to η = 2 for all the tests.

If U and Σ are, respectively, the coefficient vectors of uV and σW with respect to a fixed basis {φ1, . . . , φN} in
V and a fixed basis {ψ1, . . . ,ψL} in W, then solving (3.2) is equivalent to solving the linear system[

Kuu +Kuu
in Kuσ +Guσ

Kσu +Gσu Kσσ

] [
U
Σ

]
=

[
f
g

]
, (3.3)

where the meaning of the different blocks is summarized in Table 3.1. When writing the flux Σ = (Kσσ)−1(−(Kσu+
Gσu)U + g), the problem can be formulated in terms of the original unknown U only:[

Kuu +Kuu
in − (Kuσ +Guσ)(Kσσ)−1(Kσu +Gσu)

]
U = f − (Kuσ +Guσ)(Kσσ)−1g. (3.4)

Remark 3.1. Since the matrix A is supposed to be symmetric, it is easy to see thatKuu = (Kuu)T , Kuu
in = (Kuu

in )T ,
Kσσ = (Kσσ)T , Kσu = (Kuσ)T and Gσu = (Guσ)T . It follows that the matrices in (3.3) and (3.4) are symmetric.

3.2. Immersed B-spline discretization

We now briefly review the basics of the theory of tensor-product cardinal B-splines, which play a central role in
our discretizations of (3.1). Let Mp : R → R be the cardinal B-spline of degree p ≥ 0, defined recursively over the
uniform knot sequence {0, 1, . . . , p+ 1} as follows [5, 22]:

M0(x) =

{
1, if x ∈ [0, 1),

0, otherwise,

Mp(x) =
x

p
Mp−1(x) +

p+ 1− x

p
Mp−1(x− 1), p ≥ 1.
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Given a d-index p ≥ 0, the tensor-product cardinal B-spline Mp : Rd → R is defined by

Mp(x) =

d∏
i=1

Mpi
(xi).

The next proposition collects a few properties of tensor-product cardinal B-splines that follow from analogous
properties of (univariate) cardinal B-splines [5, 22]. Throughout this paper, we denote by ∆d the tensor-product
mesh in Rd formed by the closed d-dimensional squares of side 1 with vertices taken from the integer lattice Zd.
Each of the d-dimensional squares is referred to as an element of ∆d.

Proposition 3.1. Tensor-product cardinal B-splines have the following properties.

• Smoothness: Mp ∈ Cmin(p)−1(Rd).

• Piecewise polynomial structure: Mp is a d-variate piecewise polynomial of total degree
∑d

j=1 pj over the tensor-
product mesh ∆d.

• Positivity and support: Mp > 0 over (0,p+ 1) and supp(Mp) = [0,p+ 1].
• Symmetry: Mp(

p+1
2 + x) = Mp(

p+1
2 − x) for x ∈ Rd.

• L2 inner product of derivatives: for p, q ≥ 1 and α, β = 1, . . . , d,∫
Rd

∂Mp

∂xα
(x)

∂Mq

∂xβ
(x+ y)dx = −∂2Mp+q+1

∂xα∂xβ
(p+ 1+ y) = −∂2Mp+q+1

∂xα∂xβ
(q + 1− y), y ∈ Rd.

• Partition of unity:
∑

i∈Zd Mp(x− i) = 1 for x ∈ Rd.

• Local linear independence: the functions Mp(· − i), i ∈ Zd are locally linearly independent.

Given a d-index n ≥ 1, the corresponding scaled integer translates of tensor-product cardinal B-splines are
defined by

Mn,p,i(x) = Mp(nx− i), i ∈ Zd.

These functions are d-variate piecewise polynomials over the scaled mesh 1
n∆d consisting of the scaled elements

1
nE = { 1

nx : x ∈ E}, where E is an element of ∆d.
We are now ready to detail the spaces V and W based on mapped tensor-product cardinal B-splines. Given an

invertible geometry map G from a subset Ω̂ of [0, 1]d to Ω, we define the mapped basis functions MG
n,p,i : Ω → R,

MG
n,p,i(x) = Mn,p,i(G

−1(x)), i ∈ Zd. (3.5)

The spaces V and W are defined as follows:

V = ⟨MG
n,p,i : i ∈ In,p⟩, In,p = {i ∈ Zd : supp(Mn,p,i) ∩G−1(Ω) ̸= ∅},

W = (⟨MG
n,p,i : i ∈ IΓ

n,p⟩)d, IΓ
n,p = {i ∈ Zd : supp(Mn,p,i) ∩G−1(

◦
ΩΓ,in) ̸= ∅},

where we assume that the domain of each MG
n,p,i is restricted to Ω in the definition of V and to ΩΓ,in in the definition

of W. The bases for V and W to be used in the construction of the matrices in Table 3.1 can be taken as

{φ1 . . . , φN} =
{
MG

n,p,i : i ∈ In,p

}
, N = Nn,p = #In,p, (3.6)

