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The presence of tumor-infiltrating lymphocytes (TILs) is associated with a favorable prognosis of pri-
mary melanoma (PM). Recently, artificial intelligence (AI)-based approach in digital pathology was
proposed for the standardized assessment of TILs on hematoxylin and eosinestained whole slide images
(WSIs). Herein, the study applied a new convolution neural network (CNN) analysis of PM WSIs to
automatically assess the infiltration of TILs and extract a TIL score. A CNN was trained and validated in a
retrospective cohort of 307 PMs including a training set (237 WSIs, 57,758 patches) and an inde-
pendent testing set (70 WSIs, 29,533 patches). An AI-based TIL density index (AI-TIL) was identified
after the classification of tumor patches by the presence or absence of TILs. The proposed CNN showed
high performance in recognizing TILs in PM WSIs, showing 100% specificity and sensitivity on the
testing set. The AI-based TIL index correlated with conventional TIL evaluation and clinical outcome.
The AI-TIL index was an independent prognostic marker associated directly with a favorable prognosis.
A fully automated and standardized AI-TIL appeared to be superior to conventional methods at
differentiating the PM clinical outcome. Further studies are required to develop an easy-to-use tool to
assist pathologists to assess TILs in the clinical evaluation of solid tumors. (Am J Pathol 2023, 193:
2099e2110; https://doi.org/10.1016/j.ajpath.2023.08.013)
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Primary melanoma (PM) is the most dangerous form of skin
tumor and causes 90% of skin cancer mortality.1 Patients
with PM are staged primarily according to the American
Joint Committee on Cancer2 criteria, including Breslow
thickness, ulceration, sentinel lymph node (SLN) status, and
presence of distant metastases.3 Numerous studies have
identified additional factors beyond American Joint Com-
mittee on Cancer staging with varying degrees of prognostic
impact. Despite the heterogeneity of the studies, there is
robust evidence that in PM the presence of tumor-infiltrating
lymphocytes (TILs) predicts SLN status4e7 and improves
survival.7e11
stigative Pathology. Published by Elsevier Inc
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In routine diagnostic practice, TILs in PM are classified
according to their distribution and intensity as “brisk,” “non-
brisk,” or “absent,” according to criteria originally set forth
by Clark et al.12 Alternative methods of TIL classification
based on the density (absent/mild/moderate/marked; score,
0 to 3) and distribution (absent/focal/multifocal/diffuse;
.
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score, 0 to 3) of the immune infiltrate5 remain to be validated.
In The Cancer Genome Atlas project, a modified TIL seven-
tier scoring system was used (mostly in metastatic mela-
nomas) for correlation with mRNA expression profiling and
prognosis.13 However, further studies are required to adapt
the TIL scoring system to the metastatic setting and, espe-
cially for metastatic lymph nodes, the interpretation and
interobserver agreement may be challenged by the presence
of pre-existing lymphoid stroma.14

To date, standardized protocols for TIL immunopheno-
typing and quantification are lacking.15e17 Despite the
limited availability of specific large studies, the immuno-
phenotype seems to play a role in the efficacy of the local
immune response against melanoma. Previous studies,
focused mostly on T-lymphocyte populations, showed that
the prevalence of CD8þ T cells is related to a better clinical
outcome as compared to T-regulatory infiltration.18e20

The development of a convolution neural network (CNN)
for image-based automated assessment ofTILsonhematoxylin
and eosinestained sections based on an artificial intelligence
(AI) approachpromises to be a useful tool. The implementation
of aneasy-to-use and standardizeddigital analysis solution able
to offer fast and accurate information to pathologists is one of
the great challenges of recent years.21,22 Abousamra et al23

recently implemented a deep learningebased mapping of
TILs in whole slide images (WSIs) of multiple cancer types,
including PMs. A nonoverlapping patch-wise classification
approachwasused to train aCNNmodel.Theperformancewas
satisfactory, and the model achieved a polyserial correlation
coefficient of 0.82 over PM slides. Acs et al24 developed an
algorithm (NN192) to automatically extract a TIL score from a
WSI showing that higher TIL scores are associated with a
favorable prognosis. They collected different features and used
a neural networkwith eight hidden layers for cell classification.
Recently, the NN192 algorithm was used by Aung et al25 to
validate the associationofanautomatedTIL scorewith survival
in patients with melanoma. This study highlighted the impor-
tance of automated TIL scores as a robust prognosticmarker in
patients with melanoma.

Moore et al26 proposed a study using an automated digital
TIL analysis to evaluate TILs in early stage melanoma to
predict disease-specific survival. In a prior study,27 they
implemented a CNN able to detect TILs in 13 tumor types,
including melanoma, with a global area under the receiver
operating characteristic curve of 0.954 on a test cohort of 2480
patches; and evaluated the extracted automated digital TIL
analysis score as a prognostic factor. The validation of more
than145patients providedby twodifferent hospitals confirmed
that the automated digital TIL analysis score correlatedwith the
Clark et al12 criteria and significantly improved multivariable
Cox analysis considering ulceration and depth. Their method
requires themanual extraction of the tumor area to compute the
automated digital TIL analysis score.

