
Nature | Vol 615 | 2 March 2023 | 117

Article

Palaeogenomics of Upper Palaeolithic to 
Neolithic European hunter-gatherers

Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge 
of the genetic relatedness and structure of ancient hunter-gatherers is however 
limited, owing to the scarceness and poor molecular preservation of human remains 
from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including 
new genomic data for 116 individuals from 14 countries in western and central Eurasia, 
spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile 
in individuals associated with Upper Palaeolithic Gravettian assemblages from 
western Europe that is distinct from contemporaneous groups related to this 
archaeological culture in central and southern Europe4, but resembles that of 
preceding individuals associated with the Aurignacian culture. This ancestry profile 
survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human 
populations from southwestern Europe associated with the Solutrean culture, and 
with the following Magdalenian culture that re-expanded northeastward after the 
Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe 
suggesting a local replacement of human groups around the time of the Last Glacial 
Maximum, accompanied by a north-to-south dispersal of populations associated with 
the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this 
culture spread from the south across the rest of Europe, largely replacing the 
Magdalenian-associated gene pool. After a period of limited admixture that spanned 
the beginning of the Mesolithic, we find genetic interactions between western and 
eastern European hunter-gatherers, who were also characterized by marked 
differences in phenotypically relevant variants.

Modern humans left sub-Saharan Africa at least 60 thousand years ago 
(ka), and during their initial expansion into Eurasia, they genetically 
mixed with Neanderthals, resulting in 2–3% Neanderthal ancestry in 
the majority of present-day non-African populations5. Genomic data 
have shown that modern humans were present in western Eurasia1,2 at 
least 45 ka. Some of those early groups from more than 40 ka further 
admixed with Neanderthals, as shown by signals of recent introgression 
in individuals from Bacho Kiro in Bulgaria—associated with an Initial 
Upper Palaeolithic (IUP) archaeological culture—and from Peştera cu 
Oase in Romania2,6. Other individuals from that period, such as Zlatý 
kůň from Czechia and Ust’Ishim from Russia, do not carry significantly 
more Neanderthal ancestry than other non-African groups1,7, indicat-
ing differential interactions between Neanderthals and early modern 
humans during their initial expansions across Eurasia. Surprisingly, 
however, none of those pre-40 ka individuals left substantial traces 
in the genetic makeup of present-day Eurasian populations1,2,6,7. The 
oldest genomes carrying ancestries that derive primarily from the 
lineage leading to present-day Europeans are Kostenki 14 (from 37 ka, 
with uncertain archaeological association from western Russia), Goyet 
Q116-1 (35 ka, Aurignacian-associated from Belgium) and Bacho Kiro 
1653 (35 ka, probably Aurignacian-associated from Bulgaria)2,4,8. These 
data suggest that the genetic ancestries identified in the pre-40 ka 
individuals analysed so far went largely extinct or were assimilated by 
subsequent expansions1,9. The Kostenki genetic signature (related to the 

Kostenki 14 genome, and hereafter referred to as the Kostenki cluster 
or ancestry) contributed to the later Věstonice genetic cluster (here-
after, Věstonice cluster or ancestry), named after the Dolní Věstonice 
site in Czechia4. This genetic signature is shared among individu-
als associated with the archaeologically defined Gravettian culture 
(33–26 ka) in central and southern Europe and seemingly disappeared 
after the Last Glacial Maximum4 (LGM). However, the genetic profile 
of contemporaneous Gravettian-associated individuals from western 
Europe remains unknown, as is their contribution to populations after 
the LGM. Known to have been the coldest phase of the last Ice Age, 
the LGM is considered to have caused a demographic decline in large 
parts of Europe10, with populations retracting to southern latitudes 
as attested—for example—by the contemporaneity of the Solutrean 
culture (24–19 ka) in the Iberian peninsula and southern France. Other 
proposed climatic refugia for human survival during this period are the 
Italian peninsula, the Balkans and the southeastern European Plain, but 
the actual genetic contribution of populations from these regions to 
post-LGM Europeans is highly debated11–13.

After the LGM, a genetic component distantly linked to the Goyet 
Q116-1 individual from Belgium dated to 35 ka—named GoyetQ2 ances-
try (hereafter, GoyetQ2 cluster or ancestry)—reappeared in individuals 
from southwestern and central Europe associated with the Magdalenian 
culture (19–14 ka from Iberia to eastern Europe across central Europe) 
and in an admixed form in subsequent Final Palaeolithic and Mesolithic 
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hunter-gatherers4,14, but the geographic extension of this ancestry is 
still unclear. Instead, in southern Europe, a distinct hunter-gatherer 
genetic profile was found as early as 17 ka in individuals associated 
with the Epigravettian culture15 (24–12 ka, from the Italian peninsula to 
the southeastern European Plain across the Balkans). This ‘Villabruna’  
ancestry (hereafter, Villabruna cluster or ancestry) showed con-
nections to ancient and present-day Near Eastern populations4,16, 
but the mode and tempo of its expansion into the Italian peninsula 
remain unexplored. The Villabruna ancestry later appeared in central 
Europe and it is thought to have largely replaced groups related to the  
GoyetQ2 ancestry4. However, its formation, diffusion and interaction 
with contemporaneous hunter-gatherers from eastern Europe and their 
interplay with later expansions of Neolithic farmers from southeastern 
Europe are not well characterized.

In this study, we analyse 356 ancient hunter-gatherer genomes includ-
ing new genomic data of 116 individuals dated to 35–5 ka alongside a 
novel contamination-estimation method based on runs of homozygo-
sity. We provide a systematic description of the genomic transforma-
tions that hunter-gatherer groups experienced from the early Upper 
Palaeolithic onwards across western and central Eurasia and how those 
are possibly linked to cultural and climatic changes.

Ancient DNA data generation
We generated genome-wide sequencing data for 102 newly reported 
hunter-gatherers, and increased coverage for 14 previously pub-
lished individuals4. These data cover a time span of around 30,000 
years from the Upper Palaeolithic to the Late Neolithic (defined 
here by the presence of pottery rather than by farming subsistence 
economy if not indicated), derive from multiple prehistoric cultural 
contexts, and originate from 54 archaeological sites in 14 countries:  
1 Aurignacian-associated individual from Belgium and 1 culturally unas-
signed individual from Romania (35–33 ka), 15 Gravettian-associated 
individuals from Spain, France, Belgium, Czechia and Italy (31–26 ka), 
2 Solutrean-associated individuals from Spain and France (23–21 ka),  
9 Magdalenian-associated individuals from France, Germany, and 
Poland (18–15 ka), 4 Epigravettian-associated individuals from Italy 
(17–13 ka), 2 Federmesser-associated individuals from Germany (14 ka), 
and 81 Mesolithic to Neolithic foragers from across western Eurasia 
(11–5 ka), together with 1 central Eurasian Neolithic individual from 
Tajikistan (8 ka) (Fig. 1, Extended Data Table 1, Supplementary Data 1.A,  
Supplementary Information, section 1 and Supplementary Fig. 1).

We built 1 to 8 single- and double-stranded genetic libraries for each 
individual and enriched them for human DNA on 1.24 million single 
nucleotide polymorphisms6 (SNPs), which were then sequenced and 
yielded 0.04- to 7.64-fold coverage on average over the targeted SNPs. 
Genetic sexing revealed 78 male individuals and 38 female individuals  
(Supplementary Fig. 12). The levels of contamination from mod-
ern human DNA were estimated on the basis of mitochondrial DNA 
(mtDNA), X chromosome and autosomal DNA, and with a haplo-
type copying model that is extended here to autosomal data in runs 
of homozygosity (ROH) (Methods, Supplementary Information,  
sections 2 and 3, Supplementary Figs. 2–11 and Supplementary Table 1). 
Substantially contaminated libraries as well as marginally contaminated 
libraries of individually analysed genomes were filtered to maintain 
reads showing postmortem DNA damage (Methods and Supplemen-
tary Figs. 10 and 11). Pseudo-haploid genotypes were called on the 
targeted SNPs by randomly sampling a single allele at each position, 
resulting in individuals with 6,600 to 1.07 million SNPs covered on the 
1.24-million-SNP panel (Extended Data Table 1 and Supplementary Data 
1.A). The newly generated genotypes were merged with 240 published 
ancient hunter-gatherer genomes and modern worldwide popula-
tions for downstream analyses (Supplementary Data 1.G). Contrary 
to the proposal in Fu et al.4 but in agreement with Petr et al.17, we do 
not observe a substantial decrease of Neanderthal ancestry in most 

European hunter-gatherers through time (Supplementary Information, 
section 6 and Supplementary Figs. 15–17). This provides further support 
for the model with no long-term decline of genome-wide Neanderthal 
ancestry in modern humans following their introgression18.

