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Abstract: Science maps are visual representations of the structure and dynamics of scholarly 

knowledge. They aim to show how fields, disciplines, journals, scientists, publications, and scientific 

terms relate to each other. Science mapping is the body of methods and techniques that have been 

developed for generating science maps. This entry is an introduction to science maps and science 

mapping. It focuses on the conceptual, theoretical, and methodological issues of science mapping, 

rather than on the mathematical formulation of science mapping techniques. After a brief history of 

science mapping, we describe the general procedure for building a science map, presenting the data 

sources and the methods to select, clean, and pre-process the data. Next, we examine in detail how 

the most common types of science maps, namely the citation-based and the term-based, are generated. 

Both are based on networks: the former on the network of publications connected by citations, the 

latter on the network of terms co-occurring in publications. We review the rationale behind these 

mapping approaches, as well as the techniques and methods to build the maps (from the extraction 

of the network to the visualization and enrichment of the map). We also present less-common types 

of science maps, including co-authorship networks, interlocking editorship networks, maps based on 

patents’ data, and geographic maps of science. Moreover, we consider how time can be represented in 

science maps to investigate the dynamics of science. We also discuss some epistemological and 

sociological topics that can help in the interpretation, contextualization, and assessment of science 

maps. Then, we present some possible applications of science maps in science policy. In the conclusion, 

we point out why science mapping may be interesting for all the branches of meta-science, from 

knowledge organization to epistemology. 

 

https://www.isko.org/cyclo/science_mapping
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1. Introduction 
Science maps, also known as scientographs, bibliometric network visualizations, and knowledge domain 

maps, are visual representations of the structure and dynamics of scholarly knowledge. They aim to show 

how disciplines, fields, specialties, authors, keywords, or publications relate to each other (Börner, Chen, 

and Boyack 2005; Chen 2013; Rafols, Porter, and Leydesdorff 2010; Small 1999; Van Raan 2019). Science 

maps are usually generated based on the analysis of large collections of scientific documents (Börner 

2010; Cobo et al. 2011b). 

Science mapping is the body of methods and techniques that have been developed to generate science 

maps. Science mapping has a long tradition in bibliometrics and scientometrics, i.e., the quantitative 

studies of science (Chen 2017; Van Raan 2019). In the last decades, it has increasingly become an 

interdisciplinary area, witnessing important contributions from data science, where science mapping 

belongs to the larger and increasingly important area of information visualization (Börner, Chen, and 

Boyack 2005).  

Science maps have several applications. They help to answer questions such as: What are the main topics 

within a certain scientific domain? How do these topics relate to each other? How has a certain scientific 

domain developed over time? Who are the key actors (researchers, institutions, journals) of a scientific 

field? Science maps help to investigate how the structural units of science relate one another at the micro 

and macro level (Leydesdorff 1987), what factors determine the emergence of new scientific fields and the 

development of interdisciplinary areas (Leydesdorff and Goldstone 2014), and, more generally, how 

scientific change functions (Leydesdorff 2001; Lucio-Arias and Leydesdorff 2009). At the same time, the 

information made accessible by science maps can be highly relevant for science policy purposes.  

Science maps, and especially the global maps, also known as “atlases of science” (see Section 3.2: Field 

delineation), can help to classify the sciences by showing their mutual relationships (e.g., by showing the 

citation flows between fields). In this sense, science maps are useful tools in Knowledge Organization and 

have been used to build classification system with a bottom-up approach (see e.g., Waltman and van Eck 

2012). However, standard methods of science mapping are not based on and do not result in semantic 

relationships between categories (e.g., genus-species relation) but association measures between units of 

analysis (e.g., co-citation strength between publications, or co-authorship association between authors). 

The closest to semantic relations that can be produced by standard science mapping approaches is the 

relation of inclusion obtained by clustering techniques, in which higher-order clusters include lower-order 

clusters (see Section 4.1.5: Enriching the map). Science maps, hence, are not meant to replace taxonomies, 

classificatory schemes, ontologies, and other classic knowledge organization systems (KOS) 

(https://www.isko.org/cyclo/kos) (Hjørland 2013; Mazzocchi 2018). Rather, they can integrate them by 

providing extra information on the structure of science based on the analysis of citation networks and 

other kinds of scientific networks. At the same time, the application of science maps is not restricted to 

Knowledge Organization but extends to the sociology of science and science policy. 

1.1 Structure of the entry 
This article is an introduction to science maps and science mapping methodology. It is structured as 

follows. Section 2 offers a brief overview of the history of science mapping. Section 3 presents the standard 

workflow behind a science map and the preliminary steps of science mapping: data collection, field 

delineation, data pre-processing, and network extraction. Section 4 examines the different types of science 

maps that can be generated from network data. Section 4.1 is devoted to citation-based maps, i.e., those 

maps that are based on publications (or aggregates of publications) and citations (or citation-based 

relations) between publications. This section describes in details some procedures that are common also 

to other science maps, such as the normalization of the raw relatedness scores, and the two most diffused 

visualization approaches, the graph-based and the distance-based. It also presents some techniques that 

can be used to complement the results of mapping and ease the interpretation of science maps, such as 

clustering. Section 4.2 discusses term-based maps, i.e., those maps that are based on the analysis of the 

titles, abstracts, keywords or bibliographic descriptors of scientific publications. We will first present the 

classic co-word analysis as developed in the sociology of science and then focus on maps based on terms 

extracted automatically with Natural Language Processing techniques. Section 4.3 briefly overviews 

https://www.isko.org/cyclo/kos
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science maps based on co-authorship and interlocking editorship networks, whereas Section 4.4 reviews 

science maps based on patents and geographic maps of science. Section 5 discusses different strategies to 

include the dimension of time into science maps. Section 6 is devoted to the last step in the science 

mapping workflow, namely interpretation, and to discuss some general issues of science mapping, such 

as the importance of the level of analysis and the applicability of science mapping to the humanities. In 

section 7, some epistemological topics, which bridge across science mapping, sociology of science, and 

philosophy of science are discussed: the objectivity of science maps, the relationship between the 

published side of science and the scientific practice, and the meaning of citations. Section 8 overviews the 

potential applications of science maps in science policy. Lastly, the Conclusion will sketch how science 

mapping may be of interest for all the disciplines that compose meta-science. In the Appendix, two tools 

currently available for producing science maps, CiteSpace and VOSviewer, are briefly reviewed.  

1.2 Three caveats about this entry 
This entry focuses on conceptual, theoretical, and methodological issues of science mapping rather than 

on the rigorous mathematical formulation of science mapping techniques, as the basic ideas behind the 

techniques can often be understood without reference to the formal machinery. Relevant technical 

literature will be pointed out in the references. 

Secondly, we will focus on the methodology of science mapping, rather than on specific exemplars of 

science maps. We aim to provide the readers with the tools to understand and independently assess the 

science maps they will encounter (or produce!), rather than offer our opinion on existing maps. A 

wonderful collection of science maps can be found in the Atlas of Science by Katy Börner (Börner 2010) 

and in the exhibit Places and Spaces: Mapping Science, which popularizes the topic of science mapping 

to the large public all over the world since 2005.[1] 

Lastly, science mapping is not a static research field, but it is constantly moving forward. New mapping 

methods are developed, old algorithms are dismissed, science mapping tools are refined, larger maps are 

built as higher computing capacity becomes available. Therefore, it is not uncommon to find disagreement 

in the current science maps literature (e.g. Boyack and Klavans 2010). In this article, we will try as far 

as possible to remain neutral concerning these discussions, presenting to the reader the different options 

without taking a position. 

2. A brief history of science mapping 
Modern science mapping relies on the data provided by large, multidisciplinary databases that index vast 

portions of the scientific literature (see Section 3.1: Data sources for science mapping). Before the creation 

of these databases in the 1960s, it was virtually impossible to generate science maps in the modern sense. 

The idea of representing the structure of human knowledge by visual aids, however, dates far back in 

history.  

2.1 Ancestors of science maps 
Already in the Middle Age, the relationships between the seven liberal arts, comprising the trivium and 

quadrivium, were visually represented by allegories.[2] However, the most popular visual metaphor in 

history for visualizing knowledge has been the tree (Lima 2014). Its origins can be traced back to Aristotle, 

and to the Isagoge, an introduction to Aristotle’s logic written by Porphyry in the III century. In the XIII 

century, Ramon Lull depicted a tree of the sciences in his Arbor Scientiae (1295). Descartes, in the 

Principia Philosophiae (1644), used the same image to explain the relationship between metaphysics, 

physics, and the applied sciences. During the Enlightenment, the famous Encyclopédie of Diderot and 

D’Alambert contained a tree-like taxonomy of human knowledge (“Système Figuré des Connaissances 

Humaines”). Similar structures can be found also in the XIX century, in philosophical treaties on the 

classification and organization of the sciences.[3]  

2.2 Modern science mapping 
The tree-like representations of the sciences in the past had usually a philosophical aim. They served to 

reflect on the most general principles that underlie human knowledge. At the same time, they aimed at 

organizing scientific and scholarly disciplines, by creating hierarchies between them. Often, they were 
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proposed with a normative spirit: more than describing the actual organization of knowledge, they wanted 

to reform and improve it. What they all shared was a “top-down” approach. Starting from a certain idea 

of human knowledge and a certain set of classificatory categories, a taxonomy was devised, which was 

then used to categorize the individual items of knowledge, such as books or scientific papers. The Dewey 

Decimal Classification, a library classification system developed in 1876, epitomizes such a top-down 

approach. 

The creation of the Science Citation Index (SCI) in the 1960s by Eugene Garfield at the Institute for 

Scientific Information, allowed for a first time a bottom-up approach. As we will see better in the next 

sections (see Section 3.4: Network extraction), the SCI indexed the citation-links between the articles 

published in scientific journals. In this way, it allowed to reconstruct the network in which each scientific 

article is embedded, and, by connecting all these networks, to reconstruct the structure of entire scientific 

areas. In this way, a new method to map human knowledge became possible. The historian of science 

Derek De Solla Price was the first to suggest such an idea in 1965 (Price 1965). Garfield himself proposed 

the method of historiographs to reconstruct the temporal development of scientific ideas by analyzing the 

citation links between publications (Garfield 1973) (see Section 5: The representation of time in science 

mapping).  

In the 1960s and 1970s, two new techniques, both based on citations, were developed to measure the 

association of scientific papers: bibliographic coupling (Kessler 1963) and co-citation (Small 1973; 

Marshakova 1973). They soon became standard techniques for science mapping (see Section 4.1.2: The 

links in citation-based maps). Henry Small started to use co-citation analysis to map scientific areas and 

study their evolution over time. He generated the first science maps based on co-citation analysis in 1977 

to study the field of collagen research (Small 1977).  