The current study developed a CNN to recognize lym-
phocytic density within the tumor area from the hematox-
ylin and eosin WSI to automatically extract a TIL score. It
2100
also used preliminary multivariate survival analyses to
evaluate the prognostic potential of the proposed AI-based
TIL score. The final aim was to obtain a standardized AI-
based TIL score useful for pathologists to assess PM
prognosis.

Materials and Methods

Sample Population and Data Set

The study included a retrospective collection of formalin-
fixed, paraffin-embedded stage II to III invasive PMs (N Z
307), comprising a training set (N Z 237 WSIs) from the
University of Florence (N Z 115; data set 1), University of
Sassari (N Z 43; data set 2), University of Siena (N Z 15;
data set 3), and Papa Giovanni XXIII Cancer Center Hos-
pital Bergamo (N Z 64; data set 4) from 2000 to 2015, and
a disjoint testing set (N Z 70; data set 5) from Catholic
University of the Sacred Heart, Fondazione Policlinico
Universitario A. Gemelli IRCCS Rome from 2016 to 2020
(Figure 1). The clinical and pathologic parameters extracted
from the database included sex, age (continuous variable),
date of the primary tumor diagnosis, ulceration status (ab-
sent/present), Breslow thickness (in millimeters), histotype,
Clark et al12 level, mitotic rate, TILs, sentinel lymph node
biopsy (SLNB) status, and follow-up evaluation.
Representative hematoxylin and eosin slides were

reviewed, and the histopathologic features were re-assessed
by dedicated experienced dermatopathologists (V.M. and
D.M.), manually labeling melanoma regions of each WSI by
detecting TILs and no TIL regions. The regions labeled by
dermatopathologic experts were selected, avoiding border-
line and uncertain visually recognizable as TIL or no TIL
areas. The tumor stage was assessed according to the
American Joint Committee on Cancer.2 TILs were assessed
as brisk, non-brisk, and absent according to conventional
criteria formulated by Clark et al.12 Specifically, lympho-
cytes had to surround and disrupt tumor cells in the vertical
growth phase to be defined as TILs. These lymphocytes
were termed “brisk” if they infiltrated the entire invasive
component diffusely or across the base of the vertical
growth phase. TILs were termed “absent” if no lymphocytes
were present or if they were present but did not infiltrate the
tumor. When lymphocytes only infiltrated the melanoma
focally with one or scattered foci, the term “non-brisk” was
used.
The use of formalin-fixed, paraffin-embedded sections of

human samples was approved by the local Ethics Com-
mittee (13676_bio; 17033_bio; Comitato Etico Regione
Toscana-Area Vasta Centro) according to the Declaration of
Helsinki.

Immunohistochemistry

Representative 3-mmethick, formalin-fixed, paraffin-
embedded tissue sections of PMs were selected for
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Figure 1 Examples of patches extracted from the four data sets used for the training and validation of the network, and from the disjoint data set used for
testing the model in tumor-infiltrating lymphocyte (TIL) recognition. Original magnification: �400.

Artificial Intelligence in Melanoma
immunohistochemical analysis. Sample processing was
performed with the Ventana Discovery Ultra immunostainer
(Ventana Medical Systems, Tucson, AZ). The sections were
deparaffinized in EZ prep (950-102; Ventana Medical Sys-
tems), and antigen retrieval was achieved by incubation with
cell-conditioning solution 1 (950-124; Ventana Medical
Systems), pH 8.2, for 32 minutes at 100�C. Sections were
incubated with anti-CD3 antibody (790-4341, rabbit
monoclonal, clone 2GV6 ready to use; Ventana Medical
Systems). The signal was developed with the UltraMap Red
anti-rabbit Detection Kit (Ventana Medical Systems). Sec-
tions were counterstained with hematoxylin. Immunostained
slides were evaluated semiquantitatively by two pathologists
(V.M. and D.M.) and a CD3 score was assigned as follows:
score of 0, lack of intratumoral inflammatory cells; score of
1, scattered inflammatory cells; score of 2, conspicuous
inflammatory cell infiltration under low magnification; and
score of 3, diffuse/clustering infiltration.

Digital Image Analysis

Representative histopathologic slides of PMs stained with
hematoxylin and eosin and immunostained for CD3 were
anonymized and digitalized at an original magnification of
�400 using an Aperio AT2 on a WSI (Leica Biosystems,
Wetzlar, Germany). Individual SVS format files were im-
ported into HALO digital imaging analysis software version
3.6.4134 (Indica Labs, Albuquerque, NM). Two expert pa-
thologists (V.M. and D.M.) drew the image annotations of
the whole surface of PMs. Using the Multiplex immunohis-
tochemistry (IHC) module v3.1.4 (Indica Labs), TIL detec-
tion was performed based on cytonuclear features such as
stain intensity, size, and roundness for CD3-positive cells.
The software automatically excludes tissue gaps from anal-
ysis and the settings were set to include the full range of
staining intensity (from weak to strong). Data were expressed
as cellular density (ie, the number of positive cells divided by
the square millimeter of the annotation layer area).
The American Journal of Pathology - ajp.amjpathol.org
AI Methodology

The proposed AI-based methodology aims to extract a TIL
density score automatically from WSIs of a PM. Figure 2
shows the workflow of our approach once a WSI is
provided.