{ψ1, . . . ,ψL} =
{(

0, . . . , 0︸ ︷︷ ︸
α−1

,MG
n,p,i, 0, . . . , 0︸ ︷︷ ︸

d−α

)
: i ∈ IΓ

n,p, α = 1, . . . , d
}
, L = dNΓ

n,p = d(#IΓ
n,p). (3.7)

Remark 3.2. Standard immersed methods might suffer from ill-conditionings due to the boundary cut of the
tensor-product mesh leading to tiny overlaps of some basis functions in the domain. This can be overcome by the
use of so-called extended B-splines [20]. To improve the conditioning of the basis, the boundary B-splines with
tiny overlap (i.e., less than one mesh element) are adjoined suitably to the surrounding B-splines with substantial
overlap. The corresponding slightly smaller subspace meets all the usual requirements for standard approximations,
and in particular it retains the optimal approximation order. In a nutshell, the extended B-splines are constructed
as follows. We split the index set In,p = Ii

n,p ∪ Ib
n,p, where Ib

n,p contains the indices of the problematic boundary
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B-splines with tiny overlap and Ii
n,p contains all the other indices (called inner indices). For each j ∈ Ib

n,p, we

choose Ii(j) = {ℓ, . . . , ℓ+ p} ⊆ Ii
n,p to be a subset of inner indices closest to j for some ℓ. Moreover, we set

ei,j =

d∏
α=1

pα∏
β=0

iα ̸=ℓα+β

jα − ℓα − β

iα − ℓα − β
, i ∈ Ii(j).

These correspond to the values of the tensor-product Lagrange polynomials at j associated with Ii(j). Then, we
define the extended B-splines as

MG,ext
n,p,i (x) = MG

n,p,i(x) +
∑

j∈J i(i)

ei,jM
G
n,p,j(x), i ∈ Ii

n,p, (3.8)

where J i(i) = {j ∈ Ib
n,p : i ∈ Ii(j)}. For more details, we refer the reader to [19, 20].

4. Spectral analysis of immersed B-spline discretization matrices

In this section we describe the spectral symbol of the immersed discretization matrices based on mapped tensor-
product B-spline basis functions and we study some of its properties. Afterwards, we exploit this spectral knowledge
to design a specific CG preconditioner for the considered immersed discretization matrices. In what follows, we use
the abbreviation SPD for symmetric positive definite and SPSD for symmetric positive semi-definite. If X,Y are
two symmetric matrices of the same size, the notation X > Y (resp., X ≥ Y ) means that X − Y is SPD (resp.,
SPSD).

4.1. Definition of the spectral symbol
Let Qd

+ be the set of vectors in Qd with positive components. Consider the matrices Kuu, Kuu
in , Kσσ, Kuσ, Kσu,

Guσ, Gσu resulting from the choice of the bases (3.6)–(3.7). It is understood that these matrices depend on the mesh
fineness parameter n, and hence each of them gives rise to a sequence of matrices for n = νn = (ν1n, . . . , νdn),
where ν ∈ Qd

+ and n varies in the infinite subset of N such that n = νn ∈ Nd. It was shown in [10] that the
corresponding sequences of matrices in (3.3) and (3.4), after suitable normalization, enjoy the same asymptotic
spectral distribution as the sequence of matrices Kuu, and we recall the associated spectral symbol below. To this
end, for every p ≥ 1, we define Hp : [−π, π]d → Cd×d by

Hp(θ) = [Hp,αβ(θ)]
d
α,β=1, (4.1)

Hp,αβ(θ) =
∑
k∈Zd

−∂2M2p+1

∂xα∂xβ
(p+ 1+ k) eik·θ, α, β = 1, . . . , d. (4.2)

Note that the series in (4.2) is actually a finite sum due to the compact support of M2p+1. For a sufficiently regular
geometry map G, let

AG = (JG)−1A(G)(JG)−T ,

where JG is the Jacobian matrix of G. Then, for every p ≥ 1 and ν ∈ Qd
+, we define f

ν
G,p : G−1(Ω)× [−π, π]d → C

by

fν
G,p(x̂,θ) =

ν(|det(JG(x̂))|AG(x̂) ◦Hp(θ))ν
T

N(ν)
, (4.3)

where ◦ is the componentwise (Hadamard) product of matrices. The next theorem follows from [10, Theorem 4.1
and Remark 4.7].

Theorem 4.1. Let p ≥ 1 and let n = νn, where ν ∈ Qd
+ and n varies in the infinite subset of N such that

n = νn ∈ Nd. Suppose that G is a sufficiently regular geometry map and suppose that the matrix A = [aαβ ]
d
α,β=1

is symmetric and each component aαβ belongs to L1(Ω). Then, for the matrix Kuu and the matrices in (3.3) and
(3.4) resulting from the choice of the bases (3.6)–(3.7) we have{

nd−2Kuu
}
n
∼σ,λ fν

G,p, (4.4){
nd−2

[
Kuu +Kuu

in Kuσ +Guσ

Kσu +Gσu Kσσ

]}
n

∼σ,λ fν
G,p, (4.5){

nd−2[Kuu +Kuu
in − (Kuσ +Guσ)(Kσσ)−1(Kσu +Gσu)]

}
n
∼σ,λ fν

G,p, (4.6)
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where fν
G,p is defined in (4.3).