Before the LGM
The Gravettian culture was one of the most widely distributed Upper 
Palaeolithic cultures across western Eurasia before the LGM19. It is often 
considered as a pan-European cultural mosaic with regional variations 
in material to symbolic productions20,21. In this debated framework, 
Gravettian-associated individuals have been suggested to represent a 
biologically homogeneous population on the basis of craniometric and 
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Fig. 1 | Locations, dates and MDS plot of ancient Eurasian hunter-gatherers.  
a, Geographic locations of newly reported individuals (filled symbols with 
black outline) and representative previously published individuals (outlined 
stars). Dotted lines delimit geographic regions described in the text. b, Calibrated 
radiocarbon dates of individuals plotted in a. The y axis shows the average of 
calibrated radiocarbon dates in thousands of years (kyr) (Supplementary Data 
1.A). The horizontal dashed line marks the boundary between Late Pleistocene 
and Holocene. c, MDS plot of European hunter-gatherers based on 1 − f3(Mbuti; 
pop1, pop2). The dimensions are calculated using newly reported and 
previously published hunter-gatherer groups or individuals with more than 
30,000 SNPs. The detailed grouping of individuals shown with empty coloured 
circles is described in Supplementary Data 1.I.
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genomic data4,22. However, published Gravettian-associated genomes 
originate from central and southern Europe, leaving the genetic profile 
of Gravettian-associated human groups from western and southwestern 
Europe undescribed.

To gain an overview of the genomic background of European 
hunter-gatherers before the LGM, we used multidimensional scaling 
(MDS) to plot a dissimilarity matrix of pairwise outgroup f3-statistics in 
the form 1 − f3(Mbuti; pop1, pop2) (Fig. 2a). This plot reveals the pres-
ence of three distinct groupings: (1) a pre-40 ka group with individuals 
from the Ust’Ishim, Bacho Kiro, Zlatý kůň and Peştera cu Oase sites,  
(2) a Věstonice cluster including Gravettian-associated individuals from 
central–eastern and southern European sites (Dolní Věstonice, Pavlov, 
Krems-Wachtberg, Paglicci and Ostuni), and (3) a Fournol cluster (here-
after, Fournol cluster or ancestry) comprising Gravettian-associated 
individuals from western and southwestern European sites (Ormesson, 
La Rochette, Fournol and two Serinyà cave sites (Mollet III and Reclau 
Viver)). The previously described Věstonice cluster, including a newly 
reported 29,000-year-old individual from Paglicci cave (Paglicci 12) in 
southern Italy, is closely related to the previously published genomes 
from Sunghir and Kostenki 12 in western Russia, which are dated to 
34 ka and 32 ka, respectively4,23. The newly defined Fournol cluster is 
closely related to Aurignacian-associated individuals from Belgium 
dated to 35 ka (Goyet Q116-1 and the newly reported Goyet Q376-3 
individual). Notably, and contrary to the report by Fu et al.4, another 
Gravettian-associated population from central–western Europe (Goyet 

in Belgium, n = 6 individuals) is both geographically and genetically 
intermediate between the Věstonice and Fournol clusters. The similarity 
between Goyet Q116-1 and Goyet Q376-3 and the Fournol cluster is also 
observed at the mtDNA level, with both groups including individuals who 
carried mtDNA haplogroup M, which has not been found in European  
individuals from after the LGM24 (Extended Data Figs. 1 and 2).

We further validated the genetic distinction between the Věstonice 
and Fournol clusters observed in the MDS plot with a series of f4-statistics 
(Supplementary Data 2.B). All individuals belonging to the Fournol clus-
ter show higher affinity to Goyet Q116-1 than to the Sunghir group (n = 4), 
and the Věstonice-cluster individuals show higher affinity to the Sunghir 
group than to Goyet Q116-1 (Extended Data Fig. 3). These f4-statistics 
also confirm that Goyet Q376-3 carries a similar ancestry to Goyet Q116-1 
and Kostenki 12 carries a similar ancestry to the Sunghir group, whereas 
Bacho Kiro 1653 (35 ka) from Bulgaria, Muierii 1 (34 ka) and Cioclovina 1  
(32 ka) from Romania, and Paglicci 133 (33 ka) from southern Italy are 
equally related to Goyet Q116-1 and Sunghir. We further tested whether 
individuals included in the Věstonice and Fournol clusters share similar 
allele frequencies with the main representatives of those two clusters. 
With the statistics f4(Mbuti, Fournol 85; Věstonice, test) and f4(Mbuti, 
Věstonice; Fournol 85, test), we show that all Věstonice-cluster indi-
viduals are significantly closer (|Z|>3) to the Věstonice group (n = 5) 
and the Fournol-cluster individuals are closer to Fournol 85, whereas 
the geographically intermediate Gravettian-associated Goyet group 
shows extra affinity to both clusters (Fig. 2b).
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pre-LGM European hunter-gatherer lineages created using qpGraph.
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We further modelled the genetic profile of pre-LGM individuals 

with qpGraph (Supplementary Information, section 10 and Supple-
mentary Figs. 19–25). The admixture graph shows that the Bacho Kiro 
IUP group (n = 3) shares ancestry with multiple early modern human 
lineages2 (Supplementary Information, section 7), and that the more 
than 45,000-year-old Zlatý kůň genome1 is the most deeply divergent 
non-African lineage sequenced to date (Extended Data Fig. 4). This is 
also validated by f4-statistics of the form f4(Mbuti, Zlatý kůň; test1, test2), 
which are consistent with zero for all other pre-LGM hunter-gatherers 
(Supplementary Data 2.C), indicating an equidistant relationship of 
Zlatý kůň to the tested groups. When Gravettian-associated individuals 
are included in an admixture graph also featuring Kostenki 14, we find 
that Fournol 85 fits best as a sister lineage of Goyet Q116-1, whereas the 
Věstonice group is modelled as a mixture between a lineage related 
to the Sunghir group and one related to the Goyet Q116-1–Fournol 
85 branch (Fig. 2c). This is also supported by f4-statistics of the form 
f4(Mbuti, Fournol 85; Sunghir, test), which are significantly positive for 
all the individuals included in the Věstonice cluster (Supplementary 
Data 2.B). Therefore, as previously reported2, the Věstonice cluster itself 
results from admixture between western and eastern lineages, which 
might contribute to the observed homogeneity in cranial morphology 
among Gravettian-associated individuals22.

These results show that some, but not all, of the genomic ances-
tries present in Europe between around 40 ka and 30 ka survived in 
the Gravettian-associated populations studied so far. The Kostenki 
(and Sunghir group) ancestry contributed to the previously described 
Věstonice cluster represented by Gravettian-associated individuals 
from central-eastern and southern Europe4. By contrast, the Goyet 
Q116-1 genetic profile gave rise to the newly described Fournol clus-
ter identified in Gravettian-associated individuals from western and 
southwestern Europe. Notably, this genetic distinction coincides 
with dissimilarities in mortuary practice among genetically analysed 
Gravettian-associated individuals from different parts of Europe. Indi-
viduals in western and southwestern Europe related to the Fournol 
cluster are consistently deposited in cave sites and occasionally exhibit 
anthropogenic marks whereas individuals related to the Věstonice 
cluster are buried with grave goods and/or personal ornaments and 
ochre in open air or cave sites in central-eastern and southern Europe, 
respectively (Supplementary Figs. 29–32 and Supplementary Table 4). 
The oldest individual in the Fournol cluster is Ormesson 2988 from 
northeastern France (31 ka, Early/Middle Gravettian), whereas a Gravet-
tian group from Goyet in Belgium (27 ka, Late Gravettian) is found to 
be a mixture between the Věstonice and Fournol clusters. This sug-
gests that between the Early/Middle and Late Gravettian there was 
an east-to-west expansion of the Věstonice-associated ancestry that 
reached central-western Europe and created a longitudinal admix-
ture cline between those two genetically distinct pre-LGM populations.

