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Abstract
Questions: Can we map complex habitat mosaics from remote-sensing data? In doing 
this, are measures of spectral heterogeneity useful to improve image classification 
performance? Which measures are the most important? How can multitemporal data 
be integrated in a robust framework?
Location: Classical Karst (NE Italy).
Methods: First, a habitat map was produced from field surveys. Then, a collection of 
12 monthly Sentinel-2 images was retrieved. Vegetation and spectral heterogeneity 
(SH) indices were computed and aggregated in four combinations: (1) monthly layers 
of vegetation and SH indices; (2) seasonal layers of vegetation and SH indices; (3) 
yearly layers of SH indices computed across the months; and (4) yearly layers of SH 
indices computed across the seasons. For each combination, a Random Forest clas-
sification was performed, first with the complete set of input layers and then with a 
subset obtained by recursive feature elimination. Training and validation points were 
independently extracted from field data.
Results: The maximum overall accuracy (0.72) was achieved by using seasonally ag-
gregated vegetation and SH indices, after the number of vegetation types was re-
duced by aggregation from 26 to 11. The use of SH measures significantly increased 
the overall accuracy of the classification. The spectral β-diversity was the most im-
portant variable in most cases, while the spectral α-diversity and Rao's Q had a low 
relative importance, possibly because some habitat patches were small compared to 
the window used to compute the indices.
Conclusions: The results are promising and suggest that image classification frame-
works could benefit from the inclusion of SH measures, rarely included before. Habitat 
mapping in complex landscapes can thus be improved in a cost- and time-effective 
way, suitable for monitoring applications.
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1  |  INTRODUC TION

Mapping natural habitats is fundamental for the conservation of 
biodiversity. The Habitats Directive (European Commission, 1992) 
requires EU member states to conserve habitats and species 
“of community interest” and to assess their conservation status 
every six years, by reporting on parameters such as habitat area, 
range, indicators of habitat quality and future provisions for hab-
itat survival (European Commission, 2005). These reports require 
regular habitat mapping. However, habitat maps are traditionally 
produced through time-consuming and costly field surveys, mak-
ing them unsuitable for regular updates. Thus, more cost- and 
time-effective monitoring strategies are required, and remote 
sensing has high potential to become an essential tool (Corbane 
et al., 2015).

Habitat mapping by remote sensing is generally carried out 
through automatic image classification, in which all pixels in an 
image are categorized into classes (Borra et  al., 2019). Over time, 
many data sources have become available, while image-processing 
tools have been improved, allowing a broad range of habitats to be 
mapped (Corbane et al., 2015). Despite these advances, some types 
of habitats remain difficult to map, especially in heterogeneous 
areas. Mosaics of grassland types, for example, are particularly chal-
lenging to map, due to the small spatial extent of the habitat patches, 
their spectral similarity, and the high spatial, structural and tempo-
ral variability of the vegetation (Corbane et  al.,  2015). Moreover, 
boundaries between the patches are often not discrete (Rocchini 
et al., 2013). Thus, innovative approaches should be tested (Schuster 
et al., 2015).

Multitemporal data facilitate the differentiation of habitats 
in areas with seasonal variability, based on the phenological dif-
ferences among vegetation types (Rapinel et al., 2019). However, 
there are many ways to include the multitemporal information 
in the classification process: increasing the number of images 
(Schuster et  al.,  2015), using a time series of a single vegeta-
tion index (Tarantino et  al.,  2021), or using seasonal composites 
(Praticò et al., 2021).

Image classifications can also be improved by ancillary data, such 
as topographic features, that influence the distribution of natural 
communities on fine scales (Bhatt et al., 2022), and data on vegetation 
structure derived from active sensors (Osińska-Skotak et al., 2021). 
However, some of the greatest improvements are achieved when 
texture information is included (Khatami et al., 2016). Image texture 
metrics measure the spatial arrangement and variation of pixel val-
ues, and thus provide valuable information on the homogeneity of 
areas (Haralick et al., 1973).

The spatial variability of the remotely sensed signal is also 
the basis for the assessment of plant biodiversity from remote 
sensing (Rocchini, Balkenhol, et  al.,  2010). The spectral diver-
sity, or spectral heterogeneity (SH), has been directly related to 
environmental heterogeneity (Spectral Variation Hypothesis; 
Palmer et  al.,  2002), and is often positively related to species 

diversity (Rocchini, Balkenhol, et al., 2010). The relationship be-
tween SH and species diversity is not universally valid (Fassnacht 
et al., 2022), since it is sensitive to spatial scale (Wang et al., 2018), 
spectral resolution (Rossi et al., 2021) and temporal scale (Fauvel 
et al., 2020). However, SH can be useful regardless of its relation-
ship with taxonomic diversity, since it integrates a broad range 
of vegetation properties and their spatial arrangement (Wang & 
Gamon, 2019).

Among the many measures of SH, two novel approaches have 
emerged (Wang & Gamon, 2019). The first one relies on informa-
tion theory: diversity indices based on information theory, such 
as Rao's quadratic entropy, are computed from spectral data, 
generally by applying the moving-window approach (Rocchini, 
Marcantonio, et  al.,  2021). The second approach is based on 
“spectral species,” that is, spectral types considered as proxies 
for biological species (Féret & Asner,  2014). Following this ap-
proach, each pixel of the image is assigned to a spectral species, 
and metrics of α- and β-diversity are inferred from the variation in 
spectral species (Féret & de Boissieu, 2020). So far, this method 
has been applied to tropical forests, based on very high-resolution 
airborne imaging spectroscopy (2 m/pixel; Féret & Asner, 2014), to 
low-resolution MODIS images of Europe (500 m/pixel; Rocchini, 
Salvatori, et al., 2021), and recently also to Sentinel-2 data (10 m/
pixel), in secondary forests (Chraibi et al., 2021) and in an ecologi-
cal network (Liccari et al., 2022).

In this light, measures of SH have the potential to improve hab-
itat mapping frameworks, especially in complex landscape mosaics. 
Indeed, when vegetation types share similar spectral reflectance 
characteristics, considering additional levels of information may 
facilitate their differentiation (Bhatt et al., 2022). The variability of 
taxonomic, functional and phylogenetic traits, as expressed by SH, 
may be such a type of information (Wang & Gamon, 2019). However, 
very few studies have tried to incorporate these measures for habi-
tat mapping (e.g. Marzialetti et al., 2020).

Moving forward from these premises, the aim of this study was 
to test and discuss an integrated approach to map a complex mo-
saic of natural and semi-natural habitats through remote sensing, 
using the Classical Karst as a case study. The habitats considered 
correspond to the main vegetation types present in the study area. 
Specifically, the main objectives were:

1.	 to quantify the importance of measures of SH for habitat 
classification;

2.	 to provide a robust framework to include multitemporal remotely 
sensed data for habitat classification.

To achieve these goals, multiple sets of remote-sensing-
derived variables, namely vegetation and SH indices, were com-
puted based on a series of Sentinel-2 images and aggregated in 
four combinations, for which separate classifications were per-
formed. Classification accuracies were compared to find the most 
reliable approach.
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2  |  METHODS

2.1  |  Study area

The study was carried out in the Italian part of the Classical Karst, a 
limestone plateau with altitudes ranging from 0 to 600 m, located in 
the provinces of Trieste and Gorizia (NE Italy; Figure 1). Six different 
areas involved in a habitat restoration project called “Ecomosaico 
del Carso” were considered, for a total surface of 55 ha (see Table S1 
for details). These areas are partially included in two Natura-2000 
network sites: the special area of conservation “Carso Triestino e 
Goriziano” (IT3340006) and the special protection area “Aree carsi-
che della Venezia Giulia” (IT3341002).