Three different steps were performed to estimate the
lymphocyte density within the tumor area from each WSI.
First, the automatic recognition of melanoma and non-
melanoma regions of WSIs was performed using the CNN
(tumor-CNN; Figure 1) developed by De Logu et al28 with a
model based on a pretrained Inception-ResNet-v2.29

Then, a specific CNN (TIL-CNN; Figure 1) was trained
to recognize areas in the tumor region containing TILs and
areas without TILs. Finally, the TIL density was assessed
based on the distribution of TIL and no TIL areas and a
global score was assigned to each WSI. The TIL-CNN for
TIL area recognition and the TIL density score are
addressed specifically in this work.

Melanoma Tissue Detection

Healthy tissue versus melanoma tissue detection was per-
formed as previously described by De Logu et al.28 Briefly,
the training model was based on a pretrained Inception-
ResNet-v2,29 the data set was formed by 100 WSIs: the
regions of interests of the WSIs were labeled in the two
classes and each regions of interest was tiled in nonover-
lapping patches of 299 � 299 pixels, to fit the input
dimension of the CNN.

CNN-Based TIL Region Recognition

The original and the labeled WSIs, both cropped on the
melanoma region, form the data set used to implement the
TIL-CNN for TIL recognition.

To adapt the data set to the input size of the TIL-CNN,
each image was tiled in 299 � 299 pixel square patches
2101
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Figure 2 Pipeline of the proposed model application. Whole slide image (WSI) example. Original magnification: �200. CNN, convolution neural network;
TIL, tumor-infiltrating lymphocyte.
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(original magnification, �20) with an overlapping param-
eter of 100 pixels. The patch dimension of each pixel was
approximately 0.2428 mm; therefore, the dimension of each
patch was approximately 72.59 mm � 72.59 mm, corre-
sponding to an area of approximately 5269.3 mm2. Patches
covered the entire melanoma-labeled region.

The sampled data set was divided into two sets: a training
set used to train (70%; 40,429 patches) and validate (30%;
17,329 patches) the model for TIL recognition (data sets 1,
2, 3, and 4); and a disjoint test set (29,533 patches) provided
by Catholic University of the Sacred Heart, Fondazione
Policlinico Universitario A. Gemelli IRCCS Rome (data set
5) used to assess the performance of the model.

Data augmentation was performed on the training and the
validation sets, using the parameters in Table 1. The TIL-
CNN model is based on a pretrained Inception-ResNet-
v229 with hyperparameters reported in Table 1. Training
was performed using MATLAB software (R2021b; The
MathWorks, Inc., Natick, MA) and its Deep Learning
Toolbox. The training phase took approximately 9.4 hours.
The trained TIL-CNN model is publicly available (https://
zenodo.org/record/7962742, last accessed May 23, 2023).

To evaluate the performance of the model for TIL
recognition, the same metrics (accuracy, specificity, sensi-
tivity, Cohen’s kappa, and F1 score) used by De Logu
et al28 were computed. Once TIL detection over the patches
was performed, each WSI was re-assembled to compute the
Table 1 Summary of the Training Information for TIL Recognition CN

Data augmentation Hyperpa

Pixel range Scale range Rotation Frozen la

30e30 0.8e1.2 �90 degrees to 90 degrees 0

CNN, convolution neural network; TIL, tumor-infiltrating lymphocyte.
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TIL density of each slide. The heatmap representing TIL,
no-TIL, and healthy tissue regions (beyond peritumoral
areas) was computed (Figure 2) and a 3 � 3 median filter
was applied to avoid possible noise and spurious mis-
classified patches. The proposed automatic AI-TIL score
was computed for each WSI as a rate between the following:

AI-TILZ
TILs

TILsþ no TILs
� 100

where TILs are the number of patches classified by the TIL-
CNN as patches containing TILs, and no TILs is the number
of patches classified by the TIL-CNN as patches not con-
taining TILs. The AI-TIL is used to assign a TIL density
score to each WSI, and it is expressed as a percentage.

Statistical and Survival Analysis

To validate the accuracy of the TIL density score computed
by our model, a comparison with common clinical PM
classifications was performed using Kruskal-Wallis tests
with Tukey honestly significant difference tests for post hoc
comparisons.30 A nonparametric method was used after the
assessment of the non-normal distribution of AI-TIL in our
data set by using the Lilliefors test. For comparison with the
proposed AI-TIL index, brisk classification was considered
as the gold standard clinical index of the TIL distribution in
WSIs.12 In addition, the AI-TIL was compared with an
N

rameters

Training time, hoursyers Learning rate Minibatch size

0.001 16 9.4
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Table 2 Patient Characteristics of the Entire Data Set Subdivided into AI Training Cohort for Automatic TIL Region Recognition, AI Testing
Cohort for Evaluation of the Automatic TIL Region Recognition, and a Survival Validation Subset to Assess AI-TIL Index Accuracy as a
Prognostic Factor of Primary Melanoma