In the 1980s, new methods of analysis were developed, such author co-citation analysis (White and 

Griffith 1981) and co-word analysis (Callon et al. 1983). At the same time, the technical aspects of science 

mapping were discussed and sometimes disputed (Leydesdorff 1987). The 1990s saw important 

advancements in computer visualization techniques and, in 1991, the first science mapping program for 

the personal computer, SCI-map, was made available. In the 2000s, the improvement of computer 

capacity allowed to produce the first global maps of science, based on the analysis of thousands of journals 

and millions of publications. New user-friendly science mapping tools, such as CiteSpace and VOSviewer, 

were launched in the 2010s, so that nowadays also the non-experts can generate their own science maps. 

In the last twenty years, science mapping has become an increasingly interdisciplinary area, with 

important contributions from computer scientists and experts in information visualization, and the last 

ten years have seen what has been called a “Cambrian explosion of science maps” (Börner, Theriault, and 

Boyack 2015).[4]   

3. Building a science map: the general workflow 
The construction of a science map follows a general workflow that comprises the following steps (Börner, 

Chen, and Boyack 2005; Cobo et al. 2011b):  

1) Data collection. Based on the research question of the analyst, the data for the mapping are 

collected. In principle, any relational feature of the scientific activity can be collected by different 

methods. In practice, however, most science mapping studies are based on data stored in 

bibliographic data sources. Hence, the data collection consists in individuate appropriate queries 

to extract bibliographic data from those sources. 

2) Pre-processing. The raw data are cleaned and, if needed, further selected (for instance, only 

publications cited over a certain threshold are retained). This step is crucial since the goodness of 

the mapping depends on the quality of the underlying data. 

3) Network extraction. Depending on the chosen unit of analysis (publication, term, author, journal, 

institution, etc.) and the kind of analysis (direct linkage, co-citation, bibliographic coupling, co-

word analysis, etc.) the corresponding network is extracted from the data.  

4) Normalization. Usually, the relatedness scores (e.g., the raw number of co-citations between 

publications) are not directly used to generate the science maps because experience and 
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experimentation have shown that they can create distortions due to the different sizes of the items 

(Boyack and Klavans 2019). It is thus a common practice to perform normalization on the raw 

values using similarity measures. 

5) Visualization. There are different options to visualize the network. In graph-based visualizations, 

graph drawing algorithms are used. In distance-based visualizations, dimensionality reduction 

techniques are used to plot the data into a two-dimensional (or, more rarely, three-dimensional) 

layout, so that the distances between the points on the map reflect the similarity of the units of 

analysis.  

6) Enrichment. The elements of the map can be enriched to provide more information. Frequently, 

clustering techniques are used to find groups of similar nodes and colors are used to distinguish 

nodes belonging to different clusters.  

7) Interpretation. The science map is interpreted, usually with the help of experts in the mapped 

domain. The visual nature of the map enables the recognition of patterns and structures, which 

can provide an answer to research questions or help in addressing science policy issues.  

In the next sections, we focus on the first three steps of science mapping: data collection, data pre-

processing, and network extraction. Based on the type of network extracted, different types of science 

maps can be generated. In section 4, each type is examined in detail. Note that citation-based maps will 

allow us to describe the steps of normalization, visualization, and enrichment that recur also in the 

generation of other types of science maps. Section 5 is an excursus on how time can be represented in 

science maps, whereas section 6 discusses the last phase of science mapping, i.e., the interpretation. 

3.1 Data sources for science mapping 
Science mapping is a methodology that can be applied, in principle, to a variety of data regarding the 

scientific enterprise. In practice, however, the main data sources for science mapping are bibliographic 

databases. Other types of data must be collected by the analysts. 

Bibliographic databases are large multi-disciplinary databases that collect the meta-data of academic 

publications (authors, title, abstract, keywords, affiliation of the authors, publication year, etc.), along 

with their citations (hence their name of “citation indexes”). The main citation indexes are Clarivate’s 

Web of Science (WoS), Elseviers’ Scopus, and Google Scholar.   

Recently, two open bibliographic databases have joined Google Scholar: Microsoft Academic (launched in 

2006, it stopped being updated in 2012 and was relaunched in 2016)[5] and Dimensions (launched in 

2019)[6]. Moreover, in 2017 Crossref, a not-for-profit organization of publishers, has made its citation data 

openly available. Comparisons between the coverage of these new databases and the coverage of 

traditional databases are currently being undertaken by the bibliometric community (Visser, van Eck, 

and Waltman 2020; Harzing 2019).  

In addition to multi-disciplinary databases, there are also specialized databases, focusing on specific 

disciplines (e.g., PubMed for medicine, and PsycInfo for psychology). Patent data can be retrieved from 

specific data sources such as the United States Patent and Trademark Office[7], Google patents[8], and the 

database of the European Patent Office.[9]  

More detailed information about these databases can be found in the dedicated entry of ISKO 

encyclopedia (https://www.isko.org/cyclo/citation). 

3.2 Field delineation 
To produce a science map, we first need to individuate a set of publications that reasonably represent the 

target of the mapping. In bibliometric, this step is often called “field delineation”. Field delineation is the 

collection of documents that are both relevant and specific for the purpose of the mapping (Zhao 2009).  

At this point, an important difference can be made between global and local maps of science. Global maps 

of science (also known as “atlases of science”) aim to map the whole science (Börner et al. 2012; Boyack, 

Klavans, and Börner 2005; Boyack and Klavans 2019). To produce such maps, the main criteria is to 

maximize coverage. Local maps of science, on the other hand, focus on a limited portion of the scientific 

literature (Rafols, Porter, and Leydesdorff 2010). Such a portion can be a scientific field, a specialty, a 

https://www.isko.org/cyclo/citation
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research topic, or the publication output of a university. In all these cases, the accurate selection of the 

target publications is a crucial step since an unrepresentative or wrong set of publications will produce a 

misrepresentation of the target.  

Following Zitt and colleagues, we distinguish three general strategies for field delineation: A) rely on 

external formalized resources, such as ready-made science classifications; B) create ad hoc information 

retrieval search; C) use network exploration resources (i.e., science mapping itself) (Laurens, Zitt, and 

Bassecoulard 2010; Zitt et al. 2019; Zitt and Bassecoulard 2006). 

The first strategy is based on ready-made classifications, such as the ones used by Web of Science or 

Scopus to classify their records. Other classificatory schemes are produced in institutional settings (e.g., 

by research evaluation agencies or by research councils) and, clearly, by libraries. Note that sometimes 

the journal, rather than the individual article, is the unit of classification, with the articles inheriting the 

category of the journals where they are published. Following this first strategy, representative literature 

is retrieved by using these ready-made classifications at different levels of granularity (scientific field, 

specialty, sub-area, etc.). An evident shortcoming of this strategy is that it heavily relies on the goodness 

of the chosen classifications. 

The second strategy is based on creating, usually in close interaction with domain experts, ad hoc 

searches to query the databases. These queries can potentially include any searchable part of the 

bibliographic records: words in titles and abstracts, keywords, authors, affiliations, journals, dates, 

references, and so on. A typical query combines a search for specialized journals and a lexical search in 

complement. Note that the starting queries can be refined, for instance by citation analysis. Once a core 

set of publications, journals or even key authors is determined, new records are added by following the 

citations (articles citing the core set) or the references (articles cited by the core set), in an iterative 

process. 

The third strategy relies on science mapping methods and, in particular, onclustering. The basic idea is 

to use bottom-up clustering techniques that group publications based not on a classificatory scheme, but 

on their reciprocal relations (for instance, their co-citation strength, see Section 4.1.2: The links in 

citation-based maps). Techniques of network analysis, as well as experts’ knowledge, are then used to 

select the relevant clusters. By iterating this procedure, an increasingly precise field delineation is 

obtained.  

All these approaches involve the double risk of losing relevant publications and introducing noise (not 

relevant publications) in the dataset  (Zitt et al. 2019). In fact, there is no fit-to-all solution to field 

delineation. From an operative point of view, a good strategy is to combine recursively the different 

approaches, checking each time the set of retrieved publications and refining accordingly the queries (an 

example of this approach can be found in Chen 2017).  

However, it is important to remember that, from a theoretical point of view, there is no ground truth basis 

for defining research domains in a “purely objective” way. As the ongoing discussion about research areas 

definition and classification shows, research classification should be conceived as a social process 

involving multiple actors, from researchers to journals to research evaluation agencies, rather than as a 

static photograph of the structure of science. Classificatory schemes as well as the boundaries between 

areas are constantly negotiated and reshaped under the pressure of different social systems and 

infrastructures (Sugimoto and Weingart 2015). As these systems serve different purposes and are 

governed by different logics, frictions and inconsistences between the classificatory schemes they produce 

are to be expected (Åström, Hammarfelt, and Hansson 2017). For instance, an article can be classified as 

belonging to research area X based on the institutional affiliation of its authors and to research area Y 

based on the topic of the journal where it is published. Even if field delineation is the first step in many 

bibliometric analyses, including science mapping, its theoretical stakes should not be underestimated. 

3.3 Data cleaning and pre-processing 
When the field delineation is completed and the datasets are retrieved from bibliographic databases, the 

data consist basically of large tables, in which each row corresponds to a publication and the columns 

represent the available meta-data of that publication (e.g., title, authors, abstract, publication year, 



7 

 

journal, cited references, etc.).Retrieved data usually contain errors, for instance, misspelling of author 

names, errors in the cited references, journal titles, and so on. Cleaning the data is a pivotal step in the 

science mapping workflow because the quality of the results depends on the quality of the data. This task, 

however, can be highly time-consuming and can present difficult issues, such as the disambiguation of 

authors with homonym names and the merging of authors with multiple names (Strotmann and Zhao 

2012). 

After the cleaning, the data can be pre-processed. They can be divided into different time sub-periods to 

carry out longitudinal studies (see Section 5: The representation of time in science mapping), or a portion 

of the retrieved data can be furtherly selected based on some measure, such as the most cited articles, 

the most productive authors, or the journals with the highest performance metrics. 

3.4 Network extraction 
In general, a network is a structure made of nodes (also called vertices) and links (also called edges). It 

can be represented as a graph or as a matrix. Networks are valuable tools to represent and study a great 

variety of natural and social phenomena, from the lineage of a family to patterns of contracts among 

firms, to the spreading of a virus (Barabási 2014).  

In science mapping, we are interested in those networks that can capture the structure of science at 

different levels and from different points of view. In fact, these networks are the basic structure on which 

science maps are built. 

From the same set of bibliographic records, it is possible to generate different networks, depending on the 

type of nodes and links we decide to focus on. The nodes will represent the unit of analysis of the final 

map, whereas the links the type of relationship displayed.  