Remark 4.1. The symbol in (4.3) is essentially the same as the symbol in the untrimmed case when a suitable
natural restriction of the parametric domain is considered; see, e.g., [11, 12]. Moreover, as explained in [10,
Remark 4.3] and [11, Section 4.6], there is a structural connection between the expression of the symbol and the
expression of the differential operator.

Remark 4.2. It was pointed out in [10, Remark 4.6] that the result in Theorem 4.1 remains valid when considering
the extended B-splines (3.8) instead of the standard B-splines (3.5).

4.2. Properties of the spectral symbol

In order to study the properties of the spectral symbol fν
G,p in (4.3), let us first recall from [10, Remark 4.4]

that the matrix Hp(θ) = [Hp,αβ(θ)]
d
α,β=1 in (4.1)–(4.2) can be written as

Hp,αβ(θ) =



fpα
(θα)

d∏
r=1
r ̸=α

hpr
(θr), if α = β,

gpα(θα)gpβ
(θβ)

d∏
r=1

r ̸=α,β

hpr (θr), if α ̸= β,

where the functions hp, gp, fp : [−π, π] → R are given by

hp(θ) =
∑
k∈Z

M2p+1(p+ 1 + k)eikθ = M2p+1(p+ 1) + 2

p∑
k=1

M2p+1(p+ 1− k) cos(kθ), p ≥ 0, (4.7)

gp(θ) =
∑
k∈Z

M ′
2p+1(p+ 1 + k)eikθ = −2

p∑
k=1

M ′
2p+1(p+ 1− k) sin(kθ), p ≥ 1, (4.8)

fp(θ) =
∑
k∈Z

M ′′
2p+1(p+ 1 + k)eikθ = −M ′′

2p+1(p+ 1)− 2

p∑
k=1

M ′′
2p+1(p+ 1− k) cos(kθ), p ≥ 1. (4.9)

We remark that Hp coincides with the matrix defined in [11, Eq. (4.1)] and hp, gp, fp coincide with the functions
defined in [11, Eqs. (4.2)–(4.4)]. The properties of Hp and hp, gp, fp were investigated in [7, 8, 9, 11, 12]. More
specifically, the main results were obtained in [7, Section 3], [8, Theorem 3.4 and Lemma A.2], [9, Lemmas 6–7],
and [12, Theorem 2.2]; we collect them in Theorems 4.2 and 4.3 for the reader’s convenience.

Theorem 4.2. For every d ≥ 1 and every p ≥ 1, the d × d matrix Hp(θ) defined in (4.1)–(4.2) is SPSD for all

θ ∈ [−π, π]d and it is SPD for all θ ∈ [−π, π]d with
∏d

i=1 θi ̸= 0.

To simplify the statement of Theorem 4.3, for every p ≥ 0 we define the functions Lp, Up : [−π, π] → R as
follows:

Lp(θ) =

(
2− 2 cos θ

θ2

)p+1

, (4.10)

Up(θ) =

(
2− 2 cos θ

θ2

)p+1

+

(
π2

48
− 1

)(
2− 2 cos θ

π2

)p+1

. (4.11)

Note that the function Lp is even and strictly decreasing on [0, π] with Lp(0) = 1 and Lp(π) = 4/π2.

Theorem 4.3. For every p ≥ 0, let Lp, Up : [−π, π] → R be defined as in (4.10)–(4.11).

1. For every p ≥ 0, the function hp : [−π, π] → R in (4.7) satisfies the following properties.

• For every θ ∈ [−π, π],

hp(θ) = (2− 2 cos θ)p+1
∑
k∈Z

1

(θ + 2kπ)2p+2
.
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• Lp(θ) ≤ hp(θ) ≤ min(1, Up(θ)) for every θ ∈ [−π, π].
• hp is even and strictly decreasing on [0, π] with max

θ∈[−π,π]
hp(θ) = hp(0) = 1 and

(
4

π2

)p+1

≤ min
θ∈[−π,π]

hp(θ) = hp(π) ≤
1

2p
=

hp(π)

hp(π/2)
.

2. For every p ≥ 1, the function gp : [−π, π] → R in (4.8) satisfies the following properties.

• For every θ ∈ [−π, π],

gp(θ) = −(2− 2 cos θ)p+1
∑
k∈Z

1

(θ + 2kπ)2p+1
.