Land cover is a fine mosaic of natural and semi-natural habitats, 
where the main vegetation types are grasslands, downy oak (Quercus 
pubescens) woodland and black pine (Pinus nigra) plantations. The Karst 
grassland is an extremely species-rich herbaceous formation domi-
nated by grasses that evolved through thousands of years of grazing 
and is now being replaced by shrublands and woodlands due to land 
use abandonment. Downy oak woodlands are expanding in abandoned 
pastures and cover 70% of the Karst nowadays. Black pine has been 
introduced since the mid-19th century for reforestation purposes re-
sulting in extensive species-poor pine plantations and from then on it 
has spontaneously expanded (Poldini, 1989, 2009). Many conservation 

projects are being developed to maintain and restore Karst grasslands 
(Marin & Altobelli, 2021), which are recognized as habitats of commu-
nity interest [code 62A0 “Eastern sub-Mediterranean dry grasslands 
(Scorzoneratalia villosae)” included in Annex I of the Habitats Directive].

The climate of the study area is transitional between Mediterranean 
and continental (Poldini, 1989), with an average rainfall of 1200 mm/
year, and a mean annual temperature of 12.5°C, but with large differ-
ences due to elevation and slope exposure (OSMER, 2015).

2.2  |  Field data collection

Field surveys were carried out between March and May 2022. 
Habitats in the intervention areas of the “Ecomosaico del Carso” 
project were identified in the field. Two classifications with different 
degrees of detail were used to categorize the habitats. In a first clas-
sification, habitats were described as vegetation types with a high 
level of detail, mainly on a phytosociological basis and in most cases 
at the association level, according to the typologies recognized for 
the Classical Karst by Poldini (1989, 2009). In a second classification, 
habitats were classified on the basis of their structural-physiognomic 
and ecological features, and some classes of the first classification 
were aggregated into coarser types, which are the most relevant in 
terms of environmental conservation and management of the study 

F I G U R E  1 Location of the study area in the Italian part of the Classical Karst, represented on the Sentinel-2 median composite of summer 
2021. The areas involved in the “Ecomosaico del Carso” project are indicated in red.
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area. The two classifications account respectively for 26 and 11 habi-
tat classes. Specifically, for the first classification process, different 
classes of Karst grassland were distinguished according to the fol-
lowing criteria:

1.	 type of grassland: thermophilous calcareous, mesophilous cal-
careous, thermophilous on flysch;

2.	 degree of alteration of the floristic composition due to the pres-
ence of Sesleria autumnalis (“felting”), which is a species typical of 
scrubs and mixed oak woodlands of the Karst, its presence indicat-
ing degraded Karst grasslands or initial phases of shrub encroach-
ment: typical grassland (rich in Bromopsis erecta, no S. autumnalis), 
first degradation stage (few, scattered patches of S. autumnalis), 
second degradation stage (mosaic with ca. 50% patches of typi-
cal Karst grassland and 50% S. autumnalis-dominated patches), 
third degradation stage (felted grassland, completely invaded by 
S. autumnalis);

3.	 dynamic stage of bush encroachment: no bushes (zero encroach-
ment level, E0), few bushes with low height (ca < 1.5 m) and widely 
spaced (first encroachment level, E1), medium-height bushes (ca 
3–4 m) relatively close to each other (second encroachment level, 
E2).

In the second classification, Karst grasslands were categorized 
in three classes adopting only the last criterion (bush encroach-
ment). All shrublands distinguished in the first classification were 
aggregated into a single class, and the two classes of downy oak 
woodland — namely a class corresponding to young stages with low 
height individuals, and a class including mature stages with individu-
als higher than 6 m — were also merged. Groves with Ailanthus altis-
sima and Robinia pseudoacacia were aggregated into an invasive alien 
species class, while sessile oak woodlands, black pine plantations, 
hay meadows and pasture grasslands were kept as separate classes. 
Finally, a grassland–woodland mosaic, defined as a dynamic stage 
with patches of grassland and well-spaced patches of downy oak 
woodland, was used in both classifications. The list of habitat classes 
considered in this study is presented in Table S2.

Habitat maps were produced by field mapping for both the 
classifications using QGIS 3.16.14 software (QGIS Development 
Team, 2022). To improve the accuracy of manual mapping, we used 
vegetation height maps derived from LiDAR data following the pro-
cedure described in Appendix S1.

2.3  |  Satellite data collection and processing

The workflow applied to manage satellite data is given in Figure 2. 
First, Sentinel-2 images covering the period March 2021–February 
2022 were retrieved using the Google Earth Engine platform 
(Gorelick et  al.,  2017). The Sentinel-2 level-2A image collection 
(“COPERNICUS/S2_SR_HARMONIZED”) was filtered by date (from 
March 1, 2021 to February 28, 2022), by area (the Trieste and Gorizia 

Karst) and by cloud coverage (cloudy pixel percentage < 50%). The 
less cloudy image of each month was manually selected, to produce 
a collection of 12 monthly images.

Then, the 12 Sentinel-2 images were divided into four groups: 
spring (March–May 2021), summer (June–August 2021), autumn 
(September–November 2021), and winter (December 2021–
February 2022). Each group was reduced to a single image by com-
puting the median of each spectral band, so that, at each location in 
the output image, the pixel value of a band is the median of all pixel 
values of that band in the input group.

2.4  |  Vegetation and spectral heterogeneity indices

Four vegetation indices (Table 1) were computed from each image 
in the monthly data set and then aggregated into seasonal median 
composites, following the procedure used for Sentinel-2 bands.

Rao's Q layers were separately obtained from each vegetation 
index raster using the R package rasterdiv (Thouverai et al., 2021). 
Then, Rao's Q was computed over the temporal dimension, produc-
ing a single raster per year, where distances among pixel values rep-
resent also the variability over time. Specifically, two sets of rasters 
were obtained: a set of yearly aggregated Rao's Q values computed 
over months, and a set of yearly aggregated Rao's Q values com-
puted over seasons.

Spectral α- and β-diversity layers were separately calculated 
from each Sentinel-2 monthly and seasonal image using the R pack-
age biodivMapR (Féret & de Boissieu, 2020). Then, α- and β-diversity 
were computed over the temporal dimension, starting from a stack 
of vegetation index layers instead of a stack of spectral bands. In this 
way, two sets of rasters were obtained: a set of yearly aggregated 
α- and β-diversity values computed over months, and a set of yearly 
aggregated α- and β-diversity values computed over seasons.

All SH indices were computed in R 4.1.0 software (R Core 
Team, 2022). Details are in Appendix S2.

2.5  |  Satellite image classification

The remote-sensing variables were aggregated in four combinations 
(Table 2), that were used as input for distinct classifications.

Reference data were randomly derived from the map of habitats 
produced by field surveys. Training points were extracted from a set 
of training areas selected in the field, while validation points were 
launched in the whole set of polygons after excluding the training 
areas. Thus, training and validation points can be considered as in-
dependent. All image classifications were performed twice, first set-
ting the number of habitat classes to 26 and then to 11, as outlined 
in Section 2.2.

Random Forest (RF) classifications (Breiman,  2001) were per-
formed with the caret R package (Kuhn, 2021). For each combina-
tion, two alternative pathways were followed. In one case, the whole 
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set of variables was used as input. In the other case, a subset of 
variables was extracted through recursive feature elimination (RFE; 
Guyon et al., 2002). The relative variable importance was assessed 
by the “varImp” function, by systematically comparing the perfor-
mance of the decision trees that include specific variables and of 
those that do not, assigning high importance to variables with a pos-
itive effect on the prediction accuracy (Breiman, 2001). More details 
are in Appendix S3.

Accuracy assessment was performed by computing the over-
all accuracy (OA), the kappa coefficient, the user's accuracy (UA) 
and the producer's accuracy (PA). After all classifications were 

performed, the best classification was repeated using only vegeta-
tion indices as input, to assess the effect of excluding SH.

The significance of differences in OA between individual clas-
sification pathways was tested with McNemar's test, as suggested 
by Foody (2004). A t-test was used to assess the effect of choosing 
26 or 11 classes on the mean OA, and to compare classifications 
performed with or without RFE. Finally, differences in mean OA ob-
tained from the four combinations were assessed with a Kruskall–
Wallis test.

All classifications and accuracy assessment analyses were per-
formed using R (R Core Team, 2022).

F I G U R E  2 Workflow synthesizing the approach used to map natural habitats through a Random Forest classification and multiple 
combinations of input layers (vegetation and spectral heterogeneity indices).

