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SUMMARY

During the first five rounds of cell division in the
mouse embryo, spindles assemble in the absence
of centrioles. Spindle formation initiates around
chromosomes, but the microtubule nucleating pro-
cess remains unclear. Here we demonstrate that
Plk4, a protein kinase known as a master regulator
of centriole formation, is also essential for spindle
assembly in the absence of centrioles. Depletion of
maternal Plk4 prevents nucleation and growth of
microtubules and results in monopolar spindle for-
mation. This leads to cytokinesis failure and, conse-
quently, developmental arrest. We show that Plk4
function depends on its kinase activity and its partner
protein, Cep152. Moreover, tethering Cep152 to
cellular membranes sequesters Plk4 and is sufficient
to trigger spindle assembly from ectopic membra-
nous sites. Thus, the Plk4-Cep152 complex has an
unexpected role in promoting microtubule nucle-
ation in the vicinity of chromosomes tomediate bipo-
lar spindle formation in the absence of centrioles.

INTRODUCTION

There are two main pathways for the assembly of meiotic or

mitotic spindles. The first is the ‘‘search and capture’’ mecha-

nism, whereby centrosome nucleated microtubules (MTs)

make contact with and are stabilized by kinetochores (Kirschner

andMitchison, 1986). This pathway depends on centrosomes as

the major centers for organizing MTs. Typically centrosomes

comprise a pair of centrioles, surrounded by pericentriolar mate-

rial (PCM; Nigg and Stearns, 2011). Plk4, Polo-like kinase family

member, has been established as a conserved key regulator of

centriole formation (Bettencourt-Dias et al., 2005; Habedanck

et al., 2005). Loss of Plk4 prevents centriole formation and its

overexpression leads to de novo formation of centrioles in both

unfertilized Drosophila eggs as well as in Xenopus-activated oo-

cytes and extracts (Rodrigues-Martins et al., 2007; Eckerdt et al.,

2011). To mediate centriole formation, Plk4 requires Cep152/
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Asterless to recruit PCM and permit spindle assembly (Blachon

et al., 2008; Bonaccorsi et al., 1998; Cizmecioglu et al., 2010;

Dzhindzhev et al., 2010; Hatch et al., 2010; Varmark et al., 2007).

In the second pathway, MTs are organized around chromo-

somes and then sort into bipolar antiparallel arrays (Meunier

and Vernos, 2012). Chromosome-mediated spindle assembly

is crucial for female meiosis in many species because centrioles

are eliminated during oogenesis (Delattre and Gönczy, 2004).

The chromosome-mediated pathway also permits spindle for-

mation in cultured cells after centrosome elimination (Hinchcliffe

et al., 2001; Khodjakov and Rieder, 2001; Mahoney et al., 2006;

Rieder et al., 2001) and can be observed when MTs are depoly-

merized and then allowed to regrow (Khodjakov et al., 2000; Tor-

osantucci et al., 2008). In the latter case, MTs are nucleated by

centrosomes and around chromosomes, indicating that both

centrosome- and chromosome-mediated spindle formation

mechanisms can exist side-by-side (Meunier and Vernos, 2012).

The maturing mouse oocyte and preimplantation mouse

embryo provide naturally occurring acentriolar cells for the first

4 days of development. This is because mouse sperm does

not contribute basal bodies at fertilization and therefore all cell

divisions take place in the absence of centrioles until the blasto-

cyst stage (Calarco-Gillam et al., 1983; Courtois et al., 2012;

Gueth-Hallonet et al., 1993; Hiraoka et al., 1989). In the absence

of centrioles, microtubule organizing centers (MTOCs) are

dispersed throughout the cytoplasm and then coalesce at the

poles of the spindle as it forms (Calarco, 2000; Delattre and

Gönczy, 2004; Dumont et al., 2007; Schuh and Ellenberg, 2007).

Here, we show that Plk4 is present in the MTOCs from the

earliest stages of mouse embryonic development but it does

not drive de novo centriole formation. Instead, Plk4 plays a

critical function in partnership with Cep152 to mediate normal

MT nucleation and growth to enable acentrosomal spindle

assembly. These results unveil a role for Plk4 and Cep152 that

is independent of centriole duplication.

RESULTS

Plk4 Associates with MTOCs but Does Not Drive
Centriole Formation in the Early Mouse Embryo
We first considered whether the absence of centrioles in the

mouse embryo could be due to the lack of Plk4, the master
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Figure 1. Plk4 Associates with MTOCs throughout the Cell Cycle in the Absence of Centrioles

(A and B) Mouse zygotes stained to reveal a-tubulin (green), Plk4 (red and monochrome, A0 and B0), and DNA (blue). Plk4 (red arrowheads) associates with

cytoplasmic MTOCs in interphase and spindle poles in mitosis (B).

(C–G) Time-lapse series of zygotes expressing a-tubulin-mcherry (inverted black) and EGFP-Plk4 (red) showing multiple interphase MTOC-associated Plk4

bodies that coalesce at spindle pole in mitosis. Time is in hr:min. See also Movie S1.

(H) Schematic of protocol for Plk4 overexpression from zygote stage prior to electron microscopy at four-cell stage.

(I) Electron micrographs of a four-cell embryo that has had elevated Plk4-GFP from the zygote stage.

(I0) Magnified inset outlined in red box in (I): microtubules (MT) and spindle poles (SP) devoid of centrioles are indicated.

See also Figure S1 and Movie S1.
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regulator of the centriole formation pathway (Bettencourt-Dias

et al., 2005; Habedanck et al., 2005). We found that Plk4 tran-

scripts are present in preimplantation development and are

already abundant in the oocyte and zygote, indicative of their

maternal contribution (Wang et al., 2004), but to determine

whether Plk4 protein is also present at these early stages, we

generated an anti-Plk4 antibody (Figures S1A–S1E available on-

line). This antibody specifically interacted with Plk4 (Figures S1F

and S1G) and identified tissue culture cell centrioles by struc-

tured illumination microscopy (Figures S1H and S1I). The anti-

body also allowed us to reveal the presence of Plk4 in the

MTOCs of the mouse zygote at interphase and at the acentriolar

spindle poles as the spindle forms (arrowheads, Figures 1A and

1B; n = 20). The presence of Plk4 at the spindle poles in the

mouse zygotewas unexpected because Plk4 is amajor regulator
Developm
of centriole formation and yet centrioles were reported to be

absent until the blastocyst stage (Calarco-Gillam et al., 1983).

