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1 – Introduction 

Pollution of the marine environment by plastic waste is today acknowledged as a global problem 

(Jambeck et al., 2015; Lebreton et al., 2012). The worldwide use and mass production of plastic 

(Thompson et al., 2009) in the last century has led to the accumulation of this type of debris in the 

marine environment (Rochman et al., 2013). Plastics accumulated in the marine environment might 

pose many threats to the marine ecosystems by directly polluting them (Stefatos et al., 1999; 

Sutherland et al., 2010), but they can also impact species inhabiting them by causing, for example, 

strangulation and suffocation problems (Galgani et al., 2014). In addition, smaller plastic particles can 

be ingested by marine organisms arising the potential of biological effects (Darmon et al., 2017; Giani 

et al., 2019) and effects linked to chemical contamination such as endocrine disruption, 

histopathological changes or alteration of responses of immune system (Rochman et al., 2013; 

Limonta et al., 2019). These threats can come from both macro-plastics and microplastics (Law and 

R., 2014; Li et al., 2016) and adverse effects have been demonstrated by numerous studies (Barboza 

and Gimenez, 2015; Caruso, 2019; Guo and Wang, 2019; Peng et al., 2020; Wesch et al., 2016).  

Microplastics (MP) are defined as small plastic particles < 5 mm (Arthur et al., 2009; GESAMP, 2019) 

resulting either from the fragmentation of macro-plastics (secondary microplastics) or directly from 

industrial production (primary microplastics, e.g. pellets). These particles, highly persistent in the 

environment (Alimba and Faggio, 2019), are present in all marine matrices: water, sediment, biota, 

(Li et al., 2016; Peng et al., 2020; Sharma and Chatterjee, 2017) from the coastline to offshore areas, 

including deep sea submarine canyons (Alomar et al., 2017; Spedicato et al., 2019). An increasing 

number of studies are also investigating the consequences of chemical contamination of the marine 

ecosystem by substances such as bisphenol A and phthalates added during the manufacture of 

certain plastics (Vered et al., 2019).  

Seawater and sediments are the matrices in which MP are most sampled and studied. However, 

sampling conditions (weather, currents, wind, sea state), sampling location; analytical and extraction 

methods; classification, identification and counting protocols; expression of results (e.g. units) show 

a high variability. Consequently, the lack of harmonisation in methods is a very limiting factor for the 
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comparability and the reproducibility of the results making it difficult to jointly analyse and interpret 

data from different studies and areas (Prata et al., 2019a; Van Cauwenberghe et al., 2015). 

Therefore, even though the extraction and characterization methods have been reviewed (GESAMP, 

2019), several studies have highlighted the need to progress in the standardisation of sampling and 

analysis methodology by defining simple, effective and reproducible protocols (Cincinelli et al., 2019; 

Galgani, 2015; Galgani et al., 2013b; Prata et al., 2019a).  

The Mediterranean is considered one of the most polluted seas in Europe (Gerigny et al., 2019; 

Ioakeimidis et al., 2017; Ioakeimidis et al., 2014) mainly due to its semi-enclosed nature and coastal 

urbanisation, intense shipping, high tourist pressure, industrial development, large river inputs and 

significant fishing activity (UNEP, 2016). It has been proven that all compartments of the 

Mediterranean marine ecosystems (water, sediment and biota) are polluted by MP (de Haan et al., 

2019; Giani et al., 2019) and numerous studies show that their distribution and composition are 

heterogeneous, with marked geographical differences between sub-basins (Cincinelli et al., 2019). 

Plastic pollution in the Mediterranean basin is considered a key issue in environmental policies at 

European level as well as by the Regional Sea Conventions such as OSPAR and the Barcelona 

Convention (UNEP, 2017). Elaborating methods and measures to better assess and combat this 

pollution, including MP, is therefore considered as a priority (Maes et al., 2019) for the 

implementation of the European Plastics Strategy and the Marine Strategy Framework Directive (EU, 

2008, MSFD). 

In the MSFD, MP are included as an aspect to be measured within Descriptor 10 of the Good 

Environmental Status (GES) of this directive. In the Commission decision (EU) 2017/848, which lays 

down criteria and methodological standards on GES of marine waters, specifications and 

standardised methods for monitoring and assessment of marine litter (Galgani et al., 2013a), the 

microplastics are included as a primary criterion: D10C2 – “The composition, amount and spatial 

distribution of micro-litter on the coastline, in the surface layer of the water column, and in seabed 

sediment, are at levels that do not cause harm to the coastal and marine environment”. The 

specifications and standardised methods for monitoring and assessment of marine micro-litter, 

according to this criterion, require monitoring of water and sediment samples.  

Recent studies (GESAMP, 2019; Michida et al., 2019) have reviewed and evaluated sample processing 

and analytical methods for quantifying MP in the marine environment. However, there is still no 

standardised protocols available for analysis of micro-litter in (sea) water and (marine) sediment 

samples. In the European Union, it is up to each Member State (MS) to decide which protocol to use 

in order to perform the monitoring of micro-litter when implementing the MSFD. The only common 

criterion for all the MS is to monitor particles smaller than 5 mm. Therefore, standardisation and 

intercalibration of the existing protocols for sampling micro-litter in sea water and marine sediments 

are key issues to be addressed by the MS, if greater comparability between monitoring results is to 

be achieved (Gago et al., 2016, Crise et al., 2015). 