4. Types of science maps 
Science maps can be classified into different types depending on the kind of data, and hence the kind of 

network, they are based on. In principle, any feature of the scientific enterprise that can be represented 

in relational terms, i.e., as a network of nodes and links, can be used to generate a science map. In 

citation-based maps, the units of analysis (the nodes) are publications or aggregates of publications 

(e.g., journals or authors), and the relationships between them (the links) are citations or association 

measures based on citations (bibliographic coupling and co-citation). In term-based maps, the units of 

analysis are textual items (themes, keywords or terms) and the relationships are co-occurrence 

frequencies (e.g., the number of times two keywords are used together in a set of publications). In co-

authorship maps, the units are the authors and the links are the number of co-authored publications. In 

interlocking editorship maps, the units are the journals and the links are the number of persons who 

are shared between the editorial boards of two journals). In addition to these, there are also science 

maps based on patents data and geographic maps of science, which will be the topic of Section 4.4.  

4.1 Citation-based maps 

4.1.1 The nodes in citation-based maps: publications and aggregates of publications 
In the most basic citation-based map, the nodes represent individual publications and the links the 

citations (reference-links) among them. An example of citation network is provided in Fig. 1, where it is 

visualized as a directed network in which nodes represent publications and arrows the reference-links 

(citations) between them. Some publications are both citing and cited (e.g., publication a), some 

publications are only cited (e.g., publication f), and some publications cite without being cited (e.g., 

publication e). 
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Figure 1. Example of Citation network. Nodes represent document and arrows the citations 

between them 

The same information can be represented as an adjacency matrix, whose elements indicate whether pairs 

of nodes are connected (“adjacent”) in the network or not. When the publication in the row cites a 

publication in the column, the corresponding element in the matrix is 1, 0 otherwise.[10] 
 

a b c d e f g h 

a 0 1 1 1 0 0 0 0 

b 0 0 1 0 0 0 0 1 

c 0 0 0 0 0 1 1 0 

d 0 0 0 1 0 0 0 0 

e 1 0 1 0 0 0 1 0 

f 0 0 0 0 0 0 0 0 

g 0 0 0 0 0 0 0 0 

h 0 0 0 0 0 0 0 0 

 

Since publications are provided with meta-data, such as their authors or the journals in which they are 

published, it is possible to build aggregates of publications sharing the same meta-data (Radicchi, 

Fortunato, and Vespignani 2012). By aggregating publications at a higher and higher level, we can reach 

higher units of the analysis and networks based on new types of nodes.  

To understand this mechanism, we show how to build a journal citation network (Leydesdorff 2004; 

McCain 1991) starting from the document citation network of Fig. 1. We start by coloring the nodes 

according to the journals where they are published, and the citation links according to the journal to 

which they point (Fig. 2).  
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Figure 2. Citation network with document-nodes colored based on the journal they were published 

in. The color of the arrows corresponds to the color of the citing journal.  

The journal citation network is obtained by substituting each article with its journal of publication and 

then using the journals as nodes of the network. A link between two journals is drawn when they 

exchange at least one citation.  Note that in this new network, it is possible to provide links with weight, 

that is the number of citations that each journal receives from other journals (or from itself). In the 

previous network, there was not a proper weight but only an on/off relationship (presence of a reference-

link or not). There are also some loops, produced by articles citing articles published in the same journal 

(these loops correspond to journal self-citations). The resulting journal citation network is shown in Fig. 

3. 
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Figure 3. Example of journal citation network. Out-citations, in-citations, and self-citations 

between journals are colored, respectively, in green, orange, and violet. 

By the same aggregation process, we can construct author citation networks (e.g., McCain 1990; Radicchi 

et al. 2009), or reach higher units of analysis, such as institutions and even countries (e.g., Glänzel 2001). 

4.1.2 The links in citation-based maps: direct citations, bibliographic coupling, and co-

citations 
Until now, we considered only citations as links in the citation network. The presence of a reference-link 

between two publications usually attests that they are somehow associated, for instance, that they share 

the same topic or research method (see Section 7.3: The meaning of citations). Maps in which the links 

are direct citations are called “direct-linkage” or “cross-citations” or “inter-citation” maps (Waltman and 

van Eck 2012). In science mapping, however, there are two common other techniques used to measure 

the relatedness or strength of association of publications (or their aggregates): bibliographic coupling 

(Kessler 1963) and co-citation (Small 1973; Marshakova 1973). 

In bibliographic coupling, a link between two publications is established when they share at least one 

publication in their respective bibliographies, i.e. when they have at least one reference in common. The 

weight of the link is proportional to the number of shared references. Co-citation is, in a certain sense, 

the reverse of bibliographic coupling. In a co-citation network, a link is drawn between two publications 

if they are cited together at least by a third publication, and the weight of the link (the so-called co-citation 

strength) is proportional to the number of common citations they gather (i.e., the number of co-citations).  

Fig. 4 shows the bibliographic coupling network generated from the citation network of Fig. 1. Note that 

publication f has no link with other publications because, in our example, it did not have any cited 

reference (i.e., no out-going link). 
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Figure 4.  Bibliographic coupling network generated based on the citation network in Fig. 1. Nodes are 

publications, links show bibliographic coupling between publications. Note that publication f has no 

bibliographic coupling links with other publications in the network 

Fig. 5 shows the co-citation network. Analogously, publication e has no link with other publications 

because it had no citations (i.e., no incoming link). 

 

Figure 5. Co-citation network generated based on the citation network in Fig. 1. Nodes are 

publications, links show co-citation between publications. Note that publication e has no co-

citation links with other publications in the network. 
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Note that citations are directed links because we can distinguish between a sender and a receiver of the 

citation. In network theory terminology, they are called “arcs” (Wasserman and Faust 1994). In contrast, 

bibliographic coupling and co-citation links are un-directed links because bibliographic couplings and co-

citations are symmetrical. In network theory terminology, they are called “edges” (Wasserman and Faust 

1994). 

Starting from a matrix whose rows are the citing publications and columns are the cited publications, it 

is possible to derive by matrix algebra operations the two co-occurrence matrices representing the 

bibliographic coupling network or the co-citation network (Van Raan 2019). 

Note that direct citations, bibliographic coupling, and co-citation analysis can be applied not only to single 

publications, but also to aggregates of publications. For instance, if authors are used as units in co-citation 

analysis, we have Author Co-Citation Analysis (e.g., White and McCain 1998; Kreuzman 2001), if journals 

are used as units, we have Journal Co-Citation Analysis (e.g., McCain 1991). By combining in this way 

methods and units of analysis, several types of bibliometric networks can be generated (Waltman and 

van Eck 2014). Fig. 6 shows an example of co-citation map using individual publications as units of 

analysis.

 

Figure 6. Example of co-citation map. The field mapped is analytic philosophy. The nodes 

represent documents. A link is drawn between two nodes when they are co-cited. Size of the nodes 

is proportional to the number of citations gathered by the document; thickness of the links is 

proportional to the co-citation strength; nodes’ colors indicate the cluster to which they are 

attributed by the clustering algorithm. Nodes are positioned according to their co-citation 

strength, so that the more frequently they are cited together, the closer they appear on the map.  The 

visualization was produced with VOSviewer. 

4.1.3 Normalization 
Usually, the raw frequencies of citations, bibliographic couplings or co-citations are not directly used as 

input of the visualization process that leads to the final form of the science map. This is because the raw 

frequencies do not properly reflect the similarity between the items (van Eck and Waltman 2009). To 

understand why, suppose that department AA and department BB publish comparable articles, but 

department AA, having more researchers than department BB, publishes 10 times more articles. Other 

things being equal, one would expect that the articles from department AA will receive in total about ten 
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times as many citations as the articles from department BB and thus to have about ten times as many 

co-citations with other departments in the same discipline as department BB. However, the fact that 

department AA has more co-citations with other departments than department BB does not indicate that 

it is more similar to other departments than department BB. It only shows that department AA publishes 

more articles than journal BB because it is bigger. To correct such a distortion due to the different size of 

the units of analysis, we need to transform the raw co-citation scores, adjusting them by some stable 

quantity, an operation called “normalization” (van Eck et al. 2010).  

In science mapping, similarity measures are used to perform such a normalization. Following Ahlgren 

and colleagues, we distinguish two main approaches to calculating these similarities: the local or direct 

and the global or indirect (Ahlgren, Jarneving, and Rousseau 2003). In the former approach, the focus is 

on the co-occurrence frequencies of the items, that are then adjusted for different quantities. Examples 

include the cosine (the most popular one), the association strength (used in VOSviewer, see the Appendix), 

the inclusion index, and the Jaccard index (van Eck and Waltman 2009). In the latter approach, the focus 

is on the way two items are related to all the other items in the dataset under study. This means that 

what is compared to obtain the similarity between two items are their entire profiles, i.e., the entire rows 

(or columns) of the co-occurrence matrix, and not their simple co-occurrence frequency. Pearson’s 

correlation coefficient (r), the cosine[11], and the Chi-Squared distance are examples of indirect similarity 

measure based on the global approach (McCain 1990; White and Griffith 1981). However, the reliability 

of Pearson’s r as a similarity measure has been contested (Ahlgren, Jarneving, and Rousseau 2003; van 

Eck and Waltman 2008).  
In general, there is no agreement on what the best normalization procedure is and on what similarity 

measures should be used in science mapping (Boyack and Klavans 2019; Leydesdorff 2008; Van Raan 

2019). In the scientometric community, the discussion still goes on after 35 years (e.g., Zhou and 

Leydesdorff 2016). However, it is important to remember that, depending on the chosen procedure, the 

resulting science maps can be rather different (Boyack, Klavans, and Börner 2005). 

4.1.4 Visualization 
Visualization is the step in the science mapping process in which the information contained in the 

network is displayed in a visual layout comprehensible to human understanding. Following Waltman and 

Van Eck (2014), we distinguish two basic types of visualizations: graph-based and distance-based. They 

are not the only approaches available but are probably the most common in science mapping.[12] 

In graph-based visualization, the network is visualized as a graph made of nodes and edges (Fig. 1, 2, 3, 

4, and 5 are examples of graph-based visualizations). The edges (links between nodes) are displayed to 

indicate the relatedness of nodes. The most common technique for creating such graphs are force-directed 

graph drawing algorithms, such as the Kamada and Kawai and the Fruchterman and Reingold (Chen 

2013).  

To understand the underlying mechanism of these algorithms, imagine the network as a physical system, 

in which the nodes are little balls electrically charged and the links are springs that connect them. The 

electric charge creates a repulsive force between the balls, counterbalanced by the attractive force 

generated by the springs. The algorithms basically simulate the network as such a physical system made 

of balls and springs and apply two opposite forces to the nodes, one attractive (proportional to the weight 

of the link between two nodes) and the other repulsive, until the system comes to a state of mechanical 

equilibrium. The final layout is the one corresponding to such an equilibrium state. Note that several 

configurations are possible since usually there is no unique equilibrium state. 