In agreement, we confirmed that colocalization of centriole-

associated proteins, including Centrin 2, Sas6, and g-tubulin,

does not occur until the blastocyst stage (Figure S1J). Thus,

despite the presence of Plk4, centrioles do not form in themouse

embryo until the blastocyst stage.

To follow the dynamics of Plk4 during spindle formation in vivo,

we injected mRNAs for EGFP-Plk4 and a-tubulin-mcherry into

the zygote (Figures 1C–1G). This revealed that EGFP-Plk4

showed a similar pattern of subcellular localization to the endog-

enous protein. During interphase, Plk4 associated with discrete

punctate cytoplasmic structures that become concentrated at

MT nucleation sites in the vicinity of chromatin at the time of

nuclear envelope breakdown (NEBD; Figures 1C and 1D). As
ental Cell 27, 586–597, December 9, 2013 ª2013 The Authors 587
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the spindle formed, the Plk4-containing centers coalesced at the

spindle poles (Figures 1E–1G; Movie S1) in a pattern that resem-

bles the behavior of MTOCs during meiotic and mitotic divisions

(Calarco-Gillam et al., 1983; Courtois et al., 2012; Gueth-

Hallonet et al., 1993; Hiraoka et al., 1989; Maro et al., 1985).

These time-lapse movies revealed no variation in timing of

M-phase progression of the first cleavage between Plk4-GFP

injected (n = 30; 127.9 ± 11.2 min) and a-tubulin-mcherry

injected control zygotes (n = 22; 136.3 ± 16.0 min). This overex-

pression of Plk4 did not lead to formation of centrioles; examina-

tion of the spindle poles of dividing cells in serial EM sections of

embryos expressing elevated Plk4-GFP that reached the four-

cell stage did not reveal any centrioles (Figures 1I and 1I0). These
results indicate that Plk4 is present in the early mouse embryo

but its presence is insufficient to drive centriole formation.

Plk4 Is Required for MT Nucleation and Spindle
Assembly
The finding that Plk4 is present in mouse embryos that lack

centrioles raised the question of whether Plk4 plays any func-

tional role at these early developmental stages. To address

this, we followed the development of embryos depleted of

maternal and zygotic Plk4 transcripts by RNAi (n = 91; Figure 2;

Figures S2A and S2B). To follow the behavior of MTs and chro-

mosomes using time-lapse microscopy, we coinjected mRNA

for EGFP-Map4 and Histone H2B-mRFP. The Plk4 dsRNA was

injected into one cell at the two-cell stage so that the untreated

half of the embryo could serve as a control for developmental

progression. A parallel set of control embryos were also injected

at the two-cell stage with EGFP-Map4 and Histone H2B-mRFP

(n = 20). In contrast to the control embryos, which developed

without mitotic abnormalities, the great majority (95.5%, n =

87) of Plk4-depleted embryos either developed mitotic defects

during the division cycle in which Plk4 was depleted or in the

subsequent cycle (Figure 2A). The earliest cellular phenotype

observed was in spindle assembly. In control cells, MT nucle-

ation was visible in the vicinity of chromosomes soon after chro-

mosome condensation and within 30 min of NEBD (n = 20;

100%; Figure 2B; Movie S2). Thirty minutes later, MTs became

organized into a bipolar array and chromosomes congressed

onto the metaphase plate. In contrast, Plk4-depleted cells

showed diminution of MT nucleation around chromosomes,

typically leading to the formation of weak monoastral structures

by 60 min after NEBD (n = 42; 45.5%; Figure 2C; Movie S2). Irre-

spective of whether Plk4-depleted cells were delayed with

monopolar spindles in the cycle immediately following Plk4

RNAi (n = 42; Figures 2C and 2D; Movie S2) or in the following

cycle (n = 46; Figures S2C and S2D; Movie S2), mitosis resolved

in similar ways. Whereas in control cells, mitosis and cytokinesis

was completedwithin 2 hr (Figure S2C;Movie S2), Plk4-depleted

cells could be delayed inmitosis for up to 11 hr (n = 19; Figure 2D;

Figure S2D; mean delay, 384 ± 120 min; Movie S2). During this

time, the monoasters relocated toward the cell cortex before

the cells attempted cytokinesis that was highly abnormal and

generated multiple anucleate fragments (Figure 2D, 14 hr time

point; and Movie S2).

To ensure that the consequence of Plk4 depletion was not an

off-target response, we examined whether the Plk4-RNAi

phenotype could be rescued by coinjection of mRNA for human
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Plk4-GFP that is resistant to dsRNA directed against the mouse

gene (n = 33). Using identical conditions of knockdown, we found

that all phenotypes of Plk4-depletion were rescued by provision

of human Plk4 (Figures 2E–2G). Specifically, monoasters (Fig-

ure 2E; Movie S2) were replaced by bipolar spindles (Figure 2F;

Movie S2), the normal timing of mitotic progression was restored

(Figure 2G), and the proportion of embryos showing cytokinesis

defects decreased from 81.7% to 9.2%, indicating that the

mitotic abnormalities upon Plk4-RNAi are specific to the deple-

tion of Plk4. Together, these results suggest that despite the

absence of centrioles, Plk4 has a functional role to mediate

correct bipolar spindle formation in themouse embryo. This early

function of Plk4 would have been missed in studies of Plk4�/�

embryos (Hudson et al., 2001), because their heterozygous

mothers provide sufficient Plk4 to support the first days of

development.