TA B L E  1 List of vegetation indices used for the analysis.

Index Formula Reference

NDVI
(

NIR(B8) − Red(B4)

)

∕
(

NIR(B8) + Red(B4)

)

Rouse et al. (1975)

GNDVI
(

NIR(B8) − Green(B3)

)

∕
(

NIR(B8) + Green(B3)

)

Gitelson et al. (1996)

NDWI
(

NIR(B8) − SWIR(B11)

)

∕
(

NIR(B8) + SWIR(B11)

)

Chen et al. (2005)

IRECI
((

RedEdge(B7) − Red(B4)
)

∕
(

RedEdge(B5) ∕RedEdge(B6)
))

× 10000 Frampton et al. (2013)

Abbreviations:  NDVI, Normalized Difference Vegetation Index; GNDVI, Green Normalized Difference Vegetation Index; NDWI, Normalized 
Difference Water Index; IRECI, Inverted Red-Edge Chlorophyll Index; NIR, Near Infrared; SWIR, Shortwave Infrared.
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3  |  RESULTS

3.1  |  Accuracy of image classification

The values of OA and kappa obtained from the RF classifications as de-
scribed in Appendix S3 are in Table 3. The mean OA was significantly 
higher when 11 habitat classes were considered instead of 26 (p-
value < 0.05; Figure 3a), while there was no significant difference when 
the number of input variables was reduced through RFE (Figure 3b), 
nor when different combinations were used as input (Figure 3c).

An OA higher than 70% was achieved only with the monthly and 
the seasonal combinations, considering 11 habitat classes. For each 
of these combinations, an additional classification was performed 
after removing SH layers, and resulted in a lower accuracy (0.65 vs 
0.72 for the seasonal combination, p-value < 0.05; 0.69 vs 0.73 for 
the monthly combination, p-value < 0.05).

The classifications that achieved an OA > 70% did not differ sig-
nificantly among them. Thus, the seasonal combination was chosen 
as the best one based on a parsimony criterion, for its lower number 
of predictors (34 predictors after RFE). The habitat map resulting 

TA B L E  2 Sets of input variables used for image classification.

Set of input variables Input variables
Number of 
input variables

#1 Monthly aggregated Vegetation indices: 4 layers per month (NDVI, GNDVI, NDWI, IRECI)
Rao's Q: 4 layers per month (NDVI, GNDVI, NDWI, IRECI)
α-diversity: 1 layer per month
β-diversity (first 3 PCoA axes): 3 layers per month

144

#2 Seasonally aggregated Vegetation indices: 4 layers per season (NDVI, GNDVI, NDWI, IRECI)
Rao's Q: 4 layers per season (NDVI, GNDVI, NDWI, IRECI)
α-diversity: 1 layer per season
β-diversity (first 3 PCoA axes): 3 layers per season

48

#3 Yearly aggregated based on monthly values Temporal Rao's Q: 4 layers per year (NDVI, GNDVI, NDWI, IRECI)
Temporal α-diversity: 4 layers per year (NDVI, GNDVI, NDWI, IRECI)
Temporal β-diversity (first 3 PCoA axes): 3 × 4 layers per year

20

#4 Yearly aggregated based on seasonal values Temporal Rao's Q: 4 layers per year (NDVI, GNDVI, NDWI, IRECI)
Temporal α-diversity: 4 layers per year (NDVI, GNDVI, NDWI, IRECI)
Temporal β-diversity (first 3 PCoA axes): 3 × 4 layers per year

20

Abbreviations: NDVI, Normalized Difference Vegetation Index; GNDVI, Green Normalized Difference Vegetation Index; NDWI, Normalized 
Difference Water Index; IRECI, Inverted Red-Edge Chlorophyll Index; PCoA, Principal Coordinate Analysis.

TA B L E  3 Overall accuracy (OA) and kappa values obtained from the different classification pathways. Variable selection through 
recursive feature elimination (RFE) was performed when indicated.

No. of classes Set of input variables No. of predictors OA Kappa

26 Set #1 (Monthly) 144 0.65 0.58

Set #1 + RFE 48 0.63 0.56

Set #2 (Seasonal) 48 0.63 0.56

Set #2 + RFE 46 0.62 0.54

Set #3 (Yearly based on months) 20 0.62 0.54

Set #3 + RFE 20 0.61 0.53

Set #4 (Yearly based on seasons) 20 0.57 0.50

Set #4 + RFE 20 0.58 0.51

11 Set #1 (Monthly) 144 0.73 0.65

Set #1 + RFE 100 0.73 0.65

Set #1 with only vegetation indices 48 0.69 0.59

Set #2 (Seasonal) 48 0.72 0.64

Set #2 + RFE 34 0.72 0.64

Set #2 with only vegetation indices 16 0.65 0.56

Set #3 (Yearly based on months) 20 0.66 0.57

Set #3 + RFE 14 0.67 0.57

Set #4 (Yearly based on seasons) 20 0.64 0.55

Set #4 + RFE 17 0.64 0.55
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from this classification is shown in Figure 4: the most common hab-
itats are grassland E2 (24.80%), downy oak woodland (21.70%) and 
shrubland (16.10%).

The confusion matrix for the best classification is given in 
Table 4, while class-specific accuracy parameters are in Table 5. The 
best results were achieved for black pine plantations (PA = 0.88, 
UA = 0.92) and downy oak woodland (PA = 0.74, UA = 0.86), while the 
lowest values of accuracy were obtained for sessile oak woodlands 
(UA = 0.36, PA = 0.27) and invasive alien species groves (UA = 0.00, 
PA = 0.00).

In the case of the 26-class classifications, the seasonal combi-
nation was also selected as the best one based on a parsimony cri-
terion (OA = 0.62; Figure  S12). The highest class-specific accuracy 
(Tables S3 and S4) was found for black pine plantations (UA = 0.91, 
PA = 0.89) and the lowest for the two classes of invasive alien spe-
cies (PA = 0.00, UA = 0.00). For grassland classes, the different types 
(mesophilous calcareous, thermophilous calcareous and on flysch) 
were well differentiated, and most errors occurred between dif-
ferent levels of encroachment and presence of Sesleria autumnalis. 
More details on the class-specific performances are in Appendix S3.

3.2  |  Relative variable importance

The relative importance of the variables used as input for the best 
classification is presented in Figure 5. The most important variable 

is the principal coordinate 2 (PCo2) of the β-diversity computed 
from the autumn composite (present in every RF model, equals to 
100.00%), followed by PCo1 of the winter β-diversity (94.19%), PCo1 
of the autumn β-diversity (88.93%), green normalized difference 
vegetation index (GNDVI) and inverted red-edge chlorophyll index 
(IRECI) of the summer (respectively 79.39% and 72.29%).

In the other classifications (Figures S15–S18), the most import-
ant variable is almost always β-diversity, with the monthly classifi-
cation with 11 classes as the only exception, in which vegetation 
indices are at the first places. The relative importance of the indices 
of α-diversity and Rao's Q is low in all the classifications: the maxi-
mum values are respectively 42.56% for α-diversity (in the monthly 
26-classes classification) and 64.91% for Rao's Q (in the monthly 
11-classes classification). A description of the input variables is given 
in Appendix S2.

4  |  DISCUSSION

The approach developed in this study showed the potential of 
novel SH indices and multitemporal frameworks for the auto-
matic mapping of vegetation types in complex landscapes. In our 
example, the landscape was highly dynamic and our goal was 
to develop a framework to classify vegetation types with a high 
level of detail, to monitor their distribution and to assess the ef-
fects of management over different areas and in short periods of 

F I G U R E  3 Comparison of the overall 
accuracy achieved by (a) considering 
different numbers of habitat classes; (b) 
by performing or not a variable selection 
step through recursive feature elimination 
(RFE); and (c) by using different input 
combinations.