LGM in southwestern and western Europe
The Solutrean culture is temporally intermediate between the Gravet-
tian and the Magdalenian (or the Badegoulian) cultures, and is found in 
southwestern and western Europe, which are considered to have been 
climatic refugia for human populations during the LGM25,26. However, 
the extent to which groups associated with the Solutrean culture are 
in genetic continuity with earlier and later populations from the same 
region is unknown because no genomic data from Solutrean-associated 
individuals have been reported previously. Both newly sequenced 
genomes from Solutrean-associated individuals (Le Piage II (23 ka) from 
southwestern France and La Riera (level 14, 21 ka) from northern Spain) 
show a generalized affinity with members of the Fournol and GoyetQ2 
clusters in outgroup f3-statistics (Supplementary Data 2.A). In the MDS 
plot, the Le Piage II individual falls particularly close to individuals 
belonging to the Fournol cluster, suggesting a local genetic continuity 
of this ancestry during the LGM (Supplementary Fig. 13). F4-statistics 

further support this view, revealing that Le Piage II is more closely 
related to the Fournol cluster than the Věstonice cluster (f4(Mbuti, 
Le Piage II; Věstonice, Fournol 85) ≫ 0, Z = 6.58). We also compared its 
affinity to El Mirón (northern Spain), the oldest Magdalenian-associated 
individual sequenced to date (19 ka). F-statistics suggest that Le  
Piage II is genetically intermediate between Fournol 85 and El Mirón 
(Supplementary Data 2.D). Moreover, previous studies have shown 
that El Mirón carries a genetic contribution from the Villabruna cluster, 
which is found in Epigravettian-associated individuals from Italy4,15.  
El Mirón has a significantly higher similarity to the Villabruna cluster  
than Fournol 85 and Le Piage II, while the affinity to the Villabruna 
cluster in Le Piage II is not significantly higher than in Fournol 85  
(Supplementary Data 2.D). Overall, the Solutrean-associated Le Piage 
II individual links the preceding Fournol ancestry with the succeed-
ing ancestry found in El Mirón, providing direct evidence for genetic 
continuity throughout the LGM in southwestern and western Europe. 
These European regions, therefore, constitute climatic refugia where 
human populations survived during the LGM.

Post-LGM in the Italian peninsula
After the LGM, the Epigravettian culture was widespread in southern 
and southeastern Europe. In spite of growing discussions about its 
nature27,28, the Epigravettian culture has been traditionally assumed 
to be the result of a transition from the preceding local Gravettian29.  
However, the level of genetic continuity between individuals asso-
ciated with these cultures and the population structure among 
Epigravettian-associated individuals have not been fully explored. 
Here, we report genomic data from 4 individuals, including 3 approxi-
mately 13,000-year-old genomes from northeastern Italy (Pradis 1), 
northwestern Italy (Arene Candide 16) and Sicily (San Teodoro 2), as well 
as increased genome-wide coverage from Tagliente 215 dated to 17 ka.

In the MDS plot, we find that all of the newly and previously reported 
Epigravettian-associated individuals fall within the Villabruna clus-
ter4 (Fig. 1c). A series of f4-symmetry statistics confirm that all the 
Epigravettian-associated individuals are cladal, and do not share excess 
affinity with any local (Paglicci 12) or non-local preceding ancestries 
(Goyet Q116-1, Kostenki 14, Mal’ta 1 or Věstonice) (Supplementary 
Data 2.F). Moreover, none of the Epigravettian-associated individu-
als have more affinity to southern European than to central-eastern 
European Gravettian-associated groups, as shown by f4(Mbuti, 
Epigravettian-associated individual/group; Věstonice, Paglicci 12) 
that is consistent with 0 (Supplementary Data 2.G).

Next, we investigated the genetic relationships between 
Epigravettian-associated individuals across the Italian peninsula, by 
reconstructing a phylogeny based on a matrix of pairwise f2 genetic 
distances (Fig. 3a and Supplementary Fig. 9) and testing the relative 
affinity among them using f4-statistics in the form f4(Mbuti, Epigravet-
tian A; Epigravettian B, Epigravettian C) (Supplementary Data 2.E). The 
inferred topology reveals a phylogeographic pattern irrespective of 
individual ages. In particular, the 13 ka Pradis 1 individual from north-
eastern Italy represents the most basal lineage compared to all other 
Epigravettian-associated individuals, including the older Tagliente 2 
and Villabruna genomes from northern Italy (group 1). Individuals from 
northwestern Italy (Arene Candide 16), central Italy (Continenza) and 
Sicily fall on a phylogenetically more derived branch (group 2), which 
further diversified into a branch composed of Sicilian hunter-gatherers 
only (group 3). Within Sicily, the 14 ka Oriente C individual shows higher 
affinity with the much younger but geographically closer 10 ka Uzzo 
group30 (n = 2) than with the almost contemporaneous San Teodoro 2 
individual from eastern Sicily.

Finally, we estimated the genetic diversity of Epigravettian-associated 
individuals in the dataset by calculating both pairwise mismatch rates 
(PMR) on pseudo-haploid genotypes and individual heterozygosity levels 
on pseudo-diploid genotypes (Supplementary Data 3.A). Compared with 
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the genetic diversity observed among all analysed Gravettian-associated 
groups, Epigravettian-associated individuals show significantly lower 
amounts of genetic diversity (two-tailed t-test, P < 0.001) (Fig. 3b). Moreo-
ver, we reveal a north-to-south decrease in genetic diversity among the 
Epigravettian-associated groups, with the highest PMR and heterozygo-
sity values found in northern Italian individuals (group 1), intermediate in 
western and central Italian individuals (group 2) and the lowest in Sicilian 
individuals (group 3) (Fig. 3b). A similar pattern is observed through 
the analysis of ROH segments (Extended Data Fig. 5 and Supplemen-
tary Information, section 9). We detect the highest amount of ROHs in 
Epigravettian-associated individuals from Sicily, who carry an extreme 
amount of more than 200 cM of short ROHs (4–8 cM). This suggests a 

very small recent effective population size, estimated to be in the order of 
around 70 individuals (Supplementary Table 2), causing the low genetic 
diversity in Sicilian Epigravettian hunter-gatherers.

To summarize, our results highlight a genetic turnover in the Italian  
peninsula of the Gravettian-associated Věstonice cluster by the 
Epigravettian-associated Villabruna cluster that might correlate with 
discontinuities observed in the archaeological record31. We show 
that all analysed Epigravettian-associated individuals carry a homo-
geneous Villabruna ancestry, with the intra-group genetic structure 
mainly determined by their geographical, and not temporal, distri-
bution. The phylogenetic reconstruction of Epigravettian-associated 
genomes, with Pradis 1 diverging more deeply than all others, indicates 
that the turnover took place much earlier than 17 ka—the date of the 
more derived Tagliente 2 genome. This, together with the evidence of  
Villabruna ancestry in El Mirón 19 ka, further suggests that this genetic 
discontinuity could be the result of palaeogeographic and palaeoeco-
logical transformations connected to the LGM32, rather than to the 
Bølling–Allerød warming period4,15 (14.7–12.9 ka). In addition, our phy-
logeographic analysis points to northeastern Italy as the possible entry 
point of the Epigravettian-associated gene pool in the Italian peninsula. 
This finding, in conjunction with the genetic affinity of the Villabruna 
cluster to ancient and present-day Near Eastern ancestries4,15,16 (Sup-
plementary Information, section 8, Supplementary Fig. 18 and Sup-
plementary Data 2.O), suggests the Balkans as a source of the incoming 
Epigravettian-associated population. The LGM could thus have created 
a corridor south of the Alps for east-to-west human movements that 
genetically connected hunter-gatherer populations from the Balkans to 
Iberia, possibly also via dispersals along existing lower-sea-level coasts32.

Post-LGM in western and central Europe
The Magdalenian culture was widely distributed in southwestern, 
western and central Europe after the LGM33. Despite this wide geo-
graphical range, it is not clear whether different groups associated 
with this culture originated from a common source population and 
how those groups were genetically related to each other. Previous 
studies identified two different genetic compositions in Magdalenian- 
associated individuals—the GoyetQ2 cluster including central-western  
European genomes dated to around 15 ka (from France, Belgium and 
Germany), and the ancestry of the El Mirón individual from Spain4,14 
from around 19 ka. Both of these ancestries carry a genetic component 
distantly related to the Goyet Q116-1 individual dated to 35 ka, with the  
Iberian individual also showing an affinity to the Villabruna cluster4,14. 
By co-analysing previously published data with our newly reported 
genomes associated with the Magdalenian from La Marche (18 ka) 
and Pincevent (15 ka) in western and northern France, respectively, 
and Maszycka (18–16 ka) in southern Poland, we confirm that the 
Goyet Q116-1 ancestry survived in all studied Magdalenian-associated 
genomes besides in Gravettian and Solutrean-associated individu-
als from southwestern and western Europe (Fig. 1). Notably, the 
Fournol ancestry provides a better proxy than Goyet Q116-1 for the 
genetic component found in the GoyetQ2 cluster and in El Mirón 
(Supplementary Data 2.H). However, using f4-statistics, we show that 
all Magdalenian-associated individuals, and not only El Mirón, carry 
Villabruna-related ancestry when compared to the Fournol clus-
ter (Supplementary Data 2.H). This affinity is even stronger towards 
Epigravettian-associated individuals from western and central Italy and 
Sicily (group 2 and group 3, respectively) than to those from northern 
Italy (group 1) (Supplementary Data 2.F).