Plk4 Regulates MT Dynamics and Growth
Because the above results suggest that Plk4 might be critical for

MT functions, we next sought to determine the consequences of

Plk4 depletion upon the dynamics of MT regrowth following

depolymerization. To this end, we first depleted Plk4, as above,

and coinjected embryos with mRNA for EGFP-tagged EB3 to

mark MT plus ends (Figure 3A). Plk4-depleted and control

embryos were subjected to 26 min cold treatment to depoly-

merize MTs after which MT regrowth was scored in both live

(n = 20) and fixed (n = 35) embryos (Figures 3A–3E). In control

embryos, we observed formation of MTs at the MTOCs that

moved into the interstitial spaces between chromosomes (n =

10; Figure 3B; 0 and 5 min). These MTs rapidly sorted into a

bipolar array and the MTOCs aggregated at the spindle poles

(Figure 3B; 10 and 15min). The areas ofmaximal EB3 signal clus-

tered around Plk4 foci (Figure 3D, 00:27 min; Movie S3). In

contrast, in Plk4-depleted embryos, the density of MTs was

reduced and they tended to nucleate around the periphery of

the ball of chromosomes (n = 10; Figures 3C and 5 and 10 min;

Figure 3E, 00:27 min; Movie S3). These results suggest that

Plk4 is required for robust foci of MTs to form in the vicinity of

the condensed chromosomes.

In a second series of experiments, we omitted the MT depoly-

merization step and utilized EB3 fluorescence to record plus-end

MT dynamics by time-lapse microscopy (n = 20; Figures 3F and

3G). Kymographs of the recordings revealed that in Plk4-

depleted cells, growth of the EB3-associated MT plus tips

toward the chromosomes was severely diminished (18.2 ±

3.5 mm/min in control versus 5.9 ± 4.04 mm/min in Plk4-depleted

cells; Figures 3F and 3H). Taken together, these results indicate

that Plk4 is required to establish the density and dynamicity of

MTs in spindle assembly in the absence of centrioles.

Spindle Assembly in Mouse Embryos Relies on Plk4
Kinase Activity
These results indicate that Plk4 has an essential role in spindle

formation through an effect on MT nucleation, but do not

address whether this requires Plk4’s catalytic activity. To

address this, we examined the consequences of expressing

inactivemutant forms of Plk4 uponmitotic progression. Although

endogenous Plk4 remains present, we anticipated the mutant

constructs would act in a dominant negative manner because
Authors



Figure 2. Depletion of Plk4 Leads to Monoaster Formation and Mitotic Delay

(A) Schematic for injection of single two-cell stage blastomerewith Plk4 dsRNA, together withmRNAs for labeled histone H2B andMAP4 indicating proportions of

embryos showing abnormalities at subsequent stages.

(B) Control two-cell stage embryo with one cell expressing histone H2B-mRFP (red, merged; white; B0) and EGFP-MAP4 (green, merged; inverted/black; B00).
Time (hr:min) is in relation to NEBD, 00:00. See also Movie S2.

(C and D) Plk4 dsRNA injected two-cell blastomere, labeled as in (B). MT nucleation is severely reduced and a single aster eventually forms (C). Monoasters

move toward the cell cortex, and cells undergo highly abnormal cytokinesis (D).

(E–G) Rescue of Plk4 knockdown phenotype (shown at eight-cell stage in E), by coinjection of human PLK4-GFP (red, F). MTs revealed by a-tubulin-mcherry,

inverted/black. Time for bipolar spindle assembly following Plk4 dsRNAi is increased in cells that evade monoaster formation. This is greatly restored to levels

similar to controls by injection of human PLK4-GFP mRNA (G) and are statistically significant between these two groups (*p < 0.01). Error bars indicate SD of

average. See also Movie S2 and Figure S2.
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Plk4 has been shown to homodimerize (Guderian et al., 2010).

We first found that injection of single 2-cell blastomeres with

mRNA encoding Plk4Dkinase, a construct deleted for the entire

kinase and degron domains of Plk4 led to a high proportion

(60%, n = 49) of cells delayed inmitosis with monoastral spindles
Developm
at the two- or four-cell stages, (Figure 4A, n = 81), resembling the

Plk4 RNAi phenotype (Figures 4A, 4B, and 4D; Movie S4; Figures

S3A andS3B). The injection ofmRNA for Plk4T170A, in which the

threonine of the activating T-loop is mutated to an alanine, led to

an intermediate phenotype (47% showing abnormal mitosis;
ental Cell 27, 586–597, December 9, 2013 ª2013 The Authors 589



Figure 3. Plk4 Is Required for MT Dynamics and Growth

(A) Schematic representation ofMT regrowth assay. A single two-cell stage blastomerewas injectedwithmRNA for EGFP-EB3 either with or without (control) Plk4

dsRNA. EGFP-EB3 mRNA expression begins within 2 hr and at least 6 additional hours are required for blastomeres to enter mitosis during which period, Plk4 is

depleted. Upon entry into mitosis, embryos were subjected to cold treatment for 26 min, after which they were either fixed for immunostaining or imaged alive to

follow dynamics of MT regrowth.

(B and C) Two-cell embryos fixed at indicated times following release from cold treatment and stained for DNA (blue) and a-tubulin (green). The cold treatment

completely depolymerized MTs (0 min) that regrew into a bipolar mitotic spindle within 10 min. In contrast, MT repolymerization was severely delayed in Plk4

dsRNAi-depleted blastomeres.

(D and E) In vivo time-lapse microscopy following release from cold treatment. In control two-cell stage embryos (D) in which one blastomere was injected with

mRNA for EGFP-EB3 and Plk4-mcherry, regrowth of MTs begins around sites of major MTOCs, in the vicinity of Plk4-mcherry fluorescence; bipolar spindle

formation is seen by 48 min. In Plk4-RNAi-treated embryos (E), MT regrowth after cold exposure is impaired. See also Movie S3.

(F and G) Time projection of metaphase spindles depicted by EGFP-EB3 expression. MT growth at plus tips shown on kymographs of EGFP-EB3 signals in

control (F0 ) and Plk4-depleted (G0) blastomeres within the indicated areas of the spindles. The average pixel intensity projection of a metaphase spindle is

analyzed for control (n = 12) and Plk4 RNAi blastomeres (n = 8). MT growth was determined from the slopes of EGFP-EB3 (yellow lines on kymographs).