This paper presents the results of an intercalibration exercise (ICE) on MP identification and analysis 

in water and sediment samples, performed by five laboratories involved in the MSFD implementation 

in the Mediterranean region. The aim of the research was to compare the methods of identifying, 

counting and classifying the MP in seawater and sediment samples following the MSFD monitoring 

recommendations (Galgani et al., 2013b). The size of MP considered in this ICE ranged from 300 µm 

to 5 mm according to these recommendations. Unlike Isobe et al. (2019), who carried out recently a 

similar ICE focusing on total counts and particle size, the present study focuses on total counts, 

type/shape and colour of MP and FTIR validation of particles identified. Moreover, the aim of this 
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work is to identify and highlight weaknesses and strengths of the different methodologies used for 

the analysis of MP in seawater and sediment samples and to provide future recommendations in 

accordance with the lessons learnt from the present ICE. 

 

2 - Material and methods 

For the intercalibration exercise, five laboratories from five European Mediterranean countries have 

participated to the intercalibration exercise: Hellenic Centre for Marine Research/Institute of 

Oceanography (HCMR), Greece; the Balearic Centre of Oceanography from the Spanish Institute of 

Oceanography (IEO), Spain; Ifremer/Laboratoire Environnement Ressources-Provence Azur Corse 

(LER/PAC), France; Institute for Water of the Republic of Slovenia (IWRS)/in-house laboratory, 

Slovenia; and University of Siena/Biomarkers laboratory, Italy.  

Preparation of the reference samples for the intercalibration exercise 

The reference samples, i.e. mixtures of clean water or sediment with MP sets, were prepared by the 

Ifremer/LER/PAC laboratory. For impartiality purposes, the operator who performed the sample 

preparation was not involved in the posterior analysis phase of the ICE. In order to prevent 

contamination during the preparation process at the laboratory, operators involved in the 

manipulation of samples were equipped with white cotton labcoats and nitrile gloves. Sandy beach 

sediment with few fine (<300 µm) particles and without mud and seawater were selected as matrix 

types. For each matrix, samples were prepared in two concentration ranges according to the count of 

particles: the first with a low concentration of MP (between 70 and 100 particles) and the second 

with a high concentration (between 130 and 170 particles). Although the number of MP differs from 

one sample to another, this range is considered large enough to obtain significant and comparable 

errors. 

Preparation of microplastic particles 

In order to prepare the MP sets added to the reference samples, various plastic parent 

objects/materials were used: Plastic sheets (PET, PVC, PC) and pellets (HDPE, PP, PVC) supplied by 

manufactures; everyday plastic objects of different degradation states such as bags, gloves, cups, 

bottle stoppers, food containers, insulation foam as well as fishing lines (diameter: 200 µm). Parent 

materials were hand broken down into small pieces of different sizes. By combining these pieces with 

pellets supplied by the manufacturers, MP sets including particles of various shapes which are 

commonly found in the marine environment (fragments, pellets, filaments, films and foam) were 

composed. Particles used were of several colours: blue, orange, red, white and transparent. The size 

range of the particles varied from 300 µm to 5 mm, i.e. according to microplastics definition (Galgani 

et al., 2013b). However, a few particles in the range 5-10 mm (i.e. meso plastics) were also included. 

The specific size/dimensions of each particle included in the reference samples was not recorded. 

Although the resulting particle sets were not identical, and the preparation method can be 

considered crude, compared to the one used by Isobe et al, (2019), it allowed us to produce visually 

similar MP sets at a reasonable cost. 

For each type of matrix and MP concentration, the number of particles per type was different. In all 

the MP sets, the dominant category was fragments, with a proportion always exceeding 47% of the 

total number of particles. Each sample was coded with a number and the exact characteristics of the 

MP associated to each sample, as well as the total weight of the particle set, were recorded.  

Sediment reference sample preparation 
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For the preparation of sediment samples, beach sediment was collected in the bay of Toulon. MP 

were separated and removed by spiking with a saturated NaCl solution (1.2 g cm−3), agitating for 2 

minutes and then, after 48 hours, by sieving the supernatant solution through a 100 μm sieve 

(Galgani et al., 2013b). This procedure was repeated five times in order to remove all the existing MP 

in the sediment. Finally, the excess water was removed and the sediment was oven dried at 40 °C for 

one week. For each sediment reference sample, a MP set was added into a 500 ml glass bottle and 

mixed with 250 g of cleaned sediment, 50 ml absolute ethanol and seawater filtered through 100 µm 

sieve. 

Water reference sample preparation   

Seawater was taken from the bay of Toulon and filtered through 100 µm. For each reference sample, 

a MP particle set was added into a 500 ml glass bottle and then filled with seawater mixed with 

absolute ethanol (5%) for preservation. 

Biological contamination of reference samples 

 

In order to prepare samples with high similarity to the natural matrix found in real samples, biological 

material was added in both types of reference samples. This material was composed of pieces of 

Posidonia oceanica leaves, mussel shells and other shells that was rinsed with distilled water and of 

zooplankton sorted using binoculars. This ensured that this biological material was free of MP. 

