

EGU24-908, updated on 22 Apr 2024 https://doi.org/10.5194/egusphere-egu24-908 EGU General Assembly 2024 © Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License.

Proximal Gamma Ray Spectroscopy for monitoring Soil Water Content in vineyards

Michele Franceschi^{1,2}, Matteo Alberi^{1,2}, Marco Antoni³, Ada Baldi⁴, Alessio Barbagli⁵, Luisa Beltramone⁶, Laura Carnevali⁷, Alessandro Castellano⁸, Giovanni Collodi⁷, Enrico Chiarelli^{1,2}, Tommaso Colonna⁵, Vivien De Lucia⁶, Andrea Ermini⁶, Andrea Maino^{1,2}, Fabio Gallorini^{1,5}, Enrico Guastaldi⁵, Nicola Lopane^{1,2,5}, Antonio Manes⁸, Fabio Mantovani^{1,2}, Samuele Messeri⁸, Dario Petrone^{1,5}, Silvio Pierini⁵, Kassandra Giulia Cristina Raptis^{1,2}, Andrea Rindinella⁶, Riccardo Salvini⁶, Daniele Silvestri⁶, Virginia Strati^{1,2}, and Gerti Xhixha⁹

¹Department of Physics and Earth Sciences, University of Ferrara, 44122 Ferrara, Italy

²INFN Ferrara Section, 44122 Ferrara, Italy

³Copernico S.r.l. 53024, Montalcino, Siena, Italy

⁴Department of Agriculture, Food, Environment and Forestry, University of Florence,50144 Firenze, Italy

⁵GeoExplorer Impresa Sociale s.r.l., 52100 Arezzo, Italy

⁶Department of Environment, Earth and Physical Sciences and Centre of Geotechnologies, University of Siena, 52027 San Giovanni Valdarno, Arezzo, Italy

⁷Department of Information Engineering, University of Florence, 50139 Firenze, Italy

⁸Netsens s.r.l., 50041 Calenzano, Firenze, Italy

⁹Department of Physics, Faculty of Natural Sciences, University of Tirana, 1001 Tirana, Albania

Soil Water Content (SWC) is a key information in precision agriculture for obtaining high levels of efficiency and health of crops, while reducing water consumption. In particular, for the case of vineyards, due to the recent extreme temperature fluctuations, the knowledge of the SWC of the entire field becomes crucial to allow a timely intervention with emergency irrigation to preserve plant health and yield.

Unlike electromagnetic SWC measurements, that are punctual and gravimetric measurements, that are punctual and also time-consuming, the Proximal Gamma Ray Spectroscopy (PGRS) technique can provide field-scale, non-invasive, and real-time measurements of SWC. This is achievable through an in-situ NaI detector, continuously recording photons resulting from the radioactive decay of ⁴⁰K in the soil, which are attenuated proportionally based on the amount of stored water. Given the inverse proportionality between soil moisture and photons detected by the gamma ray sensor, the SWC value can be easily obtained.

In this study we investigate the performance of PGRS applied to the case of study of a vineyard at the farm "Il Poggione" located in Montalcino (Siena, Italy).

The effectiveness of the results obtained is supported by different tests: first the validation allowed to compare the PGRS measurement (5.8 \pm 1.5)% with a gravimetric measurement (9.0 \pm

2.5)%, highlighting a 1- σ agreement; then by the rainfall recognition capability indeed, in correspondence to the most significant rainfall event (18 mm) the SWC value before and after the rain increased of 7.8%.

Moreover, the integration of the in-situ system with an agrometeorological station resulted in a Web App, allowing for real time data storage and thus facilitating data management, spectrum analysis, and display for both gamma ray sensor and agrometeorological station results, enabling comprehensive studies of environmental parameters (e.g., temperature, air humidity).

This research underlines the potential of PGRS as a precise, real-time, and field scale SWC monitoring tool not only in vineyards but for cultivated fields in general. Further refinements concerning the gamma ray spectra analysis and broader applications in environmental monitoring are envisaged for improved agricultural practices.

This study was supported by the project STELLA (Sistema inTEgrato per Lo studio del contenuto d'acqua in agricoLturA) (CUP: D94E20002180009) funded by the Tuscany region under the program POR FESR 2014/2020.