(H) MT growth rate distribution in control (average = 18.2 ± 3.5 mm/min; n = 56) and Plk4 RNAi cells (5.9 ± 4.04 mm/min; n = 35).

Developmental Cell

Acentriolar Spindle Formation Requires Plk4
n = 42; Figures 4A, 4C, and 4D; Movie S4). Thus, catalytically

inactive Plk4 interferes with the function of the endogenous

wild-type protein.

The observation that spindle assembly is impaired by expres-

sion of these kinase-defective forms of Plk4 contrasts with the

effects of similar mutants in cultured cells where kinase-dead

Plk4 promotes centriole overduplication (Guderian et al., 2010).

This is believed to reflect disruption of Plk4 self-phosphorylation,

protecting Plk4 from SCF (Skp, Cullin, F-box containing)-

mediated degradation (Guderian et al., 2010; Holland et al.,

2012; Sillibourne et al., 2010). Thus, the loss of function pheno-

type seen in mouse embryo cells suggests that the regulation

of Plk4 stability might not play an equally prominent role in spin-

dle assembly as it does in centriole assembly in cultured cells

(Cunha-Ferreira et al., 2009; Guderian et al., 2010; Holland

et al., 2012; Rogers et al., 2009).
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This interpretation is consistent with the finding that overex-

pression of a putative constitutively active form of Plk4, T170D,

with the T-loop threonine mutated to the phosphomimic aspartic

acid, had little effect on the mitotic progression (n = 26; Figures

S3C and S3C0; Movie S5). Similarly, expression of a form with a

mutated degron, which should be protected from SCF/protea-

some-mediated degradation, also had little if any consequences

on the MT nucleating activities of Plk4 (n = 27; Figures S3D and

S3D0; Movie S5). Thus although Plk4 is required to assemble the

bipolar mitotic spindle, excessive Plk4 has no negative conse-

quence for the progression of blastomeres through their division

cycles.

Together, the spindle defects observed following expression

of Plk4Dkinase, as well as Plk4T170A, indicate that Plk4 relies

on its kinase activity to regulate spindle assembly. This conclu-

sion is further substantiated by studies of alternative mutants
Authors



Figure 4. Assembly of Bipolar Spindle De-

pends on Plk4 Kinase Activity

(A) Schematic showing domains of wild-type Plk4,

Plk4DKinase, and T170A Plk4 point mutant.

Distribution of phenotypes is indicated as a

percentage.

(B) Time-lapse series of an embryo with one two-

cell blastomere injected with mRNA for DKinase

(green) and a-tubulin-mcherry (red / monochrome

in inset). Monoasters (inset) were consistently

observed (44%). Time hr:min.

(C) Time-lapse series of an embryo with one two-

cell blastomere injected with mRNA for inactive

Plk4, Plk4T170A (green), and a-tubulin-mcherry

(red). A monoaster is visible in one of the two

blastomeres. See also Movie S4.

(D) Quantification of duration of mitosis from

NEBD until cytokinesis. Expression of both,

Plk4DKinase and Plk4T170A significantly prolongs

the time spent in mitosis compared to EGFP-Plk4

control (***p < 0.001, **p < 0.01, *p < 0.05).). Error

bars indicate SD of average. See also Figure S3

and Movies S4 and S5.
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in the kinase domain (below). However, it is not possible to

exclude an additional scaffolding role of the kinase and degron

domains of Plk4, whose absence would cause the Dkinase

Plk4 to exhibit a more extensive dominant mitotic phenotype

than Plk4T170A.

Partner of Plk4, Cep152, Is Required for Spindle
Assembly
Because Plk4 requires Cep152 for its centriolar functions

(Cizmecioglu et al., 2010; Dzhindzhev et al., 2010; Hatch et al.,

2010), we wished to determine whether Cep152 is also needed

for Plk4-mediated spindle assembly without the involvement of

centrioles. To address this, we first examined the spatial and

temporal expression pattern of Cep152. We found that Cep152

first becomes enriched in the male and female pronuclei (n =

12) apparently due to the nuclear localizing properties of its

N-terminal part (Figures S4A and S4B). It is only when zygotes

start to enter prophase that Cep152 begins to localize with
Developmental Cell 27, 586–597,
Plk4 at the cytoplasmic MTOCs (n = 6;

arrowheads and insets, Figure 5A). Plk4

and Cep152 colocalize only upon NEBD,

when MTOCs move into the vicinity of

condensing chromosomes. This colocali-

zation is also seen on MTOCs that are not

at the vicinity of chromosomes at this

stage. However, once the bipolar spindle

becomes established, the association of

Plk4 and Cep152 diminishes (n = 14):

Plk4 clusters at the spindle poles and

the majority of Cep152 associates with

the spindle MTs (Figure 5A).

To determine whether colocalization of

Cep152 and Plk4 at MTOCs might indi-

cate shared function in spindle assembly,

we depleted Cep152 in a single blasto-

mere of two-cell embryos by injecting
siRNA against Cep152 (n = 26). Both Cep152-depleted and con-

trol (n = 15) embryos were injected with mRNAs for EGFP-Map4

and Histone H2B-mRFP to mark MTs and chromosomes. We

found that Cep152 RNAi eliminated Cep152 from the nucleus

(Figures S4C and S4D) and led to diminished MT density in the

vicinity of chromosomes, formation of monoastral spindles

and, after a mitotic delay, severe cytokinesis defects (80%; n =

45; Figures 5B–5D; Movie S6), a phenotype very similar to that

of Plk4 depletion. These defects could be rescued by coinjecting

mRNA for human Cep152 tagged with GFP together with mouse

siCep152 RNA (60%, n = 45; Figures 5E and 5F), demonstrating

the specificity of the phenotype.

The similarity of the Cep152 and Plk4 depletion phenotypes

and the colocalization, of the two proteins upon NEBD sug-

gested theymight work in partnership tomediate spindle assem-

bly. To explore the interdependencies of Plk4 and Cep152

localization, we depleted either Plk4 or Cep152, and then exam-

ined the localization of the other. We found that in Cep152
December 9, 2013 ª2013 The Authors 591



Figure 5. Downregulation of Cep152

Causes Monoaster Formation

(A) Mouse zygotes stained to depict a-tubulin

(white), Plk4 (red), and Cep152 (green). Cep152

predominantly localizes to the nucleus during

interphase with some colocalization with Plk4

between the two pronuclei. Association of Cep152

with Plk4 at the MTOCs becomes widespread in

prophase with MT nucleation (white arrows). Later

in mitosis, Cep152 is preferentially in spindle

MT-associated puncta.