Force-directed graph drawing algorithms are implemented in software for network analysis and 

visualization, such as Gephi[13] and Pajek[14]. An example of a graph-based science map created with Pajek 

and visualized with the Kamada and Kawai algorithm can be found in (Leydesdorff and Rafols 2009, fig. 

4). An example of a graph-based science map created with Gephi can be found in (Weingart 2015, fig. 4) 

The other visualization approach is distance-based. In distance-based visualizations, the distance of 

nodes on the map reflects their similarity, so that similar nodes are placed closer and dissimilar nodes 

far away. Note that in graph-based visualization, on the other hand, the position of the nodes is not 
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directly related to their similarities, but it is a product of the “pull and push” mechanism of the drawing 

algorithm. In distance-based visualizations, links can be shown or not. 

Distance-based visualizations are conceptually closer to geographic maps than graph-based 

visualizations. Geographic maps represent relationships in space by placing objects that are close in the 

physical space near on the maps and objects that are distant in the physical space further apart on the 

map. Distance-based maps have the same goals, but instead of being based on physical distances, they 

are based on similarities between objects.  

To produce a distance-based visualization, therefore, the similarities between the nodes must be 

transformed into distances.[15] The distance matrix that is thus obtained is conceptually analogous to the 

table reporting the distances between pairs of cities in a geographic atlas. The task consists of 

reconstructing from the relative distances the positions of the items on the map, i.e., in finding the 

coordinates of the items in a two-dimensional space starting from their reciprocal distances. 

To fulfill this task several statistical techniques have been developed. The most important belong to the 

family of multi-dimensional scaling (MDS) methods (Borg and Groenen 2010). They aim to find the 

coordinates of the points in a lower-dimensional space (usually, a plane) such that the distances of the 

points on the lower-dimensional space reflect as accurately as possible the original distances of the points. 

The average difference between the distances on the map and the original distances tells us how much 

the map distorts the original configuration. The amount of distortion is used to calculate the stress of the 

map. The various algorithms for MDS essentially adjust the positions of the points until a minimum value 

of stress is reached.[16]  

It is important to underlie that distance-based visualizations can be rotated, flipped, and mirrored. Since 

the output of MDS is not a set of fixed coordinates but a set of relative distances between the points, any 

geometrical transformations that leave them unaltered can be applied. An example of distance-based 

visualization can be found in (White and McCain 1998, fig. 2). 

When interpreting the output of MDS, that is usually a two-dimensional map, is it very important to be 

aware that the algorithms can generate visual artifacts, i.e., structures or patterns that are visible on the 

map but that are not present in the original data. For instance, Van Eck and co-authors (2010) note that 

variants of MDS tend to produce quasi-circular layout when used on big matrices and that they tend to 

locate items with a high number of co-occurrences toward the center of the map.  

However, the trickiest artifacts have to do with the issue of dimensionality reduction, i.e. with the very 

core of MDS. Imagine that we have four points in a 3-dimensional space, each one located at the same 

distance from the others, like the vertices of a three-sided pyramid, all sides of equal length (Borg and 

Groenen 2010, chap. 13.3). When we try to place the four points in a two-dimensional plane, we can 

respect the equal distance only for 3 points out of four. The fourth point will lie almost at the center of a 

bi-dimensional triangle (as if we were looking at the pyramid from the above) so that its distance from 

the other points will always be shorter than the distances between the three points themselves.[17] Without 

knowing the original three-dimensional structure and by looking only at the two-dimensional map, we 

would wrongly conclude that the fourth point is closer to the other three. The wrong conclusion raises 

from the fact that the two-dimensional map necessarily distorts the three-dimensional structure because 

it suppresses the third dimension, which however carries essential information (the equal distance 

between the fourth point and the other three points). By losing such information, it introduces an artifact. 

Interestingly, MDS can generate also the opposite artifact: points that are placed far away in the map 

can be however connected by “tunnels” in hidden dimensions (Leydesdorff and Rafols 2009). Imagine a 

paper sheet with two distant points on it: if we bend the sheet, we can make the two points very close in 

the third dimension, realizing a “tunnel” between them. If we consider only their distance on the two 

dimensions of the sheet, however, they will appear to be distant. 

In sum, dimensionality reduction techniques do allow us to obtain significant insights into the structure 

of bibliometric networks because they reveal the main features of such a structure. At the same time, 

since those features may lie in more than two dimensions, one must be aware of the inevitable distortions 

introduced by the dimensionality reduction itself. 
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4.1.5 Enriching the map 
With the visualization of the network, we reach the basic form of the science map. At this point, the 

interpretation of the map can already begin. However, it is common to enrich the basic form by displaying 

further information on it. 

A first option is to use the size of the nodes and the width of the links to convey their properties. In a co-

citation map, for instance, the size of the nodes can be used to represent the number of citations collected 

by the units of analysis (publication, journal, author, etc.) and the links can be drawn thicker or darker 

to express the strength of the connections (e.g., number of co-citations between two nodes). Alternatively, 

the size of the nodes can be used to represent the centrality of the nodes, using one of the different notions 

of centrality defined in network theory. The most common include degree centrality, betweenness 

centrality, closeness centrality, and eigenvector centrality (Wasserman and Faust 1994). The degree 

centrality of a node is proportional to the number of its links so that it is higher for highly connected 

nodes. Betweenness is a measure of brokerage of gatekeeping, that is of how much a node is an “obligatory 

passage” in the network. In science mapping, it is sometimes used to measure interdisciplinarity 

(Leydesdorff 2007). Closeness measures how close a node is to the other nodes in the network. Nodes with 

high closeness are the ones that can be reached with few steps[18] from any other node in the network. 

Lastly, eigenvector centrality is a measure of the influence of a node in the network. The underlying idea 

of eigenvector centrality is that the influence of a node depends on the influence of the nodes to which it 

is connected, so that a node connected with other central nodes increases its centrality.  

A further option to enrich the map is to use colors to distinguish visually different clusters of nodes. 

Networks typically display an internal organization in clusters or communities, that is groups of highly 

interconnected nodes (Radicchi, Fortunato, and Vespignani 2012). In distance-based visualizations, 

clusters result as sets of close points, separated from other clusters by blank space. The techniques of 

cluster analysis can be used to detect such communities. One common method is hierarchical 

agglomerative clustering (Chen 2013). All the units of the map (the nodes) begin alone in groups of size 

one, then, at each iteration of the clustering algorithm, similar groups are merged, until all the nodes 

belong to one super-cluster. A resolution parameter controls the granularity of the clustering, i.e., the 

size of the communities. Different agglomerative methods are characterized by the definition of distance 

between clusters they use and by the metric employed to calculate the distances (there are lots of options 

besides the familiar Euclidian distance). In single-linkage clustering, the distance between two clusters 

is set equal to the distance between their closest nodes. In complete-linkage clustering, on the other hand, 

it is equal to the distance between the most distant nodes in the two clusters. Lastly, in centroid linkage 

clustering, it is equal to the distance between the “centers” or average points (centroids) of the clusters. 

These clustering procedures, however, are only a small fraction of the available techniques and 

algorithms for clustering and community detection. In the last years, the techniques based on modularity, 

originally developed in physics, are becoming increasingly popular (Thijs 2019).[19]  

Clusters can be labelled automatically by extracting terms from the titles, abstracts, and keywords of the 

publications in the clusters (Chen 2006) (see Section 4.2.2: Co-word analysis based on automatically 

extracted terms). Each cluster is thus provided with a word-profile and its most relevant words can be 

superimposed on the map to facilitate the interpretation of the clusters (Chen, Ibekwe-SanJuan, and Hou 

2010). 

A last method for enriching the science map is to use the overlay (Rafols, Porter, and Leydesdorff 2010). 

In science overlay maps, the results of the mapping are laid over a background, that can be, for instance, 

a global map of science. The background serves as a reference system that facilitates the interpretation 

of the results. For instance, the scientific output of a university can be overlaid on a global map of science 

to get an insight into the scientific coverage of the university or its impact (see Section 8: Science maps 

and science policy).  

4.2 Term-based maps 
Term-based science maps are used to extract and visualize the intellectual content of a corpus of 

publications based on the analysis of the terms associated with those publications (Börner, Chen, and 

Boyack 2005). These terms can be the keywords or descriptors of the publications, or they can be extracted 
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automatically from titles and abstracts or even the full texts of articles. Term-based science maps allow 

to explore at a fine-grained level the intellectual content of publications since titles, abstracts, and 

keywords are meant to report the main topics, concepts, and results of scientific articles (He 1999; Van 

Raan and Tijssen 1993). 

An important advantage of term-based mapping compared to citation-based mapping is that it applies to 

fields characterized by the scarce presence of citations, such as applied research and technology (Callon 

et al. 1983).  

Depending on the method by which the terms characterizing a publication are extracted, we can 

distinguish two types of term-based maps. Classic co-word analysis, developed by Callon and colleagues, 

is based on human-assigned keywords. Natural Language Processing (NLP)-based co-word analysis, on 

the other hand, is based on terms that are automatically extracted from the texts by natural language 

processing techniques.  

Independently of the method, however, co-word analysis rests on some assumptions that have been 

contested. The main assumption is that words and terms have a stable meaning across fields and over 

time so that they can be used as reliable proxies of scientific concepts and ideas (Leydesdorff 1997). 

However, this assumption may be false, and historians of science have indeed shown that the 

phenomenon of meaning-shift indeed occurs in science (Kuhn 2000). A possible reply to this criticism is 

that words in co-word analysis are not used as carriers of meaning but as simple links between texts 

(Courtial 1998). From an operative point of view, meaning shift can be avoided by restricting the time 

scope of the analysis to a relatively short period and semantically homogeneous areas (Mutschke and 

Quan-Haase 2001). 

4.2.1 Classic co-word analysis and the strategic diagrams 
The first term-based maps were developed in the 1980s by a team of sociologists of science based at the 

Centre de Sociologie de l’Innovation at the École des Mines in Paris. They were designed to study the 

interaction between scientific knowledge and technological innovation, and, more generally, the relations 

between science and society (Callon et al. 1983). It is important to point out that the theoretical 

foundation of co-word analysis developed by Callon and others lies in the tradition of the Science and 

Technology Studies, and in particular in the Actor-Network Theory developed by Bruno Latour and others 

(Callon, Law, and Rip 1998; Latour 2003). However, as a mapping method, co-word analysis can be 

employed without endorsing such a theoretical framework.  

Callon and colleagues focused in particular on the descriptors employed by documentation services to 

index the content of scientific and technological publications (Callon, Courtial, and Laville 1991). The 

method of co-word analysis, then, consists first in collecting all the descriptors of the target documents. 

After a process of cleaning, in which variants and synonyms are merged and not relevant descriptors 

removed (see Section 3.3: Data cleaning and pre-processing), the co-occurrence frequency of each pair of 

descriptors is calculated. Two descriptors co-occur if they are used together in the description of a single 

document. A co-occurrence matrix reporting the co-occurrence frequencies of each pair of descriptors is 

thus produced, and the raw values are then normalized (see Section 4.1.3: Normalization).  