• For every θ ∈ [−π, π],

(2− 2 cos θ)p+1

|θ|2p+1
− (2− 2 cos θ)p+1

π2p+1
≤ |gp(θ)| ≤

(2− 2 cos θ)p+1

|θ|2p+1
.

• gp is odd and its zeros are given by gp(−π) = gp(0) = gp(π) = 0.

3. For every p ≥ 1, the function fp : [−π, π] → R in (4.9) satisfies the following properties.

• For every θ ∈ [−π, π],

fp(θ) = (2− 2 cos θ)p+1
∑
k∈Z

1

(θ + 2kπ)2p
= (2− 2 cos θ)hp−1(θ).

• (2− 2 cos θ)Lp−1(θ) ≤ fp(θ) ≤ (2− 2 cos θ)min(1, Up−1(θ)) for every θ ∈ [−π, π].
• fp is even with

max
θ∈[−π,π]

f(θ) = Mfp ≤ min

(
4,

8

p+ 1
+

(
π4

12
− 4

)(
4

π2

)p)
and min

θ∈[−π,π]
f(θ) = f(0) = 0. Moreover, θ = 0 is the unique zero of fp over [−π, π] and

fp(π)

Mfp

≤ fp(π)

fp(π/2)
=

4

2p
.

We are now ready to address the symbol fν
G,p in (4.3) and derive a result that is a generalization of [11,

Theorem 5.4] to the case where the parametric domain [0, 1]d is replaced by G−1(Ω). Note that the variables (x̂,θ)
in (4.3) vary in G−1(Ω) × [−π, π]d for the given open Lipschitz domain Ω ⊂ Rd and not in [0, 1]d × [−π, π]d as in
[11, Theorem 5.4]. In view of what follows, we observe that fν

G,p is independent of the x̂ variables in the case where

Ω = (0, 1)d, G is the identity map, and A = Id is the identity matrix. It is natural to consider its restriction to the
domain [−π, π]d, i.e., the function fν

p : [−π, π]d → R,

fν
p (θ) =

ν(Id ◦Hp(θ))ν
T

N(ν)
=

1

N(ν)

d∑
α=1

ν2αfpα
(θα)

d∏
r=1
r ̸=α

hpr
(θr). (4.12)

By Theorem 4.3, we have

cp,ν

d∑
α=1

(2− 2 cos θα) ≤ fν
p (θ) ≤ Cp,ν

d∑
α=1

(2− 2 cos θα), (4.13)

where

cp,ν =

(
4

π2

)p1+...+pd+d−1
min(ν2)

N(ν)
, Cp,ν =

max(ν2)

N(ν)
.

Since the ratio Cp,ν/cp,ν increases with max(ν)/min(ν), the best relative bounds in (4.13) with respect to ν are
obtained when all entries of ν are equal, i.e., when the scaled tensor-product mesh 1

n∆d is formed by squares.
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Theorem 4.4. Let p,ν,G, A be defined as in Theorem 4.1. Then, the spectral symbol fν
G,p : G−1(Ω)×[−π, π]d → R

in (4.3) satisfies the following properties.

1. For every (x̂,θ) ∈ G−1(Ω)× [−π, π]d, we have

fν
G,p(x̂,θ) ≥ λmin(AG(x̂))|det(JG(x̂))|fν

p (θ),

fν
G,p(x̂,θ) ≤ λmax(AG(x̂))|det(JG(x̂))|fν

p (θ).
(4.14)

As a consequence, if
cId ≤ AG(x̂)|det(JG(x̂))| ≤ CId (4.15)

for every x̂ ∈ G−1(Ω) and some positive constants c and C, then

cfν
p (θ) ≤ fν

G,p(x̂,θ) ≤ Cfν
p (θ)

for every (x̂,θ) ∈ G−1(Ω)× [−π, π]d.
2. If A is SPSD on Ω, then fν

G,p is non-negative on G−1(Ω)× [−π, π]d.

Proof. 1. It is clear that
λmin(AG(x̂))Id ≤ AG(x̂) ≤ λmax(AG(x̂))Id

for all x̂ ∈ G−1(Ω). In particular, the matrices AG(x̂) − λmin(AG(x̂))Id and λmax(AG(x̂))Id − AG(x̂) are SPSD
for all x̂ ∈ G−1(Ω). Moreover, we know from Theorem 4.2 that Hp(θ) is SPSD for all θ ∈ [−π, π]d. Thus, for all
(x̂,θ) ∈ G−1(Ω)× [−π, π]d,

fν
G,p(x̂,θ)− λmin(JG(x̂))|det(JG(x̂))|fν

p (θ) =
ν(|det(JG(x̂))|(AG(x̂)− λmin(AG(x̂))Id) ◦Hp(θ))ν

T

N(ν)
≥ 0,

where the last inequality follows from the fact that X ◦ Y is SPSD whenever X and Y are SPSD, because X ◦ Y is
a principal submatrix of the Kronecker tensor product X ⊗ Y , which is SPSD whenever X and Y are SPSD; see,
e.g., [18, Example 2.13].