(a) (b)

(c)
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time. In this context, remote sensing allowed the development 
of time-effective and efficient monitoring strategies, even if the 
maximum level of accuracy achievable was likely constrained by 
the presence of transition areas with high heterogeneity, by the 

spatial and spectral resolution of satellite data, and by the pres-
ence of some classes particularly difficult to map and with small 
patches. Nonetheless, remote sensing provides a useful basis, for 
example to identify sites with potential for restoration (Marignani 

F I G U R E  4 Habitat map resulting from the Random Forest classification based on seasonal layers of vegetation and spectral 
heterogeneity indices. Among all the possible classifications, the one selected is the one that resulted in the highest accuracy while 
minimizing the number of input layers. A total of 11 habitat classes was considered, based on structural-physiognomic and ecological 
characteristics. The areas are located in Monfalcone (a), Case Coisce (b), Opicina (c), Aurisina (d), San Lorenzo (e) and San Giuseppe (f).

TA B L E  4 Confusion matrix for the best classification (seasonal classification performed with 11 classes).

Gr_E0 Gr_E1 Gr_E2 PG HM GWM Shr DOW SOW BPP IAS

Gr_E0 12 2 1

Gr_E1 21 5 1

Gr_E2 3 7 51 1 2 3 1 5 1

PG 1

HM 6 10 1

GWM 2 1 2 1 13 1 22 4

Shr 2 20 8 6 1 2

DOW 1 1 1 2 156 10 9 1

SOW 7 4

BPP 1 1 7 107

IAS 1 4 1

Note: The rows represent the results obtained from the classification, while the columns represent the reference data. The values on the matrix 
diagonal, highlighted with gray shades, are the correctly classified pixels.Abbreviations: Gr_E0, grassland with no encroachment; Gr_E1, grassland 
at first encroachment stage; Gr_E2, grassland at second encroachment stage; PG, pasture grassland; HM, hay meadow; GWM, grassland–woodland 
mosaic; Shr, shrubland; DOW, downy oak woodland; SOW, sessile oak woodland; BPP, black pine plantation; IAS, invasive alien species.
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et al., 2008), that can be improved with more detailed field analysis 
on limited areas.

4.1  |  Accuracy of image classifications

In this study, multiple RF classifications were performed to test dif-
ferent combinations of vegetation and SH indices, using as study 
area a complex mosaic of habitats in the Classical Karst. The small 
spatial extent of the habitat patches, their spectral similarity and the 
high variability of vegetation make this type of landscape challeng-
ing to map from remote sensing (Tarantino et al., 2021). The maxi-
mum OA achieved in this study (0.73) is comparable to the levels of 
accuracy achieved by similar studies. Rapinel et al.  (2019) mapped 
seven wet grassland plant communities with an accuracy of 0.78, 
using Sentinel-2 time series. Tarantino et  al.  (2021) achieved an 

accuracy of 0.95 using multiseasonal Sentinel-2 images, a time series 
of the modified soil adjusted vegetation index (MSAVI) and a digital 
terrain model (DTM), but they only mapped four grassland types. 
Bhatt et al.  (2022), who used very high-resolution imagery (60 cm) 
to map nine heterogeneous habitats, reached an accuracy of 0.79.

In this study, habitat classes were defined with a high level of 
detail. Although the high number of classes reduced the accuracy 
of image classifications (maximum OA = 0.65 for the 26-class clas-
sifications, as shown in Figure 3a), our approach was promising, be-
cause it allowed differentiation of the types of grassland, distinction 
of patches of typical grasslands from patches completely invaded 
by Sesleria autumnalis, and differentiation of the earliest stages of 
encroachment from the most advanced ones. The conservation 
of grassland depends on the persistence of the typical species 
(Butaye et al., 2005) and on the degree of encroachment (Altobelli 
et al., 2014); thus, distinguishing the transitional stages of grassland 
by remote sensing is highly important for conservation.

Two other factors increased the complexity of the classification. 
Firstly, the intra-habitat variability was high in the study area due 
to differences in altitude and substrate composition (Poldini, 1989). 
Generally, spectrally heterogeneous habitats are more difficult to 
map (Villoslada et al., 2020), and indeed we observed the best per-
formances for black pine plantations, the most spectrally homoge-
neous habitats. Secondly, most habitat patches were small (median 
patch size = 0.32 ha, 20% of the patches covering less than 10 pix-
els), thus the proportion of mixed pixels was high, complicating 
habitat separation (Rocchini et al., 2013). The lowest class-specific 
accuracy, indeed, was found for invasive alien species groves that 
were present in the smallest areas. In our case, Ailanthus altissima 
and Robinia pseudoacacia stands were considered as a single hab-
itat class (i.e. Invasive Alien Species), but the two species might 
have a different spectral signature, and this could explain the low 
accuracy in classifying this habitat class. The use of hyperspectral 
imagery could facilitate the differentiation of target alien species 
and lead to more promising results (Rocchini et al., 2015).

TA B L E  5 Class-specific accuracy parameters obtained for the 
seasonal classification performed with 11 classes. Accuracy was 
assessed using independent validation data.

Class UA PA

Grassland E0 0.80 0.71

Grassland E1 0.78 0.68

Grassland E2 0.69 0.64

Pasture-grassland 1.00 0.13

Hay meadow 0.59 0.71

Grassland-woodland mosaic 0.28 0.72

Shrubland 0.21 0.57

Downy oak woodland 0.86 0.74

Sessile oak woodland 0.36 0.27

Black pine plantation 0.92 0.88

Invasive alien species groves 0.00 0.00

Abbreviations: UA, user's accuracy; PA, producer's accuracy.

F I G U R E  5 Relative importance of the variables used as input for the seasonal classifications with 11 classes. Classifications were 
performed with the whole set of input variables (a) and with a subset obtained by RFE (b). Only the first 20 variables are shown.

(a) (b)
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SH measures improved the capacity of classifying habitats from 
satellite data. The classifications performed without SH measures 
(maximum OA = 0.69) were significantly less accurate than the oth-
ers (maximum OA = 0.73), and the resulting maps were more con-
fused, as the spatial integrity of the classes was not maintained. SH is 
mainly investigated nowadays for its relationship with species rich-
ness (Wang & Gamon, 2019), and it has rarely been used for the clas-
sification of habitats. Our results suggest that image classification 
frameworks could benefit from the inclusion of SH measures as an 
additional level of information, although with differences according 
to the type of metric.

The most important variable in almost all the classifications was 
spectral β-diversity, defined here based on the spectral species ap-
proach (Féret & Asner, 2014). All diversity metrics based on this ap-
proach have some advantages. The distinction of spectral species 
is based on k-means clustering, which exploits the full spectral in-
formation (Féret & Asner, 2014), and groups spectrally extreme pix-
els into separate classes, avoiding an unproportional effect on the 
results (Fassnacht et  al.,  2022). Moreover, the algorithm involves 
two ordinations, an initial principal components analysis (PCA) and a 
principal coordinates analysis (PCoA) for the computation of spectral 
β-diversity, that are useful to reduce feature dimensionality while 
maximizing spectral separability (Borra et al., 2019). Although both 
α- and β-diversity in this study were based on the same approach, 
the latter was far more important than the former for habitat classifi-
cation. Indeed, β-diversity allows habitats to be differentiated based 
on their compositional dissimilarity, while a similar α-diversity can 
be shared also by habitats with different species (Whittaker, 1960). 
Here, spectral β-diversity clearly separated the three main groups of 
habitats in the Classical Karst: habitats dominated by woody decid-
uous plants (woodlands and shrublands), habitats dominated by her-
baceous plants (grasslands and meadows) and habitats dominated by 
evergreens (pine forests).

Moreover, the link between species and spectral diversity 
seems to be stronger for β- than for α-diversity. In many studies, 
α-diversity could only be estimated with very high-resolution data 
(e.g. 1 m2 in Wang et al., 2016), while β-diversity could be estimated 
also at coarser spatial resolutions (e.g. 20 × 50 m in Rocchini, He, 
et al., 2010), although generally less studies focused on this compo-
nent (Wang & Gamon, 2019).