Clinical characteristics
AI training cohort
(n Z 237)

AI testing cohort
(n Z 70)

Survival validation subset
(n Z 170)

Sex, n (%)
Male 132 (55.7) 37 (52.8) 100 (58.8)
Female 105 (44.3) 33 (47.2) 70 (41.2)

Age
Median, years (range) 63, (14e89) 58 (12e93) 62 (14e89)

Anatomic site, n (%)
Trunk 116 (48.9) 33 (47.1) 84 (49.4)
Limbs 88 (37.1) 29 (41.4) 60 (35.3)
Head/neck 16 (6.8) 8 (11.4) 12 (7.0)
Acral 15 (6.3) e 13 (7.6)
Anal canal 1 (0.4) e 1 (0.6)
Vulva 1 (0.4) e e

Pathologic characteristics
Histotype n, (%)
Superficial spreading
melanoma

152 (64.1) 54 (77.1) 101 (59.4)

Nodular melanoma 66 (27.8) 15 (21.4) 54 (31.8)
Acral melanoma 15 (6.3) e 13 (7.6)
Desmoplastic melanoma 1 (0.4) e e
Lentigo maligna melanoma 1 (0.4) 1 (1.4) 1 (0.6)
Mucosal melanoma 2 (0.8) e 1 (0.6)

Breslow thickness, mm
Median, mm (range) 3.17 (0.3e35.5) 1.7 (1.0e27.0) 4.0 (0.30e35.0)

Ulceration n, (%)
Absent 103 (43.5) 43 (61.4) 60 (35.3)
Present 134 (56.5) 27 (38.6) 110 (64.7)

Mitotic rate/mm2

Median, n (range) 4 (0e57) 1 (0e20) 5 (0e42)
TILs, n (%)
Absent 60 (25.3) 39 (55.7) 41 (24.1)
Non-brisk 138 (58.2) 18 (25.7) 107 (62.9)
Brisk 39 (16.5) 13 (18.6) 22 (12.9)

Staging characteristics
T-stage, n (%)
pT1 41 (17.2) 13 (18.6) 15 (8.8)
pT2 23 (9.7) 30 (42.9) 7 (4.2)
pT3 86 (36.3) 11 (15.8) 73 (42.9)
pT4 87 (36.7) 16 (22.7) 75 (44.1)

SLNB status, n (%)
Positive 52 (30.6)
Negative 89 (52.3)
Not performed 29 (17.1)

Overall survival, n (%)
Alive 76 (44.7)
Dead 94 (55.3)

Percentages are on column totals.
AI, artificial intelligence; SLNB, sentinel lymph node biopsy; TIL, tumor-infiltrating lymphocyte.

Artificial Intelligence in Melanoma
automatic TIL density score estimated by the HALO image
analysis software. Finally, to evaluate the prognostic po-
tential of the proposed AI-TIL, multivariate survival ana-
lyses were computed considering the AI-TIL as a potential
risk factor. Multivariate survival analyses were performed
The American Journal of Pathology - ajp.amjpathol.org
by using Cox proportional hazard regression models.31

Overall survival (OS) was defined as the time between
diagnosis and death from any cause. Disease-free survival
(DFS) was defined as the elapsed time from the date of the
primary diagnosis of the tumor to the date of tumor
2103
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recurrence or death from any cause (ie, DFS events are the
events of relapse and/or death). Patients who had not
relapsed/died or had died were censored at the date of the
last follow-up visit. The Cox proportional hazards re-
gressions used in survival analysis look for independent
variables related to variations in the risk function of the
patients with respect to a specific event. Therefore, the OS
evaluated by Cox regression assesses the relationship be-
tween the risk of death from any cause and the AI-TIL,
while the DFS evaluated by Cox regression assesses the
relationship between the risk of tumor recurrence or death
from any cause and the AI-TIL. As well as AI-TIL, several
other clinicopathologic factors were taken into consideration
in both OS and DFS, according to the main prognostic
factors reported in the literature. A Cox regression yields a
hazard ratio with associated 95% CIs and P value, which
indicates the patients who have a lower or higher risk of
suffering the event according to the variable or variables
included in the analysis.

From the entire data set (data sets 1, 2, 3, 4, and 5), the
study detected a subset of 170 (55.4% of the entire data set)
patients with a complete clinical history and prognostic in-
formation (ie, elapsed time from the date of the primary
diagnosis of the tumor to the date of death and/or relapse).
The AI-TIL scores of these patients were estimated, and the
continuous AI-TIL scores was transformed into a dichoto-
mous factor to discriminate between the PM with high and
low TIL density. The dichotomous AI-TIL index was
considered and tested as a risk factor in the multivariate
survival analyses. An AI-TIL density threshold of 5%, which
corresponds to approximately the 30th percentile of the AI-
TIL density distribution, was set as the cut-off value to assign
to each WSI the class of low TILs (AI-TIL score <5%) or
high TILs (AI-TIL score >5%). The threshold value was
chosen because it maximized the prognostic significance of
the dichotomous AI-TIL factor (ie, minimum P value for
associated hazard ratio) in multivariate survival analyses.