We thus modelled individuals belonging to the GoyetQ2 cluster 
and El Mirón as a mixture between the Fournol 85 and Arene Candide  
16 genomes as proxies to represent the Fournol and Villabruna 
ancestries, respectively, in Magdalenian-associated groups (Fig. 4a). 
Besides El Mirón, who has around 43% Villabruna ancestry, all other 
Magdalenian-associated individuals have a lower proportion of this 
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component (19–29%) and can thus be assigned to the GoyetQ2 clus-
ter (Fig. 4a and Supplementary Data 3.C). This is further validated 
by f4-statistics of the form f4(Mbuti, Arene Candide 16; Goyet Q-2, 
Magdalenian-associated individuals), which is significantly positive 
only for El Mirón, whereas all other tested individuals and Goyet Q-2 
are symmetrically related with respect to Arene Candide 16 (Supple-
mentary Fig. 26 and Supplementary Data 2.H).

Our analyses demonstrate that the Fournol cluster is a better source 
for Magdalenian-associated genomes than Goyet Q116-1. There-
fore, most of the ancestry found in these post-LGM individuals prob-
ably traced back to Gravettian-associated groups from western and 
southwestern Europe. The genetic affinity to the Villabruna ancestry 
is present in El Mirón and in Magdalenian-associated individuals from 
western and central Europe. This suggests that genetic links between 
southern and southwestern European hunter-gatherers around the 
time of the LGM extended north of the Pyrenees. The resulting GoyetQ2 
cluster includes individuals spanning from western France to Poland 
in the period between 18 and 15 ka. Therefore, contrary to previous 
suggestions34, this demonstrates that the post-LGM diffusion of the 
Magdalenian was indeed associated with northward and northeastward 
population expansions from western Europe35.

Post-14 ka to Neolithic
Previous studies have shown that two main hunter-gatherer ancestries 
were predominant across most parts of Europe after around 14 ka—
that is, the western hunter-gatherer (WHG) ancestry, related to the 
Villabruna cluster, and the eastern hunter-gatherer (EHG) ancestry, 
showing affinity to both the Villabruna and the ancient north Eurasian 
(ANE) ancestry found in Upper Palaeolithic Siberian individuals4,36. 
Hunter-gatherers carrying an admixed WHG/EHG genetic profile have 
been sequenced from various regions of northern and eastern Europe, 
raising the question of how these two types of ancestries formed and 
interacted with each other through time and space37–40.

In the MDS plot (Fig. 1c) and a west Eurasian principal component 
analysis (PCA) (Extended Data Fig. 6 and Supplementary Fig. 14), most 
post-14 ka individuals from western and central Europe fall close to the 
WHG cluster and those from eastern Europe close to the EHG cluster, 
whereas the Tutkaul 1 individual from central Asia falls close to the 
ANE-related group. The two 14 ka Oberkassel individuals mark the 
earliest presence of WHG ancestry north of the Alps, which we therefore 

rename the Oberkassel cluster (hereafter, Oberkassel cluster or ances-
try), using the name of the oldest reported individual to date carrying 
such ancestry with more than one-fold coverage, for consistency4. 
On the basis of f4-statistics, we find that individuals assigned to the 
Oberkassel cluster are closer to the Arene Candide 16 genome than 
any other Epigravettian-associated group from Italy (Supplementary 
Data 2.F). Moreover, the Oberkassel cluster carries both Villabruna 
ancestry and a contribution from GoyetQ2 ancestry (Supplementary 
Data 2.J). This was confirmed with qpAdm, in which we could model all 
individuals from the Oberkassel cluster as a broadly constant mixture of 
approximately 75% Arene Candide 16 and 25% Goyet Q-2 (or 90% Arene 
Candide 16 and 10% Fournol 85) (Fig. 4b and Supplementary Data 3.C). 
The observation that post-14 ka individuals from western and central 
Europe and also from Britain41 carry a homogeneous genetic makeup 
instead of displaying repeated local admixtures with GoyetQ2 ancestry 
implies that the Oberkassel-ancestry profile was already largely formed 
before its dispersal. This is in sharp contrast to the genetic history of Ibe-
rian hunter-gatherers, where the spread of the Villabruna/Oberkassel  
ancestry involved multiple local admixture events with groups carry-
ing high proportions of GoyetQ2 ancestry14 (Fig. 4 and Supplementary 
Data 3.C). The long-lasting genetic continuity in Iberia is also reflected 
in the preservation until the Mesolithic of Y-chromosome haplogroup 
C, which was predominant in pre-LGM groups but rarely found after the 
LGM in other parts of Europe (Extended Data Figs. 1 and 2).

Using f4-statistics and qpAdm, we confirm that EHG populations 
in eastern Europe are a mixture of Villabruna/Oberkassel and ANE 
ancestries (Supplementary Information, section 11 and Supplementary  
Data 2.K). F4-statistics also show that the approximately 8.2 ka Yuzhniy  
Oleniy Ostrov group from Karelia in western Russia formed by 19 
genomes has comparable or lower affinity to Villabruna ancestry than 
all the other EHG groups (Supplementary Data 2.K). The oldest indi-
vidual revealing an indistinguishable genetic profile from the Yuzhniy 
Oleniy Ostrov group is the 11 ka Sidelkino individual from Samara in 
western Russia42. For consistency with the previously discussed nomen-
clature, we rename the EHG ancestry as the Sidelkino cluster (hereaf-
ter, Sidelkino cluster or ancestry). The genetic distinction between 
the Oberkassel and Sidelkino clusters is also clearly noticeable in the 
diversity of uniparentally inherited markers, as the Oberkassel cluster 
is dominated by mtDNA haplogroup U5 and Y-chromosome haplo-
group I, whereas individuals from the Sidelkino cluster show a higher 
frequency of mtDNA haplogroups U2, U4 and R1b, and carry uniquely 
Y-chromosome haplogroups Q, R and J (Extended Data Figs. 1 and 2).

We then attempted to model 250 published and newly reported 
hunter-gatherers dated to 14–5 ka using qpAdm as a mixture of Oberkas-
sel, Sidelkino, GoyetQ2 ancestries, and an ancestry maximized in Anato-
lian Neolithic farmers (ANF), as a considerable portion of the sequenced 
hunter-gatherer genomes date after around 8 ka, when ANF ancestry 
started spreading across Europe. Our results show that the contact 
zone and the admixture patterns between the Oberkassel and Sidelkino  
ancestries changed over time (Fig. 5). Between 14 and 8 ka, all hunter- 
gatherers in western and central Europe carried only Oberkassel 
ancestry, with no detectable contribution from the Sidelkino clus-
ter. Further north and east, individuals from the Baltics (Baltic HG),  
Scandinavia (SHG), the Balkans (Iron Gates HG) and Ukraine (Ukraine HG) 
already carried an Oberkassel/Sidelkino admixed ancestry38,40 before 
8 ka. In addition, those groups also carry affinity to ANF suggesting more 
complex genetic processes behind their demographic history16. Moreo-
ver, two of the oldest published groups from western Russia belonging 
to the Sidelkino cluster—Peschanitsa (13 ka)43 and the newly reported 
Minino individuals (11 ka)—showed extra affinity to the Oberkassel clus-
ter, possibly owing to variability in this ancestry proportion during the 
initial formation phase of the Sidelkino-ancestry profile. Using DATES 
software, we estimated the admixture between Villabruna/Oberkassel 
and ANE ancestries in these old Sidelkino-cluster-related individuals 
to around 15–13 ka (Extended Data Fig. 7 and Supplementary Table 3), 
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which coincides roughly with the first appearance of the Oberkassel 
ancestry in central Europe. This raises the possibility that the replace-
ment by the Oberkassel cluster and the formation of the Sidelkino cluster 
might have been the result of population expansions influenced by the 
abrupt warming during the Bølling–Allerød interstadial4,24.

From around 8 ka, we begin to observe admixture events with Sidel-
kino ancestry in central Europe. This is first detected in an individual 
from Gross Fredenwalde in northeastern Germany and reaches around 
10% in most European hunter-gatherer individuals thereafter (Extended 

Data Fig. 8). Soon after 8 ka, Sidelkino ancestry was absent in eastern 
Spain but it had already reached northern Iberia alongside an increase 
in Oberkassel ancestry (Fig. 5). Conversely, additional Oberkassel ances-
try is identified in eastern Europe by at least 7.5 ka in newly generated 
genomes from Minino I and Yazykovo from the upper Volga region, 
whereas a 1,000-years-older individual from Minino I did not have 
this genetic component. Considering a freshwater reservoir signal in 
the upper Volga region making radiocarbon dates on human remains 
appear up to about 500 years older than their true age44, there could 
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be an interval of more than 1,000 years between the first evidence 
of admixture in central European hunter-gatherers with Sidelkino  
ancestry and eastern European hunter-gatherers with Oberkassel  
ancestry. However, additional genomes intermediate in time and  
space are needed to assess whether those two admixture events were 
independent or part of a common demographic process.