2. Suppose that A is SPSD on Ω. Then, AG = (JG)−1A(G)(JG)−T is SPSD on G−1(Ω). In particular, we
have λmin(AG(x̂)) ≥ 0 for all x̂ ∈ G−1(Ω). Since fν

p (θ) ≥ 0 for all θ ∈ [−π, π]d by (4.13), we infer from (4.14) that

fν
G,p ≥ 0 on G−1(Ω)× [−π, π]d.

Remark 4.3. Two positive constants c and C satisfying (4.15) exist if and only if

c∗ = inf
x̂∈G−1(Ω)

λmin(AG(x̂))|det(JG(x̂))| > 0, C∗ = sup
x̂∈G−1(Ω)

λmax(AG(x̂))|det(JG(x̂))| < ∞. (4.16)

In this case, c∗ and C∗ are also the best constants for which (4.15) holds. Note that, for the conditions (4.16) to be
satisfied, it is necessary that the map G is sufficiently regular. In particular, there must be no singularity points
x̂ ∈ G−1(Ω) such that det(JG(x̂)) = 0.

4.3. Preconditioning of immersed B-spline discretization matrices

Here we illustrate how Theorems 4.1 and 4.4 could be used to identify potentially fast preconditioners for the
linear system (3.4), i.e., for the matrix

Kuu +Kuu
in − (Kuσ +Guσ)(Kσσ)−1(Kσu +Gσu). (4.17)

Suppose that the assumptions of Theorem 4.1 are satisfied. From (4.4) and (4.6) we know that the asymptotic
spectral distributions of the sequence of matrices nd−2Kuu and the sequence of matrices (4.17) multiplied by nd−2

can be described by the same symbol fν
G,p. This suggests that K

uu might be suited as a candidate preconditioner
for (4.17). However, this (naive) choice can be ruled out in practice because it can be verified that Kuu is a singular
matrix.

To identify a potentially fast and non-singular preconditioner, we proceed as follows. Suppose that the assump-
tions of Theorem 4.1 are satisfied and

cId ≤ AG(x̂)|det(JG(x̂))| ≤ CId
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for every x̂ ∈ G−1(Ω) and some constants c, C > 0 (see also Remark 4.3). We recall from [10, Remark 4.7] that
Kuu is explicitly given by

Kuu =

[∫
G−1(Ω)

AG ∇Mn,p,j · ∇Mn,p,i |det(JG)|

]
i,j∈In,p

.

Let

K̃uu =

[∫
Rd

∇Mn,p,j · ∇Mn,p,i

]
i,j∈In,p

. (4.18)

Using arguments from the theory of reduced GLT sequences as in the proof of (4.4), it can be shown that

{nd−2K̃uu}n ∼σ,λ fν
p .

Moreover, the matrix K̃uu is non-singular. Indeed, this can be seen by the fact that nd−2K̃uu is a principal
submatrix of a so-called d-level Toeplitz matrix T generated by the symbol fν

p . Since fν
p is non-negative by (4.13),

the theory of multilevel Toeplitz matrices [15, Chapter 3] and Cauchy’s interlacing theorem [4, Corollary III.1.5]

imply that both T and nd−2K̃uu are SPD, with the minimum (resp., maximum) eigenvalue of nd−2K̃uu larger
(resp., smaller) than the minimum (resp., maximum) eigenvalue of T .

By Theorem 4.4 and (4.13), we have

c ≤ (fν
p (θ))

−1fν
G,p(x̂,θ) ≤ C (4.19)

for every (x̂,θ) ∈ G−1(Ω)× [−π, π]d with θ ̸= 0. Therefore, again relying on the theory of reduced GLT sequences,
we expect that the sequence of preconditioned matrices

(K̃uu)−1
[
Kuu +Kuu

in − (Kuσ +Guσ)(Kσσ)−1(Kσu +Gσu)
]

(4.20)

has an asymptotic spectral distribution described by the preconditioned symbol (fν
p )

−1fν
G,p, whose essential range

is contained in the interval [c, C] by (4.19). This implies that the eigenvalues of the sequence of matrices (4.20)
are weakly clustered at [c, C]; see [14, Theorem 3.1]. Consequently, in view of the convergence properties of the
CG and GMRES methods [3, Section 2.2], we may predict that the preconditioned CG (PCG) and preconditioned

GMRES (PGMRES) methods with preconditioner K̃uu for solving a linear system with coefficient matrix (4.17)
have a good convergence rate and the number of iterations for reaching a preassigned accuracy ε is independent of
(or only weakly dependent on) the matrix size.

Remark 4.4. When considering the extended B-splines (3.8) instead of the standard B-splines (3.5), the proposed

preconditioner K̃uu is still given by (4.18), with the only difference that i and j do not vary in the set In,p but in
the set Ii

n,p defined in Remark 3.2.