(B) Control two-cell stage embryo with one cell

expressing histone H2B-mRFP (red) and EGFP-

MAP4 (green). Time (hr:min) in relation to NEBD,

00:00.

(C) Cep152 siRNA injected 2-cell blastomere

labeled as in (B). MT nucleation is reduced and a

single aster eventually forms.

(D) Significant reduction in percentage of bipolar

spindles formed after Cep152 RNAi compared to

control (***p < 0.001). Error bars represent SD of

average.

(E) Rescue of Cep152 phenotype (shown at two-

cell stage) by coinjection of Cep152 siRNA with

hCep152-GFP (green). MTs revealed by a-tubulin-

mcherry (red).

(F) Significant differences in percentage of bipolar

spindles assembled following Cep152 depletion

(n = 21) and rescue (n = 45; ***p < 0.001). Error bars

represent SD of average. See also Figure S4 and

Movie S6.
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depleted cells, Plk4 still localized to the MTOCs (n = 15),

indicating that presence of Plk4 by itself is insufficient to drive

spindle formation and that its function is dependent on Cep152

(Figure 6A). In contrast, Cep152 was no longer observed at the

MTOCs following Plk4 depletion (n = 8), although it was still found

in interphase nuclei and over the mitotic spindle, indicating that

Cep152 requires Plk4 to localize to the MTOCs. This suggests

that inmouse embryo, Plk4 ismaintained at theMTOCs by a pro-

tein other than Cep152 and once Plk4 becomes localized to

MTOCs and the nuclear envelope has broken down, Cep152 is

able to interact with Plk4 to support MTOC function in spindle

assembly.
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Plk4 and Cep152 Interaction
Requires Plk4 Kinase Activity and
Is Necessary for Spindle Assembly
The above results suggest that interac-

tions between Cep152 and Plk4 enable

MTs to be established between MTOCs

and chromosomes at early stages of

mitotic progression. To test this hypothe-

sis and to further understand whether MT

nucleation at the MTOCs specifically re-

quires the Cep152-Plk4 interaction, we

wished to target Cep152 to ectopic sites

and determine its ability to interact with

Plk4. To this end, we fused an integral

membrane component, the mouse T cell

receptor CD8, with the full coding region

of human Cep152 (hCep152). In addition,
we inserted a GFP tag between the two genes to follow the

hybrid protein in live embryos (Figure 6B). We injected mRNA

for CD8-GFP-tagged hCep152, together with mRNA for

mcherry-tagged humanPlk4 (hPlk4), into one two-cell blasto-

mere that we earlier depleted for endogenous Cep152 and

Plk4, by RNAi (n = 12). We found that the CD8-tagged Cep152

localized to both the plasmamembranes and numerous putative

membranous sites throughout the cytoplasm and that hPlk4 was

colocalized at all of these sites (Figure 6C), confirming the inter-

action between Cep152 and Plk4. Remarkably, coexpression of

CD8-tagged hCep152 and hPLK4 was able to rescue the forma-

tion of bipolar spindles. Typically these spindles had one of their



Figure 6. Interaction of Plk4 and Cep152 Is

Required for Bipolar Spindle Formation

(A) A single two-cell stage blastomere injected

with Plk4 dsRNA (top panel) or Cep152siRNA

(bottom panel) and stained for a-tubulin (red),

Cep152 (green / monochrome), and Plk4 (green /

monochrome). Note Plk4- or Cep152-depleted

cells with monoastral spindles could not be

examined because of their very small arrays of

MTs from the MTOCs. Cep152 can be detected

over the spindle after Plk4 depletion but not at the

MTOCs (top panel, arrows). Plk4 is at MTOCs and

spindle poles after Cep152 depletion (bottom

panel, arrows).

(B) Schematic showing membrane targeted

hCep152 construct tagged with GFP and CD8

demonstrating ability to colocalize with human

Plk4, human kinase dead Plk4 (D159A) and to

promote bipolar spindle formation (rescue).

(C) Four-cell stage embryo with one blastomere

injected at the two-cell stage with CD8GFP-

hCep152 (green/monochrome), and hPlk4-

mcherry (red/monochrome), together with siRNA

for Cep152 and Plk4 dsRNA. Colocalization of

hCep152 with hPlk4 consistently observed.

(D) Four-cell stage embryo with one

blastomere injected at the two-cell stage

with CD8GFP-hCep152 (green/monochrome),

and kinase dead hPlk4D159A-mcherry (red/

monochrome), together with siRNA for Cep152

and Plk4 dsRNA. Colocalization between the two

proteins is no longer visible.

(E) Two-cell stage embryo with one blastomere

injected with CD8GFP-hCep152 (green), and

hPlk4-mcherry (red), together with siRNA for

Cep152 and Plk4 dsRNA. Coexpression of these

proteins reverts the phenotype of Cep152 or Plk4

depletion; bipolar spindles (EGFP-EB3, green)

form in proximity of the membrane, and blasto-

meres divide. Tracking of individual green/red

dots (colored lines in bottom panel) shows their

movement between the poles and membrane

(magnification on right). See also Movie S7.

(E0) Time projection (xyt) of average pixel intensity

shows MT tracking close to membrane (arrows).

(F) Two-cell stage embryo with one blastomere

injected with CD8GFP-Cep152 (green), and

kinase-dead hPlk4D159A-mcherry (red), together

with siRNA for Cep152 and Plk4 dsRNA. Unlike

wild-type, hPlk4D159A does not colocalize with

Cep152, bipolar spindles are not assembled, and

MT nucleation around chromosomes is observed.

This indicates Plk4 activity is needed for functional

interaction with Cep152. Tracking Plk4 shows

random movements around the sites of MT

nucleation (colored lines in bottom panel). See

also Movie S7.

