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Abstract— A novel and general approach is presented for the
complete suppression of the open-stopband (OSB) effects in
circularly polarized 1-D periodic leaky-wave antennas (LWAs)
using anisotropic modulated metasurfaces (MTSs). A theoretical
justification of this behavior is found through the rigorous
treatment of the canonical problem of an infinite homogenized
impedance surface sinusoidally modulated along the propagation
direction. By deriving a closed-form solution of this problem at
broadside scan, it is shown that, while the sinusoidally modulated
isotropic impedance exhibits a null of the attenuation constant,
the complex propagation constant for the proposed anisotropic
modulation has a finite value and a regular behavior. A closed-
form formula for the leakage constant α is also derived, allowing
for an accurate design of the aperture field amplitude. The
full-wave analysis of a patch-based implementation of the MTS is
in excellent agreement with the results based on the homogenized
impedance model, thus demonstrating the practical applicability
of the theoretical results. The elimination of the OSB behavior
allows for the design of LWAs able to scan the beam from
backward (BWD) to forward (FWD) without any frequency
regions of blindness.

Index Terms— 1-D periodic modulation, broadside radiation,
Floquet theorem, leaky-wave antennas (LWAs), metasurfaces
(MTSs), open stopband (OSB), periodic structures.

I. INTRODUCTION

PLANAR antennas based on periodically modulated sur-
face impedances have recently emerged as an effective

low-profile alternative to printed arrays or reflectarrays for the
realization of high gain radiators [1], [2], [3], [4], [5], [6], [7].
These antennas belong to the class of periodic leaky-wave
antennas (LWAs), in which a slow wave (SW), fed by a
primary source, excites a fast Floquet wave (FW), typically
the n = −1, due to the interaction with a periodically loaded
or modulated guiding structure. This radiation mechanism is
well suited for frequency scanning applications, since the
beam scans from backward (BWD) to forward (FWD) as the
frequency increases. However, a problem of such antennas is
the abrupt variation of the radiation efficiency when the beam
is scanned through broadside [8]. The narrow frequency region
corresponding to n = −1 FW radiation around broadside is
usually known as the open-stopband (OSB) region [9]. In the
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Fig. 1. (a) Schematic period of the isotropic 1-D periodically modulated
patch-type LWA. (b) Schematic period of the anisotropic 1-D periodi-
cally modulated patch-type LWA. The three black dots aligned with the
x-/y-direction both in (a) and (b) define the 2-D periodicity of the two antennas
in the respective directions.

OSB, the leakage constant typically varies rapidly assuming
first a highly peaked value and then dropping to zero. This
is due to the contradirectional coupling between a pair of
FWs, resulting in a standing-wave effect and in a consequent
mismatch [8]. For a finite structure, this implies an increase
in the reflection coefficient and a drop in the realized gain.
Several techniques were proposed in the last years for solving
or mitigating the OSB problem.

A noteworthy approach to mitigate the OSB problem is
based on small-perturbation theory and consists of introducing
in each modulation period a pair of identical quarter wave-
length spaced scatterers, so that the waves reflected by the
two scatterers almost cancel each other [10], [11]. However,
in the general case, the practical design requires some ad
hoc optimization. A systematic design approach based on
mutual scattering cancellation through the introduction of
quarter-wave transformers or matching stubs was proposed
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in [12] and experimentally validated in [13]. In [14], [15],
[16], [17], and [18], more general studies on the suppression of
the OSB were conducted, exploiting transverse, longitudinal,
or double asymmetry in the structure to satisfy frequency-
balancing and Q-balancing conditions. This can be seen
as a generalization of the approach for OSB suppression
in composite right-/left-handed (CRLH) LWAs [19], [20].
More recently, the transversal asymmetry design principle was
applied in [21] using two similar but unequal discontinuities
inside the unit cell, and this approach was then general-
ized in [22]. Moreover, several realizations of LWAs with
improved broadside radiation have been published, including
an SIW LWA with periodic longitudinal slots [23], a single-
layer spoof-plasmon-mode LWA [24], and an asymmetrically
modulated Goubau line [25].

In this work, we demonstrate a novel approach to design
circularly polarized LWAs with completely suppressed OSB
using 1-D periodically modulated anisotropic metasurfaces
(MTSs) with a proper sinusoidal profile of the homogenized
impedance boundary conditions (IBCs). Although this kind
of modulation has been already employed to design centrally
fed broadside pointing-modulated MTS antennas [6], [26],
the OSB issue has not been investigated yet. A preliminary
study has been conducted in [27] and [28]. A complete
analysis including full-wave verification is done in this arti-
cle for the first time. Starting from the rigorous analysis
of the canonical problem of an infinite periodic structure
with sinusoidally homogenized IBC, the OSB suppression
is theoretically demonstrated through the derivation of a
closed-form solution for the leakage constant and of the
relative complex coefficients of the FWs at broadside. These
results and the smooth behavior around broadside are then
numerically substantiated by solving the dispersion equation in
a wider frequency range. Furthermore, the practical applicabil-
ity of the concept is verified by implementing the anisotropic
impedance profile through elliptical patches [29] (see Fig. 1)
and performing a full-wave analysis of the resulting structure.
Full-wave results are in excellent agreement with the ones
found for the homogenized structure, thus confirming the
complete suppression of the OSB. Finally, numerical results
relevant to a finite length structure are presented to better
assess the impact of the OSB suppression in practical MTS
LWAs.