5. Numerical experiments

In this section we numerically illustrate the spectral distribution result in (4.6) by comparing the spectrum of
the matrix in the left-hand side with uniform samples of the spectral symbol fν

G,p; see Remark 2.1. Moreover, we
check the validity of the lower and upper bounds for the spectral symbol fν

G,p given in (4.14). Finally, we compare

the number of CG and PCG iterations for solving the linear system (3.4) up to a precision of 10−6, where the

preconditioner for the PCG method is the matrix K̃uu defined in (4.18).
In all the examples, we take d = 2, p = (p, p), n = (n, n) and η = 2. In this case, (4.6) reads

{Kuu +Kuu
in − (Kuσ +Guσ)(Kσσ)−1(Kσu +Gσu)}n ∼σ,λ 1(|det(JG(x̂1, x̂2))|AG(x̂1, x̂2) ◦H(p,p)(θ1, θ2))1

T , (5.1)

with

H(p,p)(θ1, θ2) =

[
fp(θ1)hp(θ2) gp(θ1)gp(θ2)

gp(θ1)gp(θ2) hp(θ1)fp(θ2)

]
,
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(a) Ω̂ (grey) (b) Ω (grey) (c) Ωin (magenta) and ΩΓ,in (blue)

Figure 5.1: Example 5.1: The parametric domain Ω̂, the physical domain Ω, and a possible mesh.

and hp, gp, fp defined as in (4.7)–(4.9); and the bounds in (4.14) read

1(|det(JG(x̂1, x̂2))|AG(x̂1, x̂2) ◦H(p,p)(θ1, θ2))1
T

≥ λmin(AG(x̂1, x̂2))|det(JG(x̂1, x̂2))|(fp(θ1)hp(θ2) + hp(θ1)fp(θ2)),

1(|det(JG(x̂1, x̂2))|AG(x̂1, x̂2) ◦H(p,p)(θ1, θ2))1
T

≤ λmax(AG(x̂1, x̂2))|det(JG(x̂1, x̂2))|(fp(θ1)hp(θ2) + hp(θ1)fp(θ2)),

(5.2)

for every (x̂1, x̂2, θ1, θ2) ∈ G−1(Ω)× [−π, π]2. The values of p and n, the parametric domain Ω̂, the geometry map
G : Ω̂ → Ω, the matrix of diffusion coefficients A, and the data f and g in (3.1) to construct the linear system
(3.4) are specified in each example. The definition of the physical domain Ω follows immediately from Ω̂ and G.
We only focus on the use of the extended B-spline basis (see Remarks 3.2, 4.2, and 4.4), because it is preferred
over the standard B-spline basis for immersed methods in a practical context [20, 23]. The corresponding matrix
in the left-hand side of (5.1) will be denoted by LG,ext

n,p . For convenience of computation, we replace the symbol
in (5.1) with its monotone rearrangement on the interval [0, 1]; see [16, Remark A.1]. When comparing with the
eigenvalues, we assume that the latter are sorted in non-decreasing order and positioned at i

s , i = 1, . . . , s, where
s = N(n,n),(p,p) is the matrix size.

Example 5.1. Let Ω̂ be the L-shaped domain with vertices (0, 1), (0, 0), (1, 0), (1, 1
2 ), (

1
2 ,

1
2 ), (

1
2 , 1), and

G(x̂1, x̂2) =

[
x̂1 − 9

20 x̂2(x̂2 − 1)(2x̂2 − 1)

x̂2 − 9
20 x̂1(x̂1 − 1)(2x̂1 − 1)

]
, (x̂1, x̂2) ∈ Ω̂,

A(x1, x2) = I2 =

[
1 0
0 1

]
, (x1, x2) ∈ Ω,

f(x1, x2) = 5 cos(x1 + 2x2), (x1, x2) ∈ Ω,

g(x1, x2) = cos(x1 + 2x2), (x1, x2) ∈ Γ = ∂Ω.

The domains Ω̂ and Ω are illustrated in Figure 5.1. Note that in this case the extended B-splines defined in (3.8)
are actually all standard (mapped) cardinal B-splines as defined in (3.5) for even n. The comparison between the
eigenvalues of the matrix LG,ext

n,p and the monotone rearrangement of the symbol 1(|det(JG(x̂1, x̂2))|AG(x̂1, x̂2) ◦
H(p,p)(θ1, θ2))1

T is shown in Figure 5.2 for different values of p and even n. Some large eigenvalues (outliers) have
been cut from the figures in order to allow for a better visualization of the matching between the other eigenvalues
and the monotone rearrangement of the symbol. The comparison between the number of CG and PCG iterations
for solving the linear system (3.4) up to a precision of 10−6 is shown in Table 5.1 for p = 1, 2 and different even
values of n. We see that the number of PCG iterations is considerably lower than the number of CG iterations for
p = 1, 2 and large n. For p > 2, we numerically checked that the number of PCG iterations remains averagely lower
than the number of CG iterations, but the difference is not as significant as in the case p = 1, 2, showing that the
preconditioner K̃uu is more effective for low degrees than for high degrees.