(G) Quantification of the phenotype rescue by expression of CD8GFP-hCep152 and hPLK4-mcherry (n = 12) or CD8GFP-hCep152 and kinase-dead hPlk4D159A

(n = 10). Rescue is significant (***p < 0.001; bars indicate SD of average.

(H) Early mouse embryo depleted for Cep152 and Plk4 in one two-cell embryo blastomere by injection of Plk4 dsRNA and Cep152siRNA. Blastomere was

coinjected with CD8-hCep152 and humanPlk4. Embryos were stained to depict CD8-GFP-hCep152 (green/monochrome), a-tubulin (white), Plk4 (red/

monochrome), and DNA (blue). Plk4 associates with CD8-hCep152 at themembrane in interphase and spindles are formedwith one pole clearly at themembrane

(white arrowheads) and the other pole unfocused. Chromosomes are positioned closer to this pole.
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poles closer to the membrane with the other pole being unfo-

cused. Immunostaining confirmed that MTs were nucleated

from the ectopic CD8-hCep152 and hPlk4 aggregates at entry
Developm
into mitosis. Notably the chromosomes were skewed toward

the ectopic MT nucleation sites (100%; n = 10; Figure 6H). Of

all the hPlk4 particles, 97.1% ± 2.9% colocalized with the
ental Cell 27, 586–597, December 9, 2013 ª2013 The Authors 593



Figure 7. Schematic Representation of

Early Events in Acentriolar Spindle Assem-

bly in Mouse

Plk4 localizes at MTOCs from interphase, in

contrast to Cep152, which is maintained in the

nucleus. Once Cep152 is released from the

nucleus, it interacts with Plk4 localized at MTOCs

at the time of nuclear envelope breakdown. We

propose that Cep152 provides a platform for Plk4

to either interact with its substrates, and/or to be

activated itself, gaining the ability to trigger MT

nucleation. MT-associated proteins will be acti-

vated during this process, either as direct or indi-

rect consequence of Plk4 phosphorylation. We do

not exclude the possibility of other proteins as substrates, such as spindle assembly factors, known to be active specifically at the entry into mitosis. After bipolar

spindle assembly, Plk4 remains at the spindle poles, while Cep152 is no longer needed at these sites and is displaced over the spindle.
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membrane-targeted Cep152 (n = 12). Tracing the positions of

those CD8-hCep152::hPlk4 particles in the vicinity of the spindle

poles revealed their highly dynamic movements between the

poles and the plasma membrane over distances of up to 5 mm

(Figure 6E; Movie S7). Immunostaining experiments confirmed

that MTs were nucleated from the ectopic CD8-hCep152 and

hPlk4 colocalizing dots at entry into mitosis (Figure 6H). These

results indicate that the ectopic CD8-hCep152 and hPlk4 inter-

action is sufficient to promote spindle assembly.

To confirm the specificity of the above result and determine

whether activity of Plk4 is required, we coexpressedCD8-tagged

hCep152 with a kinase-dead form of hPlk4 (hPlk4D159A). In this

case only 0.9% ± 0.5% of kinase-dead hPlk4 particles colocal-

ized with CD8-tagged hCep152 at cytoplasmic membranes

and instead, Plk4 was diffused within the interphase cytoplasm

and clustered around the periphery of the mitotic chromo-

somes and MTs (n = 10; Figure 6F; Movie S7). These kinase-

dead hPlk4 particles were also considerably less dynamic than

the spindle pole-associated CD8-hCep152::hPlk4 particles in

control cells. Notably, the monoastral phenotype of the double

depletion was not rescued when the kinase-dead form of Plk4

was expressed in this way (Figure 6G). These results indicate

that Plk4 activity is required both to establish colocalization

with Cep152 and for bipolar spindle formation.

DISCUSSION

We show that Plk4 kinase, primarily recognized thus far for its

role in de novo centriole formation, is also essential for spindle

assembly in the absence of centrioles (Figure 7). Our results indi-

cate that maternally provided Plk4 is carried by cytoplasmic

MTOCs that, following NEBD, are able to recruit Plk4 partner

protein, Cep152. A subset of these MTOCs then form the foci

of an increased mass of MTs whose plus ends lie in the vicinity

of chromosomes. Plk4 is essential to ensure sufficient density

and dynamicity of these MTs around the condensing chromo-

somes. In the absence of Plk4, the nucleated MTs cannot grow

to become organized into bipolar arrays to promote spindle

formation and, instead, mono-astral structures form. After a pro-

longed delay in mitosis, the Plk4-depleted cells attempt mono-

polar cytokinesis that is detrimental to further development.

The spindle assembly functions we now ascribe to Plk4 are

mediated through its association with Cep152. Thus the Plk4-

Cep152 partnership has essential functions beyond centriole
594 Developmental Cell 27, 586–597, December 9, 2013 ª2013 The
duplication in governing the nucleation and organization of

MTs in mitosis. It has previously been proposed that Plk4 kinase

itself is required for the anaphase-promoting complex-depen-

dent destruction of cyclin B1 and exit frommitosis in the postim-

plantation mouse embryo (Hudson et al., 2001). Moreover, it was

also reported that Plk4 phosphorylates the transcription factor,

Hand1, to mediate its release from the nucleolus and promote

trophectoderm differentiation (Martindill et al., 2007). Thus, it ap-

pears that Plk4 might play multiple functions in both cellular as

well as developmental processes.

The role of Plk4 in driving centriole biogenesis is well estab-

lished (Bettencourt-Dias et al., 2005; Cunha-Ferreira et al.,

2009; Eckerdt et al., 2011; Guderian et al., 2010; Holland et al.,

2010; Rodrigues-Martins et al., 2007; Rogers et al., 2009). How-

ever, our data indicate that its presence is not enough for

centriole formation in the early mouse embryo. This could be in

part because its partner, Cep152, is predominantly within the

interphase nucleus and only transiently associates with Plk4 at

NEBD but then localizes to the spindle MTs. Moreover, we find

that other centriolar proteins required for procentriole formation

appear to be rate-limiting until the 32- to 64-cell stage (Fig-

ure S1J). This contrasts with the eggs ofDrosophila and Xenopus

that rely heavily upon maternal contribution of proteins required

for very rapid cell cycles perhaps explaining why overexpression

of Plk4 can drive centriole formation in these systems

(Rodrigues-Martins et al., 2007; Eckerdt et al., 2011).