 

Guidelines for the execution of the intercalibration exercise 

Two reference sediment samples and two water samples were sent to each laboratory participating 

in the ICE. Guidelines regarding the information requested and the reporting of the results were 

given. This included, in particular the information on total item counts, types and colours of MP for 

each sample. MP type and colour categories were based on the EMODnet classification (Galgani et 

al., 2017). This classification defines seven types of microlitter particles: fragments, pellets, filaments, 

films, styrofoam, non-plastic and items (Table S1, Suppl. Material); and nine colour classes: 

black/grey, blue/green, brown/tan, white, cream, yellow, orange/pink/red, transparent and opaque. 

This ninth class has been changed recently from opaque to multicolour (Table S2, Suppl. Material). 

Nevertheless, the opaque class was used for the present ICE. 

Each laboratory was asked to perform the analysis following the protocol usually applied for the 

determination of microlitter in sediment and water samples. In this ‘blind analysis’ step, the 

reference values were not available to the laboratories involved in the ICE.  

Moreover, four out of the five laboratories participating in the ICE have also provided the total 

weight of MP. 

Analytical methods used by the participating laboratories 

Protocol details along with specific adjustments used by each laboratory in the ICE are presented in 

Table 1. In general, the pre-processing of sediment samples varied more amongst laboratories in 

comparison to the water samples. This was related mostly to the different flotation reagent used 

(NaI or NaCl) during the density separation step. Other differences affecting both sediment and 

water samples analysis relate to the size of the separation sieves used, the use of an organic matter 

digestion reagent and the contamination control (e.g. procedural blanks, use of open Petri dish for 

monitoring airborne contamination).  
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Table 1: Protocols used for analysis of sediment and water samples by each of the participating laboratories, and the details 

of possible problematic steps in the analysis of microplastics. 

Sediment Samples      

Laboratory L1 L2 L3 L4 L5 

Protocols used  

Kovač Viršek et al., 2015  

Galgani et al., 2013 

Miller et al., 2017 

Van Cauwenberghe et 

al., 2015 

Frias et al., 2018 

Kovač Viršek et 

al., 2015 (SMP) 

Galgani et al., 

2013 

Frias et al., 

2018 

Kovač Viršek et 

al., 2015  

Kovač Viršek et 

al., 2015  

Frias et al., 2018 

Baini et al., 2018 

Size of sieves/nets 

used 
300 μm, 1 mm, 5 mm 1,6 µm 

300 µm, 1 mm, 

2 mm, 5 mm 

300 µm, 1 mm, 5 

mm 
200 µm 

Degradation of 

biological material 
/ 10% H2O2 / / / 

Density separation NaI [1.8 g/ml] NaCl [1.2 g/cm3] 
NaCl [1.2 

g/cm3] 
/ NaCl [1.2 g/cm3] 

Chemical 

identification of 

particles 

ATR-FTIR for particles of 

questionable 

composition 

/ / 

ATR-FTIR for 

particles of 

questionable 

composition 

ATR-FTIR for 

particles of 

questionable 

composition 

Monitoring of 

contamination* 
Yes Yes No Yes Yes 

Water Samples      

Laboratory L1 L2 L3 L4 L5 

Protocols used  

Galgani et al., 2013 Kovač Viršek et 

al., 2016 

Galgani et al., 

2013 

Kovač Viršek et 

al., 2016 

Baini et al., 2018 

Fossi et al., 2017 

Panti et al., 2015 

Size of sieves/nets 

used 
5 mm, 1 mm, 300 μm 250 µm 

300 µm, 1 mm, 

2 mm, 5 mm 

5 mm, 1 mm, 

300 µm 
200 µm 

Degradation of 

biological material 
/ / / / / 

Chemical 

identification of 

particles 

ATR-FTIR for particles of 

questionable 

composition 
 

/ 

ATR-FTIR for 

particles of 

questionable 

composition 

ATR-FTIR for 

particles of 

questionable 

composition 

Monitoring of 

contamination*  
Yes Yes No Yes Yes 

*e.g. use of procedural blank or opened Petri dish for monitoring airborne contamination 

Data processing  

The differences between the ‘blind analysis’ results and the reference values were calculated for 

every sample. The resulting error, in percentage, is given as the ratio of this difference to the 

reference value. The error can be positive in case of overestimation (analysis results > reference 

value) or negative when underestimation (analysis results < reference value).  

In order to better understand and compare the sign and the degree of deviation when grouping the 

results per category (e.g. errors on film counts in sediment) average and root mean square errors 

(RMS) were used. The RMS error was calculated as follows: 

RMS = �∑ �������	

�  

Where, n is the number of samples (sediment or water); yi is the reported error in %. 
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The RMS error was computed for total counts and total weight as well as for the counts of MP types 

(fragments, filaments, pellets, films, styrofoam) and colour categories included in the reference 

samples, provided by all laboratories in sediment and water samples separately. In addition, this 

process was repeated for the data provided by each participating laboratory separately. 

Post ICE analysis 

After collecting and processing the results from all laboratories during the ‘blind analysis’, and in 

order to understand better the exact reasons for deviations in counts in comparison to the reference 

values, a second stage of complementary analysis was carried out on 12 samples. This 

complementary, post ICE analysis included recounting of the MP particles extracted from the 

samples and additional polymer identification of selected particles. Three of the participating 

laboratories made chemical analysis of particles with ATR-FTIR spectrometers (Agilent Cary 630, 

Perkin Elmer Spectrum Two) mainly from samples where overestimation in total counts had occurred 

during the ‘blind analysis’. 