The following clinicopathologic prognostic factors were
included in the multivariate analyses: age, Breslow thick-
ness, and ulceration. According to Gershenwald et al,32

these factors are considered main clinically significant fac-
tors to predict OS or DFS probability in melanoma.

To evaluate the prognostic value of the AI-TIL index,
several multivariate survival models for OS (O models) and
DFS (D models) were tested. For the O1 model, OS was
estimated with the following predictors: dichotomous AI-
TIL, age, Breslow thickness, and ulceration. For the D1
model, DFS was estimated with the following predictors:
dichotomous AI-TIL, age, Breslow thickness, and ulceration.

According to Keung and Gershenwald,3 SLN status is
considered a prognostic factor to predict survival probability
in patients with a PM. Therefore, the SLN was included in
the multivariate survival models, considering a subset of
141 patients (45.9% of the entire data set) with SLNB
performed. We tested two other survival models including
the SLN predictor. For the O11 model, OS was estimated
2104
with the following predictors: dichotomous AI-TIL, SLNB,
age, Breslow thickness, and ulceration. For the D11 model,
DFS was estimated with the following predictors: dichoto-
mous AI-TIL, SLNB, age, Breslow thickness, and
ulceration.
To validate our data set, the same multivariate analyses

were performed considering gold standard brisk classifica-
tion12 instead of the AI-TIL index. The following multi-
variate survival models were tested.

� O2 model: OS was estimated with the following pre-
dictors: brisk classification, age, Breslow thickness, and
ulceration;

� D2 model: DFS was estimated with the following pre-
dictors: brisk classification, age, Breslow thickness, and
ulceration;

� O22 model: OS was estimated with the following pre-
dictors: brisk classification, SLNB, age, Breslow thick-
ness, and ulceration; and

� D22 model: DFS was estimated with the following pre-
dictors: brisk classification, SLNB, age, Breslow thick-
ness, and ulceration.

Log-likelihood ratio tests, based on Wilks’s33 theorem,
were performed to compare the Cox proportional hazard
regression models with the AI-TIL index, with respect to
those including brisk classification as a predictor. For the
univariate descriptive visualization, the crude Kaplan-Meier
survival curves segregated by the dichotomous AI-TIL and
brisk classification were reported. All analyses were per-
formed with MATLAB (R2021b; The MathWorks, Inc.). In
all statistical tests, the level of significance was set at
P < 0.05.

Results

TIL-CNN Validation

Demographic and clinical characteristics at diagnosis are
reported in Table 2. For patients with clinical information
available (n Z 170) at a median follow-up period of 42
months, a relapse was reported for 105 patients (61.7%),
and death for 103 (60.6%) patients.
As reported in Figure 3, the global accuracy of the trained

model for automatic recognition of patches with TILs (TIL-
CNN) was 99.5% for the validation set, and 100.0% for the
test set. For the validation set, specificity and sensitivity was
99.7% and 99.3%, respectively. Cohen’s kappa returned
0.99 and the F1 score was 0.99. For the test set, specificity
and sensitivity both was 100.0%. Cohen’s kappa returned
1.00 and the F1 score was 1.00.

AI-TIL Index Validation

The Kruskal-Wallis test showed a statistically significant
difference in AI-TIL scores between the different TIL
density score classifications estimated by HALO
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 Validation and testing confusion matrices of the tumor-infiltrating lymphocyte (TIL)- convolution neural network (CNN) for recognition of
patches with (TILs) and without TILs (No TILs). The validation cohort belongs to the training set, and the test cohort belongs to disjoint data set 5. The
diagonal cells correspond to observations that are classified correctly, and the off-diagonal cells correspond to observations classified incorrectly. In each cell,
both the number of observations and the percentage of the total number of observations are shown. The far right column in each confusion matrix shows the
percentages of all items predicted to belong to each class that are classified correctly (green text) and incorrectly (red text). These metrics often are called
the precision and false discovery rate, respectively. The bottom row in each confusion matrix shows the percentages of all the examples belonging to each
class that are classified correctly (green text) and incorrectly (red text). These metrics often are called the recall and false negative rate, respectively. The
bottom right cell in each confusion matrix shows the overall accuracy (green text) and error rate (red text).

Artificial Intelligence in Melanoma
(Figure 4A) [H(2) Z 47.43; P < 0.001; with a median AI-
TIL score of 5.4% for class 1þ, a median AI-TIL score of
11.4% for class 2þ, and a median AI-TIL score of 25.7%
for class 3þ]. As shown in Figure 4A, post hoc tests indi-
cated significant differences in the AI-TIL score between
class 1þ and class 2þ (P < 0.001), between class 1þ and
class 3þ (P < 0.001), and between class 2þ and class 3þ
(P < 0.01).