The precise mechanism by which Plk4 promotes centriole for-

mation is still not clear. Its substrates include some centrosomal

proteins, such as Sas6 inC. elegans, and the g-Turc component,

GCP6, in mammalian cells but the immediate consequences of

their phosphorylation are not known (Bahtz et al., 2012; Hatch

et al., 2010; Nigg and Stearns, 2011). Similarly, we can only

hypothesize about the functional consequences of Plk4-

mediated protein phosphorylation in spindle formation. It is

possible that defective MT nucleation and dynamics, which are

the earliest effects of Plk4 depletion or kinase inactivation, are

manifestations of the same primary defect, namely retarded

MT growth at the plus tips. These could be mediated by Plk4

either directly or indirectly regulating the behavior of MT-associ-

ated proteins (MAPs). Indeed Plk4’s partner Cep152 could be a

candidate intermediate molecule because its Drosophila coun-

terpart, Asl, has been implicated in regulating MT nucleation

and in forming a complex with the MT-binding Sas4 (Bonaccorsi

et al., 1998; Varmark et al., 2007; Dzhindzhev et al., 2010).
Authors
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The later consequences of Plk4 depletion in mitosis could be

secondary to the failure of MT growth or they could reflect addi-

tional roles for Plk4. In the absence of dominant polar MTOCs,

the establishment of spindle bipolarity depends upon the ability

of MTs to organize themselves into antiparallel arrays, a process

facilitated by the Eg5 kinesin-like protein (Walczak et al., 1998).

Without Plk4, the mitotic MTs of early mouse embryo cells

remain in monoastral structures. While this could be a conse-

quence of the reduced numbers and dynamicity of MTs, it is

also possible that Plk4may be required to control motor proteins

that regulate bipolarity (Walczak et al., 1998). The lack of tension

on chromosomes in such monopolar arrays would account for

the ensuing prolonged delay in mitosis by failure to satisfy the

spindle assembly checkpoint. When Plk4-depleted cells eventu-

ally slip through the checkpoint, they attempt monopolar cytoki-

nesis. This could reflect misregulation of Ect2, a Rho GEF that

controls the contractile ring assembly at the equatorial cortex,

which has been reported to be a Plk4 substrate (Holland et al.,

2012; Rosario et al., 2010). However, a direct role for Plk4 in

cytokinesis remains uncertain and we note that cytokinesis

defects similar to those observed here have been reported as

a secondary consequence of spindle monopolarity in cultured

cells (Hu et al., 2008).

Nucleation of MTs in the vicinity of chromosomes appears to

coexist alongside centrosome-driven spindle assembly in most

cell types (Meunier and Vernos, 2012). It can be directly

followed if MTs are depolymerized and allowed to regrow.

Under these conditions, intense MT asters form around centro-

somes and additional smaller asters appear close to the

chromatin (Meunier and Vernos, 2011). These asters appear

to be the functional counterpart of the MTOCs of the mouse

embryo and Plk4 might play a role in regulating their function,

a possibility supported by the finding that Plk4 depletion leads

to monoaster formation (Bettencourt-Dias et al., 2005; Habe-

danck et al., 2005). Although this was attributed to the loss of

centrioles, we find that when centrioles are eliminated after

depletion of Sas6 in U2OS cells, monoastral spindles are not

assembled (not shown). Together these results open a possibil-

ity that Plk4 might also function in chromosome-mediated MT

assembly in cells that have centrosomes organized around

centrioles.

A mitotic role of Plk4, in addition to its G1/S function in

centriole duplication, would be consistent with its reported activ-

ity profile. A phosphomodified activated form of Plk4 has been

shown to be restricted to themother centriole as centrioles dupli-

cate in G1/S and to the daughter centriole in G2, but its activity

only rises to its maximum in mitosis (Sillibourne et al., 2010).

The restriction of Cep152 to the nucleus in early mouse embryo

provides the means of regulating formation of a functional com-

plex of Plk4 at MTOCs upon NEBD. However, the experimental

tethering Cep152 to cytoplasmic membranes indicates that

Plk4 can be recruited to these ectopic sites in interphase.

Because MT arrays are only observed at these ectopic sites at

the entry into mitosis, there must be additional mechanisms

that regulate the ability of the Plk4-Cep152 complex activated

at mitosis (Figure 7).

In conclusion, the results we present here identify a contribu-

tory mechanism for regulating spindle formation where no

distinct centrosomes define the spindle poles, as is the case in
Developm
early mouse development. Spindle formation in these cells first

requires the activation of MTOCs in the vicinity of the mitotic

chromosomes in a process that requires Plk4 to form an active

complex with Cep152. The resulting MTs associate with chro-

mosomes at their plus ends and the MTOCs at their minus

ends. Once this complex has mediated the nucleation of suffi-

cient MTs to adopt antiparallel arrays, it dissociates and

Cep152 is displaced over the spindle. It will be of future interest

to determine how these Plk4-Cep152 mediated events relate to

those regulated by RanGTP, also essential for spindle formation

in these cells (Dumont et al., 2007; Schuh and Ellenberg, 2007)

and to identify other partner proteins and mitotic substrates of

Plk4 in the spindle assembly process. Although spindle assem-

bly takes place in the mouse embryo through the chromo-

some-mediated pathway, our findings demonstrate that it

requires the participation of MTOC associated Plk4, even in

the absence of centrioles.

EXPERIMENTAL PROCEDURES

Embryo Collection and Culture

C57Bl6xCBA mice were mated following superovulation of females and

embryos were collected in M2media, following standard procedures as previ-

ously published (Bischoff et al., 2008; Piotrowska-Nitsche and Zernicka-

Goetz, 2005). Isolated embryos were cultured in KSOM media under paraffin

oil at 37�C in a 5%CO2 atmosphere. All experimentation with mice was carried

out following requirements of the UKHomeOffice under a Project License held

by M.Z.-G.