The other SH index considered in this study, spectral Rao's Q, 
had a low relative importance. This index measures the heterogene-
ity of a pixel with respect to its surroundings (Thouverai et al., 2021), 
and matches species diversity in natural areas but not in heteroge-
neous agricultural lands (Rocchini, Salvatori, et al., 2021). We found 
an unclear relation between spectral Rao's Q and species diversity: 
the lowest Rao's Q values were found for black pine plantations, 
which host a low species diversity, and the highest values for pas-
ture grasslands and pure grasslands, which are species-rich habitats 
(Poldini, 2009), but high values were found unexpectedly also for in-
vasive alien species groves. One possible reason is the spatial extent 
of the habitat patches: habitats with smaller patches are more likely 
to border with different habitats inside the moving window used to 

calculate the index, and thus to have higher Rao's Q values. Using 
data with higher spatial resolution would probably improve this as-
pect. However, the approach used to calculate Rao's Q may itself be 
a problem, since it highlights the differences among close pixels, and 
thus maximizes the noise, instead of minimizing it. Therefore, while 
the Rao's Q index can be used to estimate species diversity in some 
cases (Rocchini, Salvatori, et al., 2021), it might be less useful in the 
context of habitat mapping.

Our results show that some SH metrics might be more useful 
than others for habitat mapping. These measures can be useful re-
gardless of their link with actual species diversity, which is still often 
unclear, since they allow the exploitation of the main strength of 
remote sensing: repeating measures over time, to capture habitat-
specific variations and monitor landscape evolution (Fassnacht 
et al., 2022).

4.2  |  Importance of vegetation indices

Vegetation indices were the most important variables after β-
diversity in all the monthly and seasonal classifications. In particular, 
summer GNDVI and IRECI and autumn NDVI were the most im-
portant vegetation indices in the best classification. NDVI, with its 
variant GNDVI, has been found useful in many studies (e.g. Schuster 
et al., 2015).

IRECI is the only index considered that includes the Red 
Edge Sentinel-2 bands and has a strong linear relationship with 
canopy chlorophyll content and leaf area index (LAI) (Frampton 
et al., 2013). Here, IRECI varies following the seasonal changes of 
canopy chlorophyll content, with an increase in spring, a maximum 
in summer and a decrease in autumn (Gara et al., 2019). Differences 
between habitats reflect the differences in chlorophyll content 
between broadleaved trees and conifers (Li et al., 2018) and the 
differences in LAI across ecosystems, which generally increases 
from grasslands and shrublands to temperate deciduous broad-
leaved and evergreen needle-leaved forests (Asner et al., 2003). 
Optical traits like chlorophyll content can improve the estimation 
and mapping of species composition over space, as demonstrated 
by Feilhauer et  al.  (2017) in semi-natural temperate grasslands. 
Although IRECI itself has not been tested much for habitat map-
ping, other indices using the Red Edge spectrum have been shown 
to be useful. For example, Schuster et  al.  (2012) found that the 
Red Edge channel of the RapidEye satellite had a positive influence 
on the overall accuracy of a land cover classification in a mosaic 
of natural and agricultural areas in Germany, especially for the 
bush and dry grassland classes. Bayle et  al.  (2019) distinguished 
alpine grasslands from shrublands relying on the Sentinel-2 Red 
Edge bands, by detecting the seasonal anthocyanin accumulation 
in the shrub species. A Red Edge-based index was also found to 
be more useful than NDVI to map plant communities in coastal 
meadows (Villoslada et al., 2020). These examples are in line with 
our results, which confirm the role of the Red Edge spectrum for 
the distinction of habitats.
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4.3  |  Inclusion of multitemporal data

The aggregation of monthly data in seasonal composites using the 
median statistical operator allowed the reduction of the number 
of input layers without losing information. The levels of accuracy 
achieved with the monthly and seasonal combinations were, indeed, 
not significantly different, while the number of input layers was re-
duced from 144 to 48. This method of reducing data dimensionality 
can be complemented with variable selection through RFE, which did 
not have a significant effect on accuracy (as shown in Figure 3b). The 
use of seasonal composites for habitat mapping is known to be use-
ful because it reduces the problem of cloudy images but maintains 
the advantage given by multitemporal data (Kollert et al., 2021). In 
a recent work by Praticò et al. (2021), the mean turned out to pro-
duce slightly better results than other statistical operators such as 
the median. In this study the median was chosen because it is less 
sensitive to outliers and is the most common way to perform image 
reduction (Kollert et al., 2021), but other statistical operators could 
be investigated.

The combinations including only yearly aggregated values of 
spectral diversity and heterogeneity generally led to worse results 
than the other combinations (mean OA = 0.59 for 26 classes and 0.65 
for 11 classes, Figure 3c). Marzialetti et al. (2020) achieved good re-
sults using the temporal Rao's Q of vegetation indices computed 
over a year to map coastal dune habitats, but they included also the 
mean, the 10th and the 90th percentiles of vegetation indices. Here, 
only temporal heterogeneity layers were used, thus including other 
measures that summarize the annual variation of vegetation indices 
could increase the capacity of distinguishing habitats.

The most relevant seasons for distinguishing vegetation types 
in the Classical Karst were summer, autumn and winter, but spring 
was also important in some classifications, suggesting that there 
is not one single period better than the others, and confirming the 
advantage of using multitemporal data (e.g. Schuster et  al.,  2015; 
Rapinel et al., 2019). Each season can provide specific information, 
as was found for example by Soubry and Guo (2021) to distinguish 
shrubs and grasslands: in spring the most important feature was the 
peak in growth (red and blue bands), in summer the leaf structure 
(near infrared bands), while in autumn the greenness and moisture 
(shortwave infrared and red bands). In the case of Classical Karst, 
autumn and winter generally allowed evergreens to be distinguished 
from deciduous or semi-deciduous plants, while summer separated 
the different deciduous forest habitats especially with the NDVI and 
IRECI indices.

5  |  CONCLUSIONS

In this study, we tested novel SH indices in a multitemporal clas-
sification framework and demonstrated their potential to improve 
habitat mapping in complex landscapes, using the Classical Karst as 
testing area.

Our framework could be improved using different remote-sensing 
data sources, as hyperspectral sensors, sensors with higher spatial 
resolutions, or active sensors (Nagendra et  al.,  2013). Moreover, 
other combinations of input variables can possibly produce better 
results, such as combinations of Sentinel-1 and Sentinel-2 time se-
ries (Fauvel et al., 2020).

The framework presented here was applied to some areas of the 
Classical Karst, but could be extended to test its validity on a larger 
scale. This approach based on remote sensing cannot replace field 
work and requires field data for training and validation, though it can 
be a valid tool to map habitats in a cost- and time-effective way that 
is very suitable for monitoring purposes.

AUTHOR CONTRIBUTIONS
Emilia Pafumi, Francesco Petruzzellis and Giovanni Bacaro con-
ceived the study, with additional input from Miris Castello and 
Alfredo Altobelli; Emilia Pafumi, Francesco Petruzzellis and Miris 
Castello collected the data; Emilia Pafumi and Francesco Petruzzellis 
performed the analysis, with contributions from the other authors 
for the interpretation of the results; Emilia Pafumi wrote the first 
draft; Francesco Petruzzellis, Giovanni Bacaro, Miris Castello, 
Simona Maccherini and Duccio Rocchini contributed to the writing; 
all authors critically revised the manuscript and gave final approval 
for publication.

FUNDING INFORMATION
This study was conducted within the “Ecomosaico del Carso” project, 
funded by the Rural Development Program (Programma di Sviluppo 
Rurale) 2014–2020 of Friuli Venezia Giulia Region. Authors who 
received this funding are Alfredo Altobelli, Emilia Pafumi, Giovanni 
Bacaro, and Miris Castello. Francesco Petruzzellis is currently sup-
ported by the funding PON Ricerca e Innovazione D.M. 1062/21– 
Contratti di ricerca, from the Italian Ministry of University (MUR).

CONFLIC T OF INTERE S T S TATEMENT
The authors have no conflict of interest to declare.

DATA AVAIL ABILIT Y S TATEMENT
The Sentinel-2 images can be downloaded from the Google Earth 
Engine platform. All analysis tools can be found in the R pack-
ages cited in the manuscript. The reference data set and the R 
script used for image classifications are available in the electronic 
Supplementary Information.