11



0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
eigenvalues (extended)

rearranged symbol

(a) p = 1, n = 80

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
eigenvalues (extended)

rearranged symbol

(b) p = 1, n = 160

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
eigenvalues (extended)

rearranged symbol

(c) p = 2, n = 80

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
eigenvalues (extended)

rearranged symbol

(d) p = 2, n = 160

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
eigenvalues (extended)

rearranged symbol

(e) p = 3, n = 80

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
eigenvalues (extended)

rearranged symbol

(f) p = 3, n = 160

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
eigenvalues (extended)

rearranged symbol

(g) p = 4, n = 80

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5
eigenvalues (extended)

rearranged symbol

(h) p = 4, n = 160

Figure 5.2: Example 5.1: Comparison between the eigenvalues of the matrix LG,ext
n,p (extended B-spline basis) and the monotone

rearrangement of the symbol 1(|det(JG(x̂1, x̂2))|AG(x̂1, x̂2) ◦H(p,p)(θ1, θ2))1
T for p = 1, 2, 3, 4 and n = 80, 160.
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Table 5.1: Example 5.1: Number of CG and PCG iterations for solving the linear system (3.4) in the case of the extended B-spline
basis up to a precision of 10−6 for p = 1, 2 and n = 20, 40, 80, 160.

(a) p = 1

n CG iterations PCG iterations

20 43 22
40 84 23
80 164 23
160 323 23

(b) p = 2

n CG iterations PCG iterations

20 84 83
40 95 97
80 183 105
160 360 109

Table 5.2: Example 5.2: Number of CG and PCG iterations for solving the linear system (3.4) in the case of the extended B-spline
basis up to a precision of 10−6 for p = 1, 2 and n = 20, 40, 80, 160.

(a) p = 1

n CG iterations PCG iterations

20 45 24
40 89 25
80 174 27
160 341 28

(b) p = 2

n CG iterations PCG iterations

20 93 103
40 113 112
80 193 124
160 373 133

Example 5.2. Let Ω̂ be the same L-shaped domain and G the same geometry map as in Example 5.1, and

A(x1, x2) =

[
(2 + cosx1)(1 + x2) cos(x1 + x2) sin(x1 + x2)

cos(x1 + x2) sin(x1 + x2) (2 + sinx2)(1 + x1)

]
, (x1, x2) ∈ Ω,

f(x1, x2) = −∇ ·A(x1, x2)∇u(x1, x2), (x1, x2) ∈ Ω,

g(x1, x2) = cos(x1 + 2x2), (x1, x2) ∈ Γ = ∂Ω,

where u(x1, x2) = cos(x1 + 2x2). We point again to Figure 5.1 for an illustration of the domains Ω̂ and Ω.
The comparison between the eigenvalues of the matrix LG,ext

n,p and the monotone rearrangement of the symbol

1(|det(JG(x̂1, x̂2))|AG(x̂1, x̂2) ◦H(p,p)(θ1, θ2))1
T is shown in Figure 5.3 for different values of p and even n. Some

large eigenvalues (outliers) have been cut from the figures in order to allow for a better visualization of the matching
between the other eigenvalues and the monotone rearrangement of the symbol. In Figure 5.4, we check the validity of
the lower and upper bounds in (5.2) by showing the evaluations of both the symbol and its bounds on an equispaced
grid in G−1(Ω)× [−π, π]2 for different values of p. The comparison between the number of CG and PCG iterations
for solving the linear system (3.4) up to a precision of 10−6 is shown in Table 5.2 for p = 1, 2 and different even
values of n. We see that the number of PCG iterations is considerably lower than the number of CG iterations for
p = 1, 2 and large n.

Example 5.3. Let Ω̂ be the pentagon with vertices (0, 0), ( 12 , 0), (1,
1
2 ), (1, 1), (0, 1), and

G(x̂1, x̂2) =
1√

(1− x̂1)2 + x̂2
2

[
(1− x̂1)(1− x̂1 + x̂2)

x̂2(1− x̂1 + x̂2)

]
, (x̂1, x̂2) ∈ Ω̂,

A(x1, x2) =

[
ex1x2 x1x2

2

x1x2

2 ex1+x2

]
, (x1, x2) ∈ Ω,

f(x1, x2) = −∇ ·A(x1, x2)∇u(x1, x2), (x1, x2) ∈ Ω,

g(x1, x2) = sin(2πx1) cos(πx2), (x1, x2) ∈ Γ = ∂Ω,

where u(x1, x2) = sin(2πx1) cos(πx2). The domains Ω̂ and Ω are illustrated in Figure 5.5. The comparison between
the eigenvalues of the matrix LG,ext

n,p and the monotone rearrangement of the symbol 1(|det(JG(x̂1, x̂2))|AG(x̂1, x̂2)◦
H(p,p)(θ1, θ2))1