Microinjections

For microinjection of mRNA, in vitro transcription of Sfil-linearized RN3P

plasmids was performed using mMessage mMachine T3 Polymerase (Life

Technologies) according to the manufacturer’s instructions. Microinjection

of in vitro transcribed mRNAs, or Cep152 siRNAs (QIAGEN; for sequences

of siRNAs, see below) were performed as previously established (Zernicka-

Goetz et al., 1997). Tomonitor cell division from the two-cell stage and onward,

a single random blastomere was microinjected with the RNAs.

Live Embryo Imaging

Time-lapse images were collected every 10–15 min for the green and red

channels on an inverted Zeiss Axiovert with a spinning disk confocal head

(Intelligent Imaging Solutions) using a 633/1.3 water objective. Each Z stack

comprises twenty images at 3 mm intervals. Image processing and analysis

was performed using Slidebook 5.0.0.20. Data stacks were deconvolved

with Huygens Professional (Scientific Volume Imaging). Image sequence

analysis, MT Kymograph, and video assembly were performed with ImageJ

Software (NIH).

Antibodies

DNA encoding a polypeptide corresponding to the internal 466 amino-acids

(residues 313–778) of mouse PLK4 was cloned into the expression vector

pDEST17 (Invitrogen) for expression of a Histidine terminally tagged peptide

in Escherichia coli. The bacterially expressed polypeptide was used to raise

the rat antiserum, anti-Plk4. Primers used for subcloning the DNA encoding

the peptide were mPLK4_For and mPLK4_Rev (Table S1).

We used the following antibodies: rat antimouse PLK4 (see above) 1:2,000;

rat anti-a-tubulin-YL1/2 (Oxford Bioscences,1:50); mouse anti-a-tubulin-

DM1A (Sigma, 1:10,000); mouse anti-g-tubulin-GTU88 (Sigma,1:25); rabbit

anti-g-tubulin T3559 (Sigma,1:500); mouse anti-centrin2 S3332(Santa Cruz

Biotechnology, 1:500); rabbit anti-CP110 (1:500); mouse anti-Sas6 (1:200,

Abnova); and anti-humanCep152 (Cizmecioglu et al., 2010) against C- or

N-terminal regions (a kind gift from I. Hoffmann). The secondary antibodies

used (1:2,000 for immunofluorescence) were conjugated with Alexa 488, Alexa

568, or Alexa 647 (Invitrogen) and had minimal cross-reactivity to other

species.
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RNA Constructs

Primers used for Plk4 dsRNA production: T7 PLK4_300 and SP6 PLK4_870

(Table S1). DsRNAs were transcribed using RiboMAX Large-scale RNA

Production Systems SP6 and T7 (Promega), following manufacturer’s

instructions. Cep152 Knockdown by siRNA was performed with FlexiTube

GeneSolution GS99100 (QIAGEN).

cDNA Constructs

Human Plk4 (NM_014264, IMAGE: 5273226) and mouse Plk4(BC051483,

IMAGE:1379362) were subcloned into RN3P for in vitro transcription of

mRNA. Human Cep152 (BC117182, IMAGE: 40125733) was subcloned in

the Gateway system and the CD8GFP-humanCep152 construct was gener-

ated using a pMT vector with a CD8::EGFP-Gateway cassette (D’Avino

et al., 2006). The coding region of CD8GFP-humanCep152 was PCR amplified

and cloned into RN3P vector for in vitro transcription. All the constructs were

sequenced on both strands.

Immunofluorescence

Embryos were fixed in ice-cold methanol: DMSO (9:1) for 30 min, followed by

permeabilization in 13 PBS 0.1% BSA, 10% fetal bovine serum (FBS), and

0.5% Triton X-100 for 1 hr and blocking in 13 PBS, 0.1% BSA, 0.1% Tween,

and 10%FBS for another 1 hr. Incubation in primary and secondary antibodies

was carried out in 13 PBS, 0.1% BSA, 0.1% Tween, and 10% FBS. Washes

were performed using 13 PBS, 0.1% BSA, and 0.1% Tween. Embryos were

mounted in Vectashield Mounting Medium with DAPI (Vector Laboratories).

Images were collected on a Zeiss LSM 510 Meta Laser Scanning Confocal

Microscope using 633/1.4 or 1003/1.4 oil objectives, and the LSM510Version

4.2 software. Images were deconvolved using Huygens Professional software;

processing and analysis was performedwith ImageJ Version 1.45 s and Adobe

Photoshop CS5. All images shown are the projections of optical sections.

Structured Illumination Microscopy and Data Processing

Images were acquired using DeltaVision OMX3D-SIM System V3 (Applied

Precision). All data were captured using anOlympus 1003 1.4 NA oil objective,

488 nm/593 nm/405 nm laser illumination and standard excitation and

emission filter sets as described previously (Fu and Glover, 2012).

Statistical Analysis

Statistical analysis was carried out using the Student’s t test with a two-tailed

distribution. All data points were included in statistical analyses and the exper-

iments were repeated at least three times independently. In the graphs, the

average is shown and error bars correspond to SD of the average.

Site-Directed Mutagenesis

For mutagenesis, the QuikChange II XL Site-Directed Mutagenesis Kit (Strata-

gene) was used according to the manufacturer’s instructions. Primers used

were as follows: T170AFOR and T170AREV to produce the Plk4T170A mutant

form; T170DFOR and T170DREV to generate the Plk4 T170D variant; Degron-

FOR andDegronREV to generate the Plk4 nondegradable form; and D159AFor

and D159Rev to generate the kinase-dead human Plk4. The sequence of each

of the oligonucleotides referred to above is shown in Table S1.

Electron Microscopy

Embryos were transferred to 2.5% glutaraldehyde in PBS for 30 min. Embryos

were kept in 13 PBS, 03% Tween-20, and 2.5% glutaraldehyde, and stained

for 1 hr in osmium tetroxide before embedding in Epon-Araldite prior to

sectioning.

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, one table, and seven movies

and can be found with this article online at http://dx.doi.org/10.1016/j.

devcel.2013.09.029.
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