Unlike approaches that rely on the introduction of reflec-
tion canceling elements, the strategy proposed here offers a
remarkable solution to the OSB problem in both propagation
directions of the SW. This results in broadside radiation
with opposite circular polarizations, enabling dual-polarized
operation. In addition, this strategy eliminates the need for ad
hoc optimization for specific geometries, as it only requires
the synthesis of elements implementing a certain impedance
profile, which is a well-established and systematic process. It is
important to note that the sinusoidal shape of the modulation
should not be seen as a restriction or limitation. On the
contrary, it can be effectively implemented using artificial
surfaces with arbitrary constitutive unit cells. Moreover, the
general expression of the modulation contains a sufficient
number of degrees of freedom (namely, average reactance and
modulation index) to allow for independent control over the

Fig. 2. Geometry for the problem of the 1-D sinusoidally modulated
impedance on the left and relevant equivalent transmission line model on
the right for (a) IIBC and (b) PIBC on a grounded slab.

broadside pointing frequency and the value of the attenuation
constant.

This article is organized as follows. Section II defines
the canonical problem for the homogenized, infinite periodic
structure, and the relevant dispersion equation. Section III
derives the closed-form solution at broadside. The analytical
solution is compared in Section IV with the one obtained by
numerically solving the dispersion equation. Radiation from a
finite structure is considered in Section V. Throughout this
article, besides the proposed anisotropic periodic structure,
an isotropic one, exhibiting the OSB behavior, is also con-
sidered for the sake of comparison. Finally, the conclusions
are drawn in Section VI.

II. PROBLEM FORMULATION FOR DISPERSION ANALYSIS

In this section, we derive the equations describing the
propagation and radiation characteristics of waves supported
by a sinusoidally modulated anisotropic reactance surface.
The analysis approach employed here is a generalization
of the one proposed in [30] for a scalar sinusoidally
modulated impenetrable impedance. This generalization was
originally introduced in [31, Sec. III]. A similar approach,
applicable to an arbitrary periodic modulation profile, was
developed in [32] by incorporating the Fourier series expan-
sion of the impedance. The impedance surface sits in
the xy plane of a Cartesian coordinate system, and it is
invariant along the y-direction and modulated along the
x-direction, which coincides with the propagation direction of
the wave. The structure is assumed to be lossless. Throughout
this article, an exp( jωt) time dependence is assumed and
suppressed.

Two types of reactive IBCs will be considered in this article.
The first one is an impenetrable IBC (IIBC), described by a
tensor, which relates the tangential components of the total



GIUSTI et al.: COMPLETE OSB SUPPRESSION USING SINUSOIDALLY MODULATED ANISOTROPIC MTSs 8539

electric and magnetic fields on the surface as follows:

Et (z = 0+) = jX · ẑ × Ht (z = 0+). (1)

On the other hand, the penetrable IBC (PIBC) relates the
tangential component of the electric field to the discontinuity
of the tangential magnetic field according to this relationship

Et (z = 0) = jX · ẑ ×
[
Ht (z = 0+)− Ht (z = 0−)

]
. (2)

The geometry for the problem treated with the two afore-
mentioned IBCs (IIBC and PIBC), together with their
corresponding equivalent transmission line models, is shown
in Fig. 2. Two different equivalent transmission lines are asso-
ciated with the transverse magnetic (TM, or e) and transverse
electric (TE, or h) components. For PCB-based MTSs, the
reactance tensor in the IIBC accounts for both the metallic
cladding and the grounded slab, as illustrated in Fig. 2(a).
However, the IIBC can also be applied to other several kinds
of MTS implementations, including the ones based on bed
of nails and corrugations [33]. The PIBC is used here as a
homogenized model of the metallic cladding of MTSs realized
in PCB technology, assuming that this condition holds on top
of a grounded dielectric slab of thickness h and relative permit-
tivity ϵr. In this case, the grounded dielectric slab is accounted
for by a section of short circuited transmission line, as shown
in Fig. 2(b), while the metallic cladding is represented by
a shunt load that, in the most general case, couples the TE
and TM transmission lines. As widely demonstrated in the
literature [34], this is the most accurate model for this kind of
structures, since it allows to rigorously account for the space
and frequency dispersion of the grounded slab.

Both the conditions in (1) and (2) can be expressed through
the following compact unified representation:

Et (z = 0) = jX · J (3)

where J assumes the meaning of equivalent current ideally
flowing either on top of the surface for the IIBC case or in
the metallic cladding for the PIBC case. In both cases, X is the
reactance tensor, which is written in a matrix form as follows:

X =

[
Xxx Xxy
X yx X yy

]
=

[
Xee Xeh
Xhe Xhh

]
(4)

where the second equality denotes the fact that, for Cartesian
components and propagation along the x-direction, the xx
and yy components correspond to the ee and hh components,
respectively. The extra diagonal entries in (4) account for the
coupling between different polarizations.