ORCID
Emilia Pafumi   https://orcid.org/0000-0003-1592-1964 
Francesco Petruzzellis   https://orcid.org/0000-0002-3635-8501 
Miris Castello   https://orcid.org/0000-0002-5081-0365 
Alfredo Altobelli   https://orcid.org/0000-0002-4038-7014 
Simona Maccherini   https://orcid.org/0000-0002-2025-7546 
Duccio Rocchini   https://orcid.org/0000-0003-0087-0594 
Giovanni Bacaro   https://orcid.org/0000-0003-0946-4496 

 1654109x, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/avsc.12762 by C

ochraneItalia, W
iley O

nline L
ibrary on [17/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://orcid.org/0000-0003-1592-1964
https://orcid.org/0000-0003-1592-1964
https://orcid.org/0000-0002-3635-8501
https://orcid.org/0000-0002-3635-8501
https://orcid.org/0000-0002-5081-0365
https://orcid.org/0000-0002-5081-0365
https://orcid.org/0000-0002-4038-7014
https://orcid.org/0000-0002-4038-7014
https://orcid.org/0000-0002-2025-7546
https://orcid.org/0000-0002-2025-7546
https://orcid.org/0000-0003-0087-0594
https://orcid.org/0000-0003-0087-0594
https://orcid.org/0000-0003-0946-4496
https://orcid.org/0000-0003-0946-4496


12 of 14  |    
Applied Vegetation Science

PAFUMI et al.

R E FE R E N C E S
Altobelli, A., Ganis, P., Zanatta, K. & Zanetti, M. (2014) Processing of im-

ages obtained using UAV/RPAS to assess the degree of scrubbing 
over dry grasslands in the Gorizian karst. In: Buzan, E. & Pallavicini, 
A. (Eds.) Biodiversity and conservation of karst ecosystems. Padua: 
Padova University Press, pp. 155–164.

Asner, G.P., Scurlock, J.M.O. & Hicke, J.A. (2003) Global synthesis of 
leaf area index observations: implications for ecological and re-
mote sensing studies: global leaf area index. Global Ecology and 
Biogeography, 12, 191–205. Available from: https://​doi.​org/​10.​
1046/j.​1466-​822X.​2003.​00026.​x

Bayle, A., Carlson, B., Thierion, V., Isenmann, M. & Choler, P. (2019) 
Improved mapping of mountain Shrublands using the Sentinel-2 
red-edge band. Remote Sensing, 11, 2807. Available from: https://​
doi.​org/​10.​3390/​rs112​32807​

Bhatt, P., Maclean, A., Dickinson, Y. & Kumar, C. (2022) Fine-scale map-
ping of natural ecological communities using machine learning ap-
proaches. Remote Sensing, 14, 563. Available from: https://​doi.​org/​
10.​3390/​rs140​30563​

Borra, S., Thanki, R. & Dey, N. (2019) Satellite image analysis: clustering 
and classification. SpringerBriefs in applied sciences and technology. 
Singapore: Springer Singapore.

Breiman, L. (2001) Random forests. Machine Learning, 45, 5–32. Available 
from: https://​doi.​org/​10.​1023/A:​10109​33404324

Butaye, J., Adriaens, D. & Honnay, O. (2005) Conservation and resto-
ration of calcareous grasslands: a concise review of the effects of 
fragmentation and management on plant species. Biotechnology, 
Agronomy, Society and Environment, 9, 111–118.

Chen, D., Huang, J. & Jackson, T.J. (2005) Vegetation water content 
estimation for corn and soybeans using spectral indices derived 
from MODIS near- and short-wave infrared bands. Remote Sensing 
of Environment, 98, 225–236. Available from: https://​doi.​org/​10.​
1016/j.​rse.​2005.​07.​008

Chraibi, E., Arnold, H., Luque, S., Deacon, A., Magurran, A. & Féret, J.-
B. (2021) A remote sensing approach to understanding patterns of 
secondary succession in tropical Forest. Remote Sensing, 13, 2148. 
Available from: https://​doi.​org/​10.​3390/​rs131​12148​

Corbane, C., Lang, S., Pipkins, K., Alleaume, S., Deshayes, M., García 
Millán, V.E. et  al. (2015) Remote sensing for mapping natural 
habitats and their conservation status – new opportunities and 
challenges. International Journal of Applied Earth Observation and 
Geoinformation, Special Issue on Earth Observation for Habitat 
Mapping and Biodiversity Monitoring, 37, 7–16. Available from: 
https://​doi.​org/​10.​1016/j.​jag.​2014.​11.​005

European Commission. (1992) Council Directive 92/43/EEC of 21 May 
1992 on the conservation of natural habitats and of wild fauna and 
flora (OJ L 206 22.07.1992 p. 7).

European Commission. (2005) Note to the habitats committee. Assessment, 
monitoring and reporting of conservation status – preparing the 2001–
2007 report under article 17 of the habitats directive (No. DocHab-
04-03/03 rev.3). Brussels: European Commission.

Fassnacht, F.E., Müllerová, J., Conti, L., Malavasi, M. & Schmidtlein, S. 
(2022) About the link between biodiversity and spectral variation. 
Applied Vegetation Science, 25, e12643. Available from: https://​doi.​
org/​10.​1111/​avsc.​12643​

Fauvel, M., Lopes, M., Dubo, T., Rivers-Moore, J., Frison, P.-L., Gross, 
N. et  al. (2020) Prediction of plant diversity in grasslands using 
Sentinel-1 and -2 satellite image time series. Remote Sensing of 
Environment, 237, 111536. Available from: https://​doi.​org/​10.​
1016/j.​rse.​2019.​111536

Feilhauer, H., Somers, B. & van der Linden, S. (2017) Optical trait indi-
cators for remote sensing of plant species composition: predictive 
power and seasonal variability. Ecological Indicators, 73, 825–833. 
Available from: https://​doi.​org/​10.​1016/j.​ecoli​nd.​2016.​11.​003

Féret, J.-B. & Asner, G.P. (2014) Mapping tropical forest canopy di-
versity using high-fidelity imaging spectroscopy. Ecological 
Applications, 24, 1289–1296. Available from: https://​doi.​org/​10.​
1890/​13-​1824.​1

Féret, J.-B. & de Boissieu, F. (2020) biodivMapR: an r package for α- and 
β-diversity mapping using remotely sensed images. Methods in 
Ecology and Evolution, 11, 64–70. Available from: https://​doi.​org/​
10.​1111/​2041-​210X.​13310​

Foody, G.M. (2004) Thematic map comparison: evaluating the sta-
tistical significance of differences in classification accuracy. 
Photogrammetric Engineering & Remote Sensing, 70, 627–633. 
Available from: https://​doi.​org/​10.​14358/​​PERS.​70.5.​627

Frampton, W.J., Dash, J., Watmough, G. & Milton, E.J. (2013) Evaluating 
the capabilities of Sentinel-2 for quantitative estimation of bio-
physical variables in vegetation. ISPRS Journal of Photogrammetry 
and Remote Sensing, 82, 83–92. Available from: https://​doi.​org/​10.​
1016/j.​isprs​jprs.​2013.​04.​007

Gara, T.W., Darvishzadeh, R., Skidmore, A.K., Wang, T. & Heurich, 
M. (2019) Accurate modelling of canopy traits from seasonal 
Sentinel-2 imagery based on the vertical distribution of leaf traits. 
ISPRS Journal of Photogrammetry and Remote Sensing, 157, 108–123. 
Available from: https://​doi.​org/​10.​1016/j.​isprs​jprs.​2019.​09.​005

Gitelson, A.A., Kaufman, Y.J. & Merzlyak, M.N. (1996) Use of a green 
channel in remote sensing of global vegetation from EOS-MODIS. 
Remote Sensing of Environment, 58, 289–298. Available from: 
https://​doi.​org/​10.​1016/​S0034​-​4257(96)​00072​-​7