 

3 – Results 

3.1 Total count and weight of MP  

A summary of the errors of the counts of particles and on the total weight of MP for both sediment 

and water samples is presented in Table 2. Regarding the total count of MP, the errors ranged from -

24% to +22% with the exception of one sample showing very high positive error (n°25, error +40%). 

Overall, the results showed both under and over estimations with an error being under 25% in 

absolute value. A percentage of 60% of the errors were underestimation and 40% were 

overestimation. 

For the total weight of MP, the errors ranged from -25% to +91%. Only three out of 16 results had an 

error exceeding 25% in absolute value. Two of these results were overestimation (sample n°25, error 

+91% and sample n°28, error +46%) and one was underestimation (sample n°11, error -25%). It 

should be noted that in some cases (e.g. samples n° 4 and n° 20) the sign of the error is opposite to 

the respective error on particles count. A percentage of 56% of the errors were underestimation and 

44% were overestimation. 

Table 2 : Summary of the differences (in %) between the reference and the analysis results for the total count and weight of 

microplastics (MP). Details of errors by type of particles can be found in Supplementary material (Table S3)  

Type of sample and 

concentration range of MP 

Sample n° Total count of 

MP 

(reference) 

Total count of 

MP (analysis) 

Error total 

count (%) 

Total weight of 

MP in grams 

(analysis) 

Error total 

weight of MP 

(%) 

Lab. 

Sediment        

High concentration 

3 146 121 -17 nd* nd* L2 

4 134 131 -2 0.42918 7 L5 

6 143 163 14 0.52684 23 L1 

7 136 123 -10 nd*  L2 

8 136 123 -10# 0.3462 -7 L4 

11 142 119 -16 0.2795 -25 L3 
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Low concentration 

20 75 84 12 0.2088 -5 L3 

24 77 80 4 0.21711 10 L5 

25 81 113 40 0.30308 91 L1 

28 81 63 -22# 0.1653 46 L4 

Water        

Low concentration 

31 89 75 -16 0.2103 -4 L3 

32 91 69 -24 nd*  L2 

36 83 101 22 0.20577 4 L1 

39 89 78 -12 0.1928 -6 L4 

40 97 96 -1 0.21501 -0,2 L5 

High concentration 

44 149 143 -4 0.2716 -6 L3 

45 160 161 1 0.31636 -4 L1 

47 162 167 3 0.35615 1,5 L5 

49 158 125 -21 nd* nd* L2 

50 149 151 1 0.3536 -10 L4 

 

* nd corresponds to no data 

# the first counts of filaments in samples 8 and 28 were approximately 10-fold above the reference due to a contamination by a laboratory 

equipment when processing the samples. These initial filament counts have been considered as outliers for the rest of the study. The 

number then used is computed excluding filament counts.  

Analysis performance per sample matrix 

Figure 1 shows RMS and average values of errors which have been computed according to total 

count, total weight and particle types for both sample matrices. In general, the error in total particle 

count was slightly greater for sediment samples (RMS 18%) than for water samples (RMS 14%). The 

average error is negative both for sediment (-1%) and water (-5%) but the error pattern differs if 

considering the total weight of MP particles. The error is then much higher for sediment (RMS 44%) 

than water (RMS 6%). In sediment samples the average error (16%) is positive while it is negative (-

4%) for water.  
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Figure 1 : RMS and average errors (%) of MP total count and total weight as well as MP categories in sediment and water 

samples. Note: no styrofoam particle was added when preparing the sediment reference samples. 

Analysis performance per laboratory 

When comparing counts on MP by matrix and laboratory, notable differences are seen among 

laboratories (Figure 2). The most prominent features are the small errors from L5 (RMS 3% in 

sediment and 2% in water) and the errors above 20% for sediment samples analysed by L1 (30%) and 

water samples by L2 (23%). The other RMS values are in the range 9-17%. 

It is also noticeable that in case of L1, the average error is positive whereas that for L2, L3 and L4 is 

negative. 

 

 

 

Figure 2 : Average and RMS errors (%) of total counts of MP in sediment and water reference samples per laboratory 

3.2 Counts of MP per type 
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The errors of the MP type analysis (Table S3, Suppl. Material) range from -84% to +110%. Both these 

extreme values are observed for the films category. If the data are grouped by matrix (Figure 1), then 

the errors are: for pellets RMS 8% in sediment, no error in water; for fragments RMS 19% in 

sediment and 14% in water; for styrofoam RMS 26% in water; for filaments 29% in sediment and 45% 

in water; and for films RMS 56% in sediment and 44% in water. 

It appears also that the sign of the average error is different depending on the type of MP. On 

average, films’ counts are overestimated (5% sediment, 14% water), while for nearly all other types, 

average errors are zero or negative: fragments (0% sediment, -5% water), pellets (-5% sediment, 0% 

water), styrofoam (-11% in water) and filaments (-8% in sediment and -29% in water). 

3.3 Colour of MP 

The particles introduced into the samples were classified into four out of the eight colour categories: 

blue, orange/pink/red, transparent and white. Table 3 summarizes the differences in count of 

particles between the ‘blind analysis’ and the reference values for these four colour classes. The 

erroneous counts of particles of other EMODnet colour classes (black, brown, yellow and opaque) 

are also given. 