In the classic co-word methodology, as described by Callon and colleagues, the visualizations produced by 

co-word analysis are “strategic diagrams” (sometimes called “cognitive maps”), which are a special kind 

of science map that should not be confused with distance-based visualizations. To create a strategic 

diagram, clusters of frequently co-occurring descriptors or keywords are created by some clustering 

technique. Such clusters are called “themes” and are described by two characteristics: centrality and 

density. The centrality of a cluster is given by its external link, i.e., the number of links it has with other 

clusters. The density of a cluster is defined as the proportion between the links that are present in the 

keywords cluster and the number of possible links. Each theme is thus defined by two variables, centrality 

and density, that constitute its coordinates in the strategic diagram (He 1999). Then, the strategic 

diagram is divided into four quadrants (Mutschke and Quan-Haase 2001). The themes in the first 

quadrant are characterized by high density and high centrality and constitute the mainstream of the 

scientific field. The themes in the second quadrant, characterized by high centrality and low density, are 

unstructured themes that may be described as “bandwagon” themes. The themes in the third quadrant 
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are characterized by high density and low centrality: they have a well-developed maturity but lacks ties 

to other themes in the field. They are the “ivory tower” themes. Lastly, the themes in the fourth quadrant, 

characterized by low centrality and low density, comprise both topics that are fading away and new topics 

that are emerging. In longitudinal analysis, the trajectory of a theme can be followed through the 

quadrants of the strategic diagram. An example of a strategic diagram can be found in (Cobo et al. 2011a, 

fig. 6). 

The method of co-word analysis based on descriptors or other kinds of keywords may suffer from the so-

called “indexer effect” (Law and Whittaker 1992). Indexing may reflect the prejudices or points of view of 

the human indexers and may be inconsistent between different indexers or change over time. The indexer 

effect is a problem common to all human-based classifications. The study of research classification 

systems reveals that they cannot be taken at face value as they are the result of complex disciplinary 

negotiations in which both intellectual and academic interests are involved.[20]  

4.2.2 Co-word analysis based on automatically extracted terms 
The indexer effect can be partially avoided by recurring to the automatic extraction of terms from titles, 

abstracts, or even the full texts of articles. However, even if this method does not rely on the choices of 

an indexer, it is not free of human intervention. In fact, it shifts from the choices of the indexer to the 

choices of the authors of scientific publications, who decide what words should be included in the titles 

and abstracts. The issue of meaning shift, therefore, is not solved. 

Natural Language Processing (NLP) techniques are used to extract terms from the textual data (Taheo 

2018). In general, terms are “n-grams”, i.e., sequences of n items (usually words). A special category of n-

grams are noun-phrases, i.e., sequences that consist exclusively of nouns and adjectives and that end 

with a noun (e.g., “text mining”, “network analysis”). Algorithms for term detection usually comprise 

several steps: first, the text is split up into sentences and sentences split up into single words 

(tokenization), then so-called stop-words are removed (words such as “and”, “or”, etc.), and the remaining 

words are assigned to a part of speech, such as verb, noun, adjective, etc. (part-of-speech tagging). Noun-

phrases are then identified, and, lastly, variants (e.g., plurals) are merged into one form. Once the list of 

noun-phrases is obtained, a fraction of them is retained. A common strategy is to select only the most 

relevant noun-phrases. It is important not to confuse relevance with frequency: frequency is a brute 

measure of the occurrences of a term, whereas relevance can be conceived as a measure of how specific a 

term is (Sparck Jones 1972). To understand the difference between the two, take a term such as “method”. 

In the scientific literature, it is denoted by a high frequency; however, it is scarcely relevant to 

characterize a scientific article, since is occurs probably in most scientific articles. Knowing that an article 

contains the term “method” is a very thin indication of its content. Because of its being too generic, 

“methods” therefore has a low relevance. A term such as “cardiovascular”, on the other hand, is less 

frequent than “method” but conveys more information about the specific topic of an article. Therefore, it 

has a high relevance. Relevance scores serve to discriminate generic from specific terms. A common metric 

used in text mining to calculate relevance scores is TF-IDF, short for “term frequency-inverse document 

frequency” (Salton and McGill 1983). The underlying idea is that the relevance of a term is proportional 

to its occurrences and inversely proportional to the number of documents in which it occurs. Terms that 

occur very frequently in a few documents will score higher on TF-IDF than terms that occur very 

frequently in most of the documents. From this basic idea, more refined metrics to calculate the TF-IDF 

have been developed (Thijs 2019).  

After the selection step, the number of documents in which each pair of terms appear is calculated and 

the corresponding co-occurrence matrix generated. The process is then the same as citation-based maps. 

Usually, the raw co-occurrence frequencies are normalized (see Section 4.1.3: Normalization), and then 

the term map is obtained in the form of a distance- or graph-based visualization (see Section 4.1.4: 

Visualization). Further techniques, such as clustering, can be applied to enrich the map (see Section 4.1.5: 

Enriching the map). Note that term-based maps thus obtained are different from the strategic diagrams 

produced by classic co-word methodology. They represent the topics recurring in the set of publications 

analyzed, rather than the properties of their themes. 

An example of term-based map is shown in Fig. 7. 
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Figure 7. Example of term-based map. The field mapped is human geography. The nodes represent 

the most occurring terms in the field. Size of the nodes is proportional to the term’s occurrence. A 

link is drawn between two terms if they co-occur in the same title or abstract. The thickness of the 

link between two nodes is proportional to the number of co-occurrences of the terms. The color of 

the nodes corresponds to the cluster they are attributed to by the clustering algorithm. Nodes are 

positioned in the map based on their co-occurrences, so that terms frequently occurring together 

are closer on the map. The visualization was produced with VOSviewer. 

4.3 Other network-based maps 
Besides citation networks and term networks, several other networks can be used to generate science 

maps. In this section, we briefly present co-authorship networks and interlocking editorship networks. 

4.3.1 Co-authorship networks 
Co-authorship networks are science maps in which the nodes represent authors and the links the relation 

of co-authorship, i.e., the number of articles authored together by each pair of authors (Newman 2001). 

Since co-authorship usually implies a strong relationship of collaboration (Katz and Martin 1997; Liu et 

al. 2005), co-authorship networks are used to reconstruct and investigate the social networks of 

researchers, the so-called “invisible colleges” (Crane 1972). It must be remembered, however, that co-

authorship is only a proxy of scientific collaboration and that some type of collaborative work occurring 

in research (e.g., the work of laboratory technicians) do not lead automatically to the authorship (Laudel 

2002). More generally, the practice of authorship and the requirements for being awarded authorship 

varies in different areas (Larivière et al. 2016). Further issues that complicate the interpretation of co-

authorship data are “ghost” and “honorary” authorship, as well as the phenomenon of “hyper-authorship” 

(Cronin 2001). Especially in bio-medical fields, there is evidence that sometimes scientists are included 

as co-authors of articles even if they did not contribute to the research process (“gift” or “honorary” 

authorship), while others are denied legitimately earned authorship (“ghost” authorship) (Wislar et al. 

2011). Honorary authorship can artificially inflate the relevance of some researchers in the co-authorship 

network, whereas the ghost authors remain simply invisible to standard co-authorship analysis. 

Furthermore, in some areas such as high-energy physics and again biomedicine, the last years have 

witnessed massive levels of co-authorship. Cronin has coined the term “hyper-authorship” to describe 

such a growing phenomenon of publications with hundreds, if not thousands of co-authors. For instance, 

in 2015, a publication in high-energy physics counted 5000 co-authors. Hyper-authorship does not only 

challenge the standard conception of authorship but also raises several issues about responsibility and 
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accountability, which have been widely discussed by editors of biomedical journals (see e.g., ICMJE 2019). 

The presence of hyper-authorship is an important factor that must be considered when a field is 

investigated by of co-authorship networks.     

In sum, co-authorship networks are useful tools to investigate scientific collaboration, but, since they are 

based on formal authorship, they should be interpreted in the light of detailed knowledge of the 

authorship practices of the area under investigation, taking into consideration also possible distortions 

due to ghost, honorary and hyper-authorship. 

4.3.2 Interlocking editorship networks 
Interlocking editorship is a method to map relationships between journals. Two journals are connected 

in the interlocking editorship network when they have at least one member of the editorial board in 

common (Baccini and Barabesi 2010). The editors of a scientific journal play a relevant role as 

“gatekeepers” of scientific disciplines since they manage the peer review process and make the final 

decision on the publication of articles (Crane 1967). Therefore, interlocking editorship networks can be 

used to reveal groups of journals whose editors endorse similar policies. Interlocking editorship networks 

seem to be highly correlated with journal co-citation networks, showing that similar editorial policies may 

reflect similar intellectual approaches to the discipline (Baccini et al. 2019). 

4.4 Other types of science maps 
In a broader sense of the term, we can include into the category of science maps also other visual 

representations of science that are not directly based on networks of scientific publications or that 

integrate network data with other types of data. Maps based on the analysis of patents belong to the first 

category and geographic maps of science to the second. 

4.4.1 Maps based on patents data 
Several maps can be generated from the analysis of patents, which are especially interesting for studying 

the dynamics of technology systems and the interaction between science and technology (Jaffe and 

Trajtenberg 2002). A first kind of patent map is based on the patents’ meta-data stored in patent 

databases. Patents, like publications, have several meta-data, such as the applications, the region where 

a patent is in force, the classification category, the application year, etc. Moreover, patents frequently 

include references to the scientific literature and other patents as well. All these meta-data can be used 

to generate networks of patents or networks of patent features (Federico et al. 2017). For instance, Boyack 

and Klavans created a map of patents based on the IPC (International Patent Classification). The map 

shows the relations between patents based on their co-classification: patents that are classified in the 

same category form clusters (Boyack and Klavans 2008). Other patent maps can be generated based on 

the citation network of patents, applying the equivalents of the direct linkage, bibliographic coupling, and 

co-citation methods to patents  (von Wartburg, Teichert, and Rost 2005). Analyzing the references to 

scientific publications contained in patents allows tracing the links between scientific knowledge and 

technological applications (Meyer 2000), whereas, by studying the scientists that are both authors of 

scientific publications and inventors of patents, it is possible to map the overlap between scientific and 

technological literature (Murray 2002). In the last years, text-mining techniques see Section 4.2.2: Co-

word analysis based on automatically extracted terms) have increasingly been applied to patent mapping 

(Ranaei et al. 2019). These methods allow us to automatically extract keywords from patent documents 

and then built patent maps or term-maps of patents (Lee, Yoon, and Park 2009; Tseng, Lin, and Lin 

2007). 