After 7.5 ka, as ANF ancestry had reached regions north of the Alps, 
individuals carrying a hunter-gatherer genetic profile were primarily 
restricted to the northern fringes of Europe (Fig. 5). In this period, the 
Oberkassel-ancestry admixture spread further east, reaching Samara 
by around 6.5 ka, and an increase in Sidelkino ancestry was detected in 
hunter-gatherers from the Baltic region, which was previously associ-
ated with the transition from the Narva culture to the Comb Ceramic 
culture38,39 (Extended Data Fig. 8). In central Europe, admixture with 
ANF ancestry became highly common but not ubiquitous, indicat-
ing the co-existence of hunter-gatherer and farmer societies without 
admixing for several hundred years. The youngest individual carrying 
large portions of hunter-gatherer ancestry in the analysed dataset 
is from Ostorf in northern Germany, dated to around 5.2 ka (>90% 
Oberkassel cluster plus Sidelkino-cluster components) (Supplemen-
tary Data 3.F). Individuals at this site might mark one of the last occur-
rences of such high levels of hunter-gatherer-related ancestries, just 
centuries before the emerging European Bronze Age.

On the basis of PCA and outgroup f3-statistics, the Neolithic Tutkaul 1  
individual from Tajikistan is closely related to Upper Palaeolithic individ-
uals from south-central Siberia (Afontova Gora 3 (AG3) and Mal’ta 1), and 
roughly contemporaneous West Siberian hunter-gatherers (Tyumen  
and Sosnoviy), both carrying high proportions of ANE ancestry45 (Fig. 1c 
and Extended Data Fig. 6). We tested the affinity of Tutkaul 1 to world-
wide ancient and modern populations relative to AG3. Contrary to West 
Siberian hunter-gatherers, Tutkaul 1 does not carry an extra eastern 
Eurasian ancestry, but shows affinity to Iranian Neolithic farmers and 
some younger populations from Iran and the Turan region (Supple-
mentary Data 2.L). Conversely, individuals in the Sidelkino cluster are 
genetically closer to AG3 than Tutkaul 1. This suggests that the newly 
reported Neolithic individual from central Asia carries an ancestry that 
might be a good proxy for the ANE-related contribution to Iran and the 
Turan region45 from around 5.5 ka but not to roughly contemporaneous 
hunter-gatherers from eastern Europe.

In sum, we describe the formation and interaction between the 
Oberkassel and Sidelkino clusters, the two main hunter-gatherer ances-
tries present in Europe from 14 ka onwards. The genomic similarity of 
the Oberkassel cluster to Arene Candide 16 in northwestern Italy might 
imply that Epigravettian-associated ancestry spread from the south to 
central Europe passing through the western side of the Alpine region. 
The Sidelkino ancestry also emerged around 14 ka with its first direct 
evidence in eastern Europe43 dated to 13 ka. The increasing level of 
admixture between distinct hunter-gatherer populations from around 
8 ka onwards indicates an intensified mobility of those forager groups. 
This might have been in part triggered by the concomitant expansion 
of Neolithic farmers across Europe and/or by environmental factors, 
such as the climatic event around 8.2 ka, the largest abrupt cooling in 
the northern hemisphere during the Holocene epoch46,47.

Phenotypically relevant variants
Leveraging the substantially increased sample size, we investigated 
genetically distinct hunter-gatherer groups for allele frequencies at 
selected loci that are known to be associated with specific pheno-
typic traits in present-day Europeans (Fig. 5b and Supplementary  
Figs. 27 and 28). Consistent with previous findings, none of the analysed 
groups show the derived allele at SNP rs4988235 on the LCT gene, which 
is responsible for lactase persistence. As previously hinted37, we find a 
large frequency variation in alleles related to skin and eye pigmenta-
tion among post-LGM hunter-gatherer groups. For the SNP associated 

with light eye colour (HERC2/OCA2 (rs12913832)), individuals from 
the Villabruna cluster, Oberkassel cluster, Baltic HG and SHG groups 
show high frequencies of the derived allele (>90%), which is respon-
sible for the green or blue eye phenotype, whereas Sidelkino cluster, 
Ukraine HG and Iron Gates HG groups show low occurrence of this 
allele (10–25%). Instead, for the two SNPs associated with skin colour 
(SLC24A5 (rs1426654) and SLC45A2 (rs16891982)), Sidelkino cluster and 
Ukraine HG groups show a higher frequency (>90% for SLC24A5 and 
29–61% for SLC45A2) of the derived alleles related to light skin colour, 
compared with Oberkassel and Villabruna clusters, where those alleles 
are almost completely absent (<1%). On the basis of the genetic varia-
tion of present-day Europeans, this could imply phenotypic differences 
between post-14 ka hunter-gatherer populations across Europe, with 
individuals in the Oberkassel cluster possibly exhibiting darker skin 
and lighter eyes, and individuals in the Sidelkino cluster possibly lighter 
skin and darker eye colour.

Discussion and conclusions
The data generated in this study enabled us to investigate genomic 
transformations of and interactions between Eurasian hunter-gatherers 
at high resolution (Extended Data Fig. 9). We provide five novel insights 
into the genomic history of hunter-gatherer populations over a time 
span of 30,000 years from the Upper Palaeolithic to the Neolithic.

First, we show that individuals associated with the Gravettian culture 
across Europe were not a biologically homogeneous population. Cul-
turally, however, we see both widespread general tendencies, such as 
weaponry and some portable art48, and other aspects that have a more 
regional character, such as mortuary practices (Supplementary Infor-
mation, section 13), various originalities in lithic and hard organic mate-
rials tool kits and adornments20,21. The ancestry found in individuals 
associated with the preceding Aurignacian culture from central Europe 
(GoyetQ116-1 ancestry) gave rise to Gravettian-associated individuals 
from western and southwestern Europe. This derived ancestry—the 
Fournol cluster—survived during the LGM in Solutrean-associated 
individuals, possibly within the Franco-Cantabrian climatic refugium25, 
leading to later populations associated with the Magdalenian culture 
(GoyetQ2 cluster and El Mirón). Conversely, the ancestry found in 
pre-30 ka eastern European individuals (Kostenki cluster and Sunghir 
group) contributed to Gravettian-associated individuals from central 
and southern Europe (Věstonice cluster), the latter without descend-
ants retrieved in post-LGM populations from those regions.

Second, the ancestry of individuals associated with the Epigravet-
tian culture (Villabruna cluster), which was found to genetically con-
nect European and Near Eastern hunter-gatherers, reached southern 
Europe well before the transition between the Early and Late Epigravet-
tian4,15 and possibly as early as the Gravettian–Epigravettian transition.  
A phylogeographic reconstruction of different lineages carrying this 
ancestry further suggests its entry point into northeastern Italy from 
the Balkans followed by a north-to-south expansion into the Italian pen-
insula alongside a population decline through sequential bottlenecks.

Third, Magdalenian-associated individuals not only from Iberia but 
also from the rest of Europe carry Epigravettian-associated ancestry 
(Villabruna cluster). Genetic analyses of western European individu-
als associated with the preceding Badegoulian culture might provide 
clues on the processes that led to the formation of the GoyetQ2 cluster.  
As inferred from the archaeological record35, the spread of the Mag-
dalenian across Europe is linked to southwestern to northern and  
northeastern post-LGM population expansions and not to movements 
from southeastern refugia34.

Fourth, we extend the finding of a large-scale genetic turnover as 
early as 14 ka in central and western European hunter-gatherers associ-
ated with multiple techno-complexes—Federmesser, Azilian and other 
Final Palaeolithic groups4—despite considerable technological conti-
nuity with the preceding late Magdalenian. This broadly distributed 
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ancestry (the Oberkassel cluster (also known as WHG)) is most closely 
related to an Epigravettian-associated individual from northwestern 
Italy, suggesting that its expansion into continental Europe might have 
started from the west—and not the east—side of the Alps. Moreover, the 
almost complete genetic replacement of the Magdalenian-associated 
gene pool raises the hypothesis that parts of Europe were differen-
tially populated during the abrupt climatic variation starting around 
14.7 ka with the Bølling–Allerød warming period, creating areas where 
southern European populations could expand. This might also explain 
the genetic uniformity of the Oberkassel cluster across large parts of 
western Eurasia but genomic data from between 15 and 14 ka is needed 
to understand the exact dynamics of this turnover.