Table 3: Summary of the differences (errors in %) between the reference and the analysis results for the colour of the 

microplastic particles 

 Sample n° 
Error 

blue % 

Error orange/ 

pink/red % 

Error transparent 

% 

Error 

white % 
Black Brown Yellow Opaque Lab. 

Sediment      
Count of particles of colour not registered in 

the reference 
 

H
ig

h
 c

o
n

ce
n

tr
a

ti
o

n
 

3 40 4 -38 -48 3 0 0 14 L2 

4 22 0 15 -32 0 0 0 2 L5 

6 125 14 -15 -23 3 0 5 9 L1 

7 88 8 -37 -42 0 0 0 19 L2 

8 14 -18 -47 -41 0 0 1 36 L4 

11 7 -18 3 -49 0 0 0 0 L3 

Lo
w

 

co
n

ce
n

tr
a

ti
o

n
 

20 30 -33 21 0 0 0 1 0 L3 

24 13 0 15 -24 0 0 0 0 L5 

25 178 55 0 10 1 0 2 5 L1 

28 -18 0 -52 -50 0 0 0 15 L4 

Water           

Lo
w

 c
o

n
ce

n
tr

a
ti

o
n

 

31 0 -30 -18 -33 0 0 0 7 L3 

32 10 20 -55 -39 0 0 0 9 L2 

36 42 263 -61 15 4 0 0 6 L1 

39 44 22 -33 -41 2 0 1 6 L4 

40 10 15 -36 -34 0 0 0 22 L5 

H
ig

h
 c

o
n

ce
n

tr
a

ti
o

n
 

44 0 -45 -4 -13 0 0 0 13 L3 

45 20 -4 19 -34 0 0 1 5 L1 

47 11 0 -29 -27 0 0 0 41 L5 

49 0 -9 -31 -41 0 0 0 14 L2 

50 57 -5 18 -45 5 0 0 4 L4 

 

The error on colour ranges from -61% to +263%. Pooling errors by matrix for the 4 colour classes 

(Figure 3) shows that the errors are on average greater for the classification of particles by colour 
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than by type (Figure 1). For the four colour categories, RMS errors always exceed 20% and large 

differences in errors depending on matrix and colour class were observed (Figure 3). 

 

 

 

Figure 3: Difference in colour of microplastic particles in comparison to the reference in % and RMS errors in sediment and 

water samples 

- According to blue category, the RMS values show that errors are lower in water (28%) than in 

sediment (77%). Overestimation is by far the most frequent error, being the average error values 

+19% in water and +50% in sediment with only one analysis (sample n°28) giving a negative error. 

- Orange/Pink/Red category: RMS values are higher in water (85%) that in sediment (22%). Average 

errors are +23% in water and +1% in sediment. However, in water the error on sample n° 36 (+263%) 

is the only one above 45% in absolute value. This large error conditions the high value of the RMS. 

- Transparent category: RMS errors are similar for water (35%) and sediment (30%). In both cases, 

underestimation dominates with average error -23% in water and -13% in sediment. 

- White category: it shows a similar pattern with no obvious differences between water (RMS 34%) 

and sediment (36%). All analytical results except two show an underestimation. Average errors are -

29% in water and -30% in sediment. 

On average, the total numbers of particles counted in other colour classes, in relation to the total 

number of particles counted in the analysis, are 10% in sediment and 12% in water samples. Most of 

these particles were classified in the opaque category (average 74% in sediment and 85% in water). 

No particle were classified as brown and very few as yellow and black. 

 

3.4 Post-ICE analysis 

Additional FTIR analysis was carried out for all the samples except n° 3, 7, 32 and 49. By providing 

information on the material of each particle, FTIR results allowed to detect particles incorrectly 

identified as polymers (e.g. mineral) and MP made of polymers different from those used as parent 

material during the preparation of the samples (Table 4). Figure 4 shows an example of films 

identified made of polyethylene, not originally included in the reference samples. 
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Figure 4: Example of white film (top) identified as polyethylene (PE) by the similarity of its spectral absorbance with a 

reference polymer (bottom) 

Table 4: Results of the FT-IR analysis carried out on the particles extracted from the samples and counted as MP 

  Sample n° Information given by FT-IR analysis 

Sediment 

4 All counted particles confirmed as MP 

6 

7 films made of other polymer than the one used for 

preparing the samples 

3 films identified as natural organic material 

4 fragments of other plastic than those used for the 

exercise 

8 All counted particles confirmed as MP 

11 
4 fragments identified as stone or glass 

1 styrofoam identified as other plastic 

20 
2 fragments identified as other plastic 

2 items identified as organic material 

24 All counted particles confirmed as MP 

25 

4 films identified as other plastic 

9 fragments identified as other plastic 

15 fragments identified as mineral 

28 3 particles identified as mineral 

Water 

36 All counted particles confirmed as MP 

39 All counted particles confirmed as MP 

40 All counted particles confirmed as MP 

44 Count of 8 styrofoam particles confirmed 

45 1 fragment identified as a stone 

47 All counted particles confirmed as MP 

50 1 particle identified as non-plastic 

 

For 12 samples, plastics particles were recounted. In some cases, the recounting was not done on all 

types of particles (see Table 5). The recounting was performed by one or two operators of the same 

laboratory (for 8 samples) and of a different laboratory (for 4 samples). In case of two operators, the 

number provided for the recount resulted from an agreement by both operators. Table 5 shows the 

results of the various counts obtained for the samples which have been recounted and informs on 

the laboratory which did the recounting. The second count takes into account the information 
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provided by FTIR analysis. It is therefore more reliable as regards to the nature of the items detected 

(polymers or not). 