The Kruskal-Wallis test linked the AI-TIL score of our
model and the brisk classification (absent, non-brisk, and
Figure 4 A: Violin plot of the tumor-infiltrating lymphocyte (TIL) density scor
test was performed for the three classes (1þ, 2þ, and 3þ). B: Violin plot of the T
test was performed for the three classes (absent, non-brisk, and brisk). *P < 0.0

The American Journal of Pathology - ajp.amjpathol.org
brisk). As shown in Figure 4B, there was a statistically sig-
nificant difference in AI-TIL scores between the different
brisk classifications [H(2) Z 24.83; P < 0.001; with a me-
dian AI-TIL score of 4.5% for class absent, a median AI-TIL
score of 8.0% for class non-brisk, and a median AI-TIL score
of 19.7% for class brisk]. Post hoc tests indicated a signifi-
cant difference in the AI-TIL score between class absent and
class non-brisk (P < 0.05), between class absent and class
brisk (P < 0.001), and between class non-brisk and class
brisk (P < 0.01).
e of the model against HALO density score classification. The Kruskal-Wallis
IL density score of the model against brisk classification. The Kruskal-Wallis
5, **P < 0.01, and ***P < 0.001. AI, artificial intelligence.

2105
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Figure 5 Forest plot of Cox proportional hazard regression ratios and the corresponding P values that refer to the D1 model. A: The artificial
intelligenceebased tumor-infiltrating lymphocyte density index (AI-TIL) is the dichotomous AI-TIL density index. The other regressors are the clinico-
pathologic prognostic factors. B: Forest plot of Cox proportional hazard regression ratios and the corresponding P values that refer to the D11 model. Sentinel
lymph node biopsy (SLNB) has been added with respect to the D1 model. C: A crude Kaplan-Meier curve with respect to the dichotomous AI-TIL (low TILs and
high TILs) of both survival models. DFS, disease-free survival; HR, hazard ratio.

Ugolini et al
As mentioned in the previous paragraph, different
multivariate survival models were computed to evaluate the
prognostic potential of the proposed AI-TIL.
DFS Analysis

The DFS analysis was performed on a subset of 170 patients
with a complete clinical history and prognostic information.
In the D1 survival model (Figure 5A), the presence of high
TIL (AI-TIL score >5%) in a patient indicated a signifi-
cantly longer DFS (HR, 0.6; SD, 0.2; P Z 0.013) compared
with low TIL (AI-TIL score <5%) patients. Other covariates
associated with death or relapse hazard were age (P <
0.001) and Breslow thickness (P < 0.01). A crude Kaplan-
Meier curve with respect to dichotomous AI-TIL (low
versus high) showed a similar DFS for AI-TIL high
compared with AI-TIL low (median DFS, 42 and 38
months, respectively) (Figure 5C). By adding the SLNB to
the DFS model, the AI-TIL index lost significance with
respect to D1, but the index remained statistically significant
in the D11 model (P < 0.05).

In particular, in the D11 survival model (Figure 5B), the
high TIL factor reduced the DFS events hazard by 39%
(HR, 0.61; SD, 0.2; P Z 0.048) with respect to low TIL.
Other covariates associated with DFS were age (P < 0.001),
Breslow thickness (P < 0.05), and SLNB (P < 0.001).

In the D2 survival model (Supplemental Figure S1A),
DFS was not associated with brisk classification. Regressors
2106
associated with death hazard or relapse were age (P <
0.001) and Breslow thickness (P < 0.001). A crude Kaplan-
Meier curve with respect to brisk classification showed a
different DFS distribution. Pairwise analysis showed a
longer DFS for brisk (median DFS not reached) compared
with non-brisk (median DFS, 58 months) or absent class
(median DFS, 25 months) (Supplemental Figure S1C).
In the D22 survival model (Supplemental Figure S1B),

brisk class was associated with a better DFS (HR, 0.33; SD,
0.5; P Z 0.03) with respect to non-brisk class. No differ-
ence was found between non-brisk or absent classes, as in
the D2 model. Other covariates associated with DFS were
age (P < 0.001) and SLNB (P < 0.001), whereas Breslow
thickness lost significance with respect to the D2 model.
OS Analysis

The OS analysis was performed on a subset of 170 patients
with complete clinical history and prognostic information.
In the O1 survival model (Figure 6A), a high TIL factor was
associated with longer OS (reduced death hazard, 41%; HR,
0.59; SD, 0.2; P Z 0.017) with respect to a low TIL factor.
Other covariates associated with death hazard were age (P <
0.001), Breslow thickness (P < 0.01), and ulceration (P <
0.05). A crude Kaplan-Meier curve with respect to dichot-
omous AI-TIL (low versus high) showed a longer OS for
AI-TIL high compared with AI-TIL low (median OS, 75
and 68 months, respectively) (Figure 6C).
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 Forest plot of Cox proportional hazard regression ratios and the corresponding P values that refer to the O1 model. A: The artificial
intelligenceebased tumor-infiltrating lymphocyte density index (AI-TIL) is the dichotomous AI-TIL density index. The other regressors are the clinico-
pathologic prognostic factors. B: Forest plot of the Cox proportional hazard regression ratios and corresponding P values that refer to the O11 model. Sentinel
lymph node biopsy (SLNB) has been added with respect to the O1 model. C: A crude Kaplan-Meier curve with respect to the dichotomous AI-TIL (low TILs and
high TILs) of both survival models. HR, hazard ratio; OS, overall survival.
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The addition of SLNB returned a loss of significance of
the AI-TIL index for the O11 model, although its trend was
consistent with O1. In fact, in the O11 survival model
(Figure 6B), the death hazard was not related significantly to
the AI-TIL index (HR, 0.63; SD, 0.3; PZ 0.096). Age (P <
0.001), Breslow thickness (P < 0.05), and SLNB (P <
0.001) were associated with death hazard, whereas the ul-
ceration lost significance with respect to the O1 model.