All the entries of the reactance tensor are assumed uniform
along the y-direction and periodically modulated with period
d along the x-direction. Due to the periodic nature of the
problem, currents and fields can be represented in terms of
FWs (space harmonics), respectively, as follows:

Jx (x) = J e(x) =
1
d

∞∑
n=−∞

I e
n e− jkx,n x (5)

Jy(x) = J h(x) =
1
d

∞∑
n=−∞

I h
n e− jkx,n x (6)

Ex (x) = Ee(x) =
1
d

∞∑
n=−∞

Ge
E J (kx,n)I e

n e− jkx,n x (7)

Ey(x) = Eh(x) =
1
d

∞∑
n=−∞

Gh
E J (kx,n)I h

n e− jkx,n x (8)

where kx,n = kx,0 + 2πn/d are the Floquet transverse
wavenumbers and Ge,h

E J are the TM and TE spectral Green’s
functions of the problem. These latter in the IIBC case are
given by

Ge,h
E J (kx,n) = −Z e,h

0 (kx,n) (9)

where Z e
0 = η0kz,n/k0, Z h

0 = η0k0/kz,n , kz,n = − j
√

k2
x,n − k2

0 ,
and η0 and k0 are the free-space impedance and wavenumber.

In the PIBC case, we have instead

Ge,h
E J (kx,n) = −Z e,h

0 (kx,n) ∥ Z e,h
gs (kz,n) (10)

where Z e,h
gs = j Z e,h

d tan(kzd,nh) is the grounded slab con-
tribution, with Z e

d = ηdkzd,n/kd , Z h
d = ηdkd/kzd,n , kzd =√

k2
d − k2

x,n , and ηd = η0/
√
ϵr and kd =

√
ϵrk0 are the

dielectric impedance and wavenumber, respectively.
The TM and TE components of the vector modal voltage

Vn of the nth FW are defined as follows:

V e
n =

∫ d/2

−d/2
Ee(x)e jkx,n x dx = Ge

E J (kx,n)I e
n (11)

V h
n =

∫ d/2

−d/2
Eh(x)e jkx,n x dx = Gh

E J (kx,n)I h
n . (12)

The dominant (zero-indexed) FW is an SW with propaga-
tion constant close to the one corresponding to the average
impedance. When, for some index n, the real part of the
transverse propagation constant falls in the visible range (i.e.,
|Re{kx,n}| < k0), the mode is an LW, and the transverse
wavenumbers of all the FWs acquire an imaginary part,
accounting for radiation. In the following, we will use β and
α to denote the real and imaginary parts of the propagation
constant of the dominant mode, i.e., kx,0 = β − jα. For the
analysis of the OSB problem, we are interested in the case
βd = 2π , corresponding to broadside radiation of the n =

−1 FW (Re{kx,−1} = 0). Notice that in this case, we have
Re{kx,0} = −Re{kx,−2}, i.e., the n = 0 and n = −2 FWs are
two SWs traveling in opposite directions with the same phase
velocity.

We consider now two different cases: a sinusoidally mod-
ulated isotropic impedance and a sinusoidally modulated
anisotropic impedance.

A. Isotropic (Scalar) Impedance

We assume in this case that the extra-diagonal entries of the
reactance tensor are identically zero; this implies a complete
decoupling between the TE and TM components of the fields,
and the vector problem can be reduced to a scalar one.

We consider the following sinusoidal behavior for the diag-
onal entries of the reactance tensor:

X pp(x) = X pp

[
1 + Mcos

(
2π
d

x
)]

(13)

where M is the modulation index, X pp represents the average
reactance, and p = e, h. An inductive (capacitive) impenetra-
ble X ee (X hh) will support a TM (TE) modal solution with no
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cutoff frequency. The propagation and radiation characteristics
of the supported modes can be found with the rigorous
procedure presented in [30] and briefly summarized in the
following.

Substituting (3), together with (5) and (6), into (11)
and (12), we obtain the following infinite set of linear homo-
geneus equations in which, due to the sinusoidal nature of the
modulation, each equation involves only three modes:

M I e,h
n−1 + De,h

n I e,h
n + M I e,h

n+1 = 0, n = 0,±1,±2, . . . (14)

with

De,h
n = 2

(
1 + j

Ge,h
E J (kx,n)

X

)
. (15)

This infinite set of equations possesses a nontrivial solution if
the infinite determinant of the set vanishes. As shown in [30]
for the IIBC case, this condition can be written in terms of
rapidly convergent continued fractions and efficiently solved
numerically with respect to the variable kx,0. The solution
provides the complex wavenumber of the fundamental n =

0 FW, from which all the other harmonics wavenumbers
are immediately obtained by considering the displacement
factor 2πn/d. The same approach can be also applied in
the PIBC case [34]. This procedure, therefore, allows for the
accurate derivation of the complete field distribution and the
propagation characteristics of the supported modes.