4.4.2 Geographic maps of science 
The science maps we presented so far focused on the abstract spaces of science, such as citation, term, 

and collaboration spaces. Classic science maps aim at visualizing patterns and trajectories occurring in 

these abstract dimensions. Science, however, is also a concrete activity occurring in specific places on our 

planet (Finnegan 2015). In fact, science is produced in geographic sites that are not equally distributed 

on the Earth but are concentrated in few, highly developed areas. From those sites, scientific knowledge 

travels, as publications and researchers move around the globe. Geographic maps of science aim at 

describing the spatial diffusion of scientific activities and the circulation of scientific knowledge in the 

geographic space. They are a key research topic in spatial scientometrics (Frenken, Hardeman, and 
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Hoekman 2009) and an important tool in the geography of science (Livingstone 2003). By showing the 

unequal spatial distribution of science and research in different countries, they offer interesting insights 

into the structure of the global research system (Wichmann Matthiessen, Winkel Schwarz, and Find 

2002). 

Geographic maps of science are created by locating on a geographic map, e.g., a map of the Earth, the 

nodes of the network we focus on. For instance, the authors of a co-authorship network can be placed on 

the map based on the coordinates of their research institutions. Or a network of cities collaborating in 

the production of scientific papers can be constructed and plotted on a map (Leydesdorff and Persson 

2010). Or citation flows between universities can be geographically visualized (Börner et al. 2006). The 

tool CiteSpace (see the Appendix) provides a specific utility to generate geographic maps of science. 

5. The representation of time in science mapping 
There are different options to include the dimension of time into science maps. A first option consists in 

longitudinal mapping (Cobo et al. 2011a; Petrovich and Buonomo 2018; Petrovich and Tolusso 2019): 

based on the publication year of the bibliographic records, subsets of publications belonging to different 

timespans are created and each of them is mapped separately. Note that any mapping technique can be 

used, from co-citation analysis to co-word analysis. Each map will represent a sort of “photograph” of the 

field under investigation in a certain timespan. The sequence of maps allows visualizing the temporal 

dynamics of the field. A second option consists in representing on the same map the trajectories of the 

units that change their relative position is subsequent maps (White and McCain 1998). A third option is 

animating the map: instead of a static visualization, a short movie is created interpolating the layouts of 

the network in different moments (Leydesdorff and Schank 2008). 

The first maps including the temporal dimension, however, used a timeline to represent time. Garfield 

called them “historiographs” (Garfield 2004). In the timeline-based approach, each node of the network 

(classically, a publication in a citation network) is linked to a specific point in time (e.g., the publication 

year). The visualization, then, uses two dimensions: the vertical one is the timeline, whereas the 

horizontal one is used to represent the relatedness of the items (Waltman and van Eck 2014). The result 

is a citation network spread over a timeline. Garfield tested the validity of the historiographs as tools for 

reconstructing the history of science by comparing the narration of the discovery of the DNA written by 

Asimov with the historiograph based on the bibliographies of the corresponding publications (Garfield 

1973). He found a good overlap between the two: the key events in the discovery according to Asimov 

appeared also in the historiograph. 

A variant of timeline-based visualizations is alluvial maps. Starting from different phases in the evolution 

of a network, the networks relative to each phase are divided into different clusters, and then the 

trajectories of corresponding clusters in subsequent networks are visualized as a stream. The fusions and 

fissions of clusters over time is visualized as multiple streams flow over time (Rosvall and Bergstrom 

2010).[21] 

By combining co-citation mapping and temporal visualization, an amazing visualization of the temporal 

development of the journal Nature in the last 150 years was recently produced (Gates et al. 2019).[22] 

6. Interpreting a science map 
Interpreting a science map means linking the visual and geometrical properties of the map to substantive 

features of the mapped area or field. For instance, clusters of co-cited publications can be mapped to 

scientific sub-specialties or research topics, bibliographic coupling networks can be interpreted as the 

research fronts of scientific specialties, co-authorship networks as invisible colleges of scientists, and 

clusters of journals sharing many editors as structures of academic power. The interpretation of science 

maps typically involves close interaction with experts of the mapped domain, i.e., experienced researchers 

that have a deep, albeit qualitative, knowledge of the structure of the target field (Tijssen 1993). Good 

science maps, however, should not be mere quantitative counterimages of the qualitative knowledge of 
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the domain experts. They should provide also new insights and useful knowledge for science policy 

purposes.  

An important aspect to consider in the interpretation is the level of analysis of the science map, i.e., the 

units of analysis and the type of relationship displayed by the map. Units and relations do not only affect 

the scale of the map, but also the dimension of the scientific enterprise that is captured. Term-based maps 

and citation-based maps using the document as unit of analysis highlight the epistemic or cognitive 

dimension of science, what philosophers of science call the “context of justification” (Lucio-Arias and 

Leydesdorff 2009). They show the shared epistemic base of a field (Persson 1994). However, they can 

overemphasize the stability of scientific knowledge, overshadowing the continuous social negotiation of 

scientific claims (Knorr-Cetina 2003). Co-authorship maps. author co-citation analysis, and 

interlocking editorship maps, on the other hand, shed light on the social network underlying science, i.e., 

the “context of discovery” in philosophical terms. When the journal is selected as unit of analysis, the 

communication system is highlighted (Cozzens 1989). Hence, the different methodologies of science 

mapping offer a partial representation of the multi-dimensional nature of science and scholarship, that 

should be considered during the interpretative phase. 

General theories and models of the structure and dynamics of science can also help in the interpretation 

of science maps, providing general interpretative insights (Boyack and Klavans 2019; Chen 2017; 

Scharnhorst, Börner, and Besselaar 2012). At the same time, however, it is pivotal to consider the specific 

academic and epistemic cultures of the field under study. The interpretation of a science map of a social 

scientific area, for instance, cannot be based on exactly the same concepts than the interpretation of a 

science map of a biomedical area, as the social sciences and biomedicine differ in terms of research 

methods, epistemic culture, specialized terminology, use of the references, centrality of the journal 

system, and so on.  

The humanities are a good case in point to highlight the importance of the specificity of research areas. 

Science mapping and, more generally, scientometrics and bibliometrics have mainly focused on the 

sciences since the times of Price and Garfield (Franssen and Wouters 2019). Bibliometric methods such 

as citation analysis were tailored to the citation norms and practices of the sciences. In the humanities, 

however, citations are frequently used not only to refer to other scholars’ work but also to point out sources 

and primary materials, the equivalent of experimental data for the sciences (Hellqvist 2009). Negative or 

contradictory citations of the works of other scholars are relatively more common than in the sciences. In 

fields such as philosophy, where argumentation is the key epistemic practice, critical citations play a 

central role (Petrovich 2018). These field-specific citation practices must be considered in the 

interpretation of  citation-based science maps of humanistic areas (Hammarfelt 2016). Moreover, 

publications in the humanities frequently do not target (only) fellow scholars, but also the wider public 

audience (Nederhof 2006). This changes the level of specialized and standardized terminology used and, 

consequently, affect the capacity of term-based science maps to capture themes and topics.[23] To these 

interpretative caveats, one should add the limitations of the existing databases to adequately capture 

publications in the humanities, as they are often published as monographs and in national languages 

(Hammarfelt 2017). 

7. Science maps and the philosophy of science 
In this section, we deal with some epistemological and sociological topics related to science mapping. We 

start by asking in what sense science maps offer objective representations of science, then, we discuss the 

difference between the published side of science and science in the making, and, lastly, we examine in 

more detail the meaning of citations. 

7.1 On the objectivity of science maps 
Are science maps an objective representation of the structure and dynamics of science? Clearly, the 

answer greatly depends on the definition of objectivity we endorse (Daston and Galison 2007; Reiss and 

Sprenger 2017).  
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In the previous sections, we saw how the creation of a science map involves several methodological and 

technical decisions from the science cartographer, such as the unit of analysis, the mapping technique, 

the normalization method, the visualization approach, the clustering algorithm, and so on (see Section 3: 

Building a science map). Each decision affects the results and lead to different science maps. Therefore, 

science maps, even when they are generated by computer software, should not be conceived as free of 

human intervention. Human choices occur frequently in the science map workflow and should be made 

transparent in order to warrant the reproducibility of science maps (Rafols, Porter, and Leydesdorff 2010). 

Therefore, if we equate objectivity with the “lack of human intervention” (the so-called mechanical 

objectivity), then science maps, like any other map, are not “objective”. Rather, they result from a 

combination of the features of the mapped field, on the one hand, and the methodological decisions of the 

science cartographer on the other hand. However, we should acknowledge that no map – including 

geographic maps – is “objective” in this sense. On the other hand, if objectivity is intended as inter-

subjective agreement, then science maps are objective in so far as they can be reproduced by different 

researchers, as long as that they follow the same methodology.  

A further sense of objectivity has not to do with a lack of human interventions but a lack of human biases. 

According to some authors, science maps are more objective than classic literature reviews precisely in 

the sense that science maps would avoid the potential biases of human experts (e.g., Catherine and 

Doehne 2018; Kreuzman 2001; Small and Griffith 1974; Weingart 2015). The idea is that the expert’s 

knowledge of a research field is inevitably constrained by his or her reading capacity: for how many papers 

one can read, they will always represent no more than a tiny portion of the literature available in most 

of the scientific fields. Even if such limitations can be mitigated by recurring to teamwork and by 

integrating the knowledge of many experts, the view of scientific fields that can be achieved in this way 

will always be partial. Thus, there is the potential risk that the representations of the scientific fields are 

distorted by the experts’ viewpoint (if not prejudices). By contrast, the networks on which science maps 

are based are the result of millions of micro-actions performed by the scientific community itself, such as 

the choice of certain references or words. Science maps allow keeping track of this myriad of micro-actions. 

Consider for instance the bibliography of a research article. Since the authors cite other publications that 

are relevant to their work, the bibliography can be conceived as a (very partial) representation of the field 

to which the paper belongs. In so far as each new contribution must be related, by references, to the 

existing body of knowledge (the field), each paper can be compared to a mirror that reflects – albeit 

partially – the entire field (Amsterdamska and Leydesdorff 1989). It is a sort of “photograph” taken from 

a certain viewpoint. Hence, the aggregation of the bibliographies of thousands of articles that is performed 

to produce a citation-based map can be compared to the merging of thousands of partial photographs to 

make up a single, overall picture. In this aggregation process, different publications are related to one 

another “unwittingly” by the scientific community itself. According to some authors, when enough large 

aggregates of publications are considered, the biases occurring in the individual bibliographies cancel out 

and a balanced picture is obtained (Van Raan 1998). The underlying assumption is that, at least on 

average, the citation behavior of scientists follows a normative model, i.e., that citations are given because 

of the scientific content of the cited reference and not because of non-scientific motives (see Section 7.3: 

The meaning of citations). 