Table 5 : Total number of microplastic particles found in the samples that have been recounted 

   1st count 2nd count  

 

Sample 

n° 

Num. MP 

reference 
Total  Lab  

Error 

(%) 
Total  Lab 

Error 

(%) 
Comments 

Sediment 

  

6 143 163 L1 +14 153 L1 +7   

8 136 123 L4 -10 126 L4 -7 Recounts of films only 

11 142 119 L3 -16 109 L1 -23   

20 75 84 L3 +12 74 L1 -1   

25 81 113 L1 +40 96 L1 +19   

28 81 63 L4 -22 70 L4 -14 Filaments excluded 

Water 

31 89 75 L3 -16 67 L1 -25   

36 83 101 L1 +22 90 L1 +8   

39 89 78 L4 -12 77 L4 -13 
Filaments not 

recounted 

44 149 143 L3 -4 128 L1 -14   

45 160 161 L1 +1 160 L1 0   

50 149 151 L4 +1 144 L4 -10 
Recounts of 

fragments only 

 

In almost all cases (10 samples out of 12), the recount results in a lower number than in the first 

count. In only one case, the recounting found a higher number of MP. The calculation of the RMS 

values gives, for the 1st and 2nd counts 22% and 14% for sediment samples and 12% and 14% for 

water samples, respectively. Overall, the recounting lead to an improvement of the results for 

sediment samples but not for water samples. 

4 - Discussion 

In this section, after listing the possible reasons which can explain these errors, the detailed 

discussion will focus on the total counts, the types of particles, the colours and finally the 

methodologies applied by the laboratories. 

The different analytical methods performed by the laboratories and the different operators have 

given results that either are underestimating or overestimating the counting of MP. These 

differences have been presented according to the matrix, categories or colours of particles in Tables 

2 and 3. 

In case of overestimation, the potential sources of bias could be due to:  

- Incomplete cleaning of the matrix material used for the preparation of reference samples 

- Contamination of the sample by MP during the processing/analysis phase 

- Fragmentation of microparticles 

- Misidentification, i.e. identification of a non-plastic particle (e.g. a piece of mussel shell) as 

plastic 

- Miscategorisation 

- Miscounting 

 

In case of understimation, the potential sources of bias could be from: 

- Loss of the particles during processing 
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- Miscounting 

- Misidentification, e.g. identification of film-type MP as dead plant material 

- Miscategorisation 

 

Unless other error factors, miscategorisation doesn‘t have an influence on total number of particles 

in the sample. 

Total count of microplastic particles 

According to Table 2, overestimation is encountered in 8 out of 20 samples, where three of them are 

water samples with an error in the range 1-3%. For these three samples (n° 45, 47 and 50), except in 

the case of sample n°50 in which one particle was detected as non-plastic by FT-IR analysis, the most 

probable explanation of the errors is fragmentation of original particles. The same assumption is 

made for sediment sample n°24 (error +4%, i.e. three particles). This is supported by the similarity 

observed between the particles extracted from the sample and the original MP as pointed out by 

post stereoscopic analysis. 

 

Figure 5 : Example of a particle in the process of fragmentation found in an ICE sample 

For sediment sample n°20, it is more difficult to conclude on the reason of the error. Post FT-IR 

analysis showed that two particles initially counted as MP were actually organic material and two 

were made of other plastic than the ones used in the exercise. The error can then be attributed to 

misidentification or probably, could be due to contamination or to the presence of few plastic 

particles in the sediment originally used for preparing the samples. The characteristics of the 

particles allow to support this later hypothesis rather than that of a posteriori contamination. Thus, it 

is possible that the sediment used for the exercise was not totally cleaned from micro plastics before 

adding the known ones. Meanwhile, the second counting resulted in a slight underestimation (-1%), 

suggesting a possible miscounting at the first stage. 

The three remaining overestimated samples (n°6, 25 and 36) have been analysed by the same 

laboratory. In this case the error is relatively high (respectively 14, 40 and 22%). In these three cases, 

the recounting gave an error notably lower than in the first counting. For water sample n°36, the 

difference between both counts is probably due to miscounting at the first stage. The appearance 

and shape of the plastic particles show similarities with the MP originally introduced in the reference 

sample. This supports the hypothesis of fragmentation of the particles (e.g. during transportation, 

sieving or laboratory procedures) for explaining the remaining part of the error. For sediment 

samples n°6 and 25, FT-IR analysis demonstrates that a large part of the error is due to the presence 

of films and fragments made of other plastic than the ones put in the reference samples. The dirty 

and aged look of films and the shape of fragments suggest that these items pre-existed in the 
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sediment and were not removed during the cleaning phase. Misidentification (natural organic 

particles for n°6 and mineral ones for n°25) is the other main reason of error. For sample n°25 

miscounting at the first stage is also probable.  

Several hypotheses can be put forward to explain the negative error of the remaining 12 samples. 

The suspected causes of underestimation are of different kinds: non detection by the operator, 

particle stuck to a container or filter, particle lost or blown by an air stream during handling. 

Miscounting is also possible. This has been proved for samples n°8 and 28 (L4) for which the second 

counting gave higher number than the first one reducing errors to respectively -7% and -14%. 