B. Anisotropic (Tensorial) Impedance

In this section, we consider the case of a full reactance
tensor with the following behavior of its entries:

Xee(x) = X
[

1 + Mcos
(

2π
d

x
)]

Xeh(x) = Xhe(x) = X Msin
(

2π
d

x
)

Xhh(x) = X
[

1 − Mcos
(

2π
d

x
)]

(16)

where, similar to the isotropic case, M is the modulation
index and X represents the average reactance. Notice that
this anisotropic impedance modulation is the same used in [6]
and [26] to design broadside pointing, circularly polarized,
modulated MTS antennas.

The problem is solved by generalizing to the vector case
the procedure introduced in Section II-A as shown in [34].
Substituting (3), together with (5) and (6), into (11) and (12),
we obtain the following transverse resonance equations:

M−In−1 + D
n
In + M+In+1 = 0, n = 0,±1,±2, . . . (17)

where In = [I e
n I h

n ]
T ,

D
n

=

[
De

n 0
0 Dh

n

]
(18)

and

M+
= (M−)∗ = M

[
1 j
j −1

]
. (19)

Equation (17) can be viewed as a double infinite set of linear
homogeneous equations with an infinite number of vector
unknowns In , which can be solved with an approach analogous
to the one outlined for the isotropic case.

III. CLOSED-FORM SOLUTION AT BROADSIDE

In this section, we derive a closed-form solution for (14)
and (17) when βd = 2π , corresponding to the broadside
pointing of the n = −1 FW.

A. Isotropic Impedance

At broadside scan, it has been proved in [8] that

k2
z,n = k∗2

z,−(n+2), n = 0,±1,±2, . . . (20)

Since, for the principal branch, all kz,n , n ̸= −1, are located
on the respective proper Riemann sheet with Im{kz,n} < 0,
one has from (20) that

De,h
n =

(
De,h

−(n+2)

)∗

, n ̸= −1. (21)

Using (14) to express the ratios I e,h
−2 /I e,h

−1 and I e,h
0 /I e,h

−1 as
infinite continued fractions involving Dn for n < −1 and n
> −1 only, respectively [30], in view of (21), it is possible to
show that (I e,h

−2 /I e,h
−1 ) = (I e,h

0 /I e,h
−1 )

∗. After plugging the two
expressions into the equation for n = −1, and noticing that
De,h

−1 is complex, it is possible to conclude that I e,h
−1 = 0; that is,

at broadside, the n = −1 FW amplitude vanishes, and hence,
α = 0. Furthermore, we have I e,h

0 = −I e,h
−2 , giving rise to a

standing wave in the invisible region, which stores reactive
energy and creates the OSB. This behavior is numerically
substantiated in Section IV-A.

B. Anisotropic Impedance

In order to solve the system of equations in (17) when βd =

2π , let us define the auxiliary variables

I +

n = I e
n + j I h

n (22)
I −

n = I e
n − j I h

n (23)

that allow us to rewrite

I e
n =

I +
n + I −

n

2
(24)

I h
n =

I +
n − I −

n

j2
. (25)

It is noted that the current coefficients I +

−1 and I −

−1 are
associated with the two opposite circular polarizations.

Substituting (22) and (23) into (17), we can obtain, for
a generic index n, the two following linear homogeneous
equations:

M I +

n−1 + De
n

(
I +
n + I −

n

2

)
+ M I −

n+1 = 0 (26)

M I +

n−1 − Dh
n

(
I +
n − I −

n

2

)
− M I −

n+1 = 0 (27)

or equivalently

4M I +

n−1 +
(
De

n − Dh
n

)
I +

n +
(
De

n + Dh
n

)
I −

n = 0 (28)(
De

n + Dh
n

)
I +

n +
(
De

n − Dh
n

)
I −

n + 4M I −

n+1 = 0. (29)

At the broadside condition, we have De
−1 ≃ Dh

−1 = D−1.
Then, after combining (28) for n = 0 and (29) for n = −1,
we can obtain the following relationships:

I +

−1

I +

0
=

2
(
De

0 − Dh
0

)[
D−1

(
De

0 + Dh
0

)
− 8M

] (30)
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Fig. 3. Magnitude of the FW coefficients I +
n and I −

n at the broadside
frequency obtained with the analytical (orange bars) and numerical (blue bars)
solutions.

I −

0

I +

0
=

D−1
(
De

0 − Dh
0

)
8M −

[
D−1

(
De

0 + Dh
0

)] . (31)

We now consider the set of linear homogeneous equations
consisting of (28) and (29) for n < 1 plus (28) for n = −1,
and we notice that its determinant is different from zero. This
last result allows us to conclude that

I +

n = 0, n = −2,−3, . . . (32)
I −

n = 0, n = −1,−2, . . . (33)

We notice that the condition I −

−1 = 0 implies that at broadside
scan, the n = −1 FW is perfectly circularly polarized. For the
solution with βd = −2π , one finds I +

−1 = 0, corresponding
to the opposite circular polarization.