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, 
R. (2017) Google Earth Engine: planetary-scale geospatial analysis 
for everyone. Remote Sensing of Environment, 202, 18–27. Available 
from: https://​doi.​org/​10.​1016/j.​rse.​2017.​06.​031

Guyon, I., Weston, J., Barnhill, S. & Vapnik, V. (2002) Gene selection 
for cancer classification using support vector machines. Machine 
Learning, 46, 389–422. Available from: https://​doi.​org/​10.​1023/A:​
10124​87302797

Haralick, R.M., Shanmugam, K. & Dinstein, I. (1973) Textural features 
for image classification. IEEE Transactions on Systems, Man, and 
Cybernetics, SMC-3, 610–621. Available from: https://​doi.​org/​10.​
1109/​TSMC.​1973.​4309314

Khatami, R., Mountrakis, G. & Stehman, S.V. (2016) A meta-analysis of 
remote sensing research on supervised pixel-based land-cover 
image classification processes: general guidelines for practitioners 
and future research. Remote Sensing of Environment, 177, 89–100. 
Available from: https://​doi.​org/​10.​1016/j.​rse.​2016.​02.​028

Kollert, A., Bremer, M., Löw, M. & Rutzinger, M. (2021) Exploring the 
potential of land surface phenology and seasonal cloud free 
composites of one year of Sentinel-2 imagery for tree species 
mapping in a mountainous region. International Journal of Applied 
Earth Observation and Geoinformation, 94, 102208. Available from: 
https://​doi.​org/​10.​1016/j.​jag.​2020.​102208

Kuhn, M. (2021) Caret: classification and regression training. R package 
version 6.0-90. Available from: https://​CRAN.​R-​proje​ct.​org/​packa​
ge=​caret​

Li, Y., He, N., Hou, J., Xu, L., Liu, C., Zhang, J. et al. (2018) Factors influ-
encing leaf chlorophyll content in natural forests at the biome scale. 
Frontiers in Ecology and Evolution, 6, 64. Available from: https://​doi.​
org/​10.​3389/​fevo.​2018.​00064​

Liccari, F., Sigura, M. & Bacaro, G. (2022) Use of remote sensing tech-
niques to estimate plant diversity within ecological networks: a 
worked example. Remote Sensing, 14, 4933. Available from: https://​
doi.​org/​10.​3390/​rs141​94933​

Marignani, M., Rocchini, D., Torri, D., Chiarucci, A. & Maccherini, S. 
(2008) Planning restoration in a cultural landscape in Italy using an 
object-based approach and historical analysis. Landscape and Urban 
Planning, 84, 28–37. Available from: https://​doi.​org/​10.​1016/j.​
landu​rbplan.​2007.​06.​005

 1654109x, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/avsc.12762 by C

ochraneItalia, W
iley O

nline L
ibrary on [17/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1046/j.1466-822X.2003.00026.x
https://doi.org/10.1046/j.1466-822X.2003.00026.x
https://doi.org/10.3390/rs11232807
https://doi.org/10.3390/rs11232807
https://doi.org/10.3390/rs14030563
https://doi.org/10.3390/rs14030563
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.rse.2005.07.008
https://doi.org/10.1016/j.rse.2005.07.008
https://doi.org/10.3390/rs13112148
https://doi.org/10.1016/j.jag.2014.11.005
https://doi.org/10.1111/avsc.12643
https://doi.org/10.1111/avsc.12643
https://doi.org/10.1016/j.rse.2019.111536
https://doi.org/10.1016/j.rse.2019.111536
https://doi.org/10.1016/j.ecolind.2016.11.003
https://doi.org/10.1890/13-1824.1
https://doi.org/10.1890/13-1824.1
https://doi.org/10.1111/2041-210X.13310
https://doi.org/10.1111/2041-210X.13310
https://doi.org/10.14358/PERS.70.5.627
https://doi.org/10.1016/j.isprsjprs.2013.04.007
https://doi.org/10.1016/j.isprsjprs.2013.04.007
https://doi.org/10.1016/j.isprsjprs.2019.09.005
https://doi.org/10.1016/S0034-4257(96)00072-7
https://doi.org/10.1016/j.rse.2017.06.031
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1109/TSMC.1973.4309314
https://doi.org/10.1016/j.rse.2016.02.028
https://doi.org/10.1016/j.jag.2020.102208
https://CRAN.R-project.org/package=caret
https://CRAN.R-project.org/package=caret
https://doi.org/10.3389/fevo.2018.00064
https://doi.org/10.3389/fevo.2018.00064
https://doi.org/10.3390/rs14194933
https://doi.org/10.3390/rs14194933
https://doi.org/10.1016/j.landurbplan.2007.06.005
https://doi.org/10.1016/j.landurbplan.2007.06.005


    |  13 of 14
Applied Vegetation Science

PAFUMI et al.

Marin, A. & Altobelli, A. (2021) Social ecology and traditional landscape 
enhancement. Some issues from a case study in the Gorizia karst. 
SMC Magazine, 5, 55–60.

Marzialetti, F., Di Febbraro, M., Malavasi, M., Giulio, S., Acosta, A.T.R. 
& Carranza, M.L. (2020) Mapping coastal dune landscape through 
spectral Rao's Q temporal diversity. Remote Sensing, 12, 2315. 
Available from: https://​doi.​org/​10.​3390/​rs121​42315​

Nagendra, H., Lucas, R., Honrado, J.P., Jongman, R.H.G., Tarantino, C., 
Adamo, M. et al. (2013) Remote sensing for conservation monitor-
ing: assessing protected areas, habitat extent, habitat condition, 
species diversity, and threats. Ecological Indicators, Biodiversity 
Monitoring, 33, 45–59. Available from: https://​doi.​org/​10.​1016/j.​
ecoli​nd.​2012.​09.​014

Osińska-Skotak, K., Radecka, A., Ostrowski, W., Michalska-Hejduk, 
D., Charyton, J., Bakuła, K. et  al. (2021) The methodology for 
identifying secondary succession in non-Forest Natura 2000 
habitats using multi-source airborne remote sensing data. 
Remote Sensing, 13, 2803. Available from: https://​doi.​org/​10.​
3390/​rs131​42803​

OSMER. (2015) Schede climatiche territoriali del Friuli Venezia Giulia. ARPA 
FVG. Available from: https://​www.​clima.​fvg.​it/​clima_​schede.​php?​
m=​1 [Accessed 20th May 2022].

Palmer, M.W., Earls, P.G., Hoagland, B.W., White, P.S. & Wohlgemuth, 
T. (2002) Quantitative tools for perfecting species lists. 
Environmetrics, 13, 121–137. Available from: https://​doi.​org/​10.​
1002/​env.​516

Poldini, L. (1989) The vegetation of the Trieste and Isonzo karst: study of the 
plant landscape between Trieste, Goriza and the adjacent territories 
(Italian). Trieste: Lint. ed.

Poldini, L. (2009) The plant diversity of the karst between Trieste and 
Gorizia: the state of the environment (Italian). Trieste: Ed. Goliardiche.