Among these 12 underestimated counts, it can be observed that: 

• two of them (samples n°4 and 40 analysed by L5) show a very small error (-2 and -1%) which 

can be considered as insignificant 

• three samples (n°11, 31, 44) were recounted by different operators from different 

laboratories (L3 then L1). A loss of particle between both counts is probable. 

• For several results, missing particles are mainly from one 1 or 2 types: 

o N°3 and 7 (sediment, L2): error is mainly due to a lack of films 

o N°32 and 49 (water, L2): the error concentrates on styrofoam and filaments 

o N° 39 (water, L4): missing particles are mainly styrofoam and filaments 

o N° 31 (water, L3): underestimation is mainly on films and filaments 

o N° 44 (water, L3): underestimation is mainly on films 

Especially if it regards the same laboratory, the different error patterns observed (e.g. sediment vs 

water for L2) suggest that the cause of the underestimation is a loss of particles during the analytical 

process rather than miscounting. For the samples analysed by L2, which was the only laboratory pre-

treating sediment samples with H2O2 before the density separation, the underestimation could be 

related to the use of this chemical compound that can degrade plastics such as films (Prata et al., 

2019b).  

A summary of the most likely cause of errors on total counts of MP is presented in Table 6. 

Table 6 : Hypotheses on the reasons of errors on total count of microplastics 

  
Sample 

n° 

Laboratory Error on 

total count 
Most likely reasons of error 

Sediment 

3 L2 -17% Loss of particles and/or miscounting 

4 L5 -2% Loss of particles 

6 L1 14% Incomplete cleaning of sediment, misidentification 

7 L2 -10% Loss of particles 

8 L4   -6% Miscounting (and contamination by filaments during drying) 

11 L3 -16% Loss of particles + contamination (1 styrofoam) 

20 L3 12% Incomplete cleaning of sediment, misidentification 

24 L5 4% Fragmentation 

25 L1 40% Incomplete cleaning of sediment, misidentification, miscounting 

28 L4 -11% Miscounting (and contamination by filaments during drying) 

Water 

31 L3 -16% Loss of particles 

32 L2 -24% Loss of particles 

36 L1 22% Miscounting, fragmentation 

39 L4 -12% Loss of particles 

40 L5 -1% Loss of particles 

44 L3 -4% Loss of particles 
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45 L1 1% Fragmentation, miscounting, misidentification 

47 L5 3% Fragmentation 

49 L2 -21% Loss of particles 

50 L4 1% Fragmentation 

 

The small errors obtained by L5 would tend to show a superiority of the protocol used for both 

sediment and water samples. However, the methodology used by this laboratory is similar to the one 

used by L2, L3 and L4. A notable difference is that this laboratory has coded each particle separately 

when storing them in petri dishes. Precautions taken during handling and the experience of the 

operators seem also to be factors that can explain the quality of the results. 

The use of NaI instead of NaCl for density separation in sediment samples is a factor that can explain 

a part of the overestimation in L1 (Miller et al., 2017). As the cleaning of the sediment of reference 

samples was done using NaCl [1.2 g/cm3] for density separation, it may have led to missing some MP. 

These particles would then have been revealed by a more dense flotation solution NaI [1.8 g/cm3]. 

Also misidentification has caused overestimation in the analyses of L1. 

For the three laboratories whose results are generally underestimated (L2, L3 and L4), particle loss or 

non-detection appears to be the most likely reason, with counting errors in some cases. 

 

Types of microplastic particles 

Several hypotheses can be put forward to explain the significant differences of errors between the 

types of particles identified during the ICE. 

Given their relative large size and regular shape, the pellets are easier to identify and therefore less 

prone to error. For this type, only four sediment samples (n°3, 6, 7, 11) have an error (1 out of 8 

missing pellets). 

Styrofoam was included only in reference water samples. Accordingly, no styrofoam particles have 

been found in sediment except in one sample analysed by L3 (one microparticle). Water sample n°44 

(L3) shows an overestimation of styrofoam particles. This is probably due to contamination or 

fragmentation of the particles initially present during the sample processing. An underestimation of 

styrofoam MP is observed in 4 water samples (n°32, 39, 45, 49). It is supposed that a loss of material 

occurred during the analytical process, which can be favoured by the lightness of the styrofoam 

pieces in comparison to other types of plastics. 

For filaments, negative errors clearly dominate especially in water samples. This may be due to the 

fact that the added items were transparent. There are also differences from one laboratory to 

another. The highest underestimation comes from L2 in the water samples (average -80%). These 

underestimations are supposed to be the consequence of the loss of material that can result for 

example from particles trapped in the deposit with biological material or lost at the filtering stage. 

Additionally, it should be noted that the lower errors on filaments have been obtained by L5 which 

used only one filtering step with a 200 µm sieve, limiting therefore the risk of missing filaments 

because remaining stuck on the filter. 

In average, error on fragments is the lowest after pellets. The most important positive errors 

(samples n°20, 25, 36) have been explained in the previous paragraphs. If the most significant 

negative error (< -10%) is considered, it is possible to separate: on the one hand samples n°4, 24, 40 

and 47 analysed by L5 for which the missing number of fragments is nearly the same as the number 
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of exceeding films in the same sample, suggesting a miscategorisation, and on the other hand, 

samples n° 11 (L3), 32 and 49 (L2) for which this transfer among categories is not seen, leading to the 

assumption of a loss of particles or a non detection. 