Fifth, the Oberkassel ancestry in western and central Europe and 
the Sidelkino ancestry in eastern Europe remained largely isolated 
for almost 6,000 years until genetic interactions were first observed—
around 8 ka in northeastern Germany, possibly associated with cultural 
exchanges along the Baltics49 and around 7.5 ka in the upper Volga 
region, possibly linked to the spread of pottery in the region50.

In conclusion, our study reveals that western and southwestern 
Europe served as climatic refugia for the persistence of human groups 
during the coldest phase of the last Ice Age whereas populations in 
the Italian peninsula and the eastern European plain were genetically 
overturned, challenging the role of these regions as glacial refugia 
for humans. The incoming Villabruna ancestry later became the most 
widespread hunter-gatherer ancestry across Europe. Further palae-
ogenomic studies on Upper Palaeolithic individuals from the Balkans 
will be essential for understanding whether southeastern Europe rep-
resents the source of the Villabruna ancestry and a climatic refugium 
for human populations during the LGM.

Note added in proof: A companion paper51 describes genome-wide 
data of a 23,000-year-old Solutrean-associated individual from south-
ern Iberia that extend the evidence of genetic continuity across the 
LGM in southwestern Europe.
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Methods

Archaeological sampling
The ancient human specimens analysed in this work derive from 
multiple scientific collaborations. All remains were sampled with the 
approval of the institutions responsible for the analysis of archaeo-
logical material. This was achieved through collaboration with local 
curators and scientists from the countries where the skeletal material 
is preserved and who are listed among the authors of this study. The 
responsible co-authors for the material from each archaeological site 
are listed in Supplementary Information, section 1.

The analysed individuals span from the Upper Palaeolithic to the 
Neolithic. While terms such as lithic industry, techno-complex, pre-
historic tradition, and so on might be more appropriate to refer to the 
various associated chrono-cultural subdivisions, they concern different 
levels of discussion and are not applicable to all contexts investigated 
here. Therefore, the broader terms ‘archaeological culture’ or simply 
‘culture’ are used here to refer to archaeologically defined material 
cultures without implying links to modern anthropological and/or 
ethnographical concepts of culture.

Radiocarbon dating
We report 47 new radiocarbon dates performed on skeletal elements 
of 40 individuals by the Curt-Engelhorn-Zentrum Archaeometrie in 
Mannheim (MAMS, n = 29), Center for Isotope Research, University 
of Groningen (GrA and GrM, n = 5), University of Aarhus (AAR, n = 3), 
Beta Analytics (Beta, n = 2), Zürich (ETH, n = 3), International Chemical 
Analysis (ICA, n = 2), Natural History Museum in Paris (Echo Lab, n = 1) 
and Vilnius (FTMC, n = 2) (Supplementary Data 1.A). The dates were 
calibrated using OxCal 4.452 with calibration curve IntCal20 at 95.4% 
probability53 and when multiple dates were available for the same indi-
vidual we used the function R_Combine to combine them52. We did not 
correct the calibrated dates for marine or freshwater reservoir effects 
but, when available, we report individual stable isotope values (δ15N/
δ13C and C:N ratio) in Supplementary Data 1.A to evaluate the potential 
impact of such reservoir effects.

Ancient DNA processing
The human remains were processed in dedicated laboratories at 
the Max Planck Institute for the Science of Human History in Jena  
(Germany), University of Tübingen (Germany), University of Florence 
(Italy), Leiden University Medical Center (the Netherlands) and Uni-
versity of Tartu (Estonia). Human bones and teeth were sampled in 
clean room facilities to minimize the inclusion of modern human DNA 
contamination during this procedure. DNA was extracted from the gen-
erated bone or tooth powder following established protocols. A subset 
of samples (GER002 and GER003) were pre-treated with a washing step 
to reduce surface contamination54. A negative and cave bear positive 
controls were included. For the DNA lysis, a solution of 900 μl EDTA, 
75 μl H2O and 25 μl proteinase K was added. In a rotator, samples were 
digested for at least 16 h at 37 °C, and for pre-treated samples this was 
followed55 by an additional hour at 56 °C. The suspension was then cen-
trifuged and transferred into a binding buffer as previously described56. 
To bind DNA, silica columns for high volumes (High Pure Viral Nucleic 
Acid Large Volume Kit (Roche)) were used. After 2 washing steps using 
the manufacturer’s wash buffer, DNA was eluted in TET (10 mM Tris, 
1 mM EDTA and 0.05% Tween) in two steps for a final volume of 100 μl. 
After DNA lysis, a subset of samples was extracted using silica-coated 
magnetic particles on an automated liquid handling system (Agilent 
Technologies Bravo NGS Workstation)57. Double-stranded DNA libraries 
were built from 25 μl of DNA extract, without the presence of uracil DNA 
glycosylase (ds_nonUDG) or in the presence of uracil DNA glycosylase 
(ds_halfUDG), following a double-stranded ‘UDG-half’ library prepara-
tion to reduce, but not eliminate, the amount of deamination-induced 
damage towards the ends of ancient DNA (aDNA) fragments58. Negative 

and positive controls were carried alongside each experiment. Libraries 
were quantified using the IS7 and IS8 primers59 in a quantification assay 
using a DyNAmo SYBR Green qPCR Kit (Thermo Fisher Scientific) on the 
LightCycler 480 (Roche). Each aDNA library was double indexed60 in 1–4 
parallel 100 μl reactions using PfuTurbo DNA Polymerase (Agilent). The 
indexed products for each library were pooled, purified over MinElute 
columns (Qiagen), eluted in 50 μl TET and again quantified using the 
IS5 and IS6 primers59 using the quantification method described above. 
The purified products were amplified in multiple 100 μl reactions using 
Herculase II Fusion DNA Polymerase (Agilent) following the manufac-
turer’s specifications with 0.3 μM of the IS5/IS6 primers. After another 
MinElute purification, the product was quantified using the Agilent 
2100 Bioanalyzer DNA 1000 chip. An equimolar pool of all libraries 
was then prepared for shotgun sequencing on Illumina Hiseq4000 
platform using 75bp single-end reads for screening. Single-stranded 
DNA libraries were built from 30 μl of DNA extract in the absence of 
uracil DNA glycosylase (ss_nonUDG) followed by double indexing, 
using an automated version of the protocols described in61 on the liq-
uid handling system mentioned before. The single-stranded library 
of Cuiry Les Chaudardes 1 was produced with partial UDG treatment 
(ss_halfUDG)62 (Supplementary Data 1.B).

DNA enrichment and sequencing
Both double-stranded and single-stranded libraries were further ampli-
fied with IS5/IS6 primers to reach a concentration of 200–400 ng/μl  
as measured on a NanoDrop spectrophotometer (Thermo Fisher  
Scientific). The libraries underwent shallow shotgun sequencing on an 
Illumina HiSeq 4000 instrument with 75 single-end-run cycles using 
the manufacturer’s protocol, to evaluate the human endogenous DNA 
content and quality. Samples with a percentage of human DNA in shot-
gun data around 0.1% or greater were enriched for a set of 1,237,207 
targeted SNPs (1240k capture) across the human genome6. mtDNA 
capture63 was also performed for those libraries where mtDNA coverage 
was not high enough to assess mtDNA haplogroup and contamination. 
Illumina sequencing platforms were also used to sequence the 1240k 
and mtDNA captured libraries (Supplementary Data 1.B).

The de-multiplexed capture sequencing reads were cleaned and 
mapped to human reference genome hs37d5 using EAGER pipeline 
1.92.5564. Within the pipeline, the adapters were removed by Adap-
terRemoval 2.2.065, reads were mapped with BWA 0.7.12 aln/samse 
algorithm66, duplications were removed by DeDup 0.12.1 (https://
github.com/apeltzer/DeDup) and damage patterns of each library 
were checked with mapDamage 2.0.6 and 2.0.967. The deduplicated 
bam files were filtered using PMDtools 0.6068 with a threshold of 3, to 
reduce potential modern DNA contamination based on postmortem 
DNA deamination. For ds_halfUDG libraries, we masked 2 bp from both 
ends of the reads with trimBam in bamUtil 1.0.13 (https://github.com/
statgen/bamUtil) to remove the damaged sites.

The mitochondrial capture sequencing reads were cleaned by Adap-
terRemoval 2.2.0 to remove the adapters and reads with lengths below 
30 bp. Then the cleaned reads together with cleaned reads from 1240k 
capture sequencing were mapped to human reference mitochondrial 
sequence NC_012920.1 with BWA 0.7.12 aln/samse algorithm (param-
eters –n 0.01, –l 16500) and realigned with CircularMapper64. The 
mapped reads from the same individual and library set-up were merged 
and duplications were removed with DeDup. Reads with a mapping 
quality below 30 were then filtered with samtools, and the consensus 
sequences were generated by Schmutzi69.