A closed-form solution can be obtained for any harmonic by
successively solving for n = 0, 1, 2, . . . first (29) for the index
n and then (28) for n + 1. Finally, the solution is iteratively
expressed as follows:

I +

n+1 = −
De

n + Dh
n

4M
I +

n −
De

n − Dh
n

4M
I −

n (34)

I −

n+1 = −
De

n + Dh
n

4M
I +

n −
De

n − Dh
n

4M
I −

n (35)

respectively, from (28) for index n + 1 and (29) for index n.
The derived formulas for the FW relative amplitudes have

been validated against the numerical solution of (17). These
latter are obtained by truncating the infinite linear system
at |n| = 10 and analyzing the eigenvector relevant to the
zero-valued eigenvalue of the system matrix in order to
derive the relative amplitudes of the current modes. A perfect
agreement has been found between analytical and numerical
solutions, thus validating the derivation. An example is shown
in Fig. 3. It is relevant to the case of a PIBC over a dielectric
slab with thickness h = 0.508 mm and relative permittivity
ϵr = 9.8, with modulation period d = 9 mm, average reactance
−484 �, and modulation index 0.36. These parameters have
been selected to have the n = −1 FW radiating broadside
at 29 GHz. The result obtained at this frequency clearly shows
that, as opposed to what happens for the case of sinusoidally
modulated isotropic impedance, in this case, the coefficient of
the n = −1 FW does not vanish at the broadside condition,
and the n = −2 FW is not excited (I +

−2 = I −

−2 = 0).

Fig. 4. Magnitude of the FWD and BWD FW coefficients I +
n and I −

n at the
broadside frequency obtained with the analytical solution in (32)–(35).

For a deeper understanding of the origin of the OSB
suppression, Fig. 4 provides additional insight into the mode
decoupling mechanism. It displays the magnitudes of the I +

n
and I −

n FW coefficients of the expansions associated with SWs
propagating along the positive x-direction (FWD) and along
the negative x-direction (BWD) at the broadside frequency,
as obtained with the analytical solution given by (32)–(35).
The amplitudes of the FWD and BWD FWs are depicted as
bars with orange and red edges, respectively, and their num-
bering is shown in the corresponding colors at the bottom and
top of the figure. The two scales have been properly displaced
to align degenerate modes of the two expansions. I +

n and I −
n

are represented in blue and light-blue colors, respectively. It is
evident that ∀n ̸= −1, when the magnitude of an FWD FW
is nonzero, the magnitude of the degenerate BWD FW is zero
and vice versa (although the figure displays only a limited
number of FWs, this is rigorously true for all of them). In the
case n = −1, both the FWD and BWD FWs are equally
excited. However, since the two modes are oppositely circu-
larly polarized, they do not couple. Consequently, the complete
absence of contradirectional coupling between degenerate FWs
is responsible for the OSB suppression. It should be noted that
such decoupling cannot be achieved in the isotropic case, since
the n = −1 harmonic exhibits the same linear polarization for
the two contradirectional waves.

This analysis also clearly shows that a similar OSB sup-
pression effect is also obtained on the same modulated MTS
when the SW traveling in the opposite direction is excited,
with broadside radiation in the opposite circular polarization.
Hence, the proposed anisotropic MTS LW concept possesses
a remarkable peculiarity: not only it effectively eliminates the
OSB problem bidirectionally, but it also can generate either
right-handed or left-handed circular polarization simply by
switching the excitation position from one endpoint to the
other. This feature sets it apart from all the solutions for
OSB suppression which are focused on linear polarization
and only work for a single propagation direction of the SW.
Furthermore, the proposed design procedure is not based
on a specific geometry-driven design. Instead, it presents a
generally implementable approach that can be applied to any
type of MTS unit cell geometry, as long as an homogenized
description holds. In particular, since the OSB suppression
has been demonstrated for both penetrable and impenetrable
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homogenized anisotropic BCs, the concept can be applied to
various types of MTS implementations. Finally, it is noted
that the proposed solution does not refer to a single specific
modulation profile, but rather to a “family” of modulations
characterized by two degrees of freedom (namely, the aver-
age reactance and the modulation index), which permit an
independent control of the broadside pointing frequency and
of the attenuation constant. The sinusoidal profiles are the
ones providing the most compact Fourier series and, therefore,
allowing for a relatively simple closed-form solution for the
FW coefficients. It is possible that a similar effect could
be also obtained for other types of anisotropic impedance
modulations [32]; however, such extension is not explored in
this article for the sake of simplicity.

The knowledge of the FW coefficients allows us to also
obtain a closed-form expression of the leakage constant α by
equating the power radiated by the n = −1 FW to the power
lost by the slow FWs.