By the same token, the networks of words visualized in term-based maps allow reconstructing the 

terminology of a scientific field because they reflect thousands of terminological micro-choices made by 

the researchers when drafting the titles and abstracts of their papers. The relations between the different 

terms are the results of these choices. Idiosyncratic and non-standard terminological would again choices 

cancel out when enough publications are considered. 

In sum, science maps would be more objective than classic reviews because they are the result of a bottom-

up approach (Petrovich 2019b). Instead of the traditional top-down approach that can potentially 

introduce biases in the field representation, science maps allow to represent “the point of view of the 

scientific community on itself” (Small 1973; Small and Griffith 1974). Once again, science maps are not 

objective because free of human choices. Rather, they are objective because they are based on thousands 

of human (micro)choices. The key difference between these micro-choices and the decisions taken by the 

experts in the top-down approach lies in the large number of the former. It is such a large amount that 
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potentially guarantees the cancelling out of the biases and, thus, a more balanced representation of 

scientific fields. Far from being the “view from nowhere” on science, science maps are the collection of 

multiple, situated viewpoints on science.  

A last point about the objectivity of science maps is worth stressing: even if science maps provide bottom-

up representations of science, nonetheless they remain partial from some points of view. First, a science 

map cannot represent more than what is contained in the data on which it is based. Since the scope of 

data depends on the scope of the bibliographic databases, science mapping techniques will deliver very 

partial representations for those scholarly fields that are scarcely covered by current databases, such as 

some areas in the social sciences and humanities or scholarly production in national languages (Franssen 

and Wouters 2019; Nederhof 2006). This does not mean that science maps provide false or distorted 

representations: rather that they ultimately depend on the scope and limits of the data on which they are 

generated. The second reason why science maps are partial is subtler, and it has to do with the nature of 

the bibliographic data and how they represent the scientific activity. We discuss this topic in the next 

paragraph.  

7.2 Published science vs. science in the making 
A defining trait of standard science maps is that they are generated based on the meta-data of scientific 

publications, as they are stored in bibliographic databases. However, publications (research articles, 

reviews, conference proceedings, patents, etc.) are only the final stage of a long and often rough research 

process. They are not meant and should not be considered as simple mirrors of the research practices 

themselves (Hyland and Salager-Meyer 2009; Wouters 1999a). The writing of a scientific paper involves 

the construction of a justificatory structure in which each experiment and analysis contribute to the 

justification of the paper’s claims (Gross et al. 2002). As sociological and anthropological studies have 

revealed, real research practices can be a lot less smooth than the accounts we find in the scientific papers 

(Knorr-Cetina 2003; Latour and Woolgar 1986; Townsend and Burgess 2009). Real research is full of false 

starts, blind alleys, and mistakes. Discoveries may occur because of serendipity or intuition, the order of 

the experiments can be different both from the research plan and from the methodology described in the 

final paper, research targets may be affected by changes in funding, availability of materials and 

expertise, even academic circumstances. Moreover, scientific writing is a literary genre that follows 

precise rules, ranging from the format (e.g., the division of a research article into standard sections, such 

as Introduction, Methods, Results, and Discussion), to the writing style (in some fields, an impersonal 

style is recommended to increase the “objectivity” of the results) (Bazerman 1988; Hyland and Salager-

Meyer 2009; Swales 2004). Journals’ guidelines and peer-review reports can further affect the final form 

of a paper. 

Since standard science maps are based on the published side of science, they cannot be used to investigate 

any research practice that is not recorded in publications. Most of what Bruno Latour has called the 

“science-in-action”, thus, remains out of the reach of standard science mapping based on bibliographic 

databases. Note, however, that science mapping as a method can be potentially applied to any relational 

feature of the scientific enterprise. Other relational features, describing the science-in-action, could be 

mapped by new science mapping techniques (for instance, informal exchanges between scientists at 

scientific congresses, e-mail flows between laboratories, informal collaboration networks not resulting in 

co-authorship, etc.). However, new ad-hoc databases must be built to map these features, a costly and 

time-consuming enterprise (Boyack and Klavans 2019). 

7.3 The meaning of citations 
Citations are pivotal in science mapping: without the reference links connecting scientific publications, 

citation-based maps would be simply impossible. However, citations are a human product: they are the 

result of the choices made by the authors during the writing of their scientific papers. Why do scientists 

choose some references instead of others? Do they cite only because of the scientific merit of the cited 

works? How does the citation behavior of scientists change in different scientific fields? In traditional 

citation analysis and in standard science mapping, citations are treated equally, i.e., all have the same 

value. However, some cited papers are widely discussed, while others are perfunctorily cited. Some papers 

are even negatively cited. How can we capture the different functions and values of citations?  
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Questions like these are discussed in scientometrics and sociology of science under the label of citation 

theory (Bornmann and Daniel 2008; Cronin 1984; Wouters 1999b). Most of them are discussed since the 

dawn of citation analysis and still do not have received definite answers. A complete overview of citation 

theories is out of the scope of the present articles.[24] In this section, we will limit to present the two main 

approaches, in so far as they can help to interpret and contextualize the results of science mapping: the 

normative theory and the socio-constructivist theory. 

The normative theory was proposed within the framework of the normative sociology of science developed 

by Robert K. Merton and his school from the 1960s (Elkana et al. 1978; Kaplan 1965; Merton 1974). 

According to this theory, scientists cite to pay their intellectual debts: when they use the results obtained 

by other scientists in their research, the norms of science demand them to acknowledge the debt by 

explicitly citing the relevant papers. Citations count as “pellets of peer recognition” and play a 

fundamental role in the reward system of science: they serve to distribute prestige among scientists. An 

important consequence of the normative theory is that citations can be considered as reliable proxies of 

scientific quality or impact. Thus, the normative theory provides a theoretical justification for the use of 

citations in evaluative contexts. However, the main claim of the normative theory (i.e., that the citation 

reflects the scientific merit of the cited document, author, or journal) rests upon several assumptions, e.g.,  

that citations are made to the best possible works, that all citations have equal weight, and that the 

citation of a document implies the use of the document by the citing author (Nicolaisen 2007). Both the 

main claim and the underlying assumptions have been criticized. 

The socio-constructivist approach to citations is grounded in the socio-constructivist sociology of science, 

a sociological paradigm that raised in different forms in the 1970s partly as a reaction to the normative 

school (Bloor 1991; Knorr-Cetina 2003; Latour 2003). According to socio-constructivists, scientific facts 

are the result of an intricate process of social negotiation among different actors. In the social arena of 

science, scientists use any means necessary to advance their claims and achieve a high status in the 

scientific community. No normative system, such as the one described by Merton, governs their actions. 

Socio-constructivists maintain that citations play a key role in the social negotiation of scientific facts. In 

particular, they are used as means of persuasion: scientists trade on the authority of the cited authors to 

strengthen their claims. Citations are rhetorical devices that can be compared to “defense lines” prepared 

by the scientists to defend their results from criticisms of adversary scientists. Socio-constructivists note 

also that scientists often distort the content of the documents they cite, in order to show agreement with 

authoritative sources even when no such an agreement exists. The reason is that scientists would be more 

interested in who they cite, rather than in what the cited documents say. Citations, therefore, would 

reflect the social dynamics of the scientific community, rather than the accumulation of scientific 

knowledge. An important consequence is that they cannot be used as proxies of scientific quality 

(MacRoberts and MacRoberts 2018). 

Empirical research has shown that neither the normative nor the socio-constructivist theory offer, alone, 

complete explanations of the citation behavior of scientists. The motivations for citing are complex and 

multi-dimensional: sometimes they reflect purely scientific reasons, as the normative theory holds, and 

sometimes obey to social-networking purposes, as the socio-constructivist theory holds (Tahamtan and 

Bornmann 2018). Besides the motivations of scientists, also the characteristics of the communication 

system of science (journals, publishers, and so on) affect the probability of receiving citations (Cozzens 

1989). For instance, publications in languages different from English tend to receive, on average, fewer 

citations, whereas review articles tend to attract more citations than research articles (Bornmann and 

Daniel 2008). The citation links between documents and authors, therefore, are affected by many different 

factors, of which scientific merit is only one.  

When interpreting the results of citation-based science mapping, we should not overlook the complexity 

of the citation practices that determine the links in the citation network. An understanding of the “citation 

culture” (Wouters 1999a) of the mapped field helps to interpret correctly a science map. 
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8. Science maps and science policy 
Since the first experiments in science mapping in the 1970s, science maps have been presented 

recurrently as helpful devices for science policy and research management. The idea is that, since science 

maps offer a panoramic viewpoint of the research landscape, they can also help to navigate it. Science 

maps would offer for the abstract space of science the same service of orientation that geographic maps 

provide for the physical space (Small 1999).  

Possible science policy topics that can be addressed with the help of science maps include (Boyack, 

Klavans, and Börner 2005; Rafols, Porter, and Leydesdorff 2010):  

a) Benchmarking: How is an organization performing compared to competitors? 

b) Collaboration strategy: Who are the potential collaborators that can complement the research 

mission of the organization? 

c) Development analysis: How do the research themes of an organization develop over time? 

d) “Hot areas” detection: What are the scientific areas that are growing faster? What is their 

potential for technological transfer? 

One important advantage of science maps compared to classic reviews is that they allow also the non-

experts to grasp easily and quickly the main features of a scientific field because they rely on the 

recognition of visual patterns rather than on deep scientific expertise. Therefore, they can be used as a 

common base between researchers, science managers, analysts, and policymakers to discuss strategic 

decisions, such as the allocation of resources (Börner et al. 2012; Noyons and Calero-Medina 2009). 

Nonetheless, science maps should be used in science policy contexts with a clear understanding of their 

limits: science maps can help the decision-making, but they do not provide automatic answers. From this 

point of view, science maps are not different from any scientometric indicator: they provide partial 

representations of science whose correct interpretation should take into account many different factors 

(see Section 7.1: On the objectivity of science maps).[25] Not only science maps are error-prone (e.g., if they 

are generated based on an incorrect field delineation procedure, see Section 3.2: Field delineation), but, 

as we saw above, their production involves several technical decisions that can deeply influence the final 

maps (see Section 4.1.3: Normalization and Section 4.1.4: Visualization). It is pivotal that such decisions 

should be made transparent, and their consequences clear to the analysts and the policymakers, so that 

science maps do not turn into “black boxes” (Rafols, Porter, and Leydesdorff 2010). 

Fortunately, science maps are usually perceived as more complex objects, compared to mono-dimensional 

scientometric indicators such as citation counts or the Journal Impact Factor. Thus, they tend to 

stimulate a higher level of reflexivity in their users compared to sheer numbers. Such reflexivity should 

always be preserved in science policy contexts, where science maps must not be treated as “oracles”, even 

when science politicians and research managers desire simple and straightforward answers. When using 

science maps, it must be remembered that science is a complex system, where simple, ready-made 

answers can be given very rarely.  