In the O2 survival model (Supplemental Figure S2A),
brisk class was associated with a better OS (HR, 0.42; SD,
0.4; P Z 0.031) compared with non-brisk class; no differ-
ence was found between non-brisk and absent classes. Other
covariates associated with death hazards were age (P <
0.001), Breslow thickness (P < 0.01), and ulceration (P <
0.05). A crude Kaplan-Meier curve with respect to brisk
classification showed a different survival distribution. Pair-
wise analysis showed a longer OS for brisk (median OS not
reached) compared with non-brisk (median OS, 70 months)
or absent class (median OS, 63 months) (Supplemental
Figure S2C).

In the O22 survival model (Supplemental Figure S2B),
brisk class conferred a longer OS (HR, 0.26; SD, 0.6;
P Z 0.019) with respect to non-brisk class; no difference
was found between non-brisk or absent classes similar to the
O2 model. Other covariates associated with OS were age (P
< 0.001), Breslow thickness (P < 0.05), and SLNB (P <
0.001), whereas ulceration lost significance with respect to
the O2 model.
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Log-likelihood ratio tests indicated that the models
considering AI-TIL as a prognostic factor (O1, O11, D1,
and D11) fit the data significantly better than the models
considering the brisk classification (O2, O22, D2, and D22).
The comparison is reported in Supplemental Table S1.
Discussion

TILs have been investigated extensively as potential prog-
nostic markers in PMs, with several studies suggesting that
high densities of TILs correlate with favorable clinical
outcome, including longer DFS, OS, and negative
SLN,11,14,16,19 whereas other studies failed to show such a
correlation.34,35 Such discrepancies could be explained in
part by the subjective nature of conventional TIL assess-
ment, performed by different pathologists with potential
intraoperator and interinstitutional variability.36 In fact,
melanoma is a morphologically heterogeneous tumor that
shows diverse cytomorphologic and architectural patterns of
the host response, thereby presenting several diagnostic
challenges.37

A standardized TIL assessment by digital pathology and
AI-based approaches that minimizes observer variability is
essential to expand our understanding of the tumor-immune
microenvironment and its role in disease progression,
recurrence, and treatment response. Recently, the central
role of immunotherapy generated an increasing need to
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characterize the density and distribution of TILs in cancer
tissue samples effectively, including melanoma.38 In clinical
practice, a rapid and automated identification of TIL infil-
trate might be helpful in determining if options for immu-
notherapy should be explored.24,39

Previous studies23,24,26,27 have attempted to automate the
analysis of TILs in cancer patients quantitatively, including
those with melanoma, but the studies lacked sufficient
substantial improvement in the precision of conventional
pathology evaluation. In this study, a specifically trained
CNN analyzed digital pathology slides of melanoma to
provide a standardized TIL score that could predict clinical
pathology evaluations. This has the potential to significantly
impact clinical care. To the best of our knowledge, this is
the first study in which a completely automated CNN-based
digital analysis of TILs not only correlated with OS and
DFS in melanoma, but also improved upon the standard
brisk classification of TILs.

The CNN proposed in this work demonstrated high per-
formance in recognizing TILs in histopathology slides
of PMs. On a validation data set, it could identify a fraction
of tumor tissue with TILs with a specificity and sensitivity
of 99.7% and 99.3%, respectively, an F1 score of 0.99, and
a Cohen’s kappa of 0.99. On independent and disjoint
testing data sets, specificity and sensitivity achieved 100%,
Cohen’s kappa and the F1 score were both 1.00. These
values indicate an almost perfect agreement (Cohen’s
kappa), high precision, and recall (F1 score) in both the
validation and test cohorts. Two methodologic aspects of
these studies should be underlined: first, the training and
validation data sets were composed of histopathologic im-
ages collected from several Italian clinical sites; second, the
testing data set was completely disjointed and independent
from the training/validation cohort. Our approach has
ensured high robustness to the interoperator and intersite
variability and accurate testing of the generalization capa-
bility of developed CNN. Previous studies23,24,26,27 have
proposed AI-based methods to extract a TIL density index
from histopathology slides and compare it with other
prognostic factors in survival analyses. As in our study, the
data sets from the previous studies were provided by several
clinical sites, but they included fewer slides or patches.