Let us denote with PSW (x) the time average active power
(per unit length along the y-direction) carried along the
x-direction by the SWs. We know that it decays with attenu-
ation constant α, i.e.,

PSW (x) = PSW (0)e−2αx . (36)

Since the system is passive and lossless, the rate of variation
of PSW (x) must balance out the one of the power radiated by
the LW

d PSW (x)
dx

= −
d PLW (x)

dx
= −SLW (37)

where SLW represents the active power density per unit surface
radiated by the LW, associated with the n = −1 FW only, that
can be expressed as follows:

SLW =
1
2
Re
{

I∗

−1G
(
kx,−1

)
I−1

}
(38)

where G(kx,−1) = diag[Ge
E J (kx,−1),Gh

E J (kx,−1)]. Therefore,
from (36)–(38) and considering that, at the broadside con-
dition, |I e

−1| = |I h
−1| and Ge

E J (kx,−1) = Gh
E J (kx,−1), the

following closed-form solution for the leakage constant can
be derived:

α =

∣∣∣ I e
−1
I e
0

∣∣∣2Re
{
Ge

E J (kx,−1)
}

PSW (0)
|I e

0 |2

. (39)

The ratio I e
−1/I e

0 is obtained from (24) and (25) along with (30)
and (31), and PSW (0)/|I e

0 |
2 can be calculated by integrating

the real part of the x component of the Poynting vector along
the z-direction. As an illustrative example, we report here the
explicit expression for the case of a PIBC over a grounded slab
of thickness h and relative permittivity ϵr , where the dominant
mode is TM [31]. In this case, we have

PSW (0) =
ωϵ0

∣∣I e
0

∣∣2
4

∑
n ̸=−1

kx,n
∣∣Ge

E J (kx,n)
∣∣2∣∣∣ I e

n
I e
0

∣∣∣2
sin2(kzd,nh)

×

[
ϵr

k2
zd,n

(
h +

sin(2kzd,nh)
2kzd,n

)
+

sin2(kzd,nh)
α3

z,n

]
(40)

with αz,n =

√
k2

x,n − k2
0 . In (40), all the TM slow FWs are

taken into account; however, since the majority of the power
is carried by the dominant (zero-indexed) FW, we can include
only its contribution. Furthermore, we can approximate (40)
at the first order for small values of kzd,0h as follows:

PSW (0) =
ωϵ0kx,0|Ge

E J (kx,0)|
2
∣∣I e

0

∣∣2
4

[
2ϵr

hk4
zd,0

+
1
α3

z,0

]
. (41)

The accuracy of (39) with (40) is tested in Section IV-A
through a comparison with numerical results, showing an
excellent agreement. The availability of a closed-form expres-
sion of the leakage constant as a function of the modulation
parameters allows for a very precise control of the radiating
field amplitude tapering.

IV. NUMERICAL RESULTS IN THE BROADSIDE REGION

In this section, we numerically analyze the dispersion
behavior of the infinite periodically modulated impedance
surfaces introduced in Section II in a frequency range around
the broadside frequency. The average impedance is assumed
to be inductive and capacitive for the IIBC and PIBC cases,
respectively, since these are the model suitable to describe
patch-type MTS with a backing ground plane, the most
common implementation for MTS antennas in the microwave
range [1], [2], [6].

Accordingly, a ω and 1/ω dependence is assumed for
the average reactance (X ) in the IIBC and PIBC cases,
respectively, with ω being the angular frequency. With this
frequency dependency, the homogenized impedance models
are numerically solved, starting from (14) and (17) derived
in Section II-A and II-B, respectively, in order to verify
the existence/absence of the OSB. For the PIBC case, the
frequency behavior of the FW coefficients is also analyzed,
and the accuracy of the homogenized model is verified against
full-wave simulations of a practical MTS implementation
based on elliptical patches. Those simulations have been
carried out using the spectral MoM described in [34] with the
basis functions proposed in [29]. More details on the methods
employed for dispersion analysis can be found in [34]. The
synthesis of the elliptical patches has been carried out using
a local periodicity assumption. In this context, the use of
the PIBC model, by rigorously accounting for the spatial
dispersion of the grounded slab, allows for an improved
agreement with the homogenized model with respect to the
approaches based on IIBC [1], [5].

A. Isotropic PIBC Model

The numerical results shown in this section are relevant to
the case of a dielectric slab with thickness h = 0.508 mm
and relative permittivity ϵr = 9.8, modulation period d =

9 mm, average reactance −429 �, and modulation index 0.36
(qualitatively similar results have been obtained for different
slabs and modulation parameters). These parameters have been
selected to have the n = −1 FW pointing broadside at 29 GHz.

The case of isotropic homogenized PIBC is considered first.
For this case, the equivalent tensor in (4) is diagonal (Xeh(x) =

Xhe(x) = 0), and the supported modes are purely TM. The
complex propagation constant of the dominant mode is numer-
ically derived by solving the non linear determinantal equation
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Fig. 5. Dispersion analysis of the 1-D sinusoidally modulated isotropic MTS:
comparison between the homogenized PIBC model and the spectral periodic
MoM described in [29]. (a) Normalized propagation constant (βd) of the
fundamental, n = 0, FW. (b) Normalized leakage constant (αd). (c) Top view
of the modulation period for the patch-type structure analyzed with the MoM
with r being the patch radius.

TABLE I
RADII OF THE CIRCULAR PATCHES FOR THE 1-D SINUSOIDALLY

MODULATED ISOTROPIC MTS ILLUSTRATED IN FIG. 5(c)

relevant to the truncated version of the infinite linear system
in (14). The resulting propagation and leakage constants are
represented by the continuous line in Fig. 5(a) and (b), respec-
tively. As can be seen, exactly at the broadside frequency
of 29 GHz (i.e., the frequency at which the dispersion curve in
Fig. 5(a) crosses βd/π = 2) the leakage constant approaches
a null point, as predicted by the theoretical analysis. The
perturbation due to the OSB has also a small effect on the
propagation constant, as can be appreciated in the zoomed-in
view in Fig. 5(a).