Ancient DNA authentication and genotyping
The sex of each individual was determined by the ratio of sequencing 
coverages on sex chromosomes versus autosomes (Supplementary 
Data 1.C). Individuals with libraries showing signs of contamination 
were further tested using PMD-filtered bam files. Individuals with 
at least one library showing Y/Auto ratio > 0.2 were determined as 

https://github.com/apeltzer/DeDup
https://github.com/apeltzer/DeDup
https://github.com/statgen/bamUtil
https://github.com/statgen/bamUtil
https://www.ncbi.nlm.nih.gov/nuccore/NC_012920.1


Article
male individuals, and with Y/Auto < 0.2 were determined as female indi-
viduals4 (Supplementary Fig. 12).

The nuclear DNA contamination was estimated with several meth-
ods. We applied ANGSD 0.93470 and hapCon71 for libraries from male 
individuals, and applied contamLD72 and a newly developed method 
that analyses contamination in ROH for female and male libraries (see 
Supplementary Information, section 2 for a detailed description). The 
mtDNA contamination was estimated by Schmutzi (--notusepredC 
--uselength)69 for all the libraries. Libraries showing a mitochondrial 
or nuclear contamination rate over 10% were considered substantially 
contaminated whereas those between 5 and 10% were considered mar-
ginally contaminated and were treated differently (details are provided 
in Supplementary Information, section 3).

The cleaned reads with base quality and mapping quality over 30 
were piled up with mpileup in SAMtools 1.373 on the 1240k targeted 
sites. For contaminated libraries we used the PMD-filtered bam files 
as the input for genotyping. Then pseudo-haploid genotypes were 
called using pileupCaller 1.4.0.2 (https://github.com/stschiff/sequence-
Tools) under random haploid calling mode. For ds_halfUDG libraries, 
we called genotypes on all targeted sites from 2bp-masked bam files; 
for ds_nonUDG libraries, we called genotypes on transversion sites 
only; for ss_nonUDG libraries, we called genotypes with single-strand 
mode, which ignores forward reads at C/T polymorphisms and reverse 
reads at G/A polymorphisms.

Then we merged the genotypes from different libraries of the 
same individual, by randomly picking alleles from available geno-
type calls, using a custom script. After merging, individuals with less 
than 6,000 SNPs on 1240k sites were excluded from further analy-
sis because of low coverage. We also genotyped a selection of previ-
ously published individuals with the same approach (Supplementary  
Data 1.G)2,4,30,74–78. Then we combined our newly generated genotypes  
with published genotypes from ancient and modern individuals 
from AADR v42.4 (Allen Ancient DNA Resource (https://reich.hms. 
harvard.edu/allen-ancient-dna-resource-aadr-downloadable-genotypes- 
present-day-and-ancient-dna-data) version 42.4) for downstream  
analysis1,4,7,14,16,23,36–40,42,43,45,79–94.

For individual heterozygosity calculation, we also called pseudo- 
diploid genotypes from each library, using pileupCaller 1.4.0.3 under 
random diploid calling mode and the same strategy for different types 
of libraries as pseudo-haploid genotype calling.

Uniparental markers
The mitochondrial haplogroups were determined using HaploGrep 295,  
based on the consensus sequences generated from Schmutzi inspected 
for each sample at increasing quality filters (from q0 to q20). Incon-
sistent haplogroup assignments were manually verified as indicated24 
(Supplementary Data 1.L). For phylogenetic reconstruction (Extended 
Data Fig. 1) we used MUSCLE (-maxiters 2)96 to create a multiple genome 
alignment of previously published sequences and newly reported 
mtDNA consensus sequences with q20 according to defined thresh-
olds (minimum average coverage >5-fold, contamination estimate 
<20%, HaploGrep 2 haplogroup assignment consistent with manual 
assignment). We built a Maximum Parsimony tree with 103 mtDNA 
sequences plus an African sequence as the outgroup (not shown) after 
the removal of individuals younger than 6.5 ka and mtDNAs from the 
same site with an identical placement. The tree was calculated on 16,528 
positions (partial deletion 95%) and with 500 bootstrap iterations using 
MEGA1097.

To determine the Y-chromosome haplogroups of male individuals, 
we genotyped the Y-chromosome reads using a Y-SNP list (v.15.73) 
from the International Society of Genetic Genealogy (ISOGG) dataset, 
ignoring C-to-T and G-to-A transitions on the forward and reverse reads, 
respectively. This procedure allowed us to manually traverse the ISOGG 
Y-Haplogroup Tree, checking in a semi-automatic way which positions 
were covered. This process allowed us to assign an ancestral or derived 

haplogroup for covered branches, and to make corrections to calls 
in cases where, for instance, a more derived haplogroup was called 
because of residual ancient damage (C-to-T or G-to-A mismatches) in 
terminal read positions at diagnostic SNPs98 (Supplementary Data 1.A). 
For the placement of individuals onto a Y-chromosomal phylogenetic 
tree (Extended Data Fig. 1), we used pathPhynder99 based on the tree 
from Karmin et al.100. We used the default posterior threshold of 0.01, 
and mapping and sequencing quality cutoffs of 30. We then removed 
samples with less than 0.04X coverage (calculated on the mappable, 
non-recombining region of the Y chromosome98) to avoid arbitrarily 
placing low-coverage samples at the root of major haplogroups. This 
results in a tree with 57 newly reported and previously published ancient 
individuals while present-day sequences are collapsed in the major 
Y-chromosome haplogroups (the most basal lineages are not shown). 
The tentative placements of low-coverage ancient individuals based on 
their haplogroup assignment (Supplementary Data 1.A) are indicated 
with arrows on the respective branches.

Biological relatedness and population diversity
The analysis of biological relatedness was performed by calculating 
relatedness coefficient (r) based on PMR on the autosomal SNPs (Sup-
plementary Data 1.F and Supplementary Information, section 4). The 
baseline of each population was determined using the average het-
erozygosity rate of individuals estimated from pseudo-diploid geno-
types (Supplementary Data 1.E).

The ROH segments in hunter-gatherer genomes were identified 
using hapROH101. As recommended, we analysed individuals with 
over 400,000 SNPs called on the 1240k panel101 and we called ROH 
longer than 4 cM (Supplementary Data 3.B). The effective population 
sizes (Ne) were then estimated using a maximum likelihood method, 
after filtering individuals with a signal of close-kin inbreeding (indi-
viduals with at least 50 cM of their genome in ROH spanning >20 cM)  
(Supplementary Information, section 9).

Population genetics analysis
The PCA was carried out by smartpca in EIGENSOFT 6.0.1102, with mod-
ern individuals used for calculation and all the ancient individuals pro-
jected on the calculated PCs. The “lsqproject: YES” parameter was used 
to minimize the effect of missing data in ancient individuals. The PCA 
was calculated with 1379 individuals from 87 western Eurasian modern 
populations on the 1240k_HO dataset, which was intersected between 
the 1240k and Human Origins datasets (Supplementary Data 1.K).

The MDS analysis showing the genetic affinity among European 
hunter-gatherers was based on the distance matrix derived from out-
group f3-statistics, in the form 1 − f3(Mbuti.DG; pop1, pop2) and per-
formed with classical MDS algorithm (cmdscale) implemented in R 3.5.1. 
The hunter-gatherers were grouped based on their geographic origins 
and dates (Supplementary Information, section 5). The f3-statistics were 
calculated with qp3Pop 435 in ADMIXTOOLS 5.1 package103.

The pairwise f2 distance matrix of Epigravettian-associated groups 
was generated with qpfstats 200 in ADMIXTOOLS 7.0.2 package, with 
parameters “allsnps: YES, scale: NO”, and Mbuti.DG set as the out-
group. The neighbour-joining tree was then reconstructed using the 
neighbour-joining method implemented in Ape 5.3 package104 of R 3.5.1.