T is shown in Figure 5.6 for different values of p and even n. Some large eigenvalues (outliers) have
been cut from the figures in order to allow for a better visualization of the matching between the other eigenvalues
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Figure 5.3: Example 5.2: Comparison between the eigenvalues of the matrix LG,ext
n,p (extended B-spline basis) and the monotone

rearrangement of the symbol 1(|det(JG(x̂1, x̂2))|AG(x̂1, x̂2) ◦H(p,p)(θ1, θ2))1
T for p = 1, 2, 3, 4 and n = 80, 160.

and the monotone rearrangement of the symbol. In Figure 5.7, we check the validity of the lower and upper bounds
in (5.2) by showing the evaluations of both the symbol and its bounds on an equispaced grid in G−1(Ω)× [−π, π]2

for different values of p. The comparison between the number of CG and PCG iterations for solving the linear
system (3.4) up to a precision of 10−6 is shown in Table 5.3 for p = 1, 2 and different even values of n. We see that
the number of PCG iterations is considerably lower than the number of CG iterations for p = 1, 2 and large n.
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Figure 5.4: Example 5.2: Comparison between equispaced samples of the symbol 1(|det(JG(x̂1, x̂2))|AG(x̂1, x̂2)◦H(p,p)(θ1, θ2))1
T and

its bounds in (5.2) for p = 1, 2, 3, 4.

(a) Ω̂ (grey) (b) Ω (grey) (c) Ωin (magenta) and ΩΓ,in (blue)

Figure 5.5: Example 5.3: The parametric domain Ω̂, the physical domain Ω, and a possible mesh.

Table 5.3: Example 5.3: Number of CG and PCG iterations for solving the linear system (3.4) in the case of the extended B-spline
basis up to a precision of 10−6 for p = 1, 2 and n = 20, 40, 80, 160.

(a) p = 1

n CG iterations PCG iterations

20 70 35
40 145 41
80 296 46
160 592 50

(b) p = 2

n CG iterations PCG iterations

20 113 114
40 156 148
80 315 170
160 638 194

6. Conclusions

We have considered immersed isogeometric discretizations for general Poisson problems with variable coefficients,
where the physical domain Ω is described in terms of a trimmed geometry mapG, and we have analyzed the spectral
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Figure 5.6: Example 5.3: Comparison between the eigenvalues of the matrix LG,ext
n,p (extended B-spline basis) and the monotone

rearrangement of the symbol 1(|det(JG(x̂1, x̂2))|AG(x̂1, x̂2) ◦H(p,p)(θ1, θ2))1
T for p = 1, 2, 3, 4 and n = 80, 160.

properties of the resulting (sequences of) matrices when the fineness of the discretization approaches zero, i.e., the
size of the matrices goes to infinity.

In a complete analogy with the untrimmed case, the considered sequences of matrices enjoy an asymptotic
spectral distribution described by a function called (spectral) symbol. This symbol does not depend on the boundary
conditions but it incorporates the discretization technique, the geometry map, and the diffusion coefficients of the
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Figure 5.7: Example 5.3: Comparison between equispaced samples of the symbol 1(|det(JG(x̂1, x̂2))|AG(x̂1, x̂2)◦H(p,p)(θ1, θ2))1
T and

its bounds in (5.2) for p = 1, 2, 3, 4.

differential problem. Moreover, its structure and properties are completely analogous to the untrimmed case. The
knowledge of the symbol and its properties allows us to identify potentially fast preconditioners for the considered
matrices and we have proposed a specific CG preconditioner.

We have also presented a variety of numerical experiments illustrating both the performance of the proposed
preconditioner and the fact that uniform samples of the (rearranged) symbol provide a good description of the exact
eigenvalues of the considered matrices up to a small set of outliers, which are due to the low rank perturbation
corresponding to the boundary conditions. The proposed preconditioner is particularly effective for low degrees.
However, further investigation is advised for high degrees, which might require a deeper understanding of the
behavior of the outliers.

As future work, a similar spectral analysis of immersed isogeometric discretizations could be carried out for
other types of differential problems, e.g., the linear elasticity problem in [17]. It would also be interesting to apply
the provided immersed framework to more complex geometries, e.g., the tunnel cross passage example in [23].
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[17] Giannelli C., Kanduč T., Pelosi F., Speleers H. An immersed-isogeometric model: Application to linear elasticity and
implementation with THBox-splines. J. Comput. Appl. Math. 349 (2019) 410–423.

[18] Hardy Y., Steeb W.-H. Matrix Calculus, Kronecker Product and Tensor Product: A Practical Approach to Linear Algebra,
Multilinear Algebra and Tensor Calculus with Software Implementations. 3rd ed., World Scientific, New Jersey (2019).
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