Concerning the use of CNNs in TIL detection, Acs et al24

trained an eight-layer neural network as a machine learning
method to detect TILs in PMs. They collected features of
different types of cells to classify tumor, TILs, stroma, and
other cells; no validation metric was reported. On the other
hand, both Abousamra et al23 and Saltz et al27 trained a
CNN able to extract TILs from different types of tumors,
PMs included, returning a polyserial correlation coefficient
of 0.82 and an area under the receiver operating character-
istic curve of 0.954, respectively.

In contrast to our model, all of the previously cited works
required a preliminary manual extraction of the tumor area
of the melanoma. The current approach is completely
automated: it provides a first CNN able to detect the tumor
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area by extracting the patches on which the second CNN
performs the TIL estimation.
As previously demonstrated,24e26 preliminary multivar-

iate survival analyses were performed to evaluate the po-
tential prognostic value of the AI-TIL score. The TIL
density index was a significant prognostic factor in models
including age, ulceration, and thickness or depth. Because
only 28% of the test data set had the SLNB performed, the
SLN was considered only in multivariate Cox regression,26

which included an unknown biopsy specimen. Automated
digital indices and brisk classification were performed to
validate the extracted TIL index.26 The TIL density score
correlated with the Clark et al12 criteria with a P value less
than 0.001 and was significant in differentiating between
high and low TIL density in PMs.
Furthermore, our AI-TIL score is comparable with HALO

classification. In particular, as reported in Figure 4, the
Kruskal-Wallis test returned a significant difference between
the median AI-TIL score in the three categories of brisk and
HALO classifications. The weakest difference was found
between absent and non-brisk classes, although it still was
significant with respect to the set level of significance (P <
0.05). Interestingly, the proposed AI-TIL score was asso-
ciated more closely with the outcome than pathologist-
assessed TILs or HALO classification. Moreover, it should
be noted that, although the conventional TIL assessment
was based on the evaluation of selected tumor areas of
vertical growth phase, the AI-TIL score evaluated the total
melanoma area.
Overall, models considering AI-TIL as a prognostic fac-

tor fit the data better than models using brisk classification
for both DFS and OS (Supplemental Table S1). Of note, the
AI-TIL score significantly differentiated DFS in both
multivariate regressions, with and without SLNB, compared
with the Clark et al12 TIL grades (Figures 5 and
Supplemental Figure S1), which failed to demonstrate dif-
ferences in DFS among brisk, non-brisk, and absent classes
(in model D2) and between non-brisk and absent classes in
model D22. However, in the latter, brisk class was associ-
ated with a significantly better DFS compared with the non-
brisk class only, as reported in previous studies.26,37 Even
though the AI-TIL index was statistically verified to be
highly consistent with the universally accepted Clark et al12

TIL classification, its concordance at a statistical level may
not necessarily reflect identical results in OS and DFS an-
alyses. The AI-TIL is a quantitative index used in our OS
and DFS analyses after a 2-level dichotomization; mean-
while, the Clark et al12 TIL classification is a semi-
quantitative evaluation with three levels of categorization.
This precludes obtaining identical results in the OS and DFS
analyses.
Similarly, in the OS regression models using the Clark

et al12 TIL grades (Supplemental Figure S2), TIL did not
associate with OS between absentenon-brisk patients,
although a significantly better OS was reported for
briskenon-brisk patients in both multivariate models (O2
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Artificial Intelligence in Melanoma
and O22). On the other hand, the AI-TIL score significantly
differentiated OS in model O1, but did not uphold signifi-
cance adjusting for SLNB status in model O22 (Figure 6).
This discordance could be attributed to the limited number
of patients with known SLNB status included in the second
model.

These results suggest that the AI-TIL score is overall
superior at differentiating DFS and OS, particularly for
absent-graded patients, and that a standardized and fully
automated AI-TIL score may improve the prognostic impact
of TIL. Our AI-TIL score was shown to be a consistent
independent prognostic marker adjusting for age, Breslow
thickness, and ulceration. Nevertheless, further studies are
needed to achieve definitive conclusions, specifically
improving multivariate models, including SLNB status.

Although the proposed model achieves a very good per-
formance level, in future studies it might be necessary to
increase the data set to provide a larger number of examples,
and allow generalization. A major limitation of this study is
the use of a subset of patients in the survival multivariate
analysis. Any future studies will benefit from avoiding this
and using the complete clinical information of the entire
data set. Moreover, because the AI-TIL density threshold is
based on our population, an extension of the data set would
be useful to confirm or adjust the chosen threshold. Finally,
the training of the CNN depends strongly on the manual
labeling performed.
Conclusions

The proposed pipeline for AI-TIL score extraction has the
potential to increase uniformity across cohorts and clinical
sites, reduce the need for monitoring by highly experienced
pathologists, and prevent operator variability. Further pro-
spective investigation is needed to determine whether AI-
TIL scores should be included routinely in PM pathology
reports and future American Joint Committee on Cancer
staging revisions, and whether they should be applied to
metastatic samples to shape the design of novel immuno-
therapeutic protocols.
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