9. Conclusion 
In this entry, we have seen how the visual representation of science by science maps takes different forms, 

depending on the kind of data, the unit of analysis, the type of relation examined, and the overall mapping 

approach used. A science map can take both the form of a bibliometric network and that of a geographic 

map or of a patent map. Even artistic representations of the sciences have been called, in a derivate way, 

“science maps” (Börner 2010). Science maps find application is different domains, from sociology of science 

to science policy, from scientometrics to information visualization. As we have seen, science mapping, as 

a body of techniques, stands at the crossroad of numerous disciplines: scientometrics, library and 

information science, citation analysis, text analysis, statistics, network analysis, among others.  

Given this manifold of methods, disciplines, and uses, it is difficult to find a common trait that identifies 

the uniqueness of science mapping. Perhaps, what most if not all science maps share is a bottom-up 

approach to the investigation of the structure and dynamics of science (Petrovich 2019b). Compared with 

top-down knowledge organization systems (KOSs), science maps aim at representing science starting 
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from the scientific products themselves rather than from more or less a priori conceptual schemes. In this 

sense, they may capture those structuration forces that shape the overall configuration of the scientific 

system and that may remain invisible to top-down KOSs. Science mapping may be valuable to shed light 

on the self-organizing properties of the scientific enterprise (Lucio-Arias and Leydesdorff 2009). Hence, 

we think that science maps can be of interest for all the branches of meta-science, from library and 

information science to sociology of science, from knowledge organization to epistemology.  
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Endnotes 
1. http://scimaps.org/home.html 

2. 

https://en.wikipedia.org/wiki/Liberal_arts_education#/media/File:Hortus_Deliciarum,_Die_Philosophie_

mit_den_sieben_freien_K%C3%BCnsten.JPG 

3. Numerous examples of classifications and visual representations of the sciences over the centuries 

can be found and explored in the Interactive Atlas of the Disciplines (http://atlas-disciplines.unige.ch/). 

4. A detailed timeline with key milestones in science mapping history can be found in the Part 2 of (Börner 

2010). 

5. https://academic.microsoft.com/ 

6. https://www.dimensions.ai/ 

7. https://www.uspto.gov/  

8. http://www.google.com/patents.  

9. http://www.epo.org/patents/patent-information.html.  

10. This is the adjacency matrix we obtain when we consider the network as directed, i.e., when we 

distinguish between the sender and the receiver of the citation. It is also possible to consider the citation 

network as undirected. In this case, the elements of the matrix will be set to 1 when there is a link between 

the publications, independently whether it is a citation (in-coming link) or a reference (out-going link), 

obtaining a symmetrical matrix:   
a b c d e f g h 

a 0 1 1 1 1 0 0 0 

b 1 0 1 0 0 0 0 1 

c 1 1 0 0 1 1 1 0 

d 1 0 0 0 0 0 1 0 

e 1 0 1 0 0 0 1 0 

f 0 0 1 0 0 0 1 0 

g 0 0 1 1 1 1 0 0 

h 0 1 0 0 0 0 0 0 

 

11. Note that there are two different similarity measures, a direct and an indirect, both called “cosine”. 

The indirect cosine – that corresponds to the original cosine introduce by Salton and McGill (Salton and 

McGill 1983) – is based on the angular distance between two vectors and it is calculated from the inner 

product of the vectors (Jones and Furnas 1987). The direct cosine is a simplified version of the indirect 

cosine and it corresponds to a variant of the Ochiai coefficient (Zhou and Leydesdorff 2016). 

12. An interesting alternative visualization, closely modelled on geographic maps, is based on the so-

called self-organizing maps (SOM). We refer to (Skupin, Biberstine, and Börner 2013) for a detailed 

explanation of this technically advanced visualization method. 

13. https://gephi.org/ 

14. http://mrvar.fdv.uni-lj.si/pajek/ 

http://scimaps.org/home.html
https://en.wikipedia.org/wiki/Liberal_arts_education#/media/File:Hortus_Deliciarum,_Die_Philosophie_mit_den_sieben_freien_K%C3%BCnsten.JPG
https://en.wikipedia.org/wiki/Liberal_arts_education#/media/File:Hortus_Deliciarum,_Die_Philosophie_mit_den_sieben_freien_K%C3%BCnsten.JPG
http://atlas-disciplines.unige.ch/
https://academic.microsoft.com/
https://www.dimensions.ai/
https://www.uspto.gov/
http://www.google.com/patents
http://www.epo.org/patents/patent-information.html
https://gephi.org/
http://mrvar.fdv.uni-lj.si/pajek/
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15. Note that not all the similarity measures fulfill the requirements of a distance metric. For instance, 

negative similarity measures (such as the ones produced by Pearson’s r) cannot be used as distances 

because a negative distance is meaningless. The other conditions to be satisfied are that the distance of 

an object from itself should be zero, that the distance between A and B should be equal to the distance 

between B and A (symmetry), and that the distance from A to B is at most as large as the sum of the 

distance from A to C and the distance from C to B (triangle inequality). 

16. A technical but very clear explanation of MDS can be found in (Borg and Groenen 2010, chaps 1–3) 

and in (van Eck et al. 2010). 

17. It is easy to see that it is a consequence of the triangle inequality mentioned in the note above. 

18. More precisely, shortest paths. 

19. Hennig et al. (2016) offers an overview and technical discussion of clustering techniques. 

20. From this point of view, the history of the JEL codes used in economics is very instructive (Cherrier 

2017). 

21. A tool for generating  alluvial maps starting  from network data is available at 

https://www.mapequation.org/alluvial/  

22. The map can be explored at https://www.nature.com/immersive/d41586-019-03165-4/index.html A 

video explaining the structure of the map is available at 

https://www.youtube.com/watch?v=GW4s58u8PZo&feature=youtu.be 

23. I am grateful to an anonymous reviewer for pointing me out this difference in the use of specific 

terminology between the sciences and humanities. 

24. See Tahamtan and Bornmann (2018; 2019) for an updated overview and Petrovich (2019a) for a 

systematization of the different theories. 

25. As it is well known, the use of scientometrics for evaluative purpose is a controversial topic that 

continue to raise heated discussions among researchers and policy makers. The presentation of this 

topic, however, falls beyond the scope of this article. See Aksnes, Langfeldt, and Wouters (2019) for an 

introduction. 
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Appendix: Science mapping tools 
Science maps can be generated by any general software of graph analysis and visualization, such as Pajek 

and Gephi. However, in the last years, several dedicated tools have been developed specifically for science 

mapping, such as VOSviewer, CiteSpace, HistCite, Sci2 Tool, SciMAT, Bibexcel, and CitNetExplorer. In 

this section, we briefly present CiteSpace and VOSviewer, the two most popular science mapping tools 

(Pan et al. 2018). They are both free, constantly updated, and provided with extended user-guides. A full 

description of these and other tools can be found in (Moral-Munoz et al. 2019). 

CiteSpace 
CiteSpace1 was developed by Chaomei Chen in 2004 at Drexel University (USA) (Chen 2006). Since its 

first version, it has a special focus on the temporal dynamics of scientific networks. Its primary goal is to 

detect emerging trends and bursts of interest in a knowledge domain. Therefore, the visualizations it 

produces pay special attention to the dynamical aspects of the mapped domain: for instance, the number 

of citations received by an article is visualized as “citation tree rings”, in which the thickness of each ring 

is proportional to the number of citation received in a given time slice. CiteSpace also highlights “pivotal 

points” in the emergence of new specialties, i.e., articles denoted by high betweenness centrality  that 

bridge across different co-citation clusters. 

After the dataset is downloaded from Web of Science, Scopus, or other compatible bibliographic databases, 

CiteSpace allows to manage the entire workflow of science mapping. The network can be extracted from 

the data choosing different entities as nodes (author, institution, journal, country, cited publication, 

terms, keywords, etc.). The dataset can be split into time slices and the most relevant items according to 

some threshold can be selected (e.g., top-cited papers in each time slice). CiteSpace offers different 

methods to normalize the raw values and to “prune” the network in order to retain the most relevant 

links. Maps can be generated both in the form of graph-based visualizations, and timeline-based 

visualizations. The visualization tool allows controlling each feature of the map, from the layout to the 

labels of nodes, links, and clusters, to navigate the map, and to select specific nodes by clicking on them. 

Tools for clustering, automatic extraction of clusters’ labels, citation burst detection, and other analyses 

are included.  

CiteSpace is a very powerful software and it produces aesthetically impressive visualizations. However, 

it needs some expertise to fully take advantage of all its features. We suggest it to advanced users who 

already have some skills in science mapping. 

VOSviewer 
VOSviewer2 was developed by Nees Jan van Eck and Ludo Waltman in 2010 at the Center for Science 

and Technology Studies (CWTS) in Leiden (The Netherlands) (van Eck and Waltman 2010). If the first 

versions of the tool focused only on the visualization of bibliometric networks, the new versions allow to 

manage the entire workflow of science mapping.  A special feature of VOSviewer is that it produces only 

distance-based visualizations, using a dedicated technique called VOS mapping technique, where VOS 

stands for “visualization of similarity” (van Eck et al. 2010). Such a technique is a variant of multi-

dimensional scaling that avoids some visual artifacts generated by classic MDS methods (see Section 

4.1.4: Visualization).  

VOSviewer can create maps based on any network data (e.g., Pajek network files) but it can also extract 

the network from bibliometric data. It supports data from Web of Science, Scopus, PubMed, and other 

databases. The “Create map wizard” allows the user to extract from the data several kinds of networks. 

Possible nodes include publications, journals, authors, research organizations, countries, keywords, 

terms. Links can be co-authorship, co-occurrence, direct citation, bibliographic coupling or co-citation 

links. Moreover, VOSviewer uses a dedicated clustering technique, based on modularity, to find groups 

of similar nodes (Waltman, van Eck, and Noyons 2010). The nodes are then colored according to the 

cluster they belong to. The size of the nodes and links is used to show some nodes or links property, such 

as the number of citations and co-occurrences. VOSviewer offers three visualizations of a map: the 

network visualization, the overlay visualization, and the density visualization. Zooming and scrolling 

functionalities allow exploring in detail the map. In the overlay visualization, properties of the nodes 
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different from their cluster (e.g., the Impact Factor of a journal in a journal map), can be shown in 

different colors. 

Compared to CiteSpace, VOSviewer is less focused on the dynamical aspects of knowledge domains and 

offers fewer tools for the analysis of science maps. However, it is very easy to use, the create map wizard 

is intuitive, and the distance-based visualization facilitates the interpretation of the maps. We suggest it 

to the novices and to professionals who need a user-friendly tool for science mapping. 

 

 
1 http://cluster.cis.drexel.edu/~cchen/citespace/ 
2 https://www.vosviewer.com/ 

http://cluster.cis.drexel.edu/~cchen/citespace/
https://www.vosviewer.com/