In order to assess the accuracy of this homogenized model
in the prediction of the performances of real structures, the
continuous isotropic PIBC profile has been discretized con-

Fig. 6. Frequency variation of the relative magnitude of the n = −1 and
n = −2 complex FWs with respect to the fundamental harmonic, n = 0, in the
1-D isotropic periodically modulated MTS computed using the homogenized
PIBC model (continuous lines) and the spectral MoM in [34] (blue markers).

sidering eight unit cells of size a = 1.25 mm per period
and implemented through circular patches [see Fig. 5(c)],
whose radii are reported in Table I. This synthesis step is
based on maps generated invoking the local microperiodicity
approximation [34]. The resulting structure has been analyzed
through the rigorous spectral MoM described in [34], and the
relevant results are shown by the blue markers in Fig. 5(a)
and (b). As can be seen, an excellent agreement is found
with the results relevant to the homogenized problem, which
confirms the existence of an OSB issue in practical isotropic-
modulated MTSs.

For a better comprehension of this phenomenon, the fre-
quency behavior of the FW current coefficients has also been
calculated from the eigenvector of both the homogenized
problem and its patch-based implementation. The magnitude
of the ratios I e

−2/I e
0 and I e

−1/I e
0 is shown in Fig. 6, showing

also in this case an excellent agreement between the two
models. As predicted by the theoretical analysis, the magnitude
of the n = −1 FW drops to zero (I e

−1 = 0) when βd/π = 2,
corresponding to broadside radiation. In the same frequency
range, the relative magnitude of the n = −2 FW exhibits a
peak, and I−2/I0 = −1 at βd/π = 2.

B. Anisotropic PIBC Model

In this section, we consider the case of an anisotropic PIBC
modulated according to the law in (16). The stack up and
modulation parameters are the same as in Section IV-A, except
for the average reactance, which is now set to −484 � to
obtain broadside radiation at 29 GHz.

The propagation and leakage constants derived from the
numerical solution of the homogenized problem are repre-
sented by the continuous lines in Fig. 7(a) and (b), respectively.
These results confirm the complete suppression of the OSB
effect, since both the two constants have a smooth monotonic
behavior in the whole considered frequency band, showing no
indication of a stopband behavior. The value of the leakage
constant obtained using the closed-form expression in (39) is
also shown by an asterisk in Fig. 7(b), showing an excellent
accuracy.

Also in this case, the continuous anisotropic PIBC profile
has been then discretized considering eight unit cells of size
a = 1.25 mm per period and implemented through elliptical
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Fig. 7. Dispersion analysis of the 1-D sinusoidally modulated anisotropic
MTS: comparison between the homogenized PIBC model and the spectral
MoM described in [29]. (a) Normalized propagation constant (βd) of the
fundamental, n = 0, FW. (b) Normalized leakage constant (αd); the asterisk
represents the result of the closed-form expression in (39). (c) Top view of the
modulation period for the elliptical patch-based implementation of the MTS
with r1 and r2 being the semimajor and semiminor axes, respectively, and ψ
the rotation angle of the major axis with respect to the x-axis.

TABLE II
GEOMETRICAL PARAMETERS FOR THE ELLIPTICAL PATCHES OF THE 1-D
SINUSOIDALLY MODULATED ISOTROPIC MTS ILLUSTRATED IN FIG. 7(c)

patches [see Fig. 7(c)], whose parameters are reported in
Table II. A spectral MoM with the basis functions proposed
in [29] has been used to derive the propagation constant of the
supported mode. The results are shown by the blue markers in
Fig. 7(a) and (b) and are in excellent agreement with the analy-
sis based on the PIBC model. The slight difference between the
two models at the higher frequencies can be attributed to the
simplified assumption made to describe the frequency behavior
of the equivalent reactance in the homogenized model.

Fig. 8. Frequency variation of the relative magnitude of the n = −1 and
n = −2 TM complex FW components with respect to the TM component
of the fundamental harmonic, n = 0, in the 1-D anisotropic periodically
modulated MTS computed using the homogenized PIBC model and the ad
hoc spectral MoM described in [34].

As for the isotropic case, the relative complex amplitude of
the FWs coefficients is also computed in a frequency band
around the broadside frequency (29 GHz), and the results
for |I e

−1|/|I
e
0 | and |I e

−2|/|I
e
0 | are shown in Fig. 8. As can be

seen, the amplitude of the n = −1 FW does not exhibit any
drop and has a smooth, flat behavior in all the considered
frequency band for both the homogenized and the full-wave
models. Although not reported here, the same behavior has
been verified for the corresponding TE component. On the
other hand, the |I e

−2| coefficient is practically zero in the
whole frequency band according to the homogenized model.
The small increase at the broadside frequency predicted by
the MoM analysis (reaching 0.03|I e

0 | at 29 GHz) can be
attributed to the discretization of the continuous anisotropic
IBC profile, and it is sufficiently small not to affect the antenna
behavior. Even though not shown here, both the TM and TE
amplitudes of the n = −2, −3, . . . , FWs are practically zero,
in accordance with the derivation in Section II. Although not
reported here, it has been verified through full-wave analysis
that introducing small dielectric losses does not affect the
complete suppression of the OSB.