The f4-statistics were calculated by qpDstat 755 with parameter “f4 
mode: YES”, with the Mbuti.DG population from Africa used as outgroup 
in all f-statistics analyses. The tool qpAdm 810 in ADMIXTOOLS 5.1 was 
applied to model the ancestries of admixed populations, with “allsnps” 
mode and the outgroup set selection described in Supplementary 
Information, section 11. Admixture graphs were reconstructed using 
qpGraph 6450, with allsnps mode to correct for low-coverage sample 
and Mbuti.DG set as the outgroup. Admixture events were dated using 
the ancestry covariance pattern-based DATES 753 program105, with a bin 
size of 0.1 cM for covariance calculation and the start of exponential 
fitting at d ≥ 0.5cM.
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Phenotypic SNP analysis
As the coverage for most ancient samples was not sufficient for diploid 
genotype calling, we counted the reads covering selected phenotypic 
SNPs on reference or alternative alleles and computed the group-based 
allele frequencies following a maximum likelihood approach described 
in Mathieson et al.37. Details on individuals involved in the analysis,  
read counts processing and allele frequency computation are provided 
in the Supplementary Information, section 12 and Supplementary 
Data 1.J and 3.G.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The aligned sequences of all individuals with new genomic data 
reported in this study are available at the European Nucleotide Archive 
(ENA) under study accession number PRJEB51862. The compiled geno-
type file used for analyses, including re-genotyped published genomes, 
has been uploaded at the Edmond Data Repository of the Max Planck 
Society (https://edmond.mpdl.mpg.de/dataset.xhtml?persistentId=
doi:10.17617/3.Y1KJMF).

Code availability
The code for the newly developed ROH based contamination esti-
mate method is available at https://github.com/hyl317/hapROH.  
A user manual including an installation guide is available at https://
haproh.readthedocs.io/en/latest/hapROH_with_contamination.html.  
The version used for this work is archived at https://edmond.mpdl.
mpg.de/dataset.xhtml?persistentId=doi:10.17617/3.Y1KJMF.
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Extended Data Fig. 1 | MtDNA and Y-chromosome phylogenies. Bold letters refer to (a) mtDNA and (b) Ychr haplogroups, whose boxes are coloured according 
to the legend in Extended Data Fig. 2. The labels in italic denote previously published individuals without new data generated in this study.
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Extended Data Fig. 2 | The distribution of mtDNA and Y-chromosome 
haplogroups among different hunter-gatherer groups. The length of each 
coloured bar represents the fraction of individuals carrying the corresponding 
haplogroup (legend on the right of each panel). The number of individuals in 

each group is written to the right of each bar. We only plotted groups with more 
than two individuals and, for this reason, individuals from the GoyetQ116-1 
cluster are included here into the Fournol cluster.



Extended Data Fig. 3 | F4-statistics comparing the affinity of pre-LGM 
European hunter-gatherers to Goyet Q116-1 and Sunghir. The colours 
correspond to the grouping of tested populations, dots refer to the f4-values 
and the dark and light error bars to 1*SE and 3*SE estimated from 5 cM block 
jackknife, respectively. This figure shows that the Gravettian-associated 

individuals from western Europe (Fournol cluster) are closely related to Goyet 
Q116-1 while the Gravettian-associated individuals from central-eastern and 
southern Europe (Věstonice cluster) are closely related to the Sunghir group, 
representative of the Kostenki cluster. Details are provided in Data S2.B.



Article

Extended Data Fig. 4 | Admixture graph modelling of pre-34 ka hunter-gatherer lineages. In this admixture graph, the lineage related to Zlatý kůň splits more 
basally than the Bacho Kiro IUP group, who contributes to Tianyuan, Ust’Ishim and Goyet Q116-1 (indicated with red lines), but not to the Sunghir group.



Extended Data Fig. 5 | Summary of ROH segments detected in Eurasian 
hunter-gatherers. We visualize the total amount of ROH longer than 4 cM for 
(a) pre-LGM individuals, (b) Epigravettian- and Magdalenian-associated 
individuals, (c) individuals carrying high proportions of Sidelkino-related 
ancestry, and (d) individuals carrying high proportions of Oberkassel-related 
ancestry. Colour legend is shown in (e). Each bar represents one individual with 
the ROH grouped in four length categories (grouped by colour). The inferred 

pattern of short ROH (4–8 cM, visualized in blue) being common is in stark 
contrast to most later farmer populations, where the majority of individuals 
have no short ROH whatsoever (see101), and evidences small effective 
population sizes across West Eurasian hunter-gatherer groups. A dashed line  
of 50 cM total ROH is drawn in each panel to help comparison between panels 
with different y-axis scales. Details of the grouping and ROH segments are 
provided in Data S3.B.
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Extended Data Fig. 6 | West Eurasian PCA showing the genetic positioning 
of post-LGM hunter-gatherers. Present-day individuals (gray dots) 
genotyped on the Human Origins dataset are used to define the PCA variation 
onto which ancient genomes (coloured symbols) are projected. The newly 

reported individuals with over 15,000 SNPs on the Human Origins dataset are 
shown in black-outlined and filled symbols, as illustrated in the legend on the 
right, while representative ancient genomes are shown in outlined symbols, as 
illustrated in the legend at the bottom of the PCA.



Extended Data Fig. 7 | Admixture dates between Oberkassel/Villabruna 
and ANE ancestries in the oldest individuals from the Sidelkino cluster. The 
triangles show the average calibrated dates of the tested groups and the  
dots show the estimated admixture dates with the software DATES105 using 
Oberkassel (red dots) or Villabruna (blue dots) clusters as one source and 

ANE-related individuals as the other source population. The generation time is 
set to 29 years and the error bars show the SE of the admixture date estimated 
from jackknife resampling (n = 22 autosomal chromosomes). Additional  
details are provided in Supplementary Information, section 11 and 
Supplementary Table 3.
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Extended Data Fig. 8 | Changes of Sidelkino and Oberkassel ancestry 
proportions in post-14 ka hunter-gatherers. The bivariate plots show the 
expansion of Oberkassel and Sidelkino ancestries through time in two 
European areas (longitude below and above 30 degrees). The x-axis shows the 
average age of each tested individual/group and the y-axis shows the 

proportion of Sidelkino ancestry, relative to the total hunter-gatherer ancestry 
(Oberkassel + Sidelkino) in each group. The three squares highlight Baltic HG 
groups associated with the Comb Ceramic Culture (CCC) that show a marked 
increase in Sidelkino-related ancestry compared to older Baltic HG groups.



Extended Data Fig. 9 | Graphical summary depicting the main genetic 
transformations in post-40 ka hunter-gatherers from Europe. This figure 
shows (a) the distribution of and interaction between hunter-gatherer  
genetic ancestries and (b) a simplified schematic representation of major 
chrono-cultural subdivisions of the European Upper Palaeolithic (green blocks) 
followed by a grouped Mesolithic to Neolithic block (in gray). The x-axes report 

the geographic regions as divided in Fig. 1a, and the y-axes report time in 
thousand years before present (kBP). In panel a, genetic affinity between 
different ancestries is indicated by thick lines or shades, while admixture is 
indicated with arrows. In panel b, the colour code does not imply archaeological 
similarities.
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Extended Data Table 1 | Summary statistics for individuals with newly reported genomic data

Previously published individuals with additional data generated in this study are marked with an asterisk in the first column. The table is sorted based on cultural association maintaining an 
in-group temporal order from the oldest to the youngest individual.








	Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers
	Ancient DNA data generation
	Before the LGM
	LGM in southwestern and western Europe
	Post-LGM in the Italian peninsula
	Post-LGM in western and central Europe
	Post-14 ka to Neolithic
	Phenotypically relevant variants
	Discussion and conclusions
	Online content
	Fig. 1 Locations, dates and MDS plot of ancient Eurasian hunter-gatherers.
	Fig. 2 Genetic differences among Gravettian-associated populations.
	Fig. 3 The population substructure and diversity of Epigravettian-associated groups in southern Europe.
	Fig. 4 Ancestry modelling of post-19 ka individuals in southwestern, western and central Europe.
	Fig. 5 Ancestry modelling of hunter-gatherers from 14–5.
	Extended Data Fig. 1 MtDNA and Y-chromosome phylogenies.
	Extended Data Fig. 2 The distribution of mtDNA and Y-chromosome haplogroups among different hunter-gatherer groups.
	Extended Data Fig. 3 F4-statistics comparing the affinity of pre-LGM European hunter-gatherers to Goyet Q116-1 and Sunghir.
	Extended Data Fig. 4 Admixture graph modelling of pre-34 ka hunter-gatherer lineages.
	Extended Data Fig. 5 Summary of ROH segments detected in Eurasian hunter-gatherers.
	Extended Data Fig. 6 West Eurasian PCA showing the genetic positioning of post-LGM hunter-gatherers.
	Extended Data Fig. 7 Admixture dates between Oberkassel/Villabruna and ANE ancestries in the oldest individuals from the Sidelkino cluster.
	Extended Data Fig. 8 Changes of Sidelkino and Oberkassel ancestry proportions in post-14 ka hunter-gatherers.
	Extended Data Fig. 9 Graphical summary depicting the main genetic transformations in post-40 ka hunter-gatherers from Europe.
	Extended Data Table 1 Summary statistics for individuals with newly reported genomic data.