Praticò, S., Solano, F., Di Fazio, S. & Modica, G. (2021) Machine learn-
ing classification of Mediterranean Forest habitats in Google earth 
engine based on seasonal Sentinel-2 time-series and input image 
composition optimisation. Remote Sensing, 13, 586. Available from: 
https://​doi.​org/​10.​3390/​rs130​40586​

QGIS Development Team. (2022) QGIS geographic information system. 
Available from: http://​www.​qgis.​org

R Core Team. (2022) R: a language and environment for statistical comput-
ing. Vienna: R Foundation for Statistical Computing. Available from: 
https://​www.​R-​proje​ct.​org/​

Rapinel, S., Mony, C., Lecoq, L., Clément, B., Thomas, A. & Hubert-Moy, 
L. (2019) Evaluation of Sentinel-2 time-series for mapping flood-
plain grassland plant communities. Remote Sensing of Environment, 
223, 115–129. Available from: https://​doi.​org/​10.​1016/j.​rse.​2019.​
01.​018

Rocchini, D., Andreo, V., Förster, M., Garzon-Lopez, C.X., Gutierrez, A.P., 
Gillespie, T.W. et al. (2015) Potential of remote sensing to predict 
species invasions: a modelling perspective. Progress in Physical 
Geography: Earth and Environment, 39, 283–309. Available from: 
https://​doi.​org/​10.​1177/​03091​33315​574659

Rocchini, D., Balkenhol, N., Carter, G.A., Foody, G.M., Gillespie, T.W., 
He, K.S. et  al. (2010) Remotely sensed spectral heterogeneity as 
a proxy of species diversity: recent advances and open challenges. 
Ecological Informatics, 5, 318–329. Available from: https://​doi.​org/​
10.​1016/j.​ecoinf.​2010.​06.​001

Rocchini, D., Foody, G.M., Nagendra, H., Ricotta, C., Anand, M., He, K.S. 
et al. (2013) Uncertainty in ecosystem mapping by remote sensing. 
Computers & Geosciences, 50, 128–135. Available from: https://​doi.​
org/​10.​1016/j.​cageo.​2012.​05.​022

Rocchini, D., He, K.S., Oldeland, J., Wesuls, D. & Neteler, M. (2010) 
Spectral variation versus species β-diversity at different spatial 
scales: a test in African highland savannas. Journal of Environmental 

Monitoring, 12, 825–831. Available from: https://​doi.​org/​10.​1039/​
b921835a

Rocchini, D., Marcantonio, M., Da Re, D., Bacaro, G., Feoli, E., Foody, 
G.M. et al. (2021) From zero to infinity: minimum to maximum di-
versity of the planet by spatio-parametric Rao's quadratic entropy. 
Global Ecology and Biogeography, 30, 1153–1162. Available from: 
https://​doi.​org/​10.​1111/​geb.​13270​

Rocchini, D., Salvatori, N., Beierkuhnlein, C., Chiarucci, A., de Boissieu, F., 
Förster, M. et al. (2021) From local spectral species to global spec-
tral communities: a benchmark for ecosystem diversity estimate by 
remote sensing. Ecological Informatics, 61, 101195. Available from: 
https://​doi.​org/​10.​1016/j.​ecoinf.​2020.​101195

Rossi, C., Kneubühler, M., Schütz, M., Schaepman, M.E., Haller, R.M. & 
Risch, A.C. (2021) Spatial resolution, spectral metrics and biomass 
are key aspects in estimating plant species richness from spectral 
diversity in species-rich grasslands. Remote Sensing in Ecology and 
Conservation, 8, 297–314. Available from: https://​doi.​org/​10.​1002/​
rse2.​244

Rouse, J.W., Haas, R.H. & Schell, J.A.W. (1975) Monitoring vegetation 
systems in the great plains with ERTS. Presented at the Third ERTS 
Symposium.

Schuster, C., Förster, M. & Kleinschmit, B. (2012) Testing the red edge 
channel for improving land-use classifications based on high-
resolution multi-spectral satellite data. International Journal of 
Remote Sensing, 33, 5583–5599. Available from: https://​doi.​org/​10.​
1080/​01431​161.​2012.​666812

Schuster, C., Schmidt, T., Conrad, C., Kleinschmit, B. & Förster, M. (2015) 
Grassland habitat mapping by intra-annual time series analysis – 
comparison of RapidEye and TerraSAR-X satellite data. International 
Journal of Applied Earth Observation and Geoinformation, 34, 25–34. 
Available from: https://​doi.​org/​10.​1016/j.​jag.​2014.​06.​004

Soubry, I. & Guo, X. (2021) Identification of the optimal season and spec-
tral regions for shrub cover estimation in grasslands. Sensors, 21, 
3098. Available from: https://​doi.​org/​10.​3390/​s2109​3098

Tarantino, C., Forte, L., Blonda, P., Vicario, S., Tomaselli, V., Beierkuhnlein, 
C. et  al. (2021) Intra-annual Sentinel-2 time-series supporting 
grassland habitat discrimination. Remote Sensing, 13, 277. Available 
from: https://​doi.​org/​10.​3390/​rs130​20277​

Thouverai, E., Marcantonio, M., Bacaro, G., Da Re, D., Iannacito, M., 
Marchetto, E. et al. (2021) Measuring diversity from space: a global 
view of the free and open source rasterdiv R package under a 
coding perspective. Community Ecology, 22, 1–11. Available from: 
https://​doi.​org/​10.​1007/​s4297​4-​021-​00042​-​x

Villoslada, M., Bergamo, T.F., Ward, R.D., Burnside, N.G., Joyce, C.B., 
Bunce, R.G.H. et al. (2020) Fine scale plant community assessment 
in coastal meadows using UAV based multispectral data. Ecological 
Indicators, 111, 105979. Available from: https://​doi.​org/​10.​1016/j.​
ecoli​nd.​2019.​105979

Wang, R., Gamon, J., Emmerton, C., Li, H., Nestola, E., Pastorello, G. 
et al. (2016) Integrated analysis of productivity and biodiversity in 
a southern Alberta prairie. Remote Sensing, 8, 214. Available from: 
https://​doi.​org/​10.​3390/​rs803​0214

Wang, R. & Gamon, J.A. (2019) Remote sensing of terrestrial plant bio-
diversity. Remote Sensing of Environment, 231, 111218. Available 
from: https://​doi.​org/​10.​1016/j.​rse.​2019.​111218

Wang, R., Gamon, J.A., Cavender-Bares, J., Townsend, P.A. & Zygielbaum, 
A.I. (2018) The spatial sensitivity of the spectral diversity–biodi-
versity relationship: an experimental test in a prairie grassland. 
Ecological Applications, 28, 541–556. Available from: https://​doi.​
org/​10.​1002/​eap.​1669

Whittaker, R.H. (1960) Vegetation of the Siskiyou Mountains, Oregon 
and California. Ecological Monographs, 30, 279–338. Available from: 
https://​doi.​org/​10.​2307/​1943563

 1654109x, 2023, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/avsc.12762 by C

ochraneItalia, W
iley O

nline L
ibrary on [17/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.3390/rs12142315
https://doi.org/10.1016/j.ecolind.2012.09.014
https://doi.org/10.1016/j.ecolind.2012.09.014
https://doi.org/10.3390/rs13142803
https://doi.org/10.3390/rs13142803
https://www.clima.fvg.it/clima_schede.php?m=1
https://www.clima.fvg.it/clima_schede.php?m=1
https://doi.org/10.1002/env.516
https://doi.org/10.1002/env.516
https://doi.org/10.3390/rs13040586
http://www.qgis.org
https://www.r-project.org/
https://doi.org/10.1016/j.rse.2019.01.018
https://doi.org/10.1016/j.rse.2019.01.018
https://doi.org/10.1177/0309133315574659
https://doi.org/10.1016/j.ecoinf.2010.06.001
https://doi.org/10.1016/j.ecoinf.2010.06.001
https://doi.org/10.1016/j.cageo.2012.05.022
https://doi.org/10.1016/j.cageo.2012.05.022
https://doi.org/10.1039/b921835a
https://doi.org/10.1039/b921835a
https://doi.org/10.1111/geb.13270
https://doi.org/10.1016/j.ecoinf.2020.101195
https://doi.org/10.1002/rse2.244
https://doi.org/10.1002/rse2.244
https://doi.org/10.1080/01431161.2012.666812
https://doi.org/10.1080/01431161.2012.666812
https://doi.org/10.1016/j.jag.2014.06.004
https://doi.org/10.3390/s21093098
https://doi.org/10.3390/rs13020277
https://doi.org/10.1007/s42974-021-00042-x
https://doi.org/10.1016/j.ecolind.2019.105979
https://doi.org/10.1016/j.ecolind.2019.105979
https://doi.org/10.3390/rs8030214
https://doi.org/10.1016/j.rse.2019.111218
https://doi.org/10.1002/eap.1669
https://doi.org/10.1002/eap.1669
https://doi.org/10.2307/1943563


14 of 14  |    
Applied Vegetation Science

PAFUMI et al.

SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.

Appendix S1. Study area and habitat classes.
Appendix S2. Vegetation and SH indices.
Appendix S3. Satellite image classifications.
Data S1.
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