C. Isotropic Versus Anisotropic IIBC Models

For the sake of completeness, this section reports the numer-
ical results of dispersion analysis for the case of IIBC, leading
to conclusions similar to the ones drawn for the PIBC case.
The first case analyzed is relevant to a sinusoidally modulated
isotropic IIBC characterized by an average reactance of 210 �
and a modulation index of 0.36. These parameters have been
selected to have the n = −1 FW pointing broadside at 29 GHz.
The numerically derived propagation and leakage constants
of the fundamental FW are represented by the blue line in
Fig. 9. The OSB effect can be appreciated by the vanishing of
the attenuation constant in Fig. 9(b) and by the perturbation
of the propagation constant visible in the zoomed-in view in
Fig. 9(a). In the same figure, the green dashed lines represent
the results relevant to an anisotropic IIBC sinusoidally mod-
ulated in accordance with (16) with an average reactance of
215 � and a modulation index of 0.25. As is apparent, in this
case, the curves are extremely regular, indicating the absence
of the OSB.



GIUSTI et al.: COMPLETE OSB SUPPRESSION USING SINUSOIDALLY MODULATED ANISOTROPIC MTSs 8545

Fig. 9. Dispersion analysis of 1-D isotropic and anisotropic sinusoidally
modulated IIBC surfaces. (a) Normalized propagation constant (βd) of the
fundamental, n = 0, FW. (b) Normalized leakage constant (αd).

V. NUMERICAL RESULTS FOR A FINITE STRUCTURE

In this section, the effect of the OSB suppression on
practical finite structures is investigated. Two LWAs based on
the isotropic and anisotropic patch-type MTSs introduced in
Sections IV-A and IV-B, respectively, have been simulated
using the commercial finite-element solver ANSYS HFSS.
Both the analyzed structures consist of 20 modulation periods.

For each structure, a single line of patches disposed along
the x-direction has been simulated, with periodic boundary
conditions along the y-direction (transverse to propagation)
and radiation boundary on top. Two wave ports are set at the
extremes of each antenna along the x-direction, and transitions
to the average impedances are designed using circular patches
in order to match the bare grounded slab to the desired average
impedance.

The simulated reflection coefficients are represented in
Fig. 10(a). As can be seen, due to the presence of strong
reflections in the OSB, the simulated reflection coefficient of
the isotropic structure increases up to −4 dB around the broad-
side frequency of 29 GHz. On the other hand, the simulated
reflection coefficient for the anisotropic case is very low in
all the considered frequency range, with a value lower than
−27 dB at 29 GHz. Fig. 10(b) shows the simulated copolar
realized gains at 29 GHz in the xz cut plane as a function of the
observation angle θ . For the isotropic antenna, the presence of
the OSB causes a drop of the realized gain of around 3.7 dB
compared with the anisotropic one. On the other hand, the

Fig. 10. Full-wave simulation of 20-macroperiod long strips for the isotropic
and anisotropic sinusoidally modulated patch-type MTSs whose macroperiods
is illustrated in Figs. 5(c) and 7(c), respectively. The geometrical parameters
of the patches are reported in Tables I and II, respectively. (a) Reflection
coefficient as a function of frequency. (b) Realized gain at 29 GHz as a
function of the observation angle θ . (c) AR of the anisotropic MTS as a
function of frequency.

realized gain of the anisotropic antenna increases smoothly
with frequency across the considered band (not shown here),
with no discernable dip at the broadside direction. Notice that
the polarization of the radiated field is linear in the isotropic
case and circular in the anisotropic one. The axial ratio (AR)
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of this latter is reported in Fig. 10(c), showing a value smaller
than 1 dB in the whole bandwidth.

VI. CONCLUSION

We have presented a design rule to completely suppress
the OSB behavior in 1-D-modulated MTSs, based on a
closed-form anisotropic impedance profile. The general valid-
ity of the approach has been demonstrated by deriving an
analytic solution for the complex FWs coefficients and the
leakage constant at broadside scan. The derived formulas
have also been successfully validated against numerical cal-
culations. Furthermore, the absence of the OSB effect has
also been numerically verified through the full-wave analysis
of a patch-type MTS implementing the proposed impedance
profile, thus demonstrating the practical applicability and
robustness of the approach. Finally, the impact of the OSB
suppression on practical finite radiating structures based on
modulated MTSs has been illustrated.

The proposed approach naturally provides a perfectly circu-
larly polarized radiation at broadside, with the possibility to
obtain opposite circular polarizations by feeding the aperture
from opposite sides. The extension to the case of linear polar-
ization can be done through component cancellation either by
feeding the same aperture simultaneously from the two sides
or by using a combination of subapertures producing opposite
circular polarizations. This aspect will be addressed in future
research.
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