For films, the results differ greatly from one laboratory to another. It appears that the errors are 

generally of the same order for the two samples of the same matrix analysed by each laboratory. The 

significant overestimation of films in sample n°6 has been already discussed above, when considering 

total counts. Regarding underestimations, significant errors are found in samples analysed by L2 (-82 

and -84% for sediment n°3 and 7, respectively) and L3 (-22, -25 and -40% for n°11, 31 and 44, 

respectively). As these errors cannot be attributed to a miscategorisation, they are probably due to a 

non-detection or loss of particles resulting from the weaknesses of the method used. 

Colour 

On most of the samples, including samples with a very low error on total counts of particles, a 

common pattern is observed, with negative values of error for white and transparent and positive 

values of error for blue and orange/pink/red. The most probable hypothesis is a miscategorisation. 

This can result either from the difficulty to choose among classes for a particle (e.g. white and 

opaque) or from an alteration of the original colour of the particle while processing the sample. This 

latter assumption is particularly relevant for laboratory (L1) that has used NaI as a flotation media 

during preprocessing of sediment samples. 

The increased errors in colour classification can also be explained by factors such as the light 

conditions in the laboratory and the colour perception of the operators. 

Based on the results of the present ICE, it appears that the information on the colour of the particles 

is least trustful. Taking into account also that the colour of a plastic particle can change over time, 

especially in natural environments, due to its exposure to light and mechanical weathering, we 

suggest to reconsider the list of colour categories in the EMODnet classification. Apart from the fact 

that the colour of the particles can influence their rate of ingestion by animals as they are mistaken 

for their usual food, the interest for the information of colour is not obvious. 

 

5 - Conclusions and recommendations 

Underestimation is the most frequent cause of error. In the targeted particle classes, the risk of non-

detection (human error) and loss of particles appears to be greater than the risk of contamination. 

This assertion is reinforced by the fact that the recounting of the particles did not give consistent 

results. This is in accordance with the conclusion of Isobe et al, (2019) who point that an increase of 

handling might result in a risk of loss of MP. 

The relatively small errors on total counts of MP obtained on the four samples analysed by L5 

demonstrates the validity of protocols used by this laboratory for the kind of samples prepared for 

the ICE, i.e. samples with a low concentration of organic material. The main characteristics of the 

protocols applied by L5 were for sediment samples: NaCl [1.2 g/cm3] density separation, one filtering 

step (200 µm), no H202 or KOH degradation of organic material; and for water samples: one filtering 

step (200 µm). Precautions taken in this laboratory and the operators’ experience must also have 

contributed to the quality of these results.  

The difficulty to get clean natural sediment reference material is an issue. Thorough cleaning of the 

sediment used for the intercalibration exercise is necessary prior to the exercise, to avoid 

contamination leading to positive errors. The availability of such clean reference material should be 

ensured in order to facilitate the assessment of the performance of laboratories.  
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The step of the post analysis of the ICE has demonstrated the usefulness of FT-IR analysis in removing 

ambiguities on some mineral and biological particles that can be easily mistaken as plastic, especially 

in sediment samples. By identifying the polymer, FT-IR analysis gives also information that can help 

to know the origin of the particles and the possible source of pollution. However, in the MSFD 

monitoring programmes, the high cost of such analyses can be a barrier to their widespread use. For 

this reason, other analytical techniques, for example fluorochrome analysis, need to be further 

explored and compared to FT-IR in terms of cost/performance ratio.  

Regarding the categories of particles, the greatest errors are seen on films and filaments. On the one 

hand, the distinction between films and fragments is not always obvious especially when particles 

are flat; while on the other hand, the detection of filament shaped MP, seems to be more difficult 

than of other particles, especially when filaments are transparent as in the case of the present ICE. 

Regarding the colour of MP, it appears difficult to obtain reliable and comparable data due to several 

factors, in particular alteration during sample processing and subjectivity of the operators. The 

relevance of this information on the colour of the MP is therefore not obvious. Given the high risk of 

miscategorisation and the relatively low interest in the MP colour information (compared to the type 

or the polymer of the particle), it is suggested to reduce the number of colour classes to five: dark 

(black, brown, dark grey), blue/green, pale (white, cream, yellow), orange/pink/red and transparent 

As analyses require a lot of manipulation and operations involving a human operator, the experience 

and know-how of the staff involved seem to have a significant impact on the quality of the results. 

Attention should therefore be paid to the training of operators. It should be pointed that analysis of 

water samples is easier than of sediments. Sediment samples require a pre-treatment including a 

density separation, whereas for the water samples, the method is more direct, with less 

manipulation of the “raw” sample. However, the high variability of MP concentrations observed in 

surface waters often makes it difficult to interpret analyses of water samples taken at sea. Due to the 

integrating nature of the sediments, the analysis of MP in this matrix remains very relevant and the 

improvement of the analytical methods must remain a priority. 

In conclusion, this first intercalibration exercise performed among different laboratories at European 

level highlighted the difficulty of obtaining comparable results on similar samples. This is a weakness 

which makes difficult a sound assessment of plastic pollution at regional scale. The harmonization of 

MP monitoring methods for all environmental compartments, including biota and the introduction of 

standards ensuring the accuracy of the analysis and the robustness of the results should therefore be 

a